
 
 

 

 

AN INVESTIGATION OF EFFECTS OF BOUNDARY LAYER THICKNESS 

ON A THIN FILM OF LIQUID FLOW DOWN AN INCLINED PLANE 

 

 

 

BY 

 

SANG NICHOLAS 

 

 

 

 

 

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of 

Master of Science in Applied Mathematics 

Department of Mathematics and Computer Science 

University of Eldoret, KENYA 

 

 

 

 

September, 2013



i 
 

 

DECLARATIONS 

Declaration by the Candidate 

This thesis is my original work and has not been presented for a degree in any other 

University. No part of this thesis may be produced without the prior written 

permission 

of the author and/or University of Eldoret. 

Nicholas Sang 

SC/PGM/017/09 

Signature:................................ Date:................... 

Declaration by the Supervisors 

This thesis has been submitted for examination with our approval as the University 

Supervisors. 

1. Dr. Alfred W. Manyonge, 

School of Mathematics, Statistics and Actuarial Science 

Department of Pure and Applied Mathematics, 

Maseno University. 

Signature:................................ Date:.................... 

 

2. Dr. Alfred Koross, 

School of Science, 

Department of Mathematics and Computer Science, 

University of Eldoret. 

Signature:................................ Date:.................... 



ii 
 

DEDICATION 

I dedicate this work to my Brother Sailas Kipyegon, sisters Judith Chepkoech and 

Audrey Chepn'geno, cousins Mercy Chepng'etich, Ian Kiplang'at, Emmanuel Kibet 

and Niece Faith Chepkurui and Nephew Kiplang'at. 



iii 
 

 

ACKNOWLEDGEMENT 

Before anything, I would like to thank God for His blessings throughout my studies. I 

humbly and kindly pass my sincere gratitude to my supervisors, Dr. Manyonge, A. 

and Dr. Koross, A., due to their concerted effort in coming up with this thesis. Their 

advice in order to come up with this work is highly acknowledged. I highly appreciate 

the mentorship from my lecturer Dr. J. Mile. Much gratitude also goes to Mr. Keter, 

A., my classmate Mrs. Mberia, P. for their constant encouragements at the course of 

study, and Mr. Kweyu, C. who helped me understand and solve problems using 

MatLab. Much financial assistance from my parents Mr. and Mrs. Ng'eny, J., the 

families of Mr. and Mrs. Kaptich, D. and Chepkwony, C. won't go unappreciated. I 

would like to thank any other person who in one way or the other contributed to the 

success of this research. 



iv 
 

 

ABSTRACT 

The motion of fluid substances can be described by the Navier-Stokes equations. 

These equations arise from the application of Newton's second Law of motion to a 

fluid. In this study, Navier-Stokes equations in two dimensions have been taken into 

consideration. They are then applied to an incompressible viscous fluid motion down 

an inclined plane with net flow. These leads to finding the boundary layer thickness 

and examining the effects to the velocity of the motion at various angles of 

inclination. Flow of viscous laminar incompressible fluid does not always flow in 

horizontal position but sometimes on an inclined position. This makes it necessary to 

investigate the flow on an inclined plane. Most solutions that have been obtained are 

of the flow over horizontal flat plate. Solution that has been obtained for flow over a 

plane flat an angle of inclination was done by an experiment involving a at 

photographic film being pulled up by a processing bath by rollers at an angle     to 

the horizontal but it is found that boundary layer thickness of the flow is obtained 

where there is no net flow and the angle of inclination is not varied to show the effects 

on the velocity of the flow. Linear and quadratic polynomials and sine function 

approximate velocity profiles have been obtained under initial boundary layer 

conditions. These velocity profiles have been used in momentum integral equation for 

flow over an inclined plane to get the boundary layer thickness. Boundary layer 

thickness is one of the parameters that is used to obtain the flow velocity down 

inclined plane. 
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NOTATIONS 

 :                            Gradient operator 

 :                           dynamic viscosity 

V :                            velocity vector 

 :                           kinematic viscosity 





 .v

tDt

D
:       material derivative operator 

u  :                          velocity component in x- direction 

v  :                           velocity component in y- direction 

w  :                          velocity component in z- direction 

 :                           density of fluid 

Q  :                      change in a Q quantity 

 :                           angle of inclination 

 :                           boundary layer thickness 

 xb :                         gravity in x- direction 

yb :                         gravity in y- direction 

zb   :                        gravity in z- direction 

m :                         mass 

m = 
dt

dm
 :             change in mass per unit time 

F :                         force 

 :                          normal stress 

 :                          viscous shear stress 
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w  :                       viscous shear stress on the solid surface 

U :                      velocity vector of the main stream 

P :                        pressure 

M :                      momentum 

V :                       volume 

g :                        gravity vector 

Re  :                    Reynolds number 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background of the study 

A fluid is a substance that continually deforms (flows) under an applied shear stress, 

no matter how small. Fluids are a subset of the phases of matter and include liquids, 

gases, plasmas and, to some extent, plastic solids. Contribution made by Prandtl to 

fluid motion clarified the essential influence of viscosity in flows at high Reynolds 

number  Schlichting (1955). As a result of this influence of viscosity when fluid flows 

on surface of solid bodies, the fluid seems to “stick” to the surface. These viscous 

forces originate from molecular interactions. Right at the surface the flow has zero 

relative speed and the fluid transfers momentum to adjacent layers through the action 

of viscosity. Thus a thin layer (boundary layer) of fluid with lower velocity than the 

outer flow develops. The requirement that the flow at the surface has no relative 

motion is the \no slip condition." The thickness of the velocity boundary layer is 

normally defined as the distance from the solid body at which the flow velocity is 99 

per cent of the freestream velocity, that is, the velocity calculated at the surface of the 

body in an inviscid flow solution. The no-slip condition requires the flow velocity at 

the surface of a solid object be zero and the fluid temperature be equal to the 

temperature of the surface. The flow velocity will then increase rapidly within the 

boundary layer, governed by the boundary layer equations. Navier-Stokes equations 

commonly abbreviated N-S equations are some of the most important equations that 

describe the physics of a large number of phenomena that occur both in academic and 

economic interests. These equations may be used to model a range of phenomena 
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namely weather, ocean currents, water flow in a pipes and flow around an aerofoil 

(wing) etc. These equations can be used in the design of aircrafts and cars, the study 

of blood flow, the design of hydroelectric power stations, the analysis of the effects of 

pollution, etc. Coupled with Maxwell's equations N-S equations can be used to model 

and study magnetohydrodynamics(MHD). 

Study of effects of viscosity, in two dimensional (2-D) flows and the theory of 

boundary layer, utilizes Navier-stokes equations too. In most cases when working out 

the solution of N-S equations of fluid flows over a surface of a at plane, force of 

gravity is neglected, but we have to use force of gravity when studying flows of fluid 

down an inclined plane because the motion is influenced by force of gravity. 

These are definitions and explanations to terms and concepts that will be used 

commonly. 

Definition 1.1.  Steady and unsteady flows. 

A fluid flow is said to be steady if the fluid properties do not change with time, 

otherwise the fluid flow is unsteady. 

Definition 1.2.  Laminar and turbulent flow. 

A fluid flow is said to be laminar if the fluid particles move along well defined 

streamlines or along paths that are straight and parallel otherwise the fluid flow is said 

to be turbulent. 
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Figure 1.1: Laminar and turbulent flow 

Definition 1.4 Newtonian and Non-Newtonian fluid. 

Given two parallel plates suspended in a liquid, and separated by a small distance y in 

y-axis, if the upper plane is kept stationary while the lower plate is set to motion with 

a velocity u  then the Newton's law of viscosity states that the shear stress between 

adjacent fluid layers is proportional to the negative value of the velocity gradient 

between the two layers. That is 

           shear stress =
dy

du
                                                                                   (1.1.1) 

Definition 1.4 Newtonian and Non-Newtonian fluid. 

Newtonian fluid is a fluid that obeys Newton's law of viscosity otherwise is 

considered Non-Newtonian fluid. 

Definition 1.5 Incompressible and compressible flow. 

A fluid flow is said to be incompressible if the fluid density   does not change from 

point to point with time in the flow, otherwise it is considered to be compressible. 

Definition 1.6 Viscous flows. 

Viscous fluid flows are those in which fluid friction has significant effects on the fluid 

motion. 
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1.1.1 Conservation of mass 

The principle of conservation of mass states that, except in nuclear process 

Conservation law (2012), matter is neither created nor destroyed. Given an 

infinitesimal volume about a point e.g ),,( zyxp  considered in a fluid medium where 

wvu  and  u,,, are components of fluid velocity at p , in the directions of x , y , 

and z  axes respectively, relative to the chosen volume, the principle of 

conservation of mass is given by: 

                             0).( 



V

t



,                                                                    (1.1.2) 

where   is the density and v is the velocity of the fluid. Equation (1.1.2) above is 

known as continuity equation and if the flow is steady, then 0




t


 and the 

continuity equation reduces to 

                               0).(  V                                                                              (1.1.3) 

1.1.2 Conservation of linear momentum 

The principle of conservation of momentum states that the time rate of change of 

linear momentum within the system equals the net transport rate of linear momentum 

into the system by external forces and by mass flow Richards (2008). The following 

expressions of linear momentum for a differential control volume in 2-D flow; 

x -component; 





































y

vu

x

uu
b

yxx

P

t

u
x

yxxx 


 ()()(
               (1.1.4) 

y -component;  





































y

vv

x

uv
b

yxy

P

t

v
y

yyxy 


 ()()(
             (1.1.5) 

where xb  and yb are x  and y  components of gravity respectively in equations, 

xx  is the viscous shear stress in the x -face, x - direction , yx  is the viscous shear 
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stress in the y face, x - direction,  yy  is the viscous shear stress in the y -face, y - 

direction,  xy  is the viscous shear stress in the x -face, y - direction and P  is the 

pressure. 

 

1.1.3 Navier-Stokes equations 

Consider the continuity equation for steady flow, and linear momentum for a 

differential control volume in 2-D flow. Note that N-S equations are not a 

combination of continuity and momentum equations. Considering equation (1.1.3), 

we have Navier-Stokes equations as; 

                              VgP
Dt

DV 21
 


                                                     (1.1.6) 

1.1.4 Momentum integral equation 

Navier-Stokes equations together with the assumptions that the fluid flow is viscous 

laminar, steady and incompressible will lead to finding the boundary layer thickness 

 , by the method of momentum integral approach Mei (2002). Momentum integral 

equation is given by 

                                   




wdyuU
dx

dU
dyuuU

dx

d
  





00

2                  (1.1.6) 

Where U  is the main stream velocity. 

1.1.5 Inclined plane 

This is a plate tilted at an angle   to the horizontal surface as shown in Figure 1.2. 
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Figure 1.2: Inclined plane 

1.2 Derivation of Navier Stokes Equations 

1.2.1 Conservation of Mass 

Except in nuclear Process, matter is neither created nor destroyed Conservation law 

(2012). This is the principle of conservation of mass to a flowing fluid. 

 

 

Figure 1.3: Mass Flux 

In the figure 1.3 above, an infinitesimal volume about a point ),,( zyxP  is considered 

in a fluid medium u , v  and w  are components of fluid velocity at P , in the x , 

y , and z  axes respectively, relative to the chosen volume. 
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The mass entering per unit time and area of the left face in the x direction is; u  

and corresponding mass flux leaving the right face is;   

                                                 x
x

u
u 






)(
 . 

The increment is written by the use of Taylor series. The area of either face in the x  

direction is )( zy . Considering all the three directions, it is noted that the net mass 

leaving the volume per unit time is; 

zyx
x

u














.

)(
        in the x direction, 

zxy
y

v














.

)(
       in the y direction,                                                      (1.2.1) 

yxz
z

w














.

)(
        in the x direction. 

The effect of mass loss in equation (1.2.1) is to cause the time rate of decrease of the 

mass encompassed by the volume : )(dvolm  . Since zyxdvol   is chosen not 

to change with the time we obtain the conservation of mass as: 

zyx
t

yxz
z

w
zxy

y

v
zyx

x

u














































 
.

)(
.

)(
.

)(
 

i.e   

                                
tz

w

y

v

x

u


















  )()()(
                                               

(1.2.2) 

Equation (1.2.2) can be re-written in form of equation (1.1.2) Robert et al.,(2005). 

                                0).( 



V

t



                                                                  (1.2.3)  
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1.2.2 Conservation of Linear Momentum for a Differential Control Volume 

When the rate-form of the conservation of mass equation to a differential control 

volume (open system) in Cartesian coordinates is applied, what is obtained is the 

continuity equation:   

                   



























z

w

y

v

x

u

t

)()()( 
                                                      (1.2.4) 

The same thing is done for conservation of linear momentum. As with the 

development of the continuity equation, first apply the rate-form of conservation of 

linear momentum to a finite-size open system (a control volume) and then consider 

what happens in the limit as the size of the control volume approaches zero. 

1.2.3 Conservation of Linear Momentum for a 2-D Flow 

For simplicity, consider a two-dimensional, unsteady flow subject to a body force, b . 

The body force, the density, and the velocity all are field variables and may vary with 

position ),( yx  and time. 

In words, the time rate of change of the linear momentum within the system equals 

the net transport rate of linear momentum into the system by external forces and by 

mass flow. To apply this principle, select a small finite-size volume in the flow field, 

zyx  , where z  is the depth of the small volume, i.e. in the direction of the 

x axis. Because of the multiple momentum transfers in a moving fluid, focus on 

only one component of linear momentum at a time. 

Begin with the x component of linear momentum, referred to hereafter as the 

“ x Momentum”. To identify the transfers of x momentum, enlarge the small 

volume and show all transfers of x momentum on the diagram of the control volume 

(see Figure 1.4). Linear momentum can be transported into the system by surface 
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forces acting on all four sides, by body forces within the system, and by mass flows 

across all four sides of the control volume. 

Writing the rate-form of the conservation of linear momentum equation for the 

x momentum gives: 

              
   

netynetxbodynetxsurfacenetx

x umumFF
dt

dM
 

,,
                             (1.2.5) 

The left-hand side of equation (1.2.5) represents the rate of change of x momentum 

inside the system. 

 

 

Figure 1.4: Transport rates of the x-component of linear momentum for the 

differential control volume. 

The terms on the right-hand side of equation (1.2.5) correspond to the transport rates 

of x momentum illustrated in Figure 1.4. 

1.2.4 Rate of change of x-momentum inside the control volume 

The x momentum inside the control volume can be written as follows using the 

meanvalue theorem from calculus: 
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                           zyxudVuM
xyx

sysx  


,                                                   (1.2.6) 

where the bar notation u  indicates an average or mean value. The mean-value 

theorem says that the integral of a continuous function u  over a volume equals the 

product of the volume and the mean value of the continuous function within the 

volume; thus, a simple product can replace the integral. 

To find the rate-of-change of the x momentum inside the control volume, the left  

hand side of Eq. (1.2.5), we evaluate the derivative 

                     
t

u
zyxzyxu

dt

d

dt

dM x






)(
                                            (1.2.7) 

Because we are holding x , y , and z  constant during our differentiation the result is a 

partial derivative. 

1.2.5 Net transport rate of x-momentum by external forces 

The net transport rate of x momentum by body forces is related to xb  , the 

component of the body force acting in the positive x direction, and can be written as 

              zyxbdVbF x

zyx

xbodynetx
 




,

                                                       (1.2.8) 

The net transport rate of x momentum by surface forces is related to external forces 

acting on each surface of the control volume. For a two-dimensional flow, the surface 

force for any surface can be decomposed into two components, a normal force and a 

shear force. Each force, shear or normal, is defined as the integral of the appropriate 

surface stress over the surface area. 

The x component of the surface force acting on the surface at xx   , is written as 

                       zydAF
xxxx

zy

xxxxxx






  
,

                                             (1.2.9) 
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where the minus sign occurs because the normal stress xx  by convention points out 

from the surface. 

The x-component of the surface force acting on the surface at x , is written as 

                zydAF
xxx

zy

xxxxx
 




,

                                                         (1.2.10) 

The x component of the surface force acting on the surface at yy  , is written as 

                zxdAF
yyyx

zx

yxyyxy





  
,

                                                      (1.2.11) 

where the shear stress yx  points in the positive x direction on a surface whose 

normal vector points in the positive y direction. 

The x component of the surface force acting on the surface at y , is written as 

               zxdAF yyx

zx

yxyxy  


][,                                                         (1.2.12) 

where again the minus sign comes from the sign convention on the shear stress .yx   

Combining these forces to find the component of the net surface force acting on the 

control volume gives 

yxyyyxyxxxxxxxsurfacenetx
FFFFF ,,,,,

   

        zxzxzyzyF
yyxyyyxxxxxxxxsurfacenetx 


,  

     zxzyF yyxyyyxxxxxxsurfacenetx xx
 

,  

   zxy
y

zyx
x

F
yxxx

surfacenetx 

































,  

                                zyx
yx

F
yxxx

surfacenetx 























,                             (1.2.13) 
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1.2.6 Net transport rate of x momentum by mass flow 

Finally, examine the net transport rate of x momentum by mass flow. Mass flow 

occurs on all four surfaces of the control volume. To begin, determine the 

x momentum transport rate of x momentum into the system with mass flow at 

x and xx  : 

     
xxxxxnetx umumum


   

       
xxoutxinnetx uyzuuyzuum


   

        xxxnetx uuuuyzum    

                        












 x

x

uu
yzum

netx

)(
                                                  (1.2.14) 

Now determine the transport rate of x momentum into the system with mass flow at 

y  and yy  : 

     
yyxyynety umumum


   

       
yyoutyinnety uxzvuxzvum


   

        yyynety vuvuxzum    

                        












 y

y

vu
xzum

nety

)(
                                                (1.2.15)          

Now that the expressions for x component of the net surface force acting on the 

control volume, body forces, and each x momentum transport or storage rate have 

been developed, i.e equations (1.2.13), (1.2.8) , (1.2.14), and (1.2.15), substitute these 

values back into equation (1.2.5).    
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Making the substitutions for each term we have the following 

expression:  

























 zyxbzyx

yxt

u
zyx x

yxxx 
 )(

                                    




























 )(

)(
)(

)(
zyx

y

vu
zyx

x

uu 
                                            (1.2.16)     

Dividing through by the volume zyx   and taking the limit as ,0x ,0y , 

and 0z , the average terms indicated by the bar notation   approach the value at 

the point tyx ,, . 

This gives the conservation of x momentum for a differential control volume (two 

dimensional flow): 

   

































y

vu

x

uu
b

yxt

u
x

yxxx )()()()()( 



                                     (1.2.17) 

A similar expression can be developed for the conservation of y momentum for a 

differential control volume (two-dimensional flow): 

                

































y

vv

x

vu
b

yxt

v
y

yyyx )()()()()( 



                         (1.2.17) 

1.2.7 Revisiting the surface forces 

Before proceeding, re-examine the surface forces. Surface forces include both 

pressure forces and viscous forces. The pressure force is a normal force produced by 

the local pressure p acting over a surface. The local pressure is an intensive property 

of the substance and is a normal stress whose value is independent of orientation 

Childress (2009). Viscous forces are produced by viscous stresses ij  that depend on 

fluid viscosity and velocity gradients in the flow. Viscous stresses strongly depend on 

orientation and for any surface can be decomposed into both normal stresses and 

shear stresses. 
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For a two-dimensional flow the surface stress ij can be separated into a pressure term 

p  and a viscous stress term ij  as shown below: 
















yyxy

yxxx

ij 


  

 














































yyxy

yxxx

yyxy

yxxx

ij
P

P

P

P










0

0
 

Now the surface stress terms can be rewritten to clearly separate the pressure and 

viscous stresses. For example in equation (1.2.17), the surface stress terms can be 

rewritten as follows: 

           

 
yxx

P

y
P

xyx

yxxxyx

xx

yxxx

































 



                  (1.2.19) 

Substituting the appropriate value for each stress back into Equations (1.2.17) and 

(1.2.18) and rearranging terms gives the following expressions conservation of linear 

momentum for a differential control volume 2-D flow: 

x component;  





































y

vu

x

uu
b

yxx

P

t

u
x

yxxx )()()( 



 

y component;  





































y

vv

x

vu
b

yxy

P

t

v
y

yyyx )()()( 



        (1.2.20) 

Note that there is now a clear distinction between the pressure terms and the viscous 

stress terms. To evaluate the viscous stresses we need to have a constitutive model for 

the fluid that describes how the shear stresses are related to the velocity gradients in 

the flow and to the fluid property known as viscosity. When a flow is inviscid, it has 

no viscosity and the viscous stress terms disappear. This greatly simplifies the 

mathematics and can give useful results under some conditions. 
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1.2.8 Navier-Stokes Equations for Incompressible 2-D Flow 

Many important flows are essentially incompressible and this leads to significant 

simplifications. Additionally, restrict to Newtonian fluids. With these assumptions, 

we reproduce the Navier-Stokes equations for incompressible, two-dimensional flow. 

To develop these equations, first assume that the flow is incompressible and consider 

the consequences. The continuity equation reduces, Equation. (1.2.4) becomes 

                         0









y

v

x

u
                                                                   (1.2.21)  

In Equation. (1.2.20), if flow is incompressible, then: 

x component;     





































y

u
v

x

u
ub

yxx

P

t

u
x

yxxx 


  

y component;    





































y

v
v

x

v
ub

yxy

P

t

v
y

yyyx



              (1.2.24)  

A Newtonian fluid is a fluid in which viscous stresses are proportional to the rate of 

angular deformation within the fluid Richards (2008). The constant of proportionality 

is   the dynamic viscosity. The viscous stresses for an incompressible, two-

dimensional flow of a Newtonian fluid become Manyonge (2010): 

                                                          






























x

v

y

u

x

x

y

u

yxxy

yy

xx







2

,2

                    (1.2.25) 

Using these results, the viscous stress terms in equation (1.2.24) are replaced by terms 

containing the fluid viscosity and velocity gradients. Note that viscous stresses depend 

on both the fluid and the flow. 
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The next step is to substitute the viscous stress terms in equation (1.2.25) back into 

equation (1.2.24) and use the incompressible continuity equation for steady flow, 

equation (1.2.21), to simplify the expressions. Once done, recover the Navier-Stokes 

equations. The x-component of the Navier-Stokes Equation for a two-dimensional, 

incompressible flow is shown below: 

                           














































y

u
v

x

u
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y

u

x

u

x

P

t

u
x 

2

2

2

2

          

(1.2.26) 

This arrangement shows a clear connection to original conservation of linear 

momentum equation. When arranged in this form it results to Navier-Stokes 

Equations for a 2-D, Incompressible Flow Richards (2008), 

x component; 












































2

2

2

2

y

u

x

u
b

x

P

y

u
v

x

u
u

t

u
x    

y component;  




























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


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


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2
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y
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y

v
v
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v
u

t

u
y             (1.2.27) 

Following a similar process for three-dimensions, we can derive the full set of Navier 

Stokes Equations for an Incompressible Flow. These are stated below without 

explanation or development Richards (2008): 



















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





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  (1.2.28) 

The equations (1.2.28) stated above can be re-written as equation (1.1.6). 
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1.3 Statement of the problem 

The boundary layer thickness approximation of a flow down an inclined plane with 

net flow using the momentum integral approach has not been done or presented by 

any author. This is tackled in this study. The velocity profiles approximations 

321 ,, uuu  are to be obtained which are required to find the boundary layer thickness 

 , of flow with net flow, then use it to find the effect of velocity by varying angles of 

inclination between 
2

0


   

1.4 Objective of the study 

1. To estimate the value of boundary layer thickness   of the fluid flow with net 

flow. 

2. To obtain the velocity of the fluid flow at different angles of inclination 

between 
2

0


  . 

3.  To obtain the expression for the velocity u , down inclined plane. 

1.5 Significance of the study 

This study will be of great benefit in academics. It will also help soil engineers 

together with applied mathematicians in study of overland flows within small 

agricultural watersheds where the flow direction is controlled by the topography 

within the fields. This study also is not limited to the benefit in industrial coating 

processes. 
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CHAPTER TWO 

2.0 LITERATURE REVIEW 

Navier-Stokes equations were originally derived in the 1840s on the basis of 

conservation laws and first-order approximations. But if one assumed sufficient 

randomness in microscopic molecular processes they could also be derived from 

molecular dynamics, as done in the early 1900s Wolfram (2002). 

The aerodynamic boundary layer was first defined by Ludwig Prandtl in a paper 

presented on August 12, 1904 at the third International Congress of Mathematicians 

in Heidelberg Robert et al., (2005), Germany. It allows aerodynamicists to simplify 

the equations of fluid flow by dividing the flow field into two areas: one inside the 

boundary layer, where viscosity is dominant and the majority of the drag experienced 

by a body immersed in a fluid is created and one outside the boundary layer where 

viscosity can be neglected without significant effects on the solution. This allows a 

closed-form solution for the flow in both areas, which is a significant simplification 

over the solution of the full Navier-Stokes equations. The majority of the heat transfer 

to and from a body also takes place within the boundary layer, again allowing the 

equations to be simplified in the flow field outside the boundary layer. 

Mohanty (1994), wrote on laminar boundary layer of flow over a at plate that divides 

the flow of a real fluid past a solid body into two zones: a viscous layer surrounding a 

solid surface and a zero shear stress beyond it. Solution of boundary layer provides 

the methods of estimating the frictional resistance along the wetted surface of a body. 

He points out that the differential solutions are, however, not attainable without 
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considering mathematical elegance and worked out the solution of momentum 

integral equation for flow over a flat plate. 

Mei (2002), wrote in his lecture notes on fluid dynamics that with a general pressure 

gradient, the boundary layer equations can be solved by a variety of modern 

numerical means like finite element method. An alternative which can still be 

employed to simplify calculations is the momentum integral method of Karman 

Manyonge (2010). He explains this method for a transient boundary layer along the x-

axis forced by an unsteady pressure gradient outside. This pressure gradient could be 

due to some unsteady and nonuniform flow such as waves or gust (sudden strong rush 

of wind). 

Measurements to test the theory of boundary layer were carried out first by Burgers 

(1925), and particularly carefully and comprehensive measurements were reported 

later. It was found that the formation of boundary layer is greatly influenced by the 

shape of the leading edge as well as by the very small pressure gradient which may 

exist in the external flow. Corrections were introduced carefully for these possible 

effects, when he carried out his measurements on a plate in a stream of air. 

Manyonge (2010), gave the derivation of Navier-stoke's equations in general form 

which applies to both compressible and incompressible flows. He also discusses on 

boundary layer theory where he gave two types of boundary layers i.e laminar 

boundary layer and turbulent boundary layer. In Laminar flow,  Manyonge came up 

with the solution of N-S equations using Karman Momentum Integral equation 

approach for the flow over a horizontal flat plate. Sonin (2001), derived Navier-

Stokes Equations of horizontal flows but could not derive flows on an inclined 

position where it is influenced by force of gravity. 
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According to a coating experiment involving a flat photographic film, being pulled up 

from a processing bath by rollers with a steady velocity U at an angle   to the 

horizontal, Solution of Viscous-Flow Problems (2011).  As the film leaves the bath, it 

entrains some liquid. The velocities at different angles are not given in order to find 

the thickness of the liquid that is required. However, the thickness is determined by a 

steady velocity moving up without net flows and not downwards with net flows. The 

expression for velocity ( u ) of viscous flow down an inclined plane was obtained by 

integration of N-S equations given initial and boundary conditions Nishikant (2011). 

Numerical study of a thin liquid film owing down an inclined wavy plane has been 

done where the stability of a thin liquid film owing down an inclined wavy plane 

using a direct numerical solver based on a finite element/arbitrary Lagrangian 

Eulerian approximation of the free-surface NavierStokes equations. In this work Ern., 

(2011), the Nusselt flow which is a boundary layer type of flow featuring constant 

height, parabolic velocity profile, while the flow rate is determined by balancing the 

work of gravity with viscous dissipation but not at any height of boundary layer 

thickness.  

Nishikant (2011), discussed on a viscous liquid that can flow while in contact with 

only one solid surface, the fluid motion being caused by a component of the gravity 

force parallel to the solid surface, obtaining the expression for velocity u  but could 

not obtain the boundary layer thickness. 

Grand et al. (2005), studied on Shape and motion of drops sliding down an inclined 

plane. The questions to be answered here were; what happens when a liquid drop 

slides down a uniform, inclined plane in a situation of partial wetting? At which 
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velocity does it slide and what shape does it assume to accommodate capillary effects 

and drop motion? Here Le Grand did not find the boundary layer thickness. 

 

 



22 
 

CHAPTER THREE 

3.0 FLOW DOWN AN INCLINED PLANE 

Consider the motion of fluid which is caused by a component of a gravity force 

parallel to the inclined non-porous solid plane surface owing downwards, where the 

following assumptions are made; the fluid is Newtonian, laminar, and incompressible. 

Consider continuity equation (1.1.3) and momentum equation (1.1.6) which describes 

the steady flow. 

Since the flow is steady, there is no change with time and in the flow direction. 

Therefore, the terms 
t

v

t

u








 ,  , and 

t

w




  in equations (1.2.28) are equal to zero. 

Flow is not bounded in the z direction and therefore nothing happens in the 

z direction. Therefore, 

)(yfu   and 0




x

u
 in x direction, 

)(yfv    and 0




y

v
 in y direction and 

0w   and 0




z

w
 in z direction. 

Since the flow is in one direction, that is x direction, then 0v and 0w . This 

makes the terms  




































































z

w
w

y

w
v

x

w
u

z

u
w

y

v
v

x

v
u

z

u
w

y

u
v

x

u
u  and,,    in 

equations (1.2.28) be equal to zero. 

The Navier stokes equations (1.2.28) then reduces to; 

x component; 0
2

2










 xb

y

u

x

P
                                                                (3.0.1)  
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y component; 0



 yb

y

P
                                                                     (3.0.2) 

z component; 0



 zb

z

P
                                                                     (3.0.3) 

Since P is not a function of  .0, 




z

P
z  

Consider a viscous liquid owing while in contact with only one solid surface, the fluid 

motion is being caused by a component of the gravity force parallel to the solid 

surface.  Such a plane flow is illustrated in Figure 1, showing a plane surface inclined 

above the horizontal by an angle   and covered with a liquid layer of constant 

thickness   that flows parallel to the plane in the downhill direction. The upper 

surface of the fluid )( y  is in contact with the air, in which the pressure is constant 

( aPP   at y , where aP is the atmospheric pressure) and which exerts a negligible 

shear stress on the liquid surface ( 0xy  at y ). 

To describe this motion, select the x component of the Navier-Stokes, noting that 

0).( 



 uV

t

u

Dt

Du
 and 0).(  uV since it is not a function of t  i.e the ow is 

steady, 0




x

P
 because the air pressure is constant and the x component of the body 

force is singbx  . Navier Stokes equation becomes; 

                                               
2

2

sin00
y

u
g




   

                                            


sin
2

2 g

y

u





 

Integrating twice on y :         21

2

2

)(sin
cyc

yg
u 




                     (3.0.5) 

and applying the boundary conditions that 0u , at 0y , we obtain; 



24 
 

                                                  02 c  

differentiating the equation (3.0.5) partially with respect to y , we obtain, 

                                          
1

)(sin
c

yg

y

u









 

and applying the boundary conditions that 0





y

u
xy   at y ,we obtain; 



 )(sin
1

g
c   

This enables us to find the velocity distribution )(yu  

By substituting for 1c  and 2c  into equation (3.0.5), we obtain: 

                                        










2

sin 2y
y

g
u 




                                         (3.0.6) 

3.1 Momentum integral equation 

Now, employ the method of momentum integral equation in determining the 

boundary layer thickness,  . The boundary layer equations in two-dimensions for 

steady incompressible flow are given by Mohanty (1994): 

                                        
0










x

v

x

u
 

                                         
2

21

y

u

x

P

y

u
v

x

u
u






















 

Consider the Figure 3.1 below: 
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Figure 3.1: Control Volume Analysis of the Boundary Layer 

A free stream flow at U  approaches a surface whose leading edge coincides 

with 0x . x  is measured along the surface and y  perpendicular to it.  )(x is the 

thickness of the boundary layer at location x . 1-2-3-4 define a control volume whose 

faces 1-2 and 3-4 are parallel to the solid surface and the other two faces 

perpendicular to the surface. The height of the face 1-4 or 2-3 is   and   is greater 

than the thickness of the boundary layer. 

Fluid masses enter through faces 1-4, 1-2 and 2-3 carrying with them the momentum 

prevailing in the respective neighbourhood. No mass enters through 3-4, the face 

being coincident with the solid wall. The face 3-4, on the other hand, experiences the 

wall shear stress and is x  long. A unit depth perpendicular to the plane of 1-2-3-4 is 

being considered. 

3.2 Conservation of Momentum 

The momentum in-flow through a strip dy  is dyu 2 , and through the face 1-4 is; 

                                         



0

2dyu                                                              (3.2.1) 
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Outflow through 2-3 is 

                                        

xdyu
dx

d
dyu 














 



0

2

0

2                                      (3.2.2) 

inflow through 1-2 due to the mass coming from the zone U  is: 

                                       

xudy
dx

d
U 


















0

                                                 (3.2.3) 

Combining (3.2.1),(3.2.2) and (3.2.3), the net flux of momentum through the control 

surface becomes: 

                                      

xudy
dx

d
Uxdyu

dx

d





























 



00

2                          (3.2.4) 

The face 1-2 being in the free stream zone, no shear stress acts on it. The pressure on 

the face 1-4 is P , and is independent of y  by boundary layer theory Schlichting 

(1955). 

The external forces acting on the control volume are hence; 

                                       
.x

dx

dP
xw                                                       (3.2.5) 

Combining expressions (3.2.4) and (3.2.5), write the momentum balance for the 

control volume as; 

                   

xdy
dx

dP
xxdyu

dx

d
xudy

dx

d
U w 
















































00

2

0

.        (3.2.6) 

In order to evaluate the pressure gradient we can move into the free stream zone and 

use Bernoulli's equation McClamroch (2011), 

                                              

C
UP

 

2

2


                                                   (3.2.7) 

                                                    or 
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                                              dx

dU
U

dx

dP 
                                                 (3.2.8) 

Equation (3.2.6) is now written using equation (3.2.8) 

                          

wdyu
dx

d
dy

dx

dU
Uudy

dx

d
U  




































0

2

00

             (3.2.9) 

or for incompressible flow 

                           


 wdyu
dx

d
dy

dx

dU
Uudy

dx

d
U 




































0

2

00

                (3.2.10) 

Consider the differentiation 

                            



 













 

000

udy
dx

dU
udy

dx

d
UudyU

dx

d
 

                                                or 

                             



 



000

udy
dx

dU
dyuU

dx

d
udy

dx

d
U                            (3.2.11) 

Thus Equation (3.2.10) can be rewritten as 

                          


 wudydyU
dx

dU
dyu

dx

d
dyuU

dx

d






























   




 

0 00

2

0

 

                                                       or 

                          

     






00

2



 wdyuU
dx

dU
dyuuU

dx

d
                        (3.2.12) 

The limits of integration 0 to   can be split up into 0 to   and   to  . In the free 

stream region of   to  , however, Uu  and each of the integrand is zero. Hence 

equation (3.2.12) is effectively 

                          

     










00

2 wdyuU
dx

dU
dyuuU

dx

d
                        (3.2.13) 
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In the present form of equation (3.2.13), the integral equation for momentum can 

represent both laminar and turbulent flows, since no assumption has yet been made 

for the shear stress, w . 

3.3 Solution of the momentum integral equation 

The steps involved in solving equation (3.2.13) are: 

1. choosing a velocity profile that satisfies all the essential and some additional 

boundary conditions, 

2. evaluating the integrals and reducing the left hand side to a differential 

expression on  , 

3. postulating the law of shear stress for w , depending on the flow regime, for 

laminar flow 
0















y

w
y

u
   by Newton's law of shear stress and 

4. solving the differential equation for  . 

Consider an incompressible, laminar, steady flow of a Newtonian fluid along an 

inclined plane at zero incidences. 

  

3.4 Estimates of Boundary Layer Velocity Profiles 

The essential conditions to be satisfied by the boundary layer velocity profile are: 

1. 0,0,0  vuy no slip on the wall. 

2.  Uuy ,   free stream velocity at the edge of boundary 

layer. 

3. 0, 





y

u
y         no shear stress at the edge of the boundary layer. 
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It is then proposed that the boundary layer velocity profile can be written in terms of a 

polynomial in y  with the number of terms that are equal the number of boundary 

conditions to be satisfied. For the first two conditions listed above, choose linear 

polynomial velocity profile approximation: 

                                       yBAu 111                                                          (3.4.1) 

For the three conditions listed above, choose quadratic polynomial velocity profile 

approximation: 

                                       
2

2222 yCyBAu                                              (3.4.2)  

and sine function velocity profile approximation: 

                                       
yBAu 333 sin                                                      (3.4.3) 

The velocity profiles approximations 321 ,, uuu  which are required to find the 

boundary layer thickness   of flow with net flow is to be obtained, then use it to find 

the effect of velocity by varying angles of inclination between
2

0


  . 

3.4.1 Velocity profile approximated as a linear Polynomial 

It can be proposed that the boundary layer velocity profile can be written in terms of a 

linear polynomial in y as given in equation (3.4.1). where 1A and 1B  are real numbers. 

Using the essential conditions 1 and 2 in section 3.4, then: 

1. 01 A          using condition 1. 

2. 1BU        using condition 2. 

Solution of the two algebraic equations yield; 01 A , 



U
B1 1 Substituting for 1A  

and 1B in equation (3.4.1), then the velocity profile is: 

                                    
y

U
u


1    or 



y

U

u




1                                             (3.4.4) 
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3.4.2 Velocity Profile approximated as a quadratic Polynomial 

It can also be proposed that the boundary layer velocity profile can be written in terms 

of a quadratic polynomial in y  as given in equation (3.4.2). Differentiating equation 

(3.4.2), partially with respect to y , 

                                          

yCB
y

u
22

2 2



                                               (3.4.5) 

where 2A , 2B , and 2C  are real numbers. Using the conditions 1, 2 and 3 given in 

section 3.4, in equations (3.4.2) and (3.4.5), then: 

1. 02 A          using condition 1. 

2. 2

22  CBU        using condition 2. 

3. 220 CB        using condition 3 

Solution of the two algebraic equations yield; 02 A , 



U
B 22 , 

22



U

C  

Substituting for 2A , 2B , and 2C in equation (3.4.2), then the velocity profile is: 

                         

2

22 2 y
U

y
U

u


   or 

2

2 2 









 

yy

U

u
  

3.4.3 Velocity Profile approximated as a sine function 

It is then proposed that the boundary layer velocity profile can be written as a sine 

function as given in equation (3.4.3). yBBA
y

u
333

3 cos



and ByBA

y

u
sin2

332

3

2





 

where 3A  and 3B  are real numbers. 

Using the essential conditions 1, 2, and 3 in section 3.4 , then: 

1. 0sin0 3A  using condition 1, 

2. 33 sin BAU   using condition 2, and 
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3. 333 cos0 BBA  using condition 3. 

It is clear that using condition 1 do not give us significant results. Solution of the two 

algebraic equations i.e 2 and 3 yield; UA3 , and 




2
3 B . Substituting for 3A  and 

3B  in equation (3.4.3), then the velocity profile is; 

                              
yUu





2
sin3   or y

U

u





2
sin3 



                                 (3.4.7) 

3.5 Boundary layer thickness 

Find the expressions to approximate the values of boundary layer. Since U   is not 

varying, it is independent of x , then 0

dx

dU
. 

Equation (3.2.13) can be reduced to 

                               
2

0

1










 U

dy
U

u

U

u

dx

d w


                                             (3.5.1) 

 

3.5.1 Boundary layer thickness from the velocity profile approximated as a linear      

          Polynomial 

 

The integral equation (3.5.1) can also be evaluated by substituting for 
U

u1  from 

equation (3.4.4), and then; 

                                 





















0

2
1

U
dy

yy

dx

d w  

                                  








2

0

2

2

0 















  U

dy
y

dy
y

dx

d w  

                                    



26

1




Udx

d w                                                           (3.5.2) 
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Now impose the laminar flow condition, for which 

                                    0

1

















y

w
y

u
                                                      (3.5.3) 

Now, 

                                      
y

U
u


1 , 

                                     




 U

y

u1                                                               (3.5.4)  

                                  
















 U

y

u

y 0

1                                                           (3.5.5) 

hence, 

                                   
 

U
w                                                               (3.5.6) 

And 

                                   











UU

w

2
                                                          (3.5.7) 

Substituting equation (3.5.7) into equation (3.5.2), then 

                                    







Udx

d

6

1
                                                         (3.5.8) 

                                                                  or 

                                                           

dx
U

d






6

1
                               (3.5.9) 

integrating equation (3.5.9), we obtain, 

                                                        

Cx
U













2

1

12


                           (3.5.10) 

Let this boundary layer thickness   be denoted by 1 . 

On the surface at 0x  and 01  , 0C , 
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2

1

1 12 











x
U


   or   x

2

1

1
Re

12








                  (3.5.11) 

Where 



U
Re . 
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3.5.2    Boundary layer thickness from the velocity profile approximated as a 

quadratic polynomial 

 

The integral equation (3.5.1) can also be evaluated by substituting for 
U

u2  from 

equation (3.4.6), and then; 

                                


























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


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
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2

2
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U
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d w  
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
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
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0
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4

3

3

2

2

452










 U

dy
yyyy

dx

d w  

                                                     



215

2




Udx

d w                                        (3.5.13) 

Now impose the laminar flow condition, for which 

                                                   0

2

















y

w
y

u
                                        (3.5.13) 

Now, 

                                             

2

22 2 y
U

y
U

u


  , 

                                            

y
UU

dy

du
2

2 22


                                  (3.5.14)  

                                              
















 U

y

u

y

2
0

2                                     (3.5.15) 

hence, 

                                              
 

U
w 2                                           (3.5.16) 

and 

                                               











UU

w 2
2

                                   (3.5.17) 
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Substituting equation (3.5.17) into equation (3.5.12), then 

                                               







Udx

d
2

15

2
                                  (3.5.18) 

                                                          or 

                                                 

dx
U

d







 2
15

2
                             (3.5.19) 

integrating the differential equation (3.5.19), we obtain, 

                                                 

Cx
U





 2

15

1 2                            (3.5.20) 

Let this boundary layer thickness   be denoted by 2 . 

On the surface at 0x  and 02  , 0C , then, 
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2 30 
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Re

30
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


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
                 (3.5.21) 

Where 



U
Re . 

 

3.5.3 Boundary layer thickness from the velocity profile approximated as a 

sine function 

The integral equation (3.5.1) can also be evaluated by substituting for 
U

u3  from 

equation (3.4.7), and then; 
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






22

4










 

Udx

d w                                              (3.5.23) 

Now impose the laminar flow condition, for which 

                                        0
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













y

w
y

u
                                                 (3.5.24) 

Now, 

                                       


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                                      


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

2
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3 yU
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hence, 
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

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and 

                                           







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UU

w

22
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Substituting equation (3.5.28) into equation (3.5.23), then 

                                             

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


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

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  or 
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U
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
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 
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4 
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                                      (3.5.30) 

integrating the differential equation (3.5.30), we obtain, 
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Let this boundary layer thickness   be denoted by 3 . 

On the surface at 0x  and 03  , 0C , then, 
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                                          x
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Where 



U
Re . 

 

3.6 Velocity down Inclined Plane 

The expressions for the velocity down inclined plane at various angles are obtained by 

substituting the expressions of   obtained in section 3.5 above into equation (3.0.6). 

The velocity 1u  down inclined plane using linear velocity profile can be approximated 

by substituting equation (3.5.11) into equation (3.0.6) to give, 

                                           

























2Re

12sin 2
2

1

1

y
xy

b
u




                               (3.6.1) 

The velocity 2u  down inclined plane using quadratic velocity profile can be 

approximated by substituting equation (3.5.22) into equation (3.0.6) to give, 
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The velocity 3u  down inclined plane using sine function velocity profile can be 

approximated by substituting equation (3.5.33) into equation (3.0.6) to give, 
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CHAPTER FOUR 

4.0 RESULTS AND DISCUSSION 

4.1 Results 

Taking water as an illustration at temperature C05 , then sm /10519.1 26 , Labye 

(1988); smUmkgsmg /1,/1000,/8.9 32   . 

Now the Reynolds number( Re ) for laminar ow is between 0 and 2300, and 



xURe . Find 



U

x
Re

 such that Re  falls between 0 and 2300. x is the distance 

from the point where the fluid from the main stream meets the inclined plane, and 

along the surface of the inclined plane. Compare results for u  when   used was 

obtained by momentum integral approach at various angles of inclination between 

2
0


   for linear, quadratic and sine function velocity profiles. 

1 , 2 , and 3  are the boundary layer thickness approximations from the , linear, 

quadratic and sine function velocity profiles respectively are substituted into 

momentum integral equation. 1u , 2u , and 3u  are the velocities down inclined plane 

when 1 , 2 , and 3  respectively are substituted into equation (3.0.6). 

The results using the data below are given in the respective tables and represented in 

respective Figures. 

1. ,103292.0Re,0005.0 3 mx  

,104721.4 5

1

  
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,100711.7 5

2

  

,101907.6 5

3


 

Table 1: Velocity and the angles of inclination (x=0.0005m) 

 

 

 

Figure 4.1: Velocity versus angle of inclination when 0.0005mx  
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2. ,106583.0Re,0010.0 3 mx  

,109443.8 5

1

  

,104142.1 4

2

  

,102381.1 4

3


 

Table 2: Velocity and the angles of inclination (x=0.0010m) 

 

 

 

Figure 4.2: Velocity versus angle of inclination when 0.0010mx  
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3. ,109875.0Re,0015.0 3 mx  

,103416.1 4

1

  

,101213.2 4

2

  

,108572.1 4

3


 

Table 3: Velocity and the angles of inclination (x=0.0015m) 

 

 

 

 

Figure 4.3: Velocity versus angle of inclination when 0.0015mx  
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4. ,101.3167Re,0020.0 3 mx  

,101.7889 4

1

  

,102.8284 4

2

  

,102.4763 4

3


 

Table 4: Velocity and the angles of inclination (x=0.0020m) 

 

 

 

 

Figure 4.4: Velocity versus angle of inclination when mx 0020.0  

5. ,101.6458Re,0025.0 3 mx  
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,102.2361 4

1

  

,103.5355 4

2

  

,103.0954 4

3


 

Table 5: Velocity and the angles of inclination (x=0.0025m) 

 

 

 

 

Figure 4.5: Velocity versus angle of inclination when mx 0025.0  

6. ,101.9750Re,0030.0 3 mx  

,102.6833 4

1

  
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,104.2426 4

2

  

,103.7144 4

3


 

Table 6: Velocity and the angles of inclination (x=0.0030m) 

 

 

 

Figure 4.6: Velocity versus angle of inclination when mx 0030.0  
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4.2 Discussion 

Momentum integral approach has been used to obtain the boundary layer thickness, 

 . Linear and quadratic polynomial approximations and sine function approximation 

of the velocity profile in boundary layer were obtained. This approximation velocity 

profiles are used in the momentum integral equation to generate the boundary layer 

thickness. Considering the illustration above (section 4.1), it demonstrates the results 

that the velocities as a result of the linear, and quadratic polynomials and sine 

function approximation velocity profiles were used. The results are generated with the 

help of MatLab. From Table 1 to Table 6 and their corresponding graphs respectively, 

  increases from zero the point where Re is 2300, the boundary layer thickness 1 , 

2 , and 3 , and 1u , 2u , and 3u
 
also increases respectively for the three velocity 

profiles. This is because of molecular interactions that generate viscous forces. At the 

surface, the flow has zero relative speed, because the fluid seems to stick to the 

surface of the inclined plane due to adhesive forces. The fluid transfers momentum to 

the adjacent layers through the action of viscosity. This leads to increase in velocity 

and the boundary layer thickness as x increases. 

Comparing the velocities down inclined plane for the three velocity profiles, the 

velocity 1u  is lower than 2u  and 3u , followed by 3u  and 2u  is the highest. This is 

after taking into consideration various angles of inclination between
2

0


  . To 

obtain 1  and 3  which result in 1u  and 3u  respectively, only two boundary layer 

conditions are considered. To obtain 2 which results in 2u , the three boundary layer 

conditions are utilized. This gives the reason that this approximation gives higher 

velocities than the other approximations. For laminar flow, it is expected that the 

velocities do not go beyond sm /1 i.e main stream velocity but approach it. 
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 CHAPTER FIVE 

5.0 CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

Momentum integral approach gives an approximation of boundary layer thickness,  . 

The linear and quadratic polynomials, and sine function approximation of velocity 

profiles, leads us to obtain the values of boundary layer thickness using the 

momentum integral equation. These values are used at every angle of inclination 

between 
2

0


    to obtain the velocity down an inclined plane. It is preferable to 

use the quadratic polynomial velocity profile than the linear polynomial, and sine 

function approximation of velocity profiles. This is because quadratic polynomial 

velocity profile utilizes more boundary conditions, hence more reliable. 

 

5.2 Recommendations 

1. Momentum integral approach has been used to obtain . Numerical methods 

like finite elements method and Finite difference method can be used to 

obtain  

2. The velocity profiles approximations of polynomials of degrees 1 and 2, and 

sine function have been considered. Other polynomials of higher degrees can 

be considered.  

3. The coefficient friction of the inclined plane can also be put into 

consideration. 
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