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ABSTRACT 

 

Use of mixture design has become well-known in statistical modeling due to its utility in 

predicting any mixture's response and thus serving as the foundation for optimizing the 

predicted response on blends of different components.  In most split-plot designs utilizing 

mixture-process variable settings, restricted randomization always exist. This study's 

primary goal was to find the best split-plot design (SPD) for performing the Glycine max 

experiment with the settings mixture-process variables. The SPD was made up with use of 

a Simplex Centroid Design (SCD) of four mixture blends and a 22 factorial design with a 

Central Composite Design (CCD) of the process variable and this was compared with six 

different designs of split-plot structure arrangement.  The JMP software version 15 was 

used to create D-optimal split-plot designs. The study compared the constructed designs' 

relative efficiency using A-, D-, I-, and G- optimality criteria respectively. Furthermore, 

use of graphical technique (fraction of design space plot) was used to display, explain, and 

evaluate experimental designs' performance in terms of precision of the six designs' 

variance prediction properties. Results showed that arranging subplots with more SCD 

points as compared to the pure mixture design points within SPD with two high process 

variables provided more precise parameter estimates. Also use of the restricted maximum 

likelihood method was employed to estimate parameter values within the SPD. The current 

study thoroughly investigated estimation of parameters from MPV settings in conjunction 

with CCD within SPD using the Scheffe polynomial and Cox mixture models to predict 

optimal responses of Glycine max yield. The predicted maximum optimum yield for the 

total number of seeds per plant stem of Glycine max was 102.06 equivalent to 15.7832𝑔 

using the screening methodology.  Furthermore, the expected response from the simulated-

based technique for {4, 2} SCD and the actual results obtained from field experiments 

using MPV settings within SPD were compared. The variety of Glycine max Blyvoor was 

found to have higher production in terms of yield as compared to R 184. Thus the study 

recommends farmers to use Blyvoor as an alternative variety. In addition, the study also 

recommends farmers to embrace SPDs in the context of mixture settings formulations in 

order to measure the interaction effects of both the mixture components and the processing 

conditions like soil pH and the seeding rate. 
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CHAPTER ONE  

INTRODUCTION 

1.1 Background of the Study 

A mixture design has become popular in statistical modeling in a Mixture Process Variable 

(MPV) experiment owing to its usefulness in modeling the blending surface that predicts 

the response of any mixture empirical (Anderson Cook et al., 2004; Cho, 2010; Njoroge et 

al., 2017; Sitinjak and Syafitri, 2019). In MPV, the response is a function of the mixture 

part proportion and the process variable. Thus the explanatory variable and the response 

variable in a mixture experiment are dependent only on the relative proportion of the 

mixture ingredient, not on the mixture's volume. (Cornell, 1988; Goldfarb et al., 2004b). 

However, process variables are variables that do not make up a portion of the mixture in 

an experiment but influence the ingredients' blending properties when their levels are 

modified. (Goos and Donev, 2007). 

In the agricultural sector, crop yield is determined by the relative proportions of mixture 

components and one or more of hidden factors such as soil pH, planting time, irrigation, 

and seed variety planted, all of which affect the blending properties of the mixture 

ingredients.  The quality of the optimal yield obtained is determined by the relative 

proportions of the components used in blending, such as applying different proportions of 

mixture components of fertilizer, such as Diammonium Phosphate((18% N-48% 𝑃2𝑂5 ), 

Single supers (18-20% 𝑃2𝑂5 ), and triple supers (40-42 % 𝑃2𝑂5 ) depending on the soil pH. 

As Goldfarb et al. (2003) and Myers et al. (2009) discussed, these difficult-to-change 

factors are referred to as noise variables. As a result, the number of runs in MPV design 
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tends to increase as the number of hidden variables grows (Cho et al., 2009). Therefore, 

due to functional and financial constraints, noise variables often prevent complete 

randomization of experimental runs. This situation can be solved when the split-plot design 

is applied subject to the restricted constraints (Goldfarb et al., 2004b; Cho, 2010). The 

MPV should be carried out in a split-plot structure to counter the effect of noise variables 

that inhibit complete randomization in experimental trials (Goos and Donev, 2007). 

Therefore, complete randomization is always required for statistical purposes (Kowalski et 

al., 2002; Sitinjak and Syafitri, 2019). The process variable determines the whole plot 

(primary treatment) in a split-plot design. The subplot treatments, on the other hand, were 

identified by the group of mixture ingredients.   This method of setting the noise variable 

at a fixed level and then running all combinations of the other category at that level usually 

results in correlated observations (Cho, 2010). Therefore, the first main objective is to 

extend MPV by introducing a simplex centroid design using the four mixture components 

in the presence of two process variables.  A simplex centroid of four mixture components 

and a 22 factorial design with Central Composite Design (CCD) of process variables were 

designed to make up a Split-Plot Design (SPD). The parameters of the two sources of errors 

in the split-plot design were estimated using the method of Restricted Maximum 

Likelihood (REML) as described by Kowalski et al. (2002) and Wanyonyi et al. (2018).  

The second goal was to find the best SPD by using the chosen optimality criteria to test 

MPV by computing the design efficiencies of the relative designs as defined by Goos and 

Vanderbroek (2003), Vining et al. (2009), Goos and Donev (2007), and Wong (1994).   
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1.2  Theory behind MPV within Split-plot Designs 

Cornell (2011) presents detailed information about mixture and MPV experiments. When 

the process variable is hard to change (Noise variable), Goldfarb et al. (2003), Goos and 

Donev (2007), and Cho (2010) examined and evaluated robust MPV designs taking into 

account the usual process means and the Variance. The research begins at this MPV design 

entailing a hard-to-change process variable (Soil pH) and adapts the MPV with split-plot 

designs structure.  

However, the first Key articles focus on MPV design with hard change factor, commonly 

known as noise variable. In these papers, the researchers aimed to develop a model 

comprising mixture blends and controllable and uncontrollable process variables. The 

controllable process variables are easy to change factors, whereas uncontrollable factors 

are hard to change. They also took into account the models, which allow correlations 

between hard-to-change factors. They used a study technique involving a robust process in 

establishing variable levels, responsive to alterations in the uncontrollable process variable. 

In a situation involving rigorous analysis, the Delta method was used to evaluate the 

Variance and mean of a targeted variable. The researchers will use this technique to find 

the best combinations that generate the desired mean value while reducing Variance. 

The graphical technique paper presented by Goldfarb et al. (2004b) is another essential 

paper relevant to this research. FDS plots for MPV designs are the focus of this approach. 

Furthermore, Giovannitti-Jensen and Myers et al. (2009) concentrate on prediction 

variances over design space using a variance dispersion graph (VDG), which allows the 

experimenter to see patterns of prediction variance in the design space. The FDS plots were 

initially introduced by Zahran et al. (2003), not as a substitute for VDGs but 
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complementary approach. The FDS plots provide sufficient information on the prediction 

variance distribution over the experimental area. This method was used by Goldfarb et al. 

(2004a) to create FDS plots for mixture designs. They showed that Piepel et al. (1993) 

random sampling technique and shrunken area approach yield equivalent results for 

fraction design space values and plots.  They also provided the global FDS plot and sliced 

FDS plot over different process area shrinkage values for MPV designs. 

FDS plots for split-plot designs are discussed in Liang et al. (2006). When the design is 

entirely well randomized, the scaled prediction variance (SPV) is usually based on the 

experimental design and presumed model. Due to the covariance of the response affecting 

the entire plot error variance and subplot error variance, SPV becomes more complicated 

when SPD is taken into account. To study the relationship between fundamental plot errors 

and split-plot (subplot) errors, several researchers used the paradigm of variable variance 

ratio as the basis for FDS plots. 

𝑑 =
𝜎𝛿
2

𝜎2
, 

They have used sliced FDS plots at different whole plot levels to investigate prediction 

capability across the entire split-plot area in the design space. They also consider the 

influence of the variance ratio factor on design efficiency.  

Weese's (2010) paper focuses on mixture design screening methods using the Cox 

polynomial mixture model context. If there are many mixture components or complicated 

constraints, and the experiment is thought to be a complex process, this method is used. 

Wanyama’s (2013) paper focuses on the response of Glycine max (L.) Merrill is based on 

soil nutrient management. He talks about how soil pH, row spacing, seeding rate, organic 
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manure from livestock, and inorganic fertilizer affect. Glycine max is a measured response. 

Our research investigates the impact of soil pH and row spacing of variety seed on the 

response of soybean using the framework of MPV design within SPD. The soil pH and row 

spacing of the seed act as the two process variables where the soil pH is considered an 

uncontrollable process variable (noise variable). The row spacing is a controllable variable. 

1.3 Statement of the Problem 

Mixture experiments are a common problem in many scientific fields, including food, 

chemical, pharmaceutical, and process industries. Cornell (1988) defined the mixture 

experiment in terms of reaction (response), which is thought to be based on the relative 

proportions of the mixture blends rather than the mixture's different quantities. However, 

in many industrial processes and agricultural settings, the measurement response is 

influenced not only by the proportion of mixture components but also by one or more 

process variables that affect the mixture ingredients' blending properties or the crop's 

optimal yield.  However, due to functional and economic considerations, some process 

variables (noise variables) are challenging to modify in some cases. According to Goldfarb 

et al. (2004b), these limitations prevent complete randomization of the experimental runs.  

Many researchers (Chad and Herbek, 2005; Lee et al., 2008; Tittonell et al., 2008; 

Wanyama, 2013) believe that other variables are also to blame if they are not well 

considered, such as seed row spacing, seeding rates, soil nutrient management strategies, 

soil pH.  Some factors mentioned above, such as soil pH, row spacing, and seeding rate, 

are examples of the process variables affecting the optimum yield of the crop if not well 

managed (Pedersen, 2004). 
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Deficiency of nutrients such as Nitrogen (N), Phosphorus (P), and Potassium (K), as well 

as low organic matter content, have a significant impact on soil productivity in Western 

Kenya, contributing to low crop yield (Wanyama, 2013). The high population growth rate 

in Western Kenya, particularly in Kakamega County, has put pressure on the farming land 

(Althof, 2005; Kinyanjui and Wanjala, 2016). As a result, most small-scale farmers 

practice continuous cropping to meet their food needs, which results in the soil becoming 

acidic and exchangeable calcium and magnesium levels, as defined by Hossner and Juo 

(1999) and Mbau et al. (2015). Furthermore, Bekunda et al. (1997) and Ridder et al. (2004) 

noted that land-use intensification without sufficient nutrient inputs has resulted in low 

crop yield and increased nutrient removal and deficiencies in many developing countries. 

As efforts are made by most of the farmers in Western Kenya to restore fertility in the soil, 

it is clear that both cereals and legumes respond very well to fertilizer with Nitrogen, 

Phosphorus, and Potassium content applications from a range of sources and rates.  

In Africa, natural soil fertility is addressed by applying nitrogen, phosphorus, and 

potassium fertilizers at low rates. There is always a general expected response of Cereals 

to NPK fertilizer application at current recommendations. However, the response remains 

far below the potential level, particularly on-farm due to nutrient deficiencies and 

imbalances (Althof, 2005; Jaetzold et al., 2016; Tittonell et al., 2008; Wanyama, 2013). 

However, there has been little investment in research to determine the best method of 

combining mixture components with SCD of organic fertilizers derived from livestock 

manure within SPD using a 2𝑘 factorial configuration with a CCD of the process variable.  

As a result, this study evaluates the impact of MVPD on Glycine max production using 

farm trials in a split-plot pattern.  
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1.4  Objective  

1.4.1 General Objective 

The study's main goal was to find an optimal split-plot design for experimenting with a 

mixture-process variable (MPV) in modeling the yield of soybean (Glycine max (L.) 

Merrill.)  

1.4.2 Specific Objectives 

The specific objectives of the study were to; 

i) Develop a parsimonious model into consideration with use of split-plot design 

and MPV. 

ii) Employ the modified MPV model in predicting the yield of Glycine max with 

reasonable split-plot and main plot errors. 

iii) Employ the screening methodology in the framework of a Cox MPV model in 

modeling and estimating the predicted yield of the specific variety of Glycine 

max using simulation technique. 

iv) Estimate the optimal yield of Glycine max in the framework of split-plot 

structure arrangement, two variety of Blyvoor and R 184.  

1.5 Rationale of the Study 

Mixture process variable experiments conducted within a split-plot structure have become 

common in providing solutions to problems encountered in various industrial fields 

(Hassan et al., 2020). Since it can solve the problem of restricted randomization of mixture-

process variable design (Kowalski et al., 2002; Njoroge et al., 2017), several researchers 

suggest using a split-plot structure if MPV experiments are involved.  As a result, MPV 

architecture for split-plot structure can be used in agriculture to improve food insecurity 
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faced by small-scale farmers. However, the majority of small-scale farmers lack the 

expertise, ability, and a desirable design to employ so as to improve on the yield of cereal 

crops in the region as a result of declining crop productivity due to soil nutrient deficiencies 

caused by a lack of Nitrogen, Phosphorus, and Potassium, as well as low organic content 

in the soil. According to Wanyama (2013), the livestock industry consumes around 80% 

of Glycine max, with domestic use responsible for about 20%-30%.  

Many experts have predicted that the demand for Glycine max will grow to about 150,000 

tons per year in the coming decades (Jagwe and Nyapendi, 2004; Karuga and Gachanja, 

2004; Song et al., 2009). There is a need to increase Glycine max (L.) Merrill production 

as shown in Figure 1 when this situation is considered in order to supply the deficit which 

is usually met through imports (MOA, 2006). Currently, the option of increasing the area 

of land under Glycine max (L.) Merrill is not feasible (Wanyama, 2013) because the high 

Kenyan population growth rate is currently about 47 million people, with most families 

owning just a small land plot (Kinyanjui and Wanjala, 2016). Further, some parts of Kenya, 

such as North Eastern and Turkana, where most parts are inhabitant by few people, are 

regarded as semi-arid; hence a decline in crop production is witnessed within this region. 

Therefore, appropriate design in conjunction with proper nutrient management under 

intensive agriculture gives a better option to increase Glycine max productivity under 

limited land resources. 

One of the most potent ways to improve productivity is to use micronutrients in Glycine 

max production (Mbau et al., 2015) such as Zinc that is essential for the formation of 

chlorophyll and growth hormones and improving plant water uptake (Wanyama, 2013). 
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Also, the process of di-nitrogen fixation and enzyme activation is handled very well with 

Molybdenum (Zhang et al., 2020). 

 

Plate 𝟏. 𝟏: Typical production of Glycine max on scale farm 

Other researchers elsewhere have shown that micronutrients balance crop physiology and 

play a significant role in the gaseous exchange (De Bruin and Peterson, 2008; Isaev et al., 

2020). Moreover, apart from organic fertilizer enhancing nutrients in the soil, lime 

application in Glycine max (L.) Merrill fields raise the soil's pH and decrease the toxic 

concentration of aluminum and manganese, as reported by Gentili et al. (2018). 

Furthermore, this study seeks to evaluate and assess MPV experiments within SPD on 

soybean production in Western Kenya, particularly in Kakamega County, based on-farm 

trials.   

1.6 Significance of the Study 

Overall, the study results are intended to assist farmers in increasing soybean yields, which 

are one of Kenya's primary sources of protein. As a consequence, this would help to resolve 

food insecurity as well as protein deficiency. 
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1.7 Scope of the Study 

The scope of the study was limited two varieties of Glycine max (Blyvoor and R 184) with 

four treatment of organic manure (Goat, Cow, Chicken and Sheep) in the presence of 

variation created by two process variable (seeding rate and soil pH) within split-plot design. 

The study was carried in Lugari Sub County in Kakamega County which lasted for a period 

of nine months. 

1.8 Assumption of the Study 

The following were the assumption of the study: 

(i) Uniform fertility across whole land. 

(ii)  Moisture content in the soil uniform across. 

(iii) All legumes crop can be grown on farmland, and that legume production is 

priority. 

(iv)  The effect of NPK and CAN fertilizer is uniform across the farmland. 

1.9     Thesis Outline 

Chapter one gives the overview of the study, theories behind MPV, statement of the 

problem, objectives of the study and significance of the study. 

In Chapter 2, the study looked at the literature on mixture and MPV, SPD, graphical 

methods for assessing different design choices, design optimality, screening methodology 

in mixture design, Cox mixture model, and the impact of soil pH, row spacing, seeding 

rate, organic manure, and inorganic fertilizer on Glycine max productivity.  

We implement MPV design within the split-plot framework formulating the model in 

Chapter 3, and the SPD is built by considering various design options on mixture process 
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variable designs. Various estimation methods for parameters of the model within SPD are 

discussed. We also explore and discuss the FDS and sliced FDS plots developed for MPVD 

within a split-plot structure. FDS plots are used to analyze and compare various design 

choices according to the prediction capability to develop desirable designs. The design 

efficiency is also provided for various design choices. In addition, the study looked at 

statistical designs for experiments involving mixture variables and hard-to-change process 

variables and restricted randomization for the experimental runs to experiment on Glycine 

max. The study also explored and discussed the material and method involved in 

experimenting on Glycine max (L.) Merrill.  

In Chapter 4, the study provides the results and discussion. The results is given based on 

simulation and actual results obtained experimentally. The study made a comparison 

between the predicted and actual outcomes. In addition, we compared and contrasted the 

effects of MPV design within a split-plot structure and the one that was simulated. The 

influence of process variables on the response of Glycine max (L.) Merrill was also 

discussed. The effect of mixture component design space on the response of Glycine max 

was compared using graphical tools. 

Finally, in Chapter 5, the conclusion and recommendation are presented. In addition, the 

study gives a summary of the critical contribution of MPV design within the split-plot 

structure on Legume crop (Glycine max (L.) Merrill) and suggest potential research areas. 
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CHAPTER TWO  

LITERATURE REVIEW 

2.1 Introduction 

MPV experiments are encountered in several fields, including agriculture and industry. 

Cornell (2001) describes the MPV experiment in detail. Not only did Goos and Donev 

(2007), Goldfarb et al. (2003) presented MPV experiments with difficult to modify 

variables in practice, but they did not recognize randomization problems. As Chung et al. 

(2009) discovered, when the process variable is included in the mixture experiment, the 

number of runs dramatically increases, making complete randomization impractical. As a 

result, Cho et al. (2009) proposed a split-plot design to cope with restricted randomization.  

In mixture experiments, several designs are available as pointed out by Lawson and 

Willden (2016). For example, according to Sitinjak and Syafitri (2019), the design with the 

smallest number of experimental runs is often preferred if it offers sufficient details on the 

model's coefficients. According to Goldfarb and Montgomery (2006), a second feature for 

design selection is forecasting capability. Conversely, the Scaled Prediction Variance 

(SPV) is a suggested measure of prediction efficiency that penalizes large designs by 

considering the total sample size (Liange et al., 2006; Njoroge et al., 2017).  Furthermore, 

when the cost is not the primary concern, an alternative goal is unscaled prediction 

variance, which compares variance without regard to sample size, as Cho (2010) reported. 

The critical concern is the estimation variance at a particular position; design efficiency is 

often a good choice for comparing, analyzing, and assessing various design options. G-, I-

, V-, and Q-optimality are architecture optimality parameters that rely on prediction 

variance. The overall distribution of scaled prediction variance across the design space is 
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taken into account when evaluating the design's prediction capability instead of evaluating 

only a single point prediction calculation, such as G-, I-, or V-efficiency because prediction 

variances vary at different points (Cho, 2010; Goldfarb et al., 2003; Iwundu, 2017). As a 

result, the preferred design is a relatively constant SPV across the entire design space. 

Giovannitti-Jensen and Myers (1989) implemented a graphical method for spherical design 

space that shows the experimental field's prediction variance properties. The Variance 

Dispersion Graph (VDG) is the name of this graphical technique. Rozum and Myers (1991) 

later expanded this approach to include designs of cuboidal regions. This technique for 

evaluating various design options in mixture design has wowed many researchers (Njoroge 

et al., 2017; Sitinjak and Syafitri, 2019). Goldfarb et al. (2003) also implemented the three-

dimensional VDGs for MPV experiments in their paper. As a supplement to the VDG, 

Zahran, et al. (2003) introduced a new graphical approach called Fraction Design Space 

(FDS) plot. The FDS plots are created by computing the SPV across the design space and 

then determining the fraction of the design space that is less than or equal to the SPV values 

(Liange et al., 2006). Goldfarb et al. (2004) later proposed using a random sampling 

approach for FDS plots in mixture design. Adapted from Liange et al. (2006) for fraction 

concept space plot for SPDs, different whole plot shrinkage levels in an SPD over a 

spherical area were determined using the sliced FDS curves' relative sizes. 

Weese (2010) used the Cox Polynomial mixture model to apply screening methods in 

mixture settings. This approach is used when the number of mixture components is high. 

There are complex constraints, and the experiment is thought to be challenging to complete 

the method aids in defining the model coefficients that are relevant to the response. 
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 We will address more complex research ideas and principles for our analysis in the 

following section. The following is a stepwise procedure that will be adopted by the current 

study. First, a general understanding of mixture and MPV experiments is outlined, as well 

as statistical models for data from mixture components, experimental area, and the 

experimental situation in mixture design, and robust parameter design for MPV with hard-

to-modify factors. Secondly, SPDs are discussed, and the Hasse diagram and predicted 

mean square. Finally, the best design parameters for mixture process variables are 

provided, along with graphical techniques like FSD plots and VDG for comparing various 

design options. Thirdly, the methodology of employing the two process variables used in 

this research is demonstrated.  Finally, a screening technique for mixture design using the 

Cox polynomial mixture model is presented with an application to Glycine max (L.) Merrill 

crop. 

2.2 Mixture Design and Statistical Mixture Models 

Let 𝑥1, 𝑥2, …… . . , 𝑥𝑞 be 𝑞 mixture components. These mixture components act as 

explanatory variables in designed experiment subject to 

 

∑𝑥𝑖

𝑞

𝑖=1

= 𝑋′1𝑞 = 1, 
             

(2.1) 

where 1𝑞 represent a 𝑞 −dimensional column vector of ones and 𝑋′ = (𝑥1, 𝑥2, …… . . , 𝑥𝑞). 

Goos et al. (2016) showed that this mixture restriction produces a Simplex-shaped 

experimental region that significantly affects the models that can fit. Cornell (1988) points 

out that a regression model involving linear terms in mixture blends cannot contain the 

intercept. Otherwise, as many scholars have suggested, we cannot estimate the model's 
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parameters uniquely (Njoroge et al., 2017). According to many scholars, a second 

significant implication is that cross-products of proportions and squares of proportions 

cannot be used in the study because model parameters are not estimable uniquely (Goldfarb 

et al., 2004b). It is evident that for each proportion 𝑥𝑖, this is the case. The square of a 

proportion 𝑥𝑖
2 is, in most cases, a linear combination of that proportion and its cross-

products with any of the other 𝑞 − 1 mixture blends, and is given as: 

 

𝑥𝑖
2 = 𝑥𝑖 (1 − ∑ 𝑥𝑗

𝑞

𝑗=1𝑗≠𝑖

) = 𝑥𝑖 − ∑ 𝑥𝑖𝑥𝑗

𝑞

𝑗=1𝑗≠𝑖

, 

       

(2.2) 

Scheffe (1958) proposed the Scheffe mixture models, which take these considerations into 

account and describe the first order Scheffe model as 

 

휁(𝑥) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

. 
           

(2.3) 

The second-order Scheffe model, on the other hand, 

 

휁(𝑥) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=𝑖+1

,

𝑞−1

𝑖=1

 

       

(2.4) 

While a unique cubic model is such that 

 

휁(𝑥) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

+∑ ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑞

𝑘=𝑗+1

𝑞−1

𝑗=𝑖+1

,

𝑞−2

𝑖=1

 

    

(2.5) 

And finally, the full cubic model is: 
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휁(𝑥) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

+∑ ∑ 𝛾𝑖𝑗𝑥𝑖𝑥𝑗(𝑥𝑖 − 𝑥𝑗)

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

+∑ ∑ ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑞

𝑘=𝑗+1

𝑞−1

𝑗=𝑖+1

𝑞−2

𝑖=1

. 

 

    

(2.6) 

 

where 휁(𝑥) denotes the predicted response, 𝛽𝑖 denotes the regression coefficient linear term 

while 𝛽𝑖𝑗, 𝛾𝑖𝑗 and 𝛽𝑖𝑗𝑘 represents the regression coefficient of interaction terms.  

Furthermore, Scheffe (1963), Cornell (2011), Smith (2005) and Goos et al. (2016) 

advocated that the 𝑞𝑡ℎ  polynomial degree model suitable in modeling the interaction effect 

resulting from mixture components. However, in the literature, this degree model has 

gotten a lot of coverage. But, due to an increase in the number of unique higher-order terms 

in special cubic models, which becomes tedious during model parameter estimation, this 

model is not widely used. 

2.2.1 Simplex Lattice Design (SLD) 

A {𝑞,𝑚} Simple Lattice Design (SLD) for 𝑞 mixture components entails all possible 

mixture formulations, each of which has a 𝑞 unique mixture part that belongs to the set 

{0,
1

𝑚
,
2

𝑚
, … ,1}.As a result, the total number of design points in a {𝑞,𝑚} SLD is given as 

(
𝑚 + 𝑞 − 1

𝑚
). 

A (3, 1) SLD, for example, has three candidate points (1,0,0), (0,1,0), and (0,0,1). Pure 

mixture components are what these points are called (Goos et al., 2016). For the case a 
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(3,2) SLD involves 6 candidate points, the points (0.5, 0.5, 0), (0.5, 0, 0.5), (0, 0.5, 0.5) 

and as well as the pure blends as illustrated in Figure 2.1, 2.2 and 2.3. 

 

Figure 2.1:  SLD with 3 mixture components 

The points involving 50% of one mixture blend and 50% of another are commonly referred 

to as binary mixtures. 
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Figure 2.2:  The comparison of factor space within simplex lattice design with the case of 

{𝟐, 𝟏} and {𝟑, 𝟏} SLD, respectively. 

 In totality, they are 𝑞 pure blends and (𝑞2) =
𝑛(𝑛−1)

2
 binary mixture as pointed by Goos et 

al. (2016). 

However, double simple lattice design also exists in the form of {𝑞,𝑚;  𝑞, 𝑚} as illustrated 

in Figure 2.4.  According to Cornell (2011), double SLD implies double mixture where 

each mixture itself is a mixture or a mixture of mixtures, blended with a proportion and 

1 − 𝑝 defined by multiple component constraint equalities as  ∑ 𝑋𝑞
𝑖=1 = 𝑝 and ∑ 𝑌𝑞

𝑖=1 =

1 − 𝑝.  
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Figure 2.3: Mixtures of mixtures within SLD for three mixture blends in a second order 

model 

The SLD can also be depicted using Figure 2.5 in the case of a four-component mixture. 
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Figure 2.4: A four-component mixture of SLD 

The second order model parameters can be estimated using this fraction as shown in Figure 

2.7. 

2.2.2 Simplex Centroid Design (SCD) 

The complete SCD consists of 2𝑞 − 1design points: the 𝑞 pure blends, the (𝑞, 2) binary 

mixture ingredients, the (𝑞, 3) ternary mixture mixes permutations{
1

3
,
1

3
,
1

3
, … ,0}, and 

finally, the q permutations of the mixture ingredients given as {
1

𝑞−1
,
1

𝑞−1
,
1

𝑞−1
, … ,

1

𝑞−1
, 0}as 

provided by Cornell (1988). A (3,2) SCD, for example, includes seven design points, pure 
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component of mixture, binary mixture points (0.5,0.5,0), (0.5,0,0.5), (0,0.5,0.5), and the 

centroid points {
1

3
,
1

3
,
1

3
}, as illustrated in Figure 2.5. 

 

 

 

Figure 2.5: A second order model, a SCD of three mixture components. 

This example indicates that for every number of mixture ingredient 𝑞, there is only one 

SCD as shown in Figure 2.5 and 2.6 with a black dot at center, but rest is the family of 

SLD. Moreover, SCD involves the overall centroid given as {
1

𝑞
,
1

𝑞
,
1

𝑞
, … ,

1

𝑞
} and 

{
1

𝑞−1
,
1

𝑞−1
,
1

𝑞−1
, … ,

1

𝑞−1
, 0} are the centroids of all lower dimensional simplexes’ as in 

Figure 2.7. An important fraction of the SCD involves the pure blends, the binary and 

ternary mixtures (Scheffe, 1963). However, the special cubic model is estimated using 

these fractions. The fraction being referred in this case is as the (𝑞, 3) SCD. Further, a 
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fraction as the (𝑞, 5) SCD involves quaternary and quinary mixtures because of a larger 

fraction of the SCD. 

 

 

Figure 2.6: The comparison between SCD and SLD for 𝒒 mixture blends with 𝒎 degree 

polynomial model. 

 

 

Figure 2.7:  The expected response nomenclature for four component mixture in simplex 

lattice design 
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2.2.3 Mixture Design with Presence of Process Variable 

As Cho (2010) points out, the critical subject of attention in the mixture literature is 

uncombined mixture product process variable experiment has been on the components' 

blending properties for decades, with only a secondary interest in process variables' effects. 

Whereas, since some researchers conclude that in most industrial environments, the process 

variables' critical problem is at least equal to that in the mixture ingredients, the process 

variables are often regarded as noise factors (Cornell, 2011; Goldfarb et al., 2004b). 

Response surface methodology (RSM) traditionally applies a second-order Taylor series 

as the appropriate model basis for process optimization (Goos and Donev, 2007; Vining et 

al., 2005). This assumption relies typically on sufficient background knowledge besides 

knowing the experimental region that supports an accurate second-order model described 

by Kowalski et al. (2000). The mixture elements, process variable (PV), and MPV 

interaction are always equal. In reality, according to Goos and Donev (2007) and Cho 

(2010), the mixture PVs interaction terms also provide considerable insight into optimal 

operating conditions.  

In the polymer experiments proposed by Cornell (2011) and Myers et al. (2009), the 

experimenter may be interested in learning about a particular mixture component that 

makes the reaction particularly sensitive to the reaction temperature.  This experimental 

situation led some authors (Cornell, 1988; Chung et al., 2009; Cho, 2010) to propose a new 

model for approaching the MPV experiments simplex centroid design with the split-plot 

structure experiments. 
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2.2.4 The Combined MPV Model 

The shape of a blended model involving terms in mixture properties and process variables 

in MPV design is influenced by the mixture components' mixing characteristics, the effect 

of process variables, and any interactions between the mixture blends and process 

variables. These models are usually Scheffe second-order models described in Scheffe 

(1963). As Goos and Donev (2007) point out, they allow for pure quadratic and two-factor 

interaction terms. Cornell (2011) presented the following general second-order polynomial 

for 𝑞 mixture variables, 𝑛 process variables, and the combined MPV model:  

For the q mixture vector, a second order model for 𝑛 processes variables, 𝑧1, 𝑧2, … . . , 𝑧𝑛., 

is also given by  

 
휁(𝜆, 𝑧) = 𝜆0 +∑ 𝜆𝑘𝑧𝑘

𝑛

𝑘=1

+∑ ∑ 𝜆𝑘𝑙𝑧𝑘𝑧𝑙

𝑞

𝑘=𝑙+1

𝑛−1

𝑘=1

, 
(2.7) 

 

The Equation (2.4) and (2.7) are merged to create combined MPV model. However, 

crossing the mixture model terms in Equation (2.4) with any term in Equation (2.7) 

produces the first type of model. As a result, the combined model is given as. 

 

휁(𝑥, 𝑧) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

+∑∑ 𝛾𝑖𝑘𝑥𝑖𝑧𝑘

𝑛

𝑘=1

𝑞

𝑖=1

+∑∑ ∑ 𝛾𝑖𝑘𝑙𝑥𝑖𝑧𝑘𝑧𝑙

𝑛

𝑙=𝑘+1

𝑛−1

𝑘=1

𝑞

𝑖=1

+∑ ∑ ∑ 𝛾𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑧𝑘

𝑛

𝑘=1

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

+∑ ∑ ∑ ∑ 𝛾𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑧𝑘𝑧𝑙

𝑛

𝑙=𝑘+1

𝑛−1

𝑘=1

𝑞−1

𝑗=𝑖+1

𝑞−2

𝑖=1

. 

 

(2.8) 

 

This model (2.8) contains parameters for three and four-factor interactions, which provide 

a measure of the mixture blends' linear and nonlinear blending properties averaged across 
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the process variable settings and the effects of the process variables on the linear and 

nonlinear properties depending on the configuration.  

However, combining the models in Equation (2.4) and (2.7) without crossing any of the 𝑥𝑖 

and 𝑧𝑗 terms leads to the second type of combine model is given as 

 

휁(𝑥, 𝑧) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

+∑ 𝛼𝑘𝑧𝑘

𝑛

𝑘=1

+∑ ∑ 𝛼𝑘𝑙𝑧𝑘𝑧𝑙

𝑛

𝑙=𝑘+1

𝑛−1

𝑘=1

. 
(2.9) 

This model (2.9) calculates the quadratic blending of the mixture blends on the response 

and up to two factor PV interactions on the response. Furthermore, model (2.9) is based on 

the premise that mixing the mixture ingredients is the same for all factor level combinations 

of the method variables. This is because this model does not provide any cross-product 

terminology between the mixture ingredients and the process variables, even though 

Goldfarb et al. (2003) pointed out that this assumption is often impractical in most cases. 

In fact, in some experiments like the polymer experiment presented by Cornell (2011), the 

mixture of ingredients by process variables interaction may be the most crucial importance 

in the model. For instance, the temperature in those experiments acted as a process variable 

and variation of this process variable determines the end product whether it is of good or 

poor quality beside the other factor components. 

Over a decade, the number of runs with mixture experiments involving process variables 

has been the major concern by several researchers (Anderson Cook et al., 2004; Cho, 2010; 

Njoroge et al., 2017). This has been due to a rise in the number of method variables and 

mixture ingredients, causing Equation (2.8) to require many candidate points 

automatically. Therefore, this becomes costly when running the experiment due to size and 
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time required (Sitinjak and Syafitri, 2019). Also, it becomes tedious in estimation 

parameters due to the large number of runs as described in Wanyonyi et al. (2018). This is 

the reason behind the use of small size of experiments by several industrial situations due 

to cost, time and/ or other constraints (Njoroge et al., 2017).  

However, Cornell (2011) claims that fitting model (2.9) allows for a smaller design than 

fitting model (2.8) to minimize the experiment's size. Still, it does not discuss the estimation 

of mixture components by process variable interaction. As a result, some authors 

(Anderson Cook et al., 2004; Cho, 2010) concluded it is a compromise between these two 

models, one of which is necessary because the interactions between mixture ingredients 

and process variables are thought to be crucial. 

A Taylor series approximation has been the critical method for most of the models 

proposed for response surface investigations over the centuries (Goos and Donev, 2007). 

Following this tradition, Cho et al. (2009) proposed the proper model for the 𝑛 process 

variables as a replacement for the model in Equation (2.7) given as 

 

𝐸(𝑌) = 𝜆0 +∑𝜆𝑘𝑧𝑘

𝑛

𝑘=1

+∑𝜆𝑘𝑘𝑧𝑘
2

𝑛

𝑘=1

+∑ ∑ 𝜆𝑘𝑙𝑧𝑘𝑧𝑙

𝑞

𝑘=𝑙+1

𝑛−1

𝑘=1

, 
 (2.10) 

This model (2.10) has the 𝑛 pure quadratic terms that give a clear distinction from model 

(2.7) Furthermore, this model (2.10) is combined with model (2.4) to generate another 

combined secondary model given as 

   

(2.11) 
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휁(𝑥, 𝑧) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

+∑ 𝜆𝑘𝑘𝑧𝑘
2

𝑛

𝑘=1

+∑ ∑ 𝜆𝑘𝑙𝑧𝑘𝑧𝑙

𝑛

𝑙=𝑘+1

𝑛−1

𝑘=1

+∑∑ 𝛿𝑖𝑘𝑥𝑖𝑧𝑘

𝑛

𝑘=1

𝑞

𝑖=1

. 

This model includes the mixture model and pure quadratic and two-factor interaction 

effects among process variables, as well as two-factor interactions between the linear 

blending terms in the mixture ingredients and the process variables' main effect terms. The 

crossed model in Equation (2.8) and the additive model in Equation (2.9) require a 

minimum number of design points. 

Several authors argue that model (2.11) should be used without the pure quadratic 

definition, assuming that 

 

∑𝜆𝑘𝑘𝑧𝑘
2

𝑛

𝑘=1

≅ ∑ ∑ 𝜆𝑘𝑙𝑧𝑘𝑧𝑙

𝑛

𝑙=𝑘+1

𝑛−1

𝑘=1

 and   ∑𝛽𝑖𝑖𝑥𝑖
2

𝑞

𝑘=1

≅ ∑ ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

. 

  

 (2.12) 

 

 

The fitting model (2.11) also necessitates a design that supports nonlinear mixing of the 

mixture ingredients as well as the fitting of the complete second-order model method 

variables, according to Cornell (2011), Kowalski et al. (2000), and Goos et al. (2016). 
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As in most RSM investigations, we explore how to choose suitable designs that support 

the fit of the stated model involving MPV in this section (Demirel and Kayan, 2012). The 

design method is discussed in this paper by Cornell (1990), Kowalski et al. (2000), and 

Goos et al. (2016). According to Goos and Donev, (2007), the best design has at least as 

many candidate points as the model's number of parameters. As a consequence, this 

formula specifies the design point needed to support the model (2.11) fitting: 

Where 𝑛 stands for the number of process variables.  

In recent years, the central composite design has become the most popular response surface 

design for fitting a second-order mixture model, consisting of a complete 2𝑛 factorial 

design, 2𝑛 axial or star points with levels ±𝛼 for one factor and the control points, and at 

least one center point replicate as defined by Cho (2010), Kowalski et al, (2002) and Goos 

et al. (2016). 

Several authors recommend that the designed experiment should always begin with CCD 

in PVs as a method for reducing the number of observations needed in a process variable 

experiment involving a combined mixture of ingredients (Cornell, 2011; Hassan et al., 

2020; Wang et al., 2013).  Furthermore, as pointed out by Njoroge et al. (2017), a simplex 

centroid architecture is then implemented at each point in CCD by considering only a 

fraction of the mixture blends. According to Goos et al. (2016), a simplex centroid design 

consists of 2𝑞 − 1 candidate points. However, there are 𝑆𝑞  centroid points of a 𝑞 − 1 

dimensional simplex space inside these candidate points, in addition to the centroids of all 

 (𝑞 + 𝑛)(𝑞 + 𝑛 + 1)

2
 , 

(2.13) 
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the lower dimensional simplices members of 𝑆𝑞  and at 𝑞 vertices of 𝑆𝑞.  Furthermore, the 

mixture ingredients chosen at various CCD points are usually a subset of full SCD.  

As several authors (Cho et al., 2009; Weese, 2010) have pointed out, there is often a need 

to achieve equilibrium among the mixture ingredients across the process variables when 

implementing experiments. In reality, the same number of mixtures blend must be present 

at both high and low levels of each process component. This is because traditionally, at 

each ± the factorial level of each process variable normally requires all the mixture 

components to present. These facts seem very intuitive and often makes researchers apply 

some mixture components at certain design points and also different mixture ingredients at 

other candidate points. 

Moreover, other researchers elsewhere have established that the use of the simplex vertices 

should be run at one-half of 2𝑛 factorial points in the PV, while the simplex's mid edge 

points should be run at the other half. A simplex is created when a design is collapsed over 

each PV level, with vertices and midpoints at both the low and high levels of remaining 

PVs.  

Furthermore, the PVs' axial points are combined with the simplex's centroid for the centroid 

to be present even if the geometry is collapsed. As a result, two distinct designs emerge, 

each differentiated by the number of points positioned at the process variable's base. For 

instance, suppose one of the designs is 𝜉𝐴, and the other design is 𝜉𝐵where 𝜉𝐴is the full 

simplex centroid while 𝜉𝐵 is having the centroid design mixture blends only, which is 

performed at the mid of the process variable. In other words, this implies that with design 

(𝜉𝐴), the full simplex centroid is executed at midway whereas design (𝜉𝐵), the centroid 
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concoction is blended at the center of the variable process. These two designs can be 

illustrated using an example presented by Kowalski et al. (2000) involving three mixture 

ingredients in order to understand and have clear distinction between 𝜉𝐴 and 𝜉𝐵. The Figure 

2.8 shows the proposed design for both model 𝜉𝐴 and 𝜉𝐵. The model (2.11) contains fifteen 

terms. 𝜉𝐴 in Figure 2.8  represented with both closed and open circles which tally to twenty-

three design points while 𝜉𝐵in the same Figure is denoted with open circles which sums up 

to 17 candidate points. The terms in model (2.11) can be estimated with either 𝜉𝐴or 𝜉𝐵.  

The design points in Figure 2.8 can also be represented tabular form as presented in 

Kowalski et al. (2000). In cases where the mixture ingredients include the lower and upper 

bound limits, the proposed design in Figure 2.9 becomes more difficult to use, resulting in 

a more complicated mixture region than the simplex. An irregular polygon is usually used 

as the restricted experimental area. The original components can be converted into L-

Pseudo components, which solves the problem. L-Pseudo components are a technique for 

making design construction and model fitting simpler when a constraint is present in the 

design space and are described by Kowalski et al. (2000) as  

 
𝑋𝑙
′ =

(𝑥𝑖 − 𝐿𝑖)

(1 − ∑ 𝐿𝑖
𝑞
𝑖=1 )

, 𝑖 = 1,2, … , 𝑞 
 (2.13) 
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Figure 2.8: Proposed designs for the 3-2 Case (𝝃𝑩 is the design with closed circles, 𝝃𝑨 is 𝝃𝑩 

plus the open circles) (Kowalski et al., 2000) 

Where 𝐿𝑖 represent the lower bounds in each constraint mixture ingredients.  For example, 

the following constraints given by Cornell, (2011)  

0.25 ≤ 𝑥1 ≤ 0.40,        0.25 ≤ 𝑥2 ≤ 0.40, 0.25 ≤ 𝑥3 ≤ 0.40 

can be transformed into L-Pseudo components as 

 

 
𝑋𝑙
′ =

(𝑥𝑖 − 0.25)

(1 − {0.25 + 0.25 + 0.25})
=
(𝑥𝑖 − 0.25)

0.25
, 𝑖 = 1,2,3. 

 (2.14) 

 

In addition, since the candidate points for the two designs, in this case, consist of the six 

vertices and midpoints of the six edges of the hexagon, as well as the overall centroid at 
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each of the PV design points, the resulting mixture region for three mixture components is 

a hexagon. The resulting L- Pseudo components for Figure 2.8 using the restriction 

example above is shown in the Table described in Kowalski et al. (2000). While exploring 

scenarios involving mixture ingredients without or with restrictions is not meant to be 

comprehensive, it is used because it encompasses the various options concerning a typical 

industrial or agricultural experiments (Wang et al. 2013); Hassan et al., 2020). 

Furthermore, based on the assumptions, the designs may be applied to higher dimensions 

without creating problems, even though they might be challenging to display 

geometrically. 

Cornell (1990) and Kowalski et al. (2000) proposed using CCD for design extension. For 

example, in the case of three mixture ingredients, CCD can extend the case. The centroids 

of the simplex should be placed at each of the CCD axial point, while the centroid or the 

seven point’s simplex centroid should be placed at the center points. 

When the number of design points is less than the total number generated by crossing CCD 

in the MPV settings, the typical user employs statistical software such as SAS's JMP 

division. It allows a researcher to generate a design based on a criterion of optimality, such 

as D- or I-Optimality. As a result, while such generated designs are statistically optimal, 

according to several researchers (Goos et al., 2016; Njoroge et al., 2017) since there may 

exist a design that is nearly optimal and more attractive and appealing due to existence of 

properties such as Symmetry and nearly orthogonality although this computer-generated 

design should not be accepted blindly as suggested by Snee (1985), Kowalski et al. (2000), 

and Goos et al. (2016).  Additionally, computer-aided designs are usually helpful when the 
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experimental area is irregular, and the number of available runs is limited and can also be 

suitable for non-linear models. 

 

 

Figure 2.9:  Illustration of L- Pseudo components (Cornell, 2011). 

2.3 Split-Plot Layout Structure 

The split-plot layout structure is an experimental design applied to experiments involving 

situations where complete randomization is not feasible to address that problem. According 

to Njoroge et al. (2017), randomization is always used in designed experiments when 

changing some of the factors is difficult or costly to solve. This could be due to physical 

constraints on the process variable. As a result, some researchers argue that it is necessary 

to limit the randomization of experimental runs, which leads to the split-plot design 

described by Cho (2010). 
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The split-plot experiment is typically randomized in two ways: the Hard-to-Change Factor 

(HCF) and the Easy-to-Change Factors (ECF) respectively. The HCF combinations are 

also referred to as whole plot treatment factors, whereas ECF is referred to as split-plot or 

subplot treatment (factor). The experiments in a split-plot layout structure usually are 

carried out by first fixing the levels of the HCFs and then running some or all of the 

combinations of the ECF levels. In the HCFs, a new setting is chosen. The process is then 

repeated until all of the ECF combinations have been exhausted (Cornell, 1988).  

The HCF is frequently assigned at random to the entire plot, subject to the whole-plot 

design. The ECFs are then restricted and randomly assigned to subplots within each whole 

plot, with separate complete randomization for each whole plot (Kowalski et al., 2002). 

Furthermore, the subplot effect is produced due to the primary treatment's sub-treatment 

interaction with the split-plot factor. Nevertheless, in split-plot design analysis, the 

response surface methodology is used to determine this factor's optimum. The, pure error 

estimates for the two variance components, whole plot  and the subplot are usually 

estimated together with robust parameter values for the fixed factors (Box and Jones, 1992; 

Hassan, 2020). Cho (2010) presented the statistical model for the split-plot design 

experiment with two factors as    

 𝑦𝑖𝑗𝑘 = 𝜇 + 𝜚𝑖 + 𝛽𝑗 + (𝜚𝛽)𝑖𝑗 + 𝜗𝑘 + (𝜚𝜗)𝑖𝑘 + (𝜗𝛽)𝑗𝑘 + (𝜚𝛽𝜗)𝑖𝑗𝑘

+ 𝑒𝑖𝑗𝑘 {
𝑖 = 1,2, … , 𝑟
𝑗 = 1,2, … , 𝑎
𝑘 = 1,2, … , 𝑏

 

               

(2.15) 

 

Where, 

𝑟 = indicate the number of times the experiment is replicated, 

𝑎 = denotes the levels of the main treatment (whole plot treatment), 
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𝑏 = represent the levels sub plot treatment, 

𝜚𝑖 = denotes replicates or blocks of the design, 

𝛽𝑗 = represent whole plot treatment (say factor Α with 𝑎 levels), 

(𝜚𝛽)𝑖𝑗 =indicates the total plot error measurements (replicates or blocks A ) where 

(𝜚𝛽)𝑖𝑗~𝑁(0, 𝜎𝛽
2), 

𝜗𝑘 = represent subplot design with sub plot treatment (say factor Β with 𝑏 levels), 

(𝜚𝜗)𝑖𝑘 = denotes the sub plot structure with (replicates or blocks × Β ), 

(𝜗𝛽)𝑗𝑘 = represent sub-treatment interaction between main treatment and split plot factor 

(ΑΒ) that produces the subplot effect, 

(𝜚𝛽𝜗)𝑖𝑗𝑘 = denotes the subplot error that originates from three factor interaction of 

replicates/blocks × ΑΒ ), 

𝑒𝑖𝑗𝑘 = represent the generally sub plot error where 𝑒𝑖𝑗𝑘~ 𝑁(0, 𝜎𝑒
2), 

𝜇 =  Denotes constant mean population. 

𝑦𝑖𝑗𝑘 = Measured response 

Similarly, Cho (2010) derived the expected mean squares (EMS) as shown in Table 2.2 for 

split plot layout structure, with replicates or block random, whole plot treatment and sub 

plot treatment. Table 2.1 shows that the whole plot treatment (main factor A) is typically 

tested against the whole plot error. In contrast, the subplot treatment (B) is usually tested 

against the blocks/ replicates of subplot treatment interaction. Furthermore, the sub-

treatment interaction AB is compared to the subplot error. 
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Table 2.1: The EMS for SPD 1 

 

 

  

 

 Model Terms Subject 

to Treatment (Factors) 

                                EMS 

 

Whole-plot layout 

𝜚𝑖 

 

𝛽𝑗 

 

(𝜚𝛽)𝑖𝑗 

𝜎𝑒
2 + 𝑎𝑏𝜎𝜚

2 

 

𝜎𝑒
2 + 𝑏𝜎𝜚𝛽

2 + (
𝑟𝑏 ∑𝛽𝑗

2

𝑎 − 1
⁄ ) 

 

𝜎𝑒
2 + 𝑏𝜎𝜚𝛽

2  

 

 

 

 

Subplot structure  

𝜗𝑘 

 

 

(𝜚𝜗)𝑖𝑘 

 

(𝛽𝜗)𝑗𝑘 

 

 

 

(𝜚𝛽𝜗)𝑖𝑗𝑘 

 

𝑒𝑖𝑗𝑘 

 

𝜎𝑒
2 + 𝑎𝜎𝜚𝛽

2 + (
𝑟𝑎∑𝜗𝑘

2

𝑏 − 1
⁄ ) 

 

𝜎𝑒
2 + 𝑎𝜎𝜚𝜗

2  

 

   𝜎𝑒
2 + 𝑎𝜎𝜚𝛽𝜗

2

+ (
𝑟 ∑∑(𝛽𝜗)𝑗𝑘

2

(𝑏 − 1)(𝑎 − 1)
⁄ ) 

 

𝜎𝑒
2 + 𝑎𝜎𝜚𝛽𝜗

2  

 

       𝜎𝑒
2 (not estimable) 

 

 

Box and Jones (1992) compared the efficiency of a completely randomized design (CRD) 

and SPD and found out that sub plot error variance was less than the whole plot error 

variance(𝜎𝑒
2) < 𝜎𝐶𝑅𝐷

2 < 𝜎𝑊𝑝𝑒𝑢
2 . This demonstrates that SPD is usually more efficient than 

CRD. Furthermore, Goos and Donev (2007) in their earlier research investigated the use 
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of SPD in industrial experiments where one factor is known to be difficult to change. 

However, after the simulation study, their findings confirmed that SPD produced increased 

precision on subplot factors. According to Cho et al. (2009), SPD should always be an 

excellent alternative source of experiment whenever the experiments to be carried out are 

impractical, such as in industry, because SPD is much more efficient and easy to run than 

CRD. The number of runs designed for any experiment tends to increase dramatically in 

MPV experiments, as do the number of process variables (Kowalski et al., 2002; Njoroge 

et al., 2017). Conversely, the HCFs are notoriously tricky to adjust and control. As a result, 

randomization is always a significant condition underlying statistical methods when 

designing experiments (Hassan et al., 2020). Although it is always impractical to perform 

the experiments in a completely randomized order, changing the levels of some factors can 

be difficult or expensive. In this case, limiting the randomization of experiments becomes 

critical, resulting in the split-plot structure described by Box and Jones (1992).Cho et al. 

(2009) developed graphical evaluation techniques for MPV within SPD, but they did not 

consider robust parameter design for not easily controlled variables (noise variable). 

2.3.1 Hasse Diagrams and Expected Means Squares within SPD 

The Hasse Diagrams are graphical representations of models that show nesting and random 

or fixed structures. This method is similar to ANOVA Tables. It has node M at the top 

representing the grand mean and anode E at the bottom representing random error. 

Oehlert (2010) presented a model for a single whole plot factor (WPF) A with a levels, a 

single split plot factor B with b levels, and n whole plots for each level of A as 

 𝑦𝑖𝑗𝑘 = 𝜇 + 𝛼𝑖 + 𝑛𝑘(𝑖) + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑒𝑘(𝑖𝑗), (2.16) 
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where 𝑛𝑘(𝑖) is the whole plot random error representing for each whole-plot, 𝛼𝑖 denotes the 

main treatment,𝛽𝑗 ,  𝛼𝛽𝑖𝑗, and 𝑒𝑘(𝑖𝑗) represents the sub-plot treatment, subplot interaction 

treatment, and split-plot level random error (SPE), respectively. This model is a simple, 

completely randomized design on the entire plot with the entire plot factor as treatment, 

where the entire plot's error term is nested within the entire plot treatment. Lohr (1995) 

proposed the Hasse Diagram as a tool for visualizing two ANOVA Tables. The Hasse 

diagram has the advantage of displaying the degree of freedom through the denominator 

test. For example, the denominator test for the whole plot factor A is the whole plot error 

(WPE). 

As shown in Figure 2.10, Oehlert (2010) presented an example of two Hasse Diagrams, 

one generic and the other a split-plot with 𝑎𝑛 = 10 whole plots, whole plot factor 𝐴 with 

𝑎 = 2 levels, and subplot treatment 𝐵 with 𝑏 = 3 levels. 

 

 

Figure 2.10: Two Hasse Diagrams where the one is generic and the other is a split plot with 

10 whole plots 



39 
 

 
 

Figure 2.10 and 2.11 shows that the degree of freedom of the whole plot error (WPE), split-

plot error (SPE), primary treatment (A), subplot treatment (B), and subplot interaction 

treatments (AB). As a result, the researcher can efficiently compute the ANOVA Table 

using this Hasse Diagram. 

2.3.2  Analysis of Split-Plot Designs 

The split-plot models are usually analyzed using the standard methods with linear mixed 

effect factorial models. The same result can also be obtained by employing the Heuristic 

technique as described by Oehlert (2010). The Heuristic technique is based on the idea that 

a split-plot design typically has two unit sizes and two randomizations. The data variable 

should be divided into two groups: variation between whole plots and variation within 

whole plots (between split plots). Using this model with two factors implies that they are 

whole plots with 𝑁 − 1 = 𝑎𝑏𝑛 − 1 degrees of freedom between all the expected responses. 

The variation between whole plots can be obtained by treating the whole plots as treatment 

groups of b units each and performing a standard one-way ANOVA. 

As a result, there are 𝑎𝑛 − 1 and 𝑎𝑛(𝑏 − 1) degrees of freedom between whole plots, as 

well as within whole plots and between split plots. This decomposition can be visualized 

using the heuristic technique and the schema on the partition of total variation. The 

variation between whole plots is typically made up of effects that completely affect the 

entire whole plots. If the entire plot is assumed to be blocked, the variation produces the 

following decomposition. Moreover, the variance in the split plot design is further partition 

as follows: 
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Figure 2.11: The total variation resulting from both and within Whole plot and sub plot 

The degrees of freedom for split-plot treatments, subplot treatment interaction, and subplot 

error are listed respectively as 𝑎𝑛(𝑏 − 1), 𝑏 − 1, (𝑎 − 1)(𝑏 − 1), and 𝑎(𝑏 − 1)(𝑛 − 1). 

As a result, the overall decomposition that provides more insight into what is going on in 

the split-plot analysis. However, sums of squares and estimated treatments of effects are 

computed in the same way. 

2.4 Robust Parameter Design for MPV with Noise Variable 

Cho (2010) proposed a robust parameter design (RPD) for variables that are not easily 

controlled in SPD. In his study, he divided process variables into two categories in the 

experiment design: controllable variables that directly affect the response and variables 

that are not controllable and mainly affect the variability of predicted response variability. 

If the model contains both control factors and noise variables, the factor settings for easy-

to-change factors (control factors) make the predicted response resilient subject to the 

variability transmitted from hard-to-change factors. Furthermore, Steiner and Hamada 

(1997) were the first to investigate, analyze, and improve the Mixture Process Variable 

design with difficult to adjust variables.  
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Cornell (2011) used a split-plot design to analyze data from MPV design experiments 

where the mixture blends in the process variables. The mixture experiment in his SPD 

involved making fish parties out of various ingredients from three different fish species, 

including Mullet, Croaker, and Sheepshead. The development of fish parties was subjected 

to a three-process variable treatment level mix, with each process variable having two 

levels. Deep frying time, cooking time, and cooking temperature were the process 

variables. 

2.5  The Design Experimental Region (Design Space) 

The experimental region includes the design area, design space, and the region of interest. 

The experiment area is normally coded with 𝛯 = [−1, 1]𝑘and this is subject to all 

continuous experimental influences. Thus the experimental region 𝛯 is often sensible when 

there are no restrictions on the factor other than the lower and upper bounds and this is 

often referred to as a cuboidal region. The spherical experimental region is often a choice 

when a cuboidal region is not specified (Rozum and Myers, 1991).  

 

𝛯 = {𝑋 = (𝑥1, 𝑥2, … . , 𝑥𝑘)|∑𝑥𝑖
2 ≤ 𝑅 ∈ 𝑅

𝑘

𝑖=1

} 
(2.17) 

where for any radius R, the maximum of factors will take on the extreme levels -1 and 1 

simultaneously. As a result, the best design is the one that fits the experimental area, 

making it even more important to choose the best design for a given problem.  

2.6 Graphical Techniques for Evaluating Design Optimality 

Both the Fraction of Design Space (FDS) plots and the Variance Dispersion graphs (VDG) 

visualize and show the output of one or more in terms of scaled variance prediction (SPV) 
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throughout the entire experimental area. Zahran et al. (2003) introduced FDS plots as an 

alternative to the VDGs as suggested by Giovannitti-Jensen and Myers (1989). These 

prediction-based criteria provide more information and detail than the average or maximum 

prediction variance that compares numerical efficiency between different experimental 

designs. 

Thus, the FDS plots and VDGs have been the focus of many studies over the last decade, 

with Anderson Cook et al. (2009) offering a summary and discussion of this work. Meyer 

and Nachtsheim (1995), and Goos et al. (2016) addressed the I-optimal design criterion, 

aiming to eliminate average prediction variance. Rodriquez et al. (2010) addressed G-

optimal architecture's generation and efficiency, which aims to reduce maximum 

prediction variance. Many of the authors were primarily concerned with minimizing and 

optimizing prediction variance. According to Goos and Jones (2011), it is normally 

appropriate to allow for lower prediction variance over most experimental areas of interest. 

Atkinson (2008) explored and outlined various optimality criteria for design selection, 

including the A, D, I, and G optimality criteria, among others. Different design optimality 

requirements are often present, consistent with the theory of optimal experimental design. 

According to Goos and Jones (2011), different experimental objectives and problems 

frequently necessitate different experiments based on optimal experimental design theory. 

The only way to do this is to apply the design optimality criterion to the experiment. When 

an experiment has multiple experimental objectives, as defined by Rady et al. (2009), 

designs that perform well in multiple criteria at the same time should be chosen and 

adopted. 
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2.6.1 Fraction of Design Space Plots Construction 

Vining et al. (1993) used the FDS plot to show and explain one or more experimental 

designs' success in terms of precision of variance prediction. For the FDS map, we define 

𝜑(𝑠) as a function that considers a vector of factor settings and increases its size to the 

model terms it corresponds to (Goldfarb and Montgomery, 2006; Ozol et al., 2005). When 

𝑠 is a vector of factor levels that corresponds to one of the experiment design's runs, the 

 𝜑′(𝑠) usually corresponds to the row matrix S. Suppose 𝑆𝑖 = (𝑠1𝑖, 𝑠2𝑖, 𝑠3𝑖) are the factor 

settings for design, then 𝜑′(𝑠𝑖) = (1,  𝑠1𝑖,  𝑠2𝑖, 𝑠3𝑖, 𝑠1𝑖𝑠2𝑖,  𝑠1𝑖𝑠3𝑖,  𝑠2𝑖𝑠3𝑖,  𝑠1𝑖
2 ,  𝑠2𝑖

2 ,  𝑠3𝑖
2 ). 

According to Goos and Jones (2011), the variance of prediction expectation at the setting 

𝑆 is 

 𝑉𝑎𝑟(�̂�|𝑠) = 𝜎𝑒
2[𝜑′(𝑠𝑖)(𝑆′𝑆)

−1 𝜑(𝑠𝑖)]. (2.18) 

This 𝑉𝑎𝑟(�̂�|𝑠) aid in calculating the expected response variance about the error variance𝜎𝑒
2 

given as 

 
𝜈𝑅𝑉𝑃 =

𝑉𝑎𝑟(�̂�|𝑠)

𝜎𝑒2
, 

(2.19) 

 where 𝜈𝑅𝑉𝑃 is the relative variance of prediction. However, when constructing an FDS plot 

for a given design, a random sample of a large number of points (approximately 10000) 

within the experimental area (Ξ) is normally taken and the 𝜈𝑅𝑉𝑃 value is computed for each 

design point. The FDS plot, on the other hand, is generated by plotting the ordered 

pairs (
𝑖

(𝑁+1)
, 𝜈𝑖), where N is the sample's total number of points and 𝜈𝑖 is the 𝑖th sorted 

scaled expected variances in the sample. 
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The FDS plots are often non decreasing curve in nature and joins N points in 𝛯 when 

constructed. The vertical axis normally represents the scaled predicted variance (SPV) that 

ranges from minimum to maximum at the sampled point in 𝛯 whereas the horizontal axis 

scaled between 0 and 1 and each point on this axis corresponds to FDS or 𝛯.    

2.6.2 Algorithm Used to Generate FDS Plots 

The algorithms for the implementation of FDS plots using a computer program have been 

developed in recent years (Cho, 2010). However, according to several authors, this aid in 

efficient computation of the plots. Goldfarb and Montgomery (2006), suggested the 

following procedure that aid in developing the algorithms. Usually, the FDS criterion is 

first defined as 

 
𝐹𝐷𝑆 =

1

𝜙
∫ ……… . . 𝜒 . ∫ 𝑑𝑥𝑛… . 𝑑𝑥1, 

  (2.20) 

where 𝜒 = {(𝑥1…… . 𝑥𝑛): 𝑉(𝑥) < 𝑣}, and 𝑉 denotes any predetermined scaled predicted 

variance (SPV) value, 𝑛 the number of component variables, and 𝜙 the total value of the 

experimental design region. Furthermore, the integrands of the above integrals are 

determined using the known elements. This enables the computation of FDS volume. 

Furthermore, a fine grid is used to estimate and calculate how many numbers of points, say 

𝑛𝜒 that can satisfy the condition of the set 𝜒. Then, this, 𝑛𝜒 can also be used to 

approximately estimate fraction dispersion space as 

 
𝐹𝐷𝑆 ≅

𝑛𝜒

𝑁
, 

                (2.21) 

where N is the total number of points sampled in the design space using the same grid in 

this case.  However, an exact method for obtaining FDS for coded factors is given as 
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𝐹𝐷𝑆 =

1

𝜙
∫ . . .𝛦 . . . ∫ 𝐼(𝑥)𝑑𝑥𝑛… . 𝑑𝑥1, 

                          (2.22) 

given 

 
𝐼(𝑥) = {

1

2
(|𝜛| − 𝜛)      𝜛 ≠ 00             𝜛 = 0  ∀: 𝜛 = 𝑉(𝑥) − 𝑣, 

 

where 𝛦 represent the total design space (experimental region).  It can be shown that the 

set 𝜒 can be described in terms of 𝜛 as 𝜒 = {(𝑥1…… . 𝑥𝑛):𝜛 < 0}. Thus, the negative 

value of 𝜛 becomes the main concern by the researcher as described by Goldfarb and 

Montgomery (2006).  However, as some scholars have pointed out, 𝐼(𝑥) is simply an 

indicator function with two values: zero or one (Ozol et al., 2005; Vining et al., 1993). 

Disc filtering out all variances greater than the cut-off points allows for convergence across 

the entire spectrum of variables. For all rotatable designs in a spherical area, this criterion 

was further simplified as 

 
𝐹𝐷𝑆 = 𝑛∫ 𝐼(𝑥)𝑟𝑛−1𝑑𝑟

1

0

, 
     (2.23) 

where 𝑟 is the experimental region's radius scaled to the unit sphere. However, Jones and 

Sall (2011) developed and implemented a FORTRAN code related to FDS available from 

the researchers in some statistical methods such as the JMP software division of SAS to 

compute the FDS graphs. 

2.6.3 Variance Dispersion Graphs (VDGs) 

The VDG is a plot that measures or compares various designs based on maximum and 

minimum values over spheres of radius 𝑟 from the design center and the spherical average 

of SPV against the radius in the experimental region of interest. Giovannitti-Jensen and 
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Myers (1989) were the first to present this variance-based graph approach to studying a 

design's prediction capability. They defined the spherical average variance as 

 
𝑉𝑟 = 𝜗∫ 𝑉(𝑥)

𝑈𝑟

𝑑𝑥, 
(2.24) 

where 

 

𝑈𝑟 = {𝜒:∑𝑥𝑖
2

𝑖=1

= 𝑟2} , 𝜗−1 = ∫ 𝑑𝑥
𝑈𝑟

. 

(2.25) 

In the case of cuboidal region they are measured over spheres or parts of spheres on or 

inside the cube. Zahran et al. (2003) defined this typically changes the relative importance 

that can give to the VDGs' interpretation for different numbers of factors 𝑛. The degree of 

rotatability of the SPV at any given radius sphere often demonstrates by comparing the 

maximum and minimum SPV over a range of values. However, the plot also shows the G-

efficiency on a horizontal line at 𝑝 and 2𝑝, which are 100 % and 50 %, respectively, as 

seen in Goldfarb et al. (2004b) and Cho (2010). The FORTRAN program builds the VDG 

for any design. 

Cho (2010) demonstrated in the experiment that VDGs are useful summaries for comparing 

competing designs on fixed design space. Still, they do not include all useful information 

about a design's prediction capability, so they suggested FDS techniques overcome some 

of VDG's shortcomings. This is because FDS method quantifies the FDS where the SPV is 

less than or equal to some pre-specified value, giving the author more precise details. 

Furthermore, based on the ranges and proportions of potential SPV values, the FDS plots 

provide more detail about the SPV distribution in the experimental area. The FDS criteria, 
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on the other hand, complements the use of VDGs by providing the author with additional 

insight into a design's prediction capability. 

2.6.4 Evaluation of FDS plot for MPV designs 

The investigation of experiments using mixture process variable designs (MPVD) are well-

known in various fields, including agriculture, food, consumer goods, industries, and 

chemical and pharmaceutical research (Anderson Cook et al., 2004). Cho (2010) points out 

that the number of blends and constraints always determines the experimental region's 

form. As a result, the researcher for MPVD is also interested in other variables that can 

modify one another independently and the mixture blends. Thus, the number of variables 

as well as the number of mixture ingredients subject to the restrictions determines the form 

of the experimental regions in these combined designs (Cornell, 2011).  

Cornell (2011), Czitrom (1988, 1992), and Kowalski et al. (2000) all give an alternative 

method for MPV experiments. However, Liang et al. (2006) proposed techniques for 

assessing various designs using SPV in MPV. They argued that analyzing scaled prediction 

variance over single number summaries, as used by many alphabetic optimality criteria, 

has advantages. 

 Cornell (1988) was the first to use this technique to map the entire distribution of the SPV 

for a given shrinkage degree. VDG was introduced by Vining et al. (1993) for mixture 

designs to plot SPV and the Cox directions. They define Cox directions as a ray moving 

through the unconstrained simplex vertices and the restricted experimental region's 

centroid. 
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 Goldfarb et al. (2003) and Hassan et al. (2020) established three-dimensional VDGs for 

MPV experiments. They plot the shrinkage in the mixture space, process variable spaces, 

and averages or maximum SPV along the 𝑋-axis, 𝑌-axis, and 𝑍-axis, respectively. Shapes 

of the prediction variance surface defined by Liang et al. (2006) display the prediction 

variance's behavior in the MPV shrinkage plane. These VDGs normally provide an 

experimenter with a visual representation of a design's prediction variance properties 

across the combined MPV space. Zahran et al. (2003) introduced FDS plots to counter 

VDG's drawbacks since SPV computes over the entire design space.  Regardless of the 

proportion of the design space depicted, the VDG usually gives each radius or shrinkage 

value equal weight on the plot. Furthermore, the FDS plot makes it simple to compare 

different designs with a single plot. As a result, the distinction between VDG and FDS is 

obvious. Cho et al. (2009) developed and demonstrated these two techniques for spherical 

and cuboidal designs, but they did not discuss non-regular area designs as defined by 

Goldfarb et al. (2004b). The FDS and VDG plots demonstrate that these two methods 

reveal the strengths and limitations of competing designs when used together. Mclean and 

Anderson (1966), Piepel et al. (1993) and Kowalski et al. (2000) introduced new 

techniques to compute VDGs. 

2.6.5 The Average Relative Variance 

The Averaging relative variances (𝝂𝑹𝑽𝑷) obtained during the construction of an FDS plots 

normally leads to the average 𝝂𝑹𝑽𝑷for a given design. The average 𝝂𝑹𝑽𝑷 can also be 

obtained through integrating relative variance prediction over Ξ and diving the volume of 

the region as shown 
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average𝜈𝑅𝑉𝑃 = {∫ 𝑑𝑠

Ξ

}

−1

{∫[𝜑′(𝑠𝑖)(𝑆
′𝑆)−1𝜑(𝑠𝑖)]𝑑𝑠

Ξ

}. 

         

(2.26) 

The volume of the experimental region ∫ 𝑑𝒔
𝚵

= 𝟐𝒌if Ξ 𝜖 [−1,   1]𝑘 where 𝑘 denotes the 

number quantitative experimental factors. Since  

 𝜑′(𝒔𝑖)(𝑆
′𝑆)−1𝜑(𝒔𝑖) = 𝑡𝑟𝑎𝑐𝑒 [𝜑′(𝒔𝑖)(𝑆

′𝑆)−1𝜑(𝒔𝑖)],  

                                      = 𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝜗(𝒔𝑖)𝜑
′(𝒔𝑖)],  

This implies that 

 

∫[𝜑′(𝒔𝑖)(𝑆
′𝑆)−1𝜑(𝒔𝑖)]𝑑𝒔

𝚵

= ∫ 𝑡𝑟𝑎𝑐𝑒 [𝜑′(𝒔𝑖)(𝑆
′𝑆)−1𝜑(𝒔𝑖)]𝑑𝒔

𝚵

, 

 

 

                                                   = ∫ 𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝜑(𝒔𝑖)𝜑
′(𝒔𝑖)]𝑑𝒔,

𝚵

 

 

                                                      

= 𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1∫ 𝜑(𝒔𝑖)𝜑
′(𝒔𝑖)𝑑𝒔

𝚵

], 

 

where (𝑆′𝑆)−1 is treated as constant for this integration. This is because the factor level 

settings of a design experiment are fixed. Therefore,  

 

average𝝂𝑹𝑽𝑷 = {𝟐
𝒌}
−𝟏
𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1∫ 𝜑(𝒔𝑖)𝜑

′(𝒔𝑖)𝑑𝒔

𝚵

], 

       

(2.27) 
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According to Goos and Jones (2011), this expression ∫ 𝜑(𝒔𝑖)𝜑
′(𝒔𝑖)𝑑𝒔𝚵

 easily computed 

for all continuous designs when Ξ 𝜖 [−1,   1]𝑘. The result generated 

from∫ 𝜑(𝒔𝑖)𝜑
′(𝒔𝑖)𝑑𝒔𝚵

 is equivalent to moment matrix (information matrix) denoted with 

Letter 𝑴. Since ∫ 𝜑(𝒔𝑖)𝜑
′(𝒔𝑖)𝑑𝒔𝚵

= 𝑴and ∫ 𝑑𝒔
𝚵

= 𝟐𝒌, this implies that  

Here we consider a full quadratic model with two continuous factors 𝑠1 and 𝑠2 such that 

𝑠1, 𝑠2𝜖 [−1,   1] and 𝜑′(𝑠1, 𝑠2) = (1,  𝑠1,  𝑠2,   𝑠1𝑠2,  𝑠1
2,  𝑠2

2). Therefore, the information 

matrix can be obtained as 

 

𝑴 = ∫ 𝜑(𝒔𝑖)𝜑
′(𝒔𝑖)𝑑𝒔

𝚵𝜖 [−1,   1]2

 

   

(2.29) 

 

= ∫ 𝜑(𝑠1, 𝑠2)𝜑
′(𝑠1, 𝑠2)𝑑𝒔𝟏

𝚵𝜖 [−1,   1]2

𝑑𝒔𝟐, 

 

 

= ∫ ∫𝜑(𝑠1, 𝑠2)𝜑
′(𝑠1, 𝑠2)𝑑𝒔𝟏𝑑𝒔𝟐

𝟏

−𝟏

𝟏

−𝟏

, 

 

 

 

 

 

 

 

= ∫ ∫

(

 
 
 
 

1  𝑠1  𝑠2 𝑠1𝑠2  𝑠1
2  𝑠2

2

 𝑠1  𝑠1
2 𝑠1𝑠2 𝑠𝟏

𝟐𝑠2  𝑠1
3 𝑠𝟏𝑠2

2

 𝑠2 𝑠1𝑠2  𝑠2
2 𝑠𝟏𝑠2

2 𝑠1
𝟐𝑠2  𝑠2

3

𝑠1𝑠2 𝑠𝟏
𝟐𝑠2 𝑠𝟏𝑠2

2 s1
2𝑠2
𝟐 𝑠1

𝟑𝑠2 𝑠1𝑠2
3

 𝑠1
2  𝑠1

3 𝑠1
𝟐𝑠2 𝑠1

𝟑𝑠2  𝑠1
4 s1

2𝑠2
𝟐

 𝑠2
2 𝑠1𝑠2

2  𝑠2
3 𝑠1𝑠2

3 s1
2𝑠2
𝟐  𝑠2

4 )

 
 
 
 

𝑑𝒔𝟏𝑑𝒔𝟐

𝟏

−𝟏

𝟏

−𝟏

 

 

 average𝝂𝑹𝑽𝑷 = {𝟐
𝒌}
−𝟏
𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀]. (2.28) 
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= 2𝟐

(

 
 
 
 
 
 
 
 
 
 
1 0 0 0

1

3

1

3

0
1

3
0 0 0 0

0 0
1

3
0 0 0

0 0 0
1

9
0 0

1

3
0 0 0

1

5

1

9
1

3
0 0 0

1

9

1

5)

 
 
 
 
 
 
 
 
 
 

 

In general, the information matrix for a second order model can be obtained as 

 

𝑴 = 2𝒌

(

 
 
 
 
 
 

1 0𝑘
′ 0𝑘(𝑘−1)

2⁄

′ 1

3
𝟏𝒌
′

0𝑘
1

3
𝑰𝒌 0𝑘×𝑘(𝑘−1)

2⁄
0𝑘×𝑘

0𝑘(𝑘−1)
2⁄

0𝑘(𝑘−1)
2×𝑘⁄

1

9

𝑰𝒌(𝒌−𝟏)
2
⁄ 0𝑘(𝑘−1)

2×𝑘⁄

1

3
𝟏𝒌 0𝑘×𝑘 0𝑘×𝑘(𝑘−1)

2⁄

1

3
𝑰𝒌 +

1

9
(𝑱𝒌 − 𝑰𝒌))

 
 
 
 
 
 

, 

 

 

    

(2.30) 

 and where 𝑰𝒌and 𝑰𝟐−𝟏𝒌(𝒌−𝟏)denote identity matrices of dimension 𝑘 and 2−1𝑘(𝑘 − 1) 

respectively. 0𝑘×𝑘 and 0𝑘(𝑘−1)
2×𝑘⁄

denote matrices of zero with 𝑘 × 𝑘 and 
𝑘(𝑘 − 1)

2 × 𝑘
⁄  

respectively while 0𝑘 and 0𝑘(𝑘−1)
2⁄
represent a column vector containing zeros of 𝑘 and 

𝑘(𝑘 − 1)
2⁄  respectively. 𝑱𝒌and 𝟏𝒌denotes 𝑘 × 𝑘 matrix of ones and a column vector 

containing 𝑘 ones respectively. 

2.7 General Optimal Design Criteria for Comparing and Examining Designs 

The design optimality criterion, such as A-optimality, I-optimality, E-optimality, V-

optimality, G-optimality, Q-optimality, and D-optimality, are typically used to evaluate, 

and compare performance of the selected designs. When the hypothesized model is of 
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degree j and 1 ≤ 𝑗 ≤ 𝑘 ≤ 8, Wong (1994) investigated the optimal criterion A, D, E, and 

G efficiencies for polynomial regression models of degree 𝑘. Most optimal designs are 

model-based and consider different model assumptions since, in practice, a true model is 

always uncertain (Iwundu, 2017). The robustness of properties of the optimal designs are 

normally evaluated under different optimality criteria. Wangui (2019) posited that the 

optimality with respect to any one criterion usually represents an estimate to some vague 

notion of ‘goodness’ of the model.  This sometimes results in a design that meets many 

optimality requirements without being overly emphasized. Therefore, it is always vital to 

examine different optimality criteria based on their model assumptions. The efficiencies of 

various types of optimal designs are typically compared numerically under the assumption 

that the true model 𝜑𝑗(𝑥) is 𝑗𝑡ℎ degree polynomial model given 1 ≤ 𝑗 ≤ 8. In the absence 

of loss in generality, the symbol 𝛺 is used in this paper to denote the design space that lies 

between -1 and 1. The use of optimal design for 𝜑𝑘(𝑥) is a good idea for the assumed 

model 𝜑𝑗(𝑥),  𝑘 > 𝑖 as described by Kussmaul (1969), Kendall and Stuart (1968), Iwundu 

(2017), among others. This is because it always enables the researchers at least to perform 

a lack of fit test to various models being applied in order to determine the best model.  

According to the standard optimal design theory by Fedorver, (1972)  𝑀(𝜉) is also known 

as information matrix and is defined as 

 
𝑀𝑗(𝜉) = ∫ 𝜑𝑗(𝑥)𝜑𝑗

′(𝑥)𝜉𝑑𝑥
𝛺

, 
(2.31) 

In addition, this information matrix also contains the main practical objective of an 

experiment.  Most optimality criteria for various designs have been discussed by various 
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researchers. Here we look at a few of them on how they contribute in selecting the best 

design and for instance we start with D- optimal criterion. 

2.7.1 D-optimality Criterion 

The D-optimality criterion is the determinant of the matrix 𝑀𝑗(𝜉𝑗)for all the set (≡)for all 

continuous designs on 𝛺. 

 𝑀𝑗(𝜉) = 𝑀𝑎𝑥𝜉𝜖 ≡ |𝑀𝑗(𝜉)| (2.32) 

Where |𝑀𝑗(𝜉)| = 𝑑𝑒𝑡 (𝑀𝑗(𝜉)) denotes the informational matrix determinant (Wong, 

1994). The moment matrix is another name for the information matrix denoted as 𝑀 =
𝑋′𝑋

𝑁
 

where the design matrix is represented by X, and its transpose is represented by 𝑋’. This 

optimality criterion normally focuses on good model parameter estimation. Furthermore, a 

design is D-optimal if it reduces the overall variance of the model parameter estimates. The 

criterion function, on the other hand, is defined as: 

 𝜙 (𝑀𝑗(𝜉)) = 𝑀𝑎𝑥𝜉{𝑀𝑗(𝜉)} = 𝑀𝑖𝑛𝜉 {𝑑𝑒𝑡 𝑑𝑒𝑡 (𝑀
−1(𝜉))} (2.33) 

 The D- efficiency of any design can also be obtained for the purpose of numerical 

comparison of various designs. This D- efficiency is given as  

 
𝐷 (𝑀𝑗(𝜉)) = [𝑀𝑖𝑛𝜉{𝑑𝑒𝑡 𝑑𝑒𝑡(𝑀

−1(𝜉))}]
𝑃−1

 
(2.34) 

The computation of relative D-efficiency is quite useful when it comes to comparing more 

than two designs at any given time and only one design needs to be selected (Iwundu, 

2017). In addition, the relative D-efficiency (RD) plays a big role in determining best 

design among other designs with missing observation. Therefore, this leads to computation 
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of loss in relative D-efficiency due to incomplete observation in any given design. The 

missing observation in a design experiment often drastically results in relative of D-

efficiency as described by Rady et al (2009). For the purpose of computing RD, we first 

start by letting a design with complete observation as 𝑀(𝜉𝑁)  and the one with missing 

observations as 𝑀(𝜉𝑁−𝑚)   where 𝜉𝑁 indicates information matrix with full observation 

while 𝜉𝑁−𝑚 with partial information. The D-efficiency is computed in both cases as 

 
𝐷(𝑀(𝜉𝑁)) = [𝑀𝑖𝑛𝜉{𝑑𝑒𝑡 𝑑𝑒𝑡(𝑀

−1(𝜉𝑁))}]
𝑃−1

 
(2.35) 

 

 
𝐷(𝑀(𝜉𝑁−𝑚)) = [𝑀𝑖𝑛𝜉{𝑑𝑒𝑡 𝑑𝑒𝑡(𝑀

−1(𝜉𝑁−𝑚))}]
𝑃−1

 
(2.36) 

 

In (2.35) and (2.36) represent D-efficiency with complete and incomplete observation 

respectively. The RD is obtained by using (2.35) and (2.36) as follows 

 

𝑅𝐷 =  {
[𝑀𝑖𝑛𝜉{𝑑𝑒𝑡 𝑑𝑒𝑡(𝑀

−1(𝜉𝑁−𝑚))}]
𝑃−1

[𝑀𝑖𝑛𝜉{𝑑𝑒𝑡 𝑑𝑒𝑡(𝑀−1(𝜉𝑁))}]
𝑃−1

} =
𝐷(𝑀(𝜉𝑁−𝑚))

𝐷(𝑀(𝜉𝑁))
   

(2.37) 

 

The RD in (2.37) is used to compare designs, and the better design has the highest D-

efficiency value. The RD of a designs lies between 0 and 1 such that 0 ≤ 𝑅𝐷 ≤ 1. 

Therefore, the relative loss in D-efficiency in the case of missing observation is given as  

 
 𝑅𝐷𝐿𝑜𝑠𝑠 = 1 −

𝐷(𝑀(𝜉𝑁−𝑚))

𝐷(𝑀(𝜉𝑁))
 . 

    

(2.38) 
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2.7.2 G-optimality Criterion 

The G-optimality criterion is a criterion that researchers used to reduce the overall variance 

of the approximated response surface across all variables. The quantity of information 

matrix becomes G-optimal design when 𝑀𝑎𝑥 (𝑑𝑗(𝑋, 𝜉)𝑋𝜖 𝛺) = ℎ𝑗
′(𝑥)𝑀𝑗

−1(𝜉)ℎ𝑗 over ≡ is 

minimized. Wong (1994) and Goos et al. (2016) argued that this design is more useful and 

important when the main goal is to estimate the entire response using the homoscedasticity 

assumption. As defined by the criterion function, the G-optimal design is 

 𝜙(𝑀(𝜉)) = 𝑀𝑖𝑛{𝑀𝑎𝑥 𝑉(𝑥)𝑥𝜖𝑅}, (2.39) 

where the scaled prediction variance is denoted by V(x) in this case. Prior to running the 

test and taking measurements, the Scaled Prediction Variance (SPV) is used to analyze a 

planned experiment. This is because it describes and elucidates the error involved with 

making a prediction using a regression model. Moreover, this optimality criterion considers 

a design where maximum SPV in the region (𝛯) of interest is not too large and hence it 

maximizes the maximum SPV.  When there are 𝑃 parameters in the model and maximum 

SPV (𝑉(𝑥)), the G-efficiency can be calculated as:-  

 𝐺𝑒𝑓𝑓 = 𝑃[𝑉(𝑥)𝑀𝑎𝑥(𝜉)]
−1
, (2.40) 

Furthermore, the G-efficiency can also be computed in the case of missing observation. If 

we let the expected design be𝜉𝑁 and observed design be 𝜉𝑁−𝑚, then relative G-efficiency 

(𝑅𝐺) can be obtained for 𝑃 parameter model.  This is done by first determining G-

efficiency for a design with partial observation as:- 
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 𝐺𝑒𝑓𝑓(𝜉𝑁−𝑚) = 𝑃[𝑉(𝑥)𝑀𝑎𝑥(𝜉𝑁−𝑚)]
−1
.    (2.41) 

This 𝐺𝑒𝑓𝑓(𝜉𝑁−𝑚) enables to compute the 𝑅𝐺 which is defined as:-  

 
𝑅𝐺 =

𝐺𝑒𝑓𝑓(𝜉𝑁−𝑚)

𝐺𝑒𝑓𝑓(𝜉𝑁)
=

𝑉(𝑥)𝑀𝑎𝑥(𝜉𝑁)

𝑉(𝑥)𝑀𝑎𝑥(𝜉𝑁−𝑚)
. 

(2.42) 

Moreover, this 𝑅𝐺 aid in comparing design and the best design is known with the largest 

G-efficiency such that  0 ≤ 𝑅𝐺 ≤ 1 but when 𝑅𝐺 ≤ 0 the design 𝜉𝑁−𝑚 with missing 

observation is better than the design 𝜉𝑁 with complete observation. Besides calculating 

RG, the relative loss in 𝐺𝑒𝑓𝑓 due to missing observation is obtained as:-  

 
𝑅𝐺𝑙𝑜𝑠𝑠 = 1 −

𝑉(𝑥)𝑀𝑎𝑥(𝜉𝑁)

𝑉(𝑥)𝑀𝑎𝑥(𝜉𝑁−𝑚)
 

(2.43) 

2.7.3 A-optimality Design Criterion 

Researchers use the A-optimality criterion in planned experiments to reduce the variance 

of parameter estimates while ignoring model parameter covariance (Cornell, 2011; 

Iwundu, 2017; Wangui, 2019). Furthermore, the number of the variances of the model co-

efficient is minimized in this optimality criterion. This criterion for optimality is as follows:  

 𝜙(𝑀(𝜉)) = 𝑀𝑖𝑛 {𝑡𝑟[𝑀−1(𝜉)]𝑂𝑣𝑒𝑟 ≡}, (2.44) 

where 𝑡𝑟 represent the trace and ≡ indicates all the set for all continuous designs on 𝛺. The 

A-efficiency in general is defined as 

 
 𝐴𝑒𝑓𝑓(𝜉) =

𝑡𝑟[𝑀−1(𝜉∗)]

𝑡𝑟[𝑀−1(𝜉)]
,  (2.45) 
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where 𝜉∗ in this case indicates A-optimal. However, the A-efficiency for a design with 

incomplete and complete observation is computed respectively as 

   

𝐴𝑒𝑓𝑓(𝜉𝑁−𝑚) =
𝑡𝑟[𝑀−1(𝜉∗)]

𝑡𝑟[𝑀−1(𝜉𝑁−𝑚)]
, 

        

(2.46) 

and    

𝐴𝑒𝑓𝑓(𝜉𝑁) =
𝑡𝑟[𝑀−1(𝜉∗)]

𝑡𝑟[𝑀−1(𝜉𝑁)]
. 

  

(2.47) 

Therefore, the relative A-efficiency is given as  

 

𝑅𝐴𝑒𝑓𝑓(𝜉) = (
{

𝑡𝑟𝑎𝑐𝑒[𝑀−1(𝜉∗)]

𝑡𝑟𝑎𝑐𝑒[𝑀−1(𝜉𝑁−𝑚)]
}

{
𝑡𝑟𝑎𝑐𝑒[𝑀−1(𝜉∗)]

𝑡𝑟𝑎𝑐𝑒[𝑀−1(𝜉𝑁)]
}
) =

𝑡𝑟[𝑀−1(𝜉𝑁)]

𝑡𝑟[𝑀−1(𝜉𝑁−𝑚)]
. 

   

(2.48) 

This 𝑅𝐴𝑒𝑓𝑓(𝜉) aid in comparing the design. The best design is known with the largest 

𝐴𝑒𝑓𝑓(𝜉) value where 𝑅𝐴𝑒𝑓𝑓(𝜉) 𝜖 [0, 1]. If 𝑅𝐴𝑒𝑓𝑓(𝜉) < 0 shows that the design 𝜉𝑁−𝑚 is 

better than 𝜉𝑁. 

2.7.4 I -optimal Criterion 

I -optimal is an optimality criterion that minimizes the average 𝜈𝑅𝑉𝑃. Some authors 

capitalize the I in I -optimal to emphasize that the goal of an I -optimal design is to reduce 

integrated variance (Goos et al., 2016; Rady et al., 2009; Njoroge et al., 2017). Over 

centuries ago, G- optimality criterion has often been used since it minimizes the overall 

prediction variance over the experimental area as a prediction-based criterion for selecting 

experimental design. Recent research has shown that in more than 90% of experimental 

areas, reducing the overall prediction variance occurs as a result of increasing the 
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prediction variance as described by Iwundu. (2017), and Sitinjak and Syafitri (2019). As a 

result, as Goos and Bradley (2011) point out, most writers prefer I-optimal designs to G-

optimal designs. This is evident from the contour plots of the objective function for three 

criteria (D, I, G) using a very simple model function that was done by Crary et al. (1992) 

shown in Figure 2.12. This simple model function was 𝑌 = 𝛽0 + 𝛽1𝑋 and 𝑛 =

2 experiments where the optimal design for three criteria placed one experiment at -1 and 

the other at +1 as it is supposed to be. Their findings indicate that the contours for G -

optimality have discontinuous slope because of the minimax nature of the criterion. 

 

Figure 2.12: The contours plots presented for objective function space for D-, G- and I-

optimality for a straight- line regression with 𝒏 = 𝟐 (Crary et al., 1992). 

 

The appropriate objective function for the I-optimality criteria is defined as, 

 
𝑀𝑖𝑛𝑄∫ 𝐸 {[�̂�(𝑥) − 𝑌(𝑥)]

2
} 𝑑𝜇(𝑥)

𝑥∈𝛯

= 𝑀𝑖𝑛∫ [𝜑′(𝑥)(𝑥′𝑥)−1𝜑(𝑥)]𝑑𝜇(𝑥)
𝑥∈𝛯

, 

            

 

(2.49) 

 𝑀𝑖𝑛 𝑡𝑟𝑎𝑐𝑒 𝐴(𝑥′𝑥)−1 and       𝐴 = ∫ 𝜑(𝑥)𝜑′(𝑥)𝑑𝜇(𝑥)
𝑥∈𝛯

. (2.50) 



59 
 

 
 

where 𝐴 is the matrix that contains all of the model's dependencies. The minimization case 

of the integral over the set of points 𝑠 ∈ 𝛯 for the experimental design Q is denoted by Min 

Q. However, the estimated response within different experiment regions can be weighted 

through the differential Equation 𝑑𝜇(𝑥) as shown above. 

The process for computing I -efficiency for designs is always important since it aids in 

selecting the appropriate design. The I -efficiency for a design is obtained by the average 

𝜈𝑅𝑉𝑃. Therefore, a design with complete observation (𝜉𝑁 ), then the I-efficiency is 

computed as 

 𝐼𝑒𝑓𝑓 (𝜉𝑁 ) = {2𝑘}−1𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁 )]. (2.51) 

However, for the case of a design with missing observation, the I-efficiency can be 

obtained as 

 𝐼𝑒𝑓𝑓 (𝜉𝑁−𝑚 ) = {2
𝑘}−1𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁−𝑚 )]. (2.52) 

Furthermore, the relative I-efficiency and relative of I-efficiency loss after missing 

observation is obtained as follows 

 
𝑅𝐼𝑒𝑓𝑓 (𝜉𝑁−𝑚 |𝜉𝑁 )

=
{2𝑘}−1𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁−𝑚 )]

{2𝑘}−1𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁 )]
, 

 

 
                            =

𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁−𝑚 )]

𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁 )]
, 

 

 
=
𝐼𝑒𝑓𝑓 (𝜉𝑁−𝑚 )

𝐼𝑒𝑓𝑓 (𝜉𝑁 )
. 

(2.53) 

 

Thus, the relative of I -efficiency loss is given as 
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𝑅𝐼𝑙𝑜𝑠𝑠 (𝜉𝑁−𝑚 |𝜉𝑁 )

= 1 −
𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁−𝑚 )]

𝑡𝑟𝑎𝑐𝑒 [(𝑆′𝑆)−1𝑀 (𝜉𝑁 )]
, 

(2.54) 

and where 0 ≤ 𝑅𝐼𝑒𝑓𝑓 (𝜉𝑁−𝑚 |𝜉𝑁 )
≤ 1.If 𝑅𝐼𝑒𝑓𝑓 (𝜉𝑁−𝑚 |𝜉𝑁 )

< 0. This implies that design 

𝜉𝑁−𝑚 is better than this design 𝜉𝑁 . we also note that if they are two different designs for 

instance say 𝑄1 and 𝑄2 with each having relative I -efficiency 𝑅𝐼𝑄1 and 𝑅𝐼𝑄2 respectively, 

then relative I -efficiency of 𝑄1 versus 𝑄2 is given as 
𝑅𝐼𝑄2
𝑅𝐼𝑄1

. Hence, if 
𝑅𝐼𝑄2
𝑅𝐼𝑄1

> 1 implies that 

design 𝑄1is better than design 𝑄2. 

2.8 D-Optimal Designs for Construction of Mixture Designs 

In this section, we looked at the involvement of exact D- optimal criteria in construction 

of mixture designs based on pre-existing results on D- optimality. When the design space 

is the 𝑞 − 1 dimensional simplex, Goos et al. (2016) points out that continuous D- optimal 

parameters for the models (2.3) to (2.4) are known. This criterion generally has two main 

characteristics. First, in D-optimal designs, the weight of each candidate point is equal to 

the inverse of the model parameters(
1

𝑃
). Secondly, they have minimum support designs, 

where 𝑑 the number of distinct candidate is points and 𝑃 is the number of model 

parameters. The same 𝑑 = 𝑃 design points are used in both continuous and exact D-optimal 

design. When the budgeted number of runs in a mixture blend experiment, 𝑛, is an integer 

multiple of the D-optimal continuous configuration, then 𝑛/𝑑 = 𝑛/𝑃 where the runs are 

performed at each of the candidate points.  

However, if n is not an integer multiple of 𝑑 = 𝑃, the situation can be addressed by having 

as many equireplicated constant 𝑑 = 𝑃 design points as possible, as Cornell (2011) 

advocate. Some authors say that it doesn't matter the design points are repeated the most 
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since the D-optimality criterion is their only concern (Goos et al., 2016). The D- optimality 

of the (𝑞, 1) and (𝑞, 2)SLDs for model (1) and (2), respectively, was defined by Kiefer 

(1961). D-optimal designs, according to Goos et al. (2016), include q pure blends, (𝑞, 2 ) 

mixtures involving 0.2764 percent of one mixture blend and 0.7236 percent of another 

mixture blend, with exact proportions given by 
(1±

1

√5
)

2
, and (𝑞, 3 ) ternary mixtures. When 

it comes to constructing D- optimal designs for complete cubic models, the {𝑞, 3} SLDs by 

0.2764 and 0.7236 can be replaced by the proportions 
1

3
 and

2

3
, respectively, based on 

Mikaeilli (1993) and Cornell (2011). Mikaeili (1993) proved the complete cubic models 

with all derivations in a general way. In contrast to other optimality designs, Goos et al. 

(2016) found that D- optimal designs perform remarkably well in terms of the I-optimality 

criterion. 

2.9 I-Optimal Criteria for Construction of Mixture Designs 

Research shows that only a small number of theoretical findings on the I-optimal design of 

mixture experiments have been reported. As Goos et al. (2016) point out, all of the 

outcomes require continuous designs. Some researchers used the terms V- optimal, I- 

optimal, and all variance design interchangeably to refer to I- optimal designs, citing Sinha 

et al. (2014)'s Theorem 12.1.1, which states that the continuous I- optimal design for a first 

order model in q mixture blends has a weight of 1/𝑞 at each stage of the (𝑞, 1) SLD. 

Furthermore, the q pure Mixture blends are the best candidate points, and each of them 

should be used equally.  

However, candidate points in case 𝑞 ≥ 3 a second order model are analytically estimated 

by Kowalski et al, (2000) based on the assumption that the candidate points are those of 
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the (𝑞, 2) SLD. As a result, as many authors have argued, Laake's weights are I-optimal if 

the (𝑞, 2) SLD is used. More specifically, Goos et al. (2016) published the analytical 

expression Goos and Safifri (2014) obtained for the I– optimal weights. The overview of 

numerical values as obtained for a second order degree model employing SLD techniques 

by Goos et al. (2016) for I _optimal weights for values q that ranges from three to six are 

given in Table 2.2. This value aids in constructing an Ideal mixture design. 

Table 2.2:  I-optimal weights for second order mixture model (Goose et al., 2016) 

 

𝒊 

𝒒 = 𝟑 𝒒 = 𝟒 𝒒 = 𝟓 𝒒 = 𝟔 

𝑘𝑖 𝛷𝑖 𝑘𝑖𝛷𝑖 𝑘𝑖 𝛷𝑖 𝑘𝑖𝛷𝑖 𝑘𝑖 𝛷𝑖 𝑘𝑖𝛷𝑖 𝑘𝑖 𝛷𝑖 𝑘𝑖𝛷𝑖 

𝟏 3 0.1007 0.3022 4 0.0560 0.2240 5 0.0400 0.2000 6 0.0328 0.1968 

𝟐 3 0.2326 0.6978 6 0.1293 0.7760 10 0.0800 0.8000 15 0.0536 0.8032 

𝒅 6   10   15   21   

 

The weight 𝛷1 denotes the number of runs that must be completed with each other pure 

mixture blend, while the weight 𝛷2 denotes the number of runs that must be completed 

with each binary mixture. The number of pure blends (𝑘1) and (𝑘2)for binary mixture 

blends are also mentioned in Table 2.2, as well as the concinnity of experimental runs 

involving pure mixture blends (𝑘1𝛷1) and (𝑘2𝛷2)for binary mixture blends. The number 

of distinct candidate points is given by 𝑑 = (𝑘1 + 𝑘2 + 𝑘3)on the last line of Table 2.2. 

Furthermore, as Goos et al. (2016) points out, each pure blend in Laake's design has a 

weight of less than 1/𝑑, while each binary mixture has a weight of more than 1/𝑑, in 

comparison to the continuous D- optimal designs for the second order model. 
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As Goos et al. (2016) points out, Laake's proposal for a second order model never 

considered the case of two ingredients (𝑞 = 2). Liu and Neudecker (1995) analytically 

derived continuous I -optimal designs by considering the case of two ingredients (𝑞 = 2). 

The I- optimal weights for two pure mixture blends and a binary mixture were 𝛷2 =

0.3 and𝛷2 = 0.4, respectively, as a result of their analytical expression. 

Many scholars, however, believe that the designs advocated by Cho (2010) and Goos et al. 

(2016) are much superior to Lambrakis' (1968a). 

2.10 Comparison of D- And I-optimal Designs 

Figure 2.13 shows that I optimal criteria outperforms D- optimal design, based on findings 

from Laake (1975) and Goos et al. (2016) after the two optimality designs are contrasted 

respectively. 

 

Figure 2.13: Comparison of the SPV created by the two optimal designs (Goos et al., 2016) 

The prediction variances provided by the two designs are compared in this Figure 2.13 over 

the entire experimental area (design space). Figure 2.13's white, dark gray, and black areas 
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correspond to an SPV of less than 2.5 to 4.5 to 5.5, and above 5.5, respectively. However, 

as demonstrated by Goos et al. (2016), I-optimal designs result in lower prediction variance 

over the majority of the design space as compared to D-optimal designs. 

Furthermore, as shown in Figure 2.13, D- optimal designs collect information in the center 

of the experimental design, while I-optimal designs do not. However, according to the 

findings of Iwundu (2017), D- efficiency of I- optimal designs relative to D- optimal 

designs is approximately 89.02 percent, while I- efficiency of optimal designs criteria 

relative to I- optimal designs is symmetric and unique. In addition, Njoroge et al. (2017) 

applied these two optimal criteria to construct two mixture process variable designs within 

a split plot design in which they found out that the initial model constructed using D-

optimal design outperforms I-optimal designs. Therefore in study we employed D-optimal 

to create mixture dataset in the presences of process variable. 

2.11 Central Composite Design 

To determine the optimum conditions for the critical factors, the central composite design 

(CCD) is used. This is because, as many authors have pointed out, CCD includes an 

embedded factorial or fractional factorial architecture with center points that is 

supplemented with a group of star points that allows estimation of curvature (Cho et al., 

2009; Goos and Donev, 2007; Njoroge et al., 2017). Cornell (1988) points out that if the 

distance from the experimental region's (design space) center to a factorial point is one unit 

for each factor, then the distance from the experimental region's center to the factorial point 

is |𝛼| > 1. However, certain properties desired for the design, as well as factors involved 

in the experiment, decide the precise value 𝑎. 
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Salehi et al. (2012) found that a CCD includes twice as many star points as there are 

component factors in the design. As shown in Figure 2.14, the new extreme values (low 

and high) for each factor in the design are frequently represented by star points. 

 

 

Figure 2.14: Diagram of CCD generation for two factor components (Salehi et al., 2012). 

This value of 𝛼 is obtained as  

 
𝛼 = (2𝑘)

1
4 

(2.55) 

where 2𝑘 is the number of factorials runs and 𝑘 represent the number of factors. The total 

of experimental in CCD is given as 

 𝑁 = 2𝑘 + 2𝑘 + 𝑛𝑐, (2.56) 

 where 𝑛𝑐 is the number of central points as shown in Figure 18. CCD is commonly used 

to fit the general second-order model in the form   
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𝑦 = 𝛽0 +∑𝛽𝑖𝑋𝑖

𝑘

𝑖=1

+∑∑𝛽𝑖𝑗𝑋𝑖𝑋𝑗

𝑘

𝑗=1

𝑘

𝑖=1

+∑𝛽𝑖𝑖𝑋𝑖
2

𝑘

𝑖=1

+ 휀, 
(2.57) 

 

Where 𝑦 represent the response variable,𝛽0,𝛽𝑖,𝛽𝑖𝑖, and 𝛽𝑖𝑗 indicates the regression 

coefficient of variable intercept, linear, quadratic and interaction terms, respectively. 

Exploration of CCD within SPD 

Assume that the model used to suit the SPD is a second order model. As a result, the model 

for the n whole plot factor is as follows: 

 
𝑔𝑤(𝑍𝑖)′𝛽𝑤𝑝 = 𝛽0 +∑𝛽𝑖𝑍𝑖

𝑛

𝑖=1

+∑∑𝛽𝑖𝑗𝑍𝑖𝑍𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+∑𝛽𝑖𝑖𝑍𝑖
2

𝑛

𝑖=1

 
(2.58) 

and the model for the 𝑘 split-plot treatments is 

 

𝑔𝑠(𝑍𝑖, 𝑋𝑗)
′
휃𝑠𝑝 = 휃0 +∑휃𝑖𝑋𝑖

𝑘

𝑖=1

+∑∑휃𝑖𝑗𝑋𝑖𝑋𝑗

𝑘

𝑗=1

𝑘

𝑖=1

+∑휃𝑖𝑖𝑋𝑖
2

𝑘

𝑖=1

+∑∑𝛾𝑖𝑗𝑋𝑖𝑍𝑗

𝑛

𝑗=1

𝑘

𝑖=1

 

       

(2.59) 

 

where 𝑔𝑤(𝑍𝑖)′𝛽𝑤𝑝 and 𝑔𝑠(𝑍𝑖 , 𝑋𝑗)
′
휃𝑠𝑝 represents the expected response for the main 

treatment and sub plot treament, respectively. 휃0 and 𝛽0, 휃𝑖 and 𝛽𝑖, 휃𝑖𝑖 and 𝛽𝑖𝑖, 휃𝑖𝑗, 𝛽𝑖𝑗, and 

𝛾𝑖𝑗are variables that represent the regression coefficients for the intercept, linear, quadratic, 

and interaction terms, respectively. When the model inside an SPD is presumed to be a 

second order model, the CCD, as defined by Goldfarb et al. (2003) is a design that will 

help in the model fit and estimation of the mean response along the curvature. 
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The normal coding in a CCD is ±1 for factorial portion. In addition, permutation of 

(±𝛼, 0, 0, …… . , 0) for the axial points and (0, 0, 0, …… . , 0) for the center points 

respectively. However, if the real values of the independent variable (whole plot factors, 

𝑤𝑖) for instance the PH of Soil can be coded to 𝑍𝑖 according to Equation (2.60) by setting 

the lowest values as −1 and highest values as +1. 

 𝑍𝑖 =
𝑤𝑖 − 𝑤0
∆𝑤𝑖

 (2.60) 

Where 𝑤𝑖 𝑎𝑛𝑑 𝑤0denote the WPF's real value at the axial and center points, respectively. 

Gunaraj et al. (1999) and Cho (2010) define ∆𝑤𝑖as the phase change and 𝑍𝑖 as the 

dimensionless value of an explanatory variable. 

However, if any property of the design is needed, such as rotatability or the ability to 

accommodate a cuboidal area, the value of iZ should be carefully chosen. A well-known 

choice for a totally random CCD is always 𝑎 = 𝑛𝑓
0.25 where 𝑛𝑓 = 2𝑘.  Thus, the CCD 

within SPDs lends itself to pure error estimates of the variance elements. The center point 

of each subplot is supposed to be repeated n times and the point of the center point is 

replicated r times. According to Goldfarb et al. (2003) the pooled estimate of the sub plot 

error variance given by Equation (2.61) is then considered as follows 

 
𝑆𝑠𝑝
2 =

{(𝑛 − 1)𝑆1
2 + (𝑛 − 1)𝑆2

2 +⋯+ (𝑛 − 1)𝑆2𝑘
2 + 𝑟(𝑛 − 1)𝑆𝑐

2}

{(𝑛 − 1) + (𝑛 − 1) + ⋯+ 𝑟(𝑛 − 1)}
, 

(2.61) 

 

 Where  

𝑆𝑙
2 =

1

(𝑛 − 1)
∑(𝑦𝑖𝑗 − 𝑦𝑖)

2
𝑛

𝑗=1

,       𝑙 = 1,2, … ,2𝑘, 
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𝑆𝑐
2 =

1

𝑟
∑(𝑦𝑖𝑗 − 𝑦𝑖)

2
𝑟

𝑗=1

,       𝑙 = 1,2, … ,2𝑘, 

From above Equations represents the split plot error variance components estimated from 

the axial points and the replicate at the middle of WPFs, respectively. It is also noted that  

 
𝐸[𝑆𝑠𝑝

2 ] = 𝐸 (
{(𝑛 − 1)𝑆1

2 + (𝑛 − 1)𝑆2
2 +⋯+ (𝑛 − 1)𝑆2𝑘

2 + 𝑟(𝑛 − 1)𝑆𝑐
2}

{(𝑛 − 1) + (𝑛 − 1) + ⋯+ 𝑟(𝑛 − 1)}
), 

(2.62) 

 
=
{2𝑘(𝑛 − 1) + 𝑟(𝑛 − 1)}𝜎2

{2𝑘(𝑛 − 1) + 𝑟(𝑛 − 1)}
= 𝜎2.                                          

 

(2.63) 

Therefore, 𝐸[𝑆𝑠𝑝
2 ] = 𝜎2 is an unbiased approximation of �̂�

2
 with degree of freedom 

(𝑛 − 1)(2𝑘 + 𝑟). The whole plot variance components are considered next if the pooled 

estimation of the variability is based on whole plot averages of the repeated whole plot core 

rather than subplots as 

 
𝑆𝑤𝑝
2 =

1

(𝑟 − 1)
∑(𝑦𝑖 − 𝑦..)

2
𝑟

𝑖=1

,   
(2.64) 

 

where 𝑦.., 𝑦𝑖denotes the overall mean as well as the mean of the values in the 𝑖𝑡ℎ whole 

plot.. It can also be noted that 

 
             𝐸(𝑆𝑤𝑝

2 ) = 𝐸 [
1

(𝑟 − 1)
∑(𝑦𝑖 − 𝑦..)

2
𝑟

𝑖=1

], 

 

  

(2.65) 

 
                                                     = 𝐸 [

1

(𝑟 − 1)
∑{[𝛿𝑖 − 𝜖𝑖] − [𝛿𝑖 − 𝜖..]}

2
𝑟

𝑖=1

], 
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=
1

(𝑟 − 1)
[𝐸 (∑[𝛿𝑖 − 𝛿𝑖]

2
𝑟

𝑖=1

−∑[𝜖𝑖 − 𝜖..]
2

𝑟

𝑖=1

)], 

 

 
                         =

(𝑟 − 1)𝜎𝛿
2

(𝑟 − 1)
+
(𝑟 − 1)𝜎2

𝑛(𝑟 − 1)
, 

 

 
= 𝜎𝛿

2 +
1

𝑛
𝜎2. 

(2.66) 

Therefore, 𝐸(𝑆𝑤𝑝
2 ) = 𝜎𝛿

2 +
1

𝑛
𝜎2is a 𝑟 − 1 degree of freedom unbiased estimation that is 

often referred to as pure-error estimates. This is because they are used to estimate the 

model's variance elements, which are model free and unaffected by model 

misspecification, as Njoroge et al. (2017) pointed out. 

2.12 The Ecology and Significant Production of Soybean Globally 

The Glycine max crop has been ranked first among various oilseed crops globally, 

contributing an estimated 25% of total oil and fat production. Glycine max production in 

the world's farming soybean sector, which is about 101.81 ha, is about 253.38 million tons, 

with a productivity rate of 2.5 tons per ha (Singh et al., 2012). 

Glycine max production in Kenya is still inadequate, according to Mahasi et al. (2011), 

averaging 2000-5000 metric tons (MT) per year. Furthermore, according to FAOSTAT 

(2011), industrial demand for Glycine max products increased from 5000 MT in 2008 to 

approximately 120000 MT in 2019, with about 150 MT of soybean protein concentrates 

and textured soybean protein.  

According to Mbembe (2020), human consumption in Kenya accounts for 10-15% of total 

output, or 1000-15000 MT per year, implying that Glycine max imports are currently 

meeting a portion the domestic demand. However, Western, Nyanza, Rift Valley, Central, 
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and Eastern regions of Kenya have become famous for their high Glycine max output, 

which covers around 25000 ha and yields 0.8 t/ha on average. According to Mahasi et al. 

(2011), a capacity of 1.5-3.0 t/ha exists depending on the region. In 1999, the Ministry of 

Agriculture (MOA) projected that 135800 hectares would need to generate over 108000 

metric tons to achieve self-sufficiency. Due to increased understanding of the health 

benefits and nutritional value of soybean, international agriculture organizations such as 

the International Center for Tropical Agriculture (CIAT) and the International Institute of 

Tropical Agriculture (IITA) have seen improvements Glycine max sub-sector in 

collaboration with the government. Research shows that Glycine max has excellent 

adaptability towards a broad range of soils and varying climatic conditions (Zhang et al., 

2020) 

However, most researchers advocate the soil with a PH of 6.0 as best suitable for growing 

Glycine max. Soybean are used to make various Kenyan dishes, including bread, chapatti, 

milk sweets, and pasties. For most SDA church members in Kenya, it is one of the most 

well-known beverages. They use as a fermented commodity and a pulsed seed.  Despite its 

popularity in Kenya, the farmers give very little priority for its cultivation on a large scale. 

Like other leguminous crops, the requirement of nitrogen, as reported by Kamble et al. 

(2009), is substantially fulfilled from symbiotic nitrogen fixation through Rhizobium. 

Glycine max is a source of high-protein foods for children. They use it widely in the 

industrial development of various antibiotics, as described by Singh et al. (2012), it is. 

According to Chianu et al. (2008), soybean improves soil fertility by fixing significant 

atmospheric nitrogen levels by root nodules and leaf fall on the ground at maturity. 
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According to Wanyama (2013), Glycine max responds well to organic and inorganic 

fertilizers. They aid in nodule formations in legume crops that, in turn, fixed atmospheric 

nitrogen needed for their growth, as Singh et al. (2012) described. The agro-climatic 

conditions prevailing in Kakamega County parts in western Kenya are highly favorable for 

Glycine max cultivation. 

2.12.1 Effect of organic and inorganic fertilizer on Glycine max Crop 

According to Kimetu et al. (2008), organic fertilizer is a relatively heterogeneous category 

of products that includes anything from single chemicals like urea to highly complex and 

variable mixtures of organic and inorganic compounds like municipal wastes in urban 

areas. Further, wastes from animal production, raw sewage sludge, and products processed 

from sewage are of greater interest for agricultural plant production. 

Organic and inorganic fertilizers both have positive and negative effects on plant growth 

and soil. According to Han et al. (2016), inorganic fertilizers are relatively cheap and have 

the high nutrient content need by the plants. Furthermore, as defined by Kamble et al. 

(2009), excessive inorganic fertilizer use can result in nutrient loss, surface water and 

groundwater pollution, soil and acidification, the decline in critical microbial organisms, 

and increased susceptibility to harmful insects.  As opposed to chemical fertilizers, organic 

fertilizers have a range of disadvantages, including low nutrient content, slow 

decomposition, and different nutrient compositions based on the same organic materials 

(Wanyama, 2013).  

According to Han et al. (2016), organic fertilizer derived from livestock manure has been 

used in agriculture fields to combat environmental pollution and crop productivity losses 

caused by the constant improper use of inorganic fertilizer. Several authors (Kamble, 2009; 
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Wanyama, 2013) advocated recycling livestock waste to avoid pollution and minimize 

treatment costs. At the same time, this improves soil quality and increases agricultural 

production. However, using inorganic and organic fertilizers at the same time has yielded 

a range of results depending on the type of the crop, soil and soil properties. Using a 

combination of nitrogen (N) phosphorus (P), potassium (K) chemical fertilizer, and organic 

manure derived from animal products increases the mean growth of Glycine max by 46 % 

and soil N, P, and K concentrations by 26 %, 129 %, and 65 %, respectively.   

However, Hans et al. (2016) researched a short rotation Willow plantation in the Middle 

East region of North America to increase biomass production. They used slow-acting 

inorganic fertilizer and organic manure made from animal waste. The organic manure 

treatments significantly increased Willow growth, PH at a soil depth of 0-10 cm by 2, and 

soil K, P, and magnesium concentrations (Mg).  In the case of a poplar plantation in clay 

soil, Wanyama (2013) found that inorganic fertilizers encourage higher growth and root 

production than organic fertilizer derived from livestock manure because of its availability 

and good nutritional value to the soil.. Since plant roots play a critical role in individual 

plants' functionality, Zhang et al. (2020) discovered that organic manure and biochar 

amendments increase soil fertility and crop productivity. They also found that organic 

manure and biochar amendments improved root morphology and physiology by increasing 

soil nutrients, with a substantial increase in root physiology associated with an increase in 

soil nutrient content at the crop's bud level.  

Kimetu et al. (2008) found that raising the phosphorus levels and farmyard manure derived 

from animal waste increased Glycine max dry matter yield, nitrogen, phosphorus, and 

potassium content. Kamble et al. (2009) examined the response of Soybean on the 
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application of organic fertilizer obtained from animal products together with rice straw in 

the proportion of 1: 1  at 0, 5 and 10 𝑡/ha, Phosphorus (37.5 and 56.25 𝐾𝑔 𝑃2𝑂5/ha and 

noticed that at the peak growth of 60 days after sowing. However, with 5, and 10 t/ha of 

organic manure, the leaf area index increased substantially from 2.57 in the control to 3.41 

and 4.05 in the organic manure treatments. Similarly, Soybeans seed yield increased 

drastically from 20.7 to 23 and 26.9 𝑞/ha with steadily rise from 0 to 5 and 10 𝑡/ℎ𝑎 organic 

fertilizer. In addition, Furthermore, Wanyama (2013) reported increased dry matter output 

at different growth stages as a result of increased dry matter production at 22.7 to 24.1 

𝑞/ℎ𝑎 with 37.5 to 56.25 𝐾𝑔 𝑃2𝑂5/ha. 

Isaev et al. (2020) performed a field study on the reaction of Soybeans to Rhizobium 

inoculation and discovered a large increase in response with Rhizobium treatments over no 

inoculation at all stages. They also discovered that seed inoculation increases seed yield 

substantially more than inoculation alone when a 30 kg N/ha initial dose is applied. 

According to Tittonell et al. (2008), this is attributable to a rise in the number of nodules 

per plant and nodule dry weight, as well as their subsequent translocation to the seed.  

Furthermore, Wanyama (2013) stated that among the different treatments, the soil with 

enriched Farmyard manure contributes to a substantial increase in plant height, number of 

branches per plant stem, and number of pods per plant.  Their study also revealed that the 

yield of Glycine max harvested depends with the seasons which implies that the 

productivity of Soybean is affected with the season at which it is planted. This is depicted 

with their results that was obtained during summer and Kharif where grain yield of 1259 

𝐾𝑔 /ℎ𝑎and 1499 𝐾𝑔/ ℎ𝑎, respectively.  They also looked at the effects of Farmyard 

manure (FYM, 0 and 10 t/ha) and Sulphur fertilizer (10, 20, 40, and 60 Kg/ha) on the 
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growth and yield of Glycine max cultivars Js-335 and NRC-12, and found that all of the 

parameters increased FYM and Sulphur fertilizer rates. However, Sulphur fertilizer at 

40 𝐾𝑔/ℎ𝑎 recorded the highest seed about 15.59 𝑞/ℎ𝑎 and straw yield as described by 

Singh et al. (2012).  

According to Zhang et al. (2020), Glycine max yield and N and P uptake were quadratically 

raised with increasing broiler inorganic fertilizer application rates. They revealed that 

Soybean grain yield and N uptake from broiler litter application were significantly greater 

than those from inorganic fertilizers.  Furthermore, Kamble et al. (2009) and Wanyama 

(2013) examined the influence of organic and commercial fertilizers on nodulation in 

Glycine max and reported that the number of root nodules at 60 for Diammonium 

Phosphate (DAP). The highest number of root nodules per plant was observed under bio-

digested slurry combined with 30:120:40 Kg/ha NPK. 

2.12.2 Effect of Row Spacing and Seeding Rate on Glycine max Variety of Seeds 

Glycine max drilled in rows produced more than the one planted in rows with a row crop 

planter and more than Soybean planted in rows, according to Kimetu et al. (2008). Row 

spacing research in the Central and Southern United States, on the other hand, found little 

difference in yield between narrow and broader rows, according to Wanyama (2013). 

According to some reports, row spacing and seeding rate interactions with Glycine max 

yield greater with higher seeding rates and narrow rows compared to wide rows (Zhang et 

al., 2020). 

Swain et al. (2006) posted a $ 30 per ha profit with a seeding rate of 420000 seeds/ha in 

19 cm rows versus 321,000 seeds/ha in 76 cm rows due to higher yields outweighing seed 

costs. On the other hand, according to Mbembe (2020), other studies have found similar 
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optimum seeding rates in narrow and long rows, indicating that there is no relationship 

between row spacing and seeding rate. On the other hand, glycine max plants compensate 

for space in the canopy by increasing more branches, but increased seeding rates had no 

impact on yield. Because Glycine max plants compensate for lower seeding rates with 

biomass, pods, and seeds per plant stem, but they also compensate for wider rows (Kamble 

et al., 2009). The Glycine max compensates for lower seeding rates and broader rows. It is 

less successful at compensating for broader rows than for lower seeding rates, meaning that 

row spacing has a more significant impact on yield than seeding rates. Furthermore, more 

seeding rates at early vegetative stages can boost Glycine max growth, leading to increased 

yield. Again, the above seeding rate does not increase vegetative growth or follow a pattern 

of rising or decreasing yield (Chianu et al., 2008). The fungus Sclerotinia sclerotium causes 

Sclerotinia stem rot, also known as White mold. This disease often causes low soybean 

production. As a result, management practices like narrow spacing, increased Glycine max 

plant populations, early planting season, well-drained soil, and high soil fertility, as defined 

by Tittonell et al. (2008), can increase yield. Raising white growth inside the Soybean 

canopy may often have unintended consequences. While fungicides are available to combat 

white mold, it is generally impossible to completely eradicate the disease using only 

chemical management. Other than fungicides, more management strategies are required to 

eliminate white mold in soybeans, such as cultivar selection and management practices. 

Furthermore, planting with a large row spacing or a lower plant population delays canopy 

formation, resulting in a decrease in canopy density and thus preventing the growth of 

white mold. 
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2.12.3 Effect of Soil pH on Glycine max (L.) Merrill Yield 

Soil PH has an essential effect on the soil biogeochemical process in the natural world. It 

is known as the "master soil component" because it affects the various biological, chemical, 

and physical properties in the soil that affect Glycine max growth and biomass yield. 

According to Zhang et al. (2020), soil pH is only essential for soil chemistry and fertility. 

Furthermore, the recognition of soil functions beyond plant nutrient supply and the 

importance of soil as a medium for plant growth necessitated a multidisciplinary analysis 

of soil and its characteristics in light of broader ecosystem functions. Many biogeochemical 

processes are affected by soil pH, according to decades of study. Recent research has 

revealed some fascinating facts about the importance of soil pH in various soil processes. 

According to Neina (2019), soil pH regulates the solubility, mobility, and bioavailability 

of trace elements, determining their translocation in plants. As a result the content of 

dissolved organic matter increases with soil pH, which accounts for the strong effects of 

alkaline soil pH conditions on dissolved organic carbon and nitrogen leaching observed in 

many soils containing significant amounts of organic matter. However, Neina (2019) found 

that soil PH conditions needed for microbial activity range from 5.5-8.8. As a result, soil 

respiration often rises to an optimum level as soil pH rises. However, this is also related to 

higher organic carbon and nitrogen levels in microbial biomass above pH 7. Furthermore, 

soil pH influences biodegradation through its impact on microbial behavior, microbial 

population and diversity, enzymes that aid in the degradation process, and the 

characteristics of the substances to be degraded, just as it does many other soil biological 

processes (Gentili et al., 2018).  Alkaline or slightly acid soil pH aids in biodegradation. 

Acidic conditions, on the other hand, restrict biodegradation and cause a decrease in 
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Glycine max yield (Jagwe and Nyapendi, 2004). According to Gentili et al. (2018) and 

Neina (2019), pH values of 5.4 to 8.0 are optimal for oil degradation, making them suitable 

and adequate for growing cereal and legume crops.  

The soil's pH rises to a peak and then drops when they combine organic matter from 

livestock or raw plant residues with unburned soil. The initial soil pH also increases when 

they apply a mixture of sludge derived from a bleach factory, urban solid waste, and a 

mixture of sludge extracted from a purification plant or residual agro-food industries to the 

soil.  

Most micronutrients, for example, are more accessible to plants in acidic soils than in 

neutral-alkaline soils, favoring plant growth, according to Ayalew (2011). Also, as Gentili 

et al. (2018) point out, pH influences various plant characteristics (i.e., traits) such as 

height, lateral spread, biomass, flower sizes, pollen development, and many others. 

2.13 Screening Methodology in Mixture design with application to Glycine max 

A mixture test is an experiment where the descriptive variable (factors) and response rely 

only on the mixture's relative ratio in the mix but not its composition. For example, the 

yield of crops may be the maximum number of Glycine max per stem or the number of 

seeds per stem.  In the most basic mixture design test, the q component in the compound 

meets the following barriers. 

 

∑𝑥𝑖

𝑞

𝑖=1

= 1                             0 ≤ 𝑥𝑖 ≤ 1  
(2.67) 

 

The proportion of each blend must be between 0 and 1. Also, the proportions of the q blends 

in the mixture must total up to unity. The factor components space for an experiment with 
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constraints in Equation (2.67) is a 𝑞 − 1 dimensional simplex that may include the design 

space's edge and interior.  

However, experiment with mixtures was officially formalized by Henry Scheffe in 1958, 

where the simplex lattice design (SLD) and corresponding Scheffe canonical polynomial 

model was formally introduced (Goos et al.,  2016). Scheffe defines a (𝑞,𝑚) lattice to fit 

the design where 𝑞 and 𝑚 represent the number of components in the mixture and the 

polynomial model's degree, respectively. They are (
𝑚 + 𝑞 − 1

𝑚
) candidate points in a 

simplex lattice design. The proportions applied for each component have 𝑚 + 1 equally 

spaced values from 0 to 1 of 𝑥𝑖 = 0,
1

𝑚
,
2

𝑚
, … . ,1. One-to-one correspondence of candidates 

points to the polynomial model parameters, as pointed out by Weese (2010). For instance, 

in a (𝑞, 1), SLD is the form: 

 

휂 =∑𝛾𝑖𝑥𝑖

𝑞

𝑖=1

 

(2.68) 

 

subject to the substitution  

  

𝑥𝑞 = 1 −∑𝑥𝑖

𝑞

𝑖=1

 

(2.69) 

 

into the standard polynomial model form: 

  

휂1 = 𝛾0 +∑𝛾𝑖𝑥𝑖

𝑞

𝑖=1

 

(2.70) 
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According to Cornell (1988) and Goos et al. (2016), the polynomial coefficient has a one-

to-one correspondence with the points in the design. As mentioned above, there are q 

candidate points in a(𝑞, 1) SLD; hence for a three-mixture blend, there are three candidate 

points, and in the corresponding polynomial, three parameters to be approximated that 

enables for the coefficients to be compared employing least squares (MLS) regression, 

Maximum likelihood method (MLM), restricted maximum likelihood (REML), and 

ordinary least squares (OLS). Scheffe defines a second-order polynomial model for 

mixtures where the anticipated response to take on a nonlinear form as:  

 

휂 =∑𝛾𝑖𝑥𝑖

𝑞

𝑖=1

+∑ ∑ 𝛾𝑖𝑗𝑥𝑖𝑗

𝑞

𝑗=𝑖+1

𝑞−1

𝑖=1

 

(2.71) 

 

 

In this polynomial model, the pure quadratic terms are combined with the two-factor 

quadratic terms owing to the substitution Equation 2.72 to model 2.71. 

  

𝑥𝑖
2 = 𝑥𝑖 (1 − ∑ 𝑥𝑗

𝑞

𝑖=1,𝑗≠𝑖

) 

(2.72) 

 

As described by Goos et al.  (2016) and Weese (2010), in addition to the substitution used 

in the model (2.70). However, with this substitution, the polynomial degree remains 

unchanged, and the number of terms (
𝑚 + 𝑞 − 1

𝑚
) maintaining the one-to-one 

correspondence of design points and parameters in the model. 

In mixture design experiments, the interaction terms in the model are commonly known as 

nonlinear blending terms. However, the nonlinear blending terms, response to binary and 
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ternary or quinary mixtures, can be perceived and illustrated as being either a synergistic 

effect or an antagonistic effect. These interpretations of binary, ternary, and quinary 

mixture terms are broadly used in describing the impact of components on the 

characteristics of a mixture. 

Gorman and Hinman (1962) protruded the Scheffe' polynomial model up to the third and 

fourth degree. They were the first to note a caution regarding Scheffe's polynomials when 

the design space is small. Furthermore, Lambrakis (1968) generalized Scheffe's 

polynomials to order m. Scheffe traced his pioneering work within the realm of mixture 

experiments to introduce SCD. This design encompasses 2𝑞 − 1mixtures consisting of 𝑞 

pure component blends, 
𝑞

2
binary ingredients with equal proportions, and 

𝑞

3
ternary mixture 

blends with equivalent ratios up to the q- nary combination with similar proportions as 

described by Goos et al. (2006). The simplex centroid consists of observations on mixtures 

containing every (non-empty) mixture that the components present appear in equal 

proportions as reported by Weese (2010). Similarly, with the SLDs, the SCD has a one-to-

one correspondence with Scheffe's polynomial model. The coefficients are approximated 

by utilizing linear combinations of the responses at each of the candidate points. Later, in 

1963, Scheffe also introduced process variables in the mixture experiment design as a 

factorial experiment. 

Several researchers, including Scheffe', recognized some of the limitations of the SLD and 

SCDs (Cornell, 1975; Goos et al., 2016; Weese, 2010). Further, one of the drawbacks 

realized by Scheffe' was that not all of the components in some situations are allowed to 

vary from zero to unity. Therefore, this led him to introduce pseudo-elements for a case 

where one of the blends has an upper bound. However, his polynomial coefficients become 
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non-trivial during interpretation, as pointed out by Weese (2010). Additionally, the lower 

order designs do not include many if any interior points in the experimental region since, 

in some cases, the only feasible experimentation is with the internal issues. Kowalski et al. 

(2002) acknowledge this paucity and regard designs for three and four factors where all the 

candidate points are interior. Their prime objective of experimentation is to fit a response 

surface model to the experimental area. These points are established by applying the design 

criterion proposed by Njoroge et al. (2017) 

Myers et al. (2009) also proposed a design to approximate the response surface mixture by 

applying an ellipsoidal region centered at a point of maximum interest to the user. The 

ellipsoid is determined by the researcher in these types of designs. 

Lambrakis proposed multiple lattice designs where significant and minor mixture 

components exist in Scheffe's mixture problem. Further, the generalized Scheffe canonical 

Polynomial and advocated analyzing these numerous lattice designs. Cornell (2011) later 

introduced the alternative model to the canonical Polynomial. The model he proposed was 

a homogenous model of degree one for fitting mixtures to interpret an inert or additive 

component in the mix. Also, he discussed regression procedures for mixture variables in 

his subsequent paper. Various types of models, such as the extended contrast model 

(Aitchison et al., 1984) and a model including inverse terms (Cho, 2010), were developed 

to account for possible extreme response changes as a component approaches zero. Despite 

the massive amount of literature on mixture experiments, the issue of screening in a mixture 

environment, as defined by Weese (2010), has only put it in a better form, one division in 

mixture experiments, and deodorized in formulation research setup. The entire literature 

on experimental screening concepts organizes around evaluating overall linear effects 
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using the first-degree Scheffe polynomial model, closely resembling the description of a 

factorial screen design defined by some researchers (Cornell, 2011; Weese, 2010). As 

specified by Box and Hunter (1957) a Factorial screen design's primary goal is to decide 

which of a large number of component factors are of critical importance. We can also 

identify the prime component variables and then reexamine the experiment. However, as 

Cornell (1975) described, the first-order model should be used to evaluate a screening 

experiment to determine the most significant factors out of a large number based on their 

first-order effect estimates. Snee and Marquardt (1976) were the first to address screening 

principles with mixture experiments. They stated that the only difference between the 

screening theory for mixture variables and ordinary independent variables is in the 

screening principle in mixture settings. They use candidate points lying on what they refer 

to as components axes to explicitly translate the theory of looking for significant linear 

effects in a screening experiment. They effectively research directions through a factor 

region where the measured response remains unchanged or nearly unchanged to evaluate 

the critical mixture variables in this manner. They advocated using the Scheffe canonical 

polynomial to model the mixture's linear mixing and then checking the results in contrasts 

to see which effects are equal or not, as described by Weese (2010). As a consequence, 

they are a decline in the number of components needed to perform follow-up experiments. 

The screening philosophy is currently adapting from dependent variables (response) to 

mixture environments. However, Cornell (2011) discussed the Cox polynomial model and 

the use of the principle of effect path to find candidate points, the first order Scheffe 

polynomial to model, test, and assess the results. However, according to Njoroge et al. 

(2017), some researchers did not say anything about having five or fewer components. 
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However, they urged that even if the designs are for six or more mixture components, it 

would be easier to collect enough data to match a quadratic model. They also suggested 

using simplex screening designs where the components can vary across the entire 

composition spectrum or the design space can be expressed in pseudo components. These 

designs contain all pure component ingredients, the centroid, internal points on the 

component effect axes, and end effect points in cases where it assumes the complete 

absence of a component would negatively affect the response.  In this case, the edge's 

midpoint refers to the end impact points where the primary concern component is absent 

from the mixture, but the other components are present.  

Expanding the architecture of these factorial points to the mixture setting by adding and 

subtracting +∆1 or −𝛿2 and +∆2 or −𝛿1 where 1 and 2 are the components whose 

relationship is to be approximated to the mixture setting as defined by Weese (2010). To 

approximate the interaction, the researchers use the Cox effect instructions to include and 

exclude these quantities and the regular mixture. Cornell (2011) goes into greater depth 

regarding screening in a mixed setting.  It becomes possible to conduct experimental runs 

and resolve the essential components based on the size of their effects when there are six 

or more component factors. He describes screening as reducing the number of component 

factors to the point that only the most essential components are needed further.  As several 

authors have pointed out, the construction of screening designs and the establishment of 

screening models often begin with the Scheffe first degree model (Cornell, 2011; Weese, 

2010). Cornell (2011) also recommends bringing the ranges of the various component 

variables as close together as possible so that the components' relative effects can be 

designed using the effect approximate to its standard error ratio. Indeed, if the component 
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factors' ranges are close, the magnitude of the beta estimates can infer the more significant 

impact on the response.  

Several authors propose using the Cox mixture model for mixture screening design, 

arguing that the Cox model offers a natural way to integrate this current formulation into 

the experiment. Also, use the standard response as a basis for comparison when adding 

components to the mixture. Usually, the parameters in a Cox mixture model denote the 

slope between a mixture point x and the response at a standard mixture, as defined by 

Cornell (2011). 

Furthermore, the experimental region's labyrinthine constraints render interpreting 

individual Scheffe parameters a waste of time. In this case, the Scheffe model can only be 

used to select significant effects or to create a complete model of the surface, not to 

understand individual actions on the expected response, as Cornell (2011) describes. 

Furthermore, when the number of mixture components is high, as it is in industrial settings, 

it is not practical to analyze more than linear results, as stated by Weese (2010). For 

smaller, simpler mixtures, the new approach works well. However, as Cornell (2011) and 

Weese (2010) point out, fitting a model to the entire space is not always the most realistic 

way to experiment with large mixtures with complicated constraints. 

Furthermore, as indicated by Weese, they are likely to be a current environment, a standard 

mixture, and a consistently beginning point in this form of experimentation. We also agree 

that it is not always appropriate to investigate or research all of the components' effects. In 

chapter four, we show numerical examples of this. When it comes to agricultural mixture 

screening, the most critical components are discovered not by quantifying the most 

significant linear effect but by calculating the concern response changes at the new point 
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and comparing it to the previously agreed response.  However, we assume that the Cox 

mixture model type structure is the most important for screening a mixture in an agriculture 

setting while growing varieties of crops subject to various treatments. 

  



86 
 

 
 

CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Introduction 

This section outlines the methodology on the split-plot designs and the concept of mixture 

experiments and also how each of the study objectives will be achieved.  

3.2 Developing a Parsimonious Model for Use of Split-Plot Design and MPV 

The SPD was made up of a simplex centroid design (SCD) of four mixture blends and a 22 

factorial design with a central composite design (CCD) of the process variable. The SPD 

comprised 54 treatment combinations. The four mixture blends were denoted as 

𝑋1, 𝑋2, 𝑋3, 𝑋4  and set up in SCD with the following eleven blends; 

 (𝑥1, 𝑥2, 𝑥3, 𝑥4)

=  (1, 0, 0,0), (0, 1, 0,0), (0, 0, 1,0), (0, 0, 0,1), (0.5, 0.5, 0,0), 

 (0.5, 0, 0.5,0), (0.5, 0, 0,0.5), (0, 0.5, 0.5,0), (0,0.5, 0,0.5), (0, 0,0.5, 0.5), 

 (0.25, 0.25, 0.25, 0.25 ). 

 

(3.1) 

The two process variables were coded as 𝑍𝑆𝑃 and 𝑍𝑤𝑝 had two levels each plus additional 

point of CCD as shown in the Equation (3.2) and Figure 3.1 where 𝑍𝑆𝑃 = 𝑍1, 𝑍𝑤𝑝 = 𝑍2 is 

sub-plot and whole-plot, respectively. 

(𝑍𝑆𝑃, 𝑍𝑤𝑝)

=  (1, 1), (1, −1, ), (−1, 1, ), (−1,−1), (1.414, 0), (−1.41, 0), (0, 0), 

 (0, 1.414), (0, −1.414), (1.414, 1.414), (−1.414,−1.414).  

 

 

(3.2) 

These initial model as described by Njoroge et al. (2017), was proposed and extended from 

3 to 4 mixture components as shown Figure 3.2 and 3.3. Their model 1 consisted of seven 

mixture blend set up at each of the four points of the factorial arrangement. In model 2, 
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they set up four points of the factorial design at each of the seven mixture blends of the 

simplex centroid design. Still, they found that model 1 was more efficient. It also provided 

more concise parameter estimates in terms of A-, D- and E-optimality criteria because it 

had more sub-plots than whole-plots since SPD provides room to measure the effect of 

change of process variable the different mixture ingredients. We extended model 1 by 

looking at six other alternative arrangements of design points in a split-plot design as 

discussed in section 3.2. The process variables were the whole-plots and the mixture 

ingredient the split-plots as shown in Figure 3.1. Our split-plot design consisted nine 

whole-plot with each having six sub-plot for all the six alternative arrangement of the 

candidate points in a SPD. We created the six different design option using D-optimal as 

discussed section 3.2 purposely to assess the best design can suitably fit model (3.4) using 

the proposed SPD shown in Figure 3.2 and 3.3. 

3.2.1 New Design for Split-Plot Layout to Support Fitting MPV 

 The Figure 3.1 shows Proposed Design for Split-Plot layout to Support Fitting mixture 

process variable with CCD of second order polynomial model. Figure 3.3 depicts the newly 

developed Design for Split-Plot Structure to Support Fitting the Combined Second-Order 

MPV model after extending Model 1 proposed by Njoroge et al. (2017). The center point 

[𝑧1, 𝑧2] = {0,0}, 𝑣 times is replicated, and each time the centroid (𝑋1, 𝑋2, 𝑋3, 𝑋4) =

(
1

4
,
1

4
,
1

4
,
1

4
),  𝑘 times is replicated. Also, the centroid (𝑋1, 𝑋2, 𝑋3, 𝑋4) = (

1

4
,
1

4
,
1

4
,
1

4
)  at each 

axial setting is replicated 𝑘 times. We formulated of the model within a split plot design as 

follows 

𝑌 = 𝑔(𝑥, 𝑍𝑆𝑃, 𝑍𝑤𝑝) = 𝑔𝑤(𝑍𝑤𝑝)′𝛽𝑤𝑝 + 𝑔𝑠(𝑥, 𝑍𝑆𝑃, 𝑍𝑤𝑝)′𝛽𝑠𝑝 + 𝜚 + 휀   (3.3) 
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where 𝛽𝑤𝑝  is a vector representing the coefficient terms drawn from the Whole-plot  

variable, 𝛽𝑠𝑝  is a vector containing the coefficient terms resulting from the sub-plot 

variable, 𝜚~𝑁(0, 𝜎𝑤𝑝
2 ), represent the random error associated with the entire plot factor by 

itself during the randomization level, and 휀~𝑁(0, 𝜎𝑠𝑝
2 ) indicate the random error that is 

associated with sub-plot randomization level. However, 𝜎𝑤𝑝
2  and 𝜎𝑠𝑝

2  are assumed to be 

statistically independent and distributed. This model (3.3) can still be simplified by 

omitting 𝑔𝑤(𝑍𝑤𝑝)′𝛽𝑤𝑝 because whole-plot factor affects only the response through the 

interaction mixture component variable. Therefore, simplified model reduces to 

However, considering the four mixture components and two process variable using the 

Scheffe technique in the framework of CCD within SPD, then model (3.4) reduced to 

𝑌 =∑𝛽𝑖𝑥𝑗
𝑖

+∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑖<𝑗

+∑∑𝜗𝑖𝑝𝑥𝑖𝑍𝑤𝑝
𝑤𝑝𝑖

+∑∑∑𝜗𝑖𝑗𝑝𝑥𝑖𝑥𝑗𝑍𝑤𝑝
𝑤𝑝

+∑∑𝜇𝑖𝑠𝑝𝑥𝑖𝑍𝑠𝑝
𝑠𝑝𝑖𝑖<𝑗

+∑∑∑𝜇𝑖𝑠𝑝𝑥𝑖𝜇𝑖𝑠𝑝𝑥𝑖𝑥𝑗𝑍𝑠𝑝
𝑠𝑝𝑖<𝑗

+∑∑∑𝛾𝑖𝑗𝑠𝑝𝑤𝑝𝑥𝑖𝑍𝑤𝑝𝑍𝑠𝑝
𝑠𝑝𝑤𝑝𝑖

+∑∑∑∑𝛾𝑖𝑗𝑠𝑝𝑤𝑝𝑥𝑖𝑥𝑗𝑍𝑤𝑝𝑍𝑠𝑝
𝑠𝑝𝑤𝑝𝑖<𝑗

+ 𝜚 + 휀 

 

 

 

 

 

(3.4) 
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 𝑌(𝑥, 𝑧) = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4 + 𝛽12𝑋1𝑋2 + 𝛽13𝑋1𝑋3

+ 𝛽14𝑋1𝑋4 + 𝛽23𝑋2𝑋3 + 𝛽24𝑋2𝑋4 + 𝛽34𝑋3𝑋4

+ 𝜗11𝑋1𝑍1 + 𝜗12𝑋1𝑍2 + 𝜗21𝑋2𝑍1 + 𝜗22𝑋2𝑍2

+ 𝜗31𝑋3𝑍1 + 𝜗32𝑋3𝑍2 + 𝜗41𝑋4𝑍1 + 𝜗42𝑋4𝑍2 + ϱ + ε 

  

(3.5) 

 

 where 𝑍1 the control is process variable  and 𝑍2 is the noise process variable, 𝛽𝑖 is the vector 

of fixed effect resulting from mixture blend of the vertices of component 𝑋𝑖, 𝛽𝑖𝑗 is the 

vector of random effect resulting from the interaction between mixture components and 

𝜗𝑖𝑗  is the vector of random effect resulting from the interaction between mixture 

components and process factors. The model (3.5) is an empirical model that corresponds 

well with the experience and plots of the data. The random component effect of the model 

has a whole plot and split-plot contribution. The whole plot error is nested under 𝑥1, 𝑥2, 𝑥3, 

and 𝑥4, while the subplot error is the standard residual error term. However, the model (3.5) 

under split plot design was further simplified to 

 
𝑌𝑗𝑘 = 𝑋𝑗𝑘𝛽 + 𝑑𝑗𝑘𝛿𝑗 + 휀𝑗𝑘 {

𝑗 = 1, 2, … , 𝑛𝑤
𝑘 = 1, 2, … , 𝑛𝑗

 
(3.6)  

where 𝑌𝑗𝑘 represents whole plot 𝑗  at 𝑘𝑡ℎ measurement response variable subject to split-

plot factors and process variable.  𝑛𝑤 denotes the number whole plot while 𝑛𝑗number of 

measurements in whole plot 𝑗. 𝑑𝑗𝑘  indicates a covariate vector of 𝑗𝑡ℎ   whole plot at 𝑘𝑡ℎ  

measurement for random effects 𝛿𝑗 ∈ ℝ
𝑞  associated with whole plot effect where 𝑞 is the 

number of factor components applied in split plot layout experiment. 
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Figure 3.1: A  𝟐𝟐 factorial design with 𝑪𝑪𝑫 of process variable 

 

Figure 3.2: A Proposed Design for Split-Plot layout to fit MPV model with CCD 
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Figure 3.3: A proposed design for split-plot layout for combined 2nd order MPV with CCD 

 

From Equation 3.6 we can have matrix formulation of statistical model by taking into 

consideration the following variable  

 

𝑌 = (

𝑦1
𝑦2
⋮
𝑦𝑏

)𝜖ℝ𝑛  such that 𝑛 = ∑ 𝑛𝑗
𝑏
𝑗 , 

𝑋 = (

𝑥1
𝑥2
⋮
𝑥𝑛

)𝜖ℝ𝑛×𝑝,  휃 ∈ ℝ𝑝, 

 

 

𝐷 = [

𝑑1 0 … 0

0 𝑑2 … 0
⋮
0

⋮
0

⋱
…

⋮
𝑑𝑏

] 𝜖ℝ𝑛𝑏×𝑞 ,  𝑂𝑛𝑗×𝑞 = [

0 0 … 0
0 0 … 0
⋮
0

⋮
0

⋱
…

⋮
0

] 𝜖ℝ𝑛𝑗×𝑞, 
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𝛿 =

(

 

𝜎1
2

𝜎2
2

⋮
𝜎𝑏
2)

 𝜖ℝ𝑛×𝑞 ,  휀 = (

휀1
휀2
⋮
휀𝑏

)𝜖ℝ𝑏,   

 

𝑈 = [

휀1 0 … 0
0 휀2 … 0
⋮
0

⋮
0

⋱
…

⋮
휀𝑏

] 𝜖ℝ𝑛×𝑁 = 𝜎2𝐼𝑛,   

Therefore, the statistical linear model matrix formulation can be written as  

 

 𝑌 = 𝑋휃 + 𝐷𝛿 + 휀 (3.7) 

 
Where (

𝛿
휀
)~𝑁𝑏𝑞+𝑛  ((

0
0
) , [

𝑍 0
0 𝑈

]) and 𝑍 = 𝜎𝑏
2 

 

where 𝑍 is the Whole Plot Error (WPE) and 𝑈 is the split-plot error (SPE). 

However, if we let  

 𝑌 = 𝑋휃 + 휀∗  where 휀∗ = 𝐷𝛿 + 휀 = [𝐷 𝐼𝑛×𝑛] [
𝛿
휀
] (3.8) 

This implies that 

 휀∗~𝑁(0, 𝑉), (3.9) 

𝑌 = 𝑋휃 + 𝑃 [
𝛿
휀
]  since 𝑃 = [𝐷 𝐼𝑛×𝑛], 

 

𝑉𝑎𝑟(𝑌) = 𝑉𝑎𝑟 (𝑃 [
𝛿
휀
]),  

𝑉𝑎𝑟(𝑌) = 𝑃𝑉𝑎𝑟 (
𝛿
휀
) 𝑃′,  
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where  

From Equation (3.8) and (3.9) are termed as marginal model. Therefore from this the 

statistical model can be written as two-level hierarchical model if the random effect in the 

whole plot is known. 

From Equation (3.11) implies that 𝛿~𝑁𝑛(0, 𝑈), the parameters 𝛿 and 휃 can estimated 

using Ordinary Least Square (OLS), maximum likelihood (ML), restricted maximum 

likelihood (REML) and Bayesian method but in this case, we restrict to ML and REML. 

3.2.2 Construction of MPV Design for Split Plot Structure Using D – Optimal 

Designs 

The design algorithms are required to find D-optimal SPDs for MPV designs. In the 

literature on finding the optimal design of experiments, the most popular algorithms are 

either the point transfer algorithms or the candidate-set free integration transmission 

algorithms implemented statistical software JMP (Goos et al., 2016). Furthermore, the D-

optimal design used in the study was calculated using the point algorithms described in 

Sitinjak and Syafitri (2019). The algorithm is developed primarily to calculate A-. G-, I-, 

and D-optimal efficiency with given numbers and sizes of whole plots. 

The FORTRAN code of the algorithm and the input files needed to compute the designs 

are executed in SAS's JMP software section. This algorithm implemented in JMP software 

requires a specification of observations and split-plot configurations, including the total 

𝑉𝑎𝑟(𝑌) = [𝐷 𝐼𝑛×𝑛] [
𝑍 0
0 𝑈

] [
𝐷′   
 𝐼𝑛×𝑛

] = 𝐷𝑍𝐷′ + 𝑈 
 

⇒ 𝑉 = 𝐷𝑍𝐷′ + 𝑈 (3.10) 

 𝑌|𝛿~𝑁𝑛(𝑋휃 + 𝐷𝛿, 𝑈), (3.11) 
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number of whole plot, 𝑛𝑊𝑃, and the number of 𝑏𝑖 observations in each complete plot. 

Furthermore, a prior guess of the variance component ratio 𝑑 =
𝜎𝛿
2

𝜎2
⁄  has to be given. It 

is always good to assume that 𝑑 =  1 in many practical cases as pointed out Goos and 

Donev (2007). Still, it turns out that the generated designs may not be sensitive to a 

particular 𝑑 value. Referring to another leads to the same designs. 

However, Cho (2010) define the algorithm as a classical point exchange algorithm that 

requires user-specific candidate design points. A simple way to create a good candidate set 

when designing a split-plot for a compound process variable test is to, as Njoroge et al. 

(2017) points out, the response to a factorial design or process variable is to bypass the 

design of the MPV with the surface design. However, conditions involving unrestricted 

simplex-shaped composite design spaces can do this by passing SLDs or SCDs for the 

factorial arrangement of MPV by Cornell (2011) and others. Goos et al. (2016) suggested 

the use of fringe centroids and verticals to create better test designs in case of handling 

irregularly shaped mixture design region. Therefore, for examining and evaluating 

different design options in terms of G- and V- efficiency, the candidate points should also 

include interior points other than the overall centroid as reported by Njoroge et al. (2017). 

The simplex check points as described by Hassan et al. (2020) can be used as interior points 

for the case a simplex shaped region whereas for a constrained design region, pairwise 

averages of the overall centroid (
1

4
,
1

4
,
1

4
,
1

4
)  and other points in the candidate set can be 

used as interior points. 

However, to create the desired design, the algorithm begins with generation of a starting 

design with the specified number of whole plots,𝑛𝑊𝑃 = 9 and whole plot sizes, 𝑏1 =

6, 𝑏2 = 6, 𝑏3 = 6, 𝑏4 = 6, 𝑏5 = 6, 𝑏6 = 6, 𝑏7 = 6, 𝑏8 = 6, 𝑏9 = 6. Part of this is done at 
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random as stated by Sitinjak and Syafitri (2019). The initial design is completed by adding 

consecutive candidate points with the largest prediction variations. Therefore, the 

algorithm explores and evaluates all possible exchanges of design points and candidate 

points and possible transfers of design points across different whole-plots, as Goos and 

Vanderbroek (2003) stated. Better transfer or swap is done for each iteration. However, the 

search will stop when further improvement is not possible. Several startup designs was 

developed to increase the probability of finding the best overall D-optimized design. 

Furthermore, the Candidate set free coordinate algorithm described in Jones and Goose 

(2007) was implemented allowing the creation of D-optimal SPDs in the absence of a 

candidate package. Except for the candidate set, the algorithm's input is similar to that 

required for Goos and Vandebrook's (2003) algorithm. Furthermore, Goose et al. (2016) 

showed that D-optimized designs could act as building blocks in the construction of new 

designs that will require duplication and additional points for the absence of fit tests in the 

presence of sample uncertainty.  

D- Optimal Designs for Split-Plot Design 

The set of candidate design points in Equation (3.1) and (3.2) were used as an input to the 

design construction method described in Sitinjak and Syafitri (2019) to determine the D-

optimal design test. This set includes all combinations of all points of the SCD and two 

checkpoints for the four composite components, including the permutation of the binary 

compound (mixture) and the overall centroid point. On the one hand, the two process 

variable 22 factorial design arrangements with central composite design (CCD), plus the 

center point for the two process variables. We use Goos et al. (2016) algorithm for 

construction A1, A2, A3, A4, A5, and A6 because FORTRAN code was freely available 
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and could easily be modified to solve and handle nonstandard problems. In this design 

creation, we utilized 𝑑  as discussed in section 3.2.2 since we needed the alluring plan to 

fit demonstrate (3.5) from the distinctive design. The alternative design was proposed since 

the relative D- and A- proficiency does not depend exceptionally much on the 𝑑 esteem, 

but as it were, the relative G- and V- productivity (efficiency) diminish with 𝑑, and this 

concurring to discoveries detailed by Goos and Donev (2007). They also noted that D- 

optimal designs outperform the designs initially proposed by Kowalski et al. (2002). They 

called benchmark design in terms of the G and V optimality criterion with the value of 𝑑 

that ranges from 0.1 to 10. 

Furthermore, during this design generation, we increased the center points in design A4 

and A6 compared to the rest. According to the literature review, additional center points 

allow for extra other boundary points in the D- optimal designs that provide an opportunity 

to improve the efficiency of the methods substantially (Cho, 2010; Goos et al., 2016). Since 

lack of center points in the optimal design is, however, criticized by several researchers 

(Hassan et al., 2020, Njoroge et al., 2017) and would probably cause the D- optimal designs 

to be biased, this is attributed to modifying different design options until found desirable. 

It is possible to construct designs that are substantially more efficient than those without 

or contain several center points. Design A1 to design A6 was also built using the candidate 

set free algorithm. We reported the D-, A-, G-, and I- efficiency together with a sliced FDS 

plot for each design relative to each other to select a desirable that supports and fits 

combined second-order MPV with CCD for split-plot layout structure. 
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3.2.3 Construction of SPD for Combined MPV with CCD Formulated 

 They were six design namely 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐴6 extended from the initial model 

created by Njoroge et al. (2017) by considering the set of SCD design point at different 

settings of 2 2 factorial arrangement plus additional points of CCD in order to find the best 

MPV settings as discussed in section 3.1. We subjected designs to various optimality 

criterion and FDS plot techniques to select the best design. The design in Tables 3.1 to 3.6 

were generated using the candidate set free algorithm based on the design proposed by 

Cornell (2011) Vinyl thickness experiment involving three mixture components and two 

process variables.  But in this case, this design A1 involves four mixture components (𝑥1, 

𝑥2, 𝑥3 and 𝑥4 ) and two process variables. However, the data set for mixture components 

for the six different design options can also be generated by genetic algorithms in 

conjunction with process variables in a designed split-plot experiment as described in Cho 

(2010). 

Table 3.1 shows the proposed design 𝐴1 obtained using JMP at different combination 

mixture components at 22 factorial arrangement of process variable with CCD. We created 

the design using the D-optimal criteria discussed in section 3.2.2.1. A simplex centroid 

design was used in this design runs at both low and high levels of the remaining process 

variables since it allows for identifying component factors that are deemed unimportant. 

Further, this design includes replicates of the center point (𝑍1 = 𝑍2 = 0, 𝑥1 = 𝑥2 =  𝑥3 =

𝑥4 =
1

4
) that can be used to compute pure error estimates. This design also includes 

replicates at the axial point({𝑍1 = 0, 𝑍2 = −1}, {𝑍1 = 0, 𝑍2 = 1}, {𝑍1 = −1.414, 𝑍2 =

0}, {𝑍1 = 1.414, 𝑍2 = 0}, 𝑥1 = 𝑥2 =  𝑥3 = 𝑥4 = 0.25), 
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that makes the created design different form the one proposed by Cho (2010) and 

Njoroge et al. (2017). 

Table 3.1: The proposed design A1 obtained1using JMP version 15 at different 

combination mixture component at 22 factorial arrangement of process variable with 

CCD 

Run Whole plot 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 

1 1 0.25 0.25 0.25 0.25 -1 1 

2 1 0 0 0 1 -1 1 

3 1 0 1 0 0 -1 1 

4 1 0.25 0.25 0.25 0.25 -1 1 

5 1 0 0 1 0 -1 1 

6 1 1 0 0 0 -1 1 

7 2 0.25 0.25 0.25 0.25 1 -1 

8 2 0.25 0.25 0.25 0.25 1 -1 

9 2 0 0 1 0 1 -1 

10 2 0 1 0 0 1 -1 

11 2 0 0 0 1 1 -1 

12 2 1 0 0 0 1 -1 

13 3 0.5 0.5 0 0 1 1 

14 3 0.5 0 0.5 0 1 1 

15 3 0.5 0 0 0.5 1 1 

16 3 0 0.5 0 0.5 1 1 

17 3 0 0.5 0.5 0 1 1 

18 3 0 0 0.5 0.5 1 1 

19 4 0 0.5 0.5 0 -1 -1 

20 4 0.5 0.5 0 0 -1 -1 

21 4 0 0 0.5 0.5 -1 -1 

22 4 0.5 0 0.5  -1 -1 

23 4 0.5 0 0 0.5 -1 -1 

24 4 0.25 0.25 0.25 0.25 -1 -1 

25 5 0.25 0.25 0.25 0.25 0 0 

26 5 0.25 0.25 0.25 0.25 0 0 
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27 5 0.25 0.25 0.25 0.25 0 0 

28 5 0.25 0.25 0.25 0.25 0 0 

29 5 0.25 0.25 0.25 0.25 0 0 

30 5 0.25 0.25 0.25 0.25 0 0 

31 6 0.25 0.25 0.25 0.25 0 1 

32 6 0.25 0.25 0.25 0.25 0 1 

33 6 0.25 0.25 0.25 0.25 0 1 

34 6 0.25 0.25 0.25 0.25 0 1 

35 6 0.25 0.25 0.25 0.25 0 1 

36 6 0.25 0.25 0.25 0.25 0 1 

37 7 0.25 0.25 0.25 0.25 0 -1 

38 7 0.25 0.25 0.25 0.25 0 -1 

39 7 0.25 0.25 0.25 0.25 0 -1 

40 7 0.25 0.25 0.25 0.25 0 -1 

41 7 0.25 0.25 0.25 0.25 0 -1 

42 7 0.25 0.25 0.25 0.25 0 -1 

43 8 0.25 0.25 0.25 0.25 −1.414 0 

44 8 0.25 0.25 0.25 0.25 −1.414 0 

45 8 0.25 0.25 0.25 0.25 −1.414 0 

46 8 0.25 0.25 0.25 0.25 −1.414 0 

47 8 0.25 0.25 0.25 0.25 −1.414 0 

48 8 0.25 0.25 0.25 0.25 −1.414 0 

49 9 0.25 0.25 0.25 0.25 1.414 0 

50 9 0.25 0.25 0.25 0.25 1.414 0 

51 9 0.25 0.25 0.25 0.25 1.414 0 

52 9 0.25 0.25 0.25 0.25 1.414 0 

53 9 0.25 0.25 0.25 0.25 1.414 0 

54 9 0.25 0.25 0.25 0.25 1.414 0 

 

Table 3.2 shows the proposed design 𝐴2 obtained using JMP at different combination 

mixture components at 22 factorial arrangement of process variable with CCD. We 

formulated the design using the D-optimal criteria. In this design 𝐴2, a SCD also runs at 

both low and high level of the remaining process variable as in the case of design 𝐴1  in 
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Table 3.1. Further, this design includes the pure mixture blend and only two replicates of 

centroid point (𝑥1 = 𝑥2 =  𝑥3 = 𝑥4 =
1

4
) at center point (𝑍1 = 0, 𝑍2 = 0 ) of design. The 

inclusion of four pure mixture components at the center point of the design is what 

distinguishes design 𝐴1  from design 𝐴2. 

 

Table 3.2: The proposed design A21obtained using JMP version 15 at different 

combination mixture component at 𝟐𝟐 factorial arrangement of process variable with 

CCD 

Run Whole plot 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 

1 1 0.25 0.25 0.25 0.25 -1 1 

2 1 0 0 0 1 -1 1 

3 1 0 1 0 0 -1 1 

4 1 0.25 0.25 0.25 0.25 -1 1 

5 1 0 0 1 0 -1 1 

6 1 1 0 0 0 -1 1 

7 2 0.25 0.25 0.25 0.25 1 -1 

8 2 0.25 0.25 0.25 0.25 1 -1 

9 2 0 0 1 0 1 -1 

10 2 0 1 0 0 1 -1 

11 2 0 0 0 1 1 -1 

12 2 1 0 0 0 1 -1 

13 3 0.5 0.5 0 0 1 1 

14 3 0.5 0 0.5 0 1 1 

15 3 0.5 0 0 0.5 1 1 

16 3 0 0.5 0 0.5 1 1 

17 3 0 0.5 0.5 0 1 1 

18 3 0 0 0.5 0.5 1 1 

19 4 0 0.5 0.5 0 -1 -1 

20 4 0.5 0.5 0 0 -1 -1 

21 4 0 0 0.5 0.5 -1 -1 

22 4 0.5 0 0.5  -1 -1 

23 4 0.5 0 0 0.5 -1 -1 
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24 4 0.25 0.25 0.25 0.25 -1 -1 

25 5 1 0 0 0 0 0 

26 5 0 1 0 0 0 0 

27 5 0 0 1 0 0 0 

28 5 0 0 0 1 0 0 

29 5 0.25 0.25 0.25 0.25 0 0 

30 5 0.25 0.25 0.25 0.25 0 0 

31 6 0.25 0.25 0.25 0.25 0 1 

32 6 0.25 0.25 0.25 0.25 0 1 

33 6 0.25 0.25 0.25 0.25 0 1 

34 6 0.25 0.25 0.25 0.25 0 1 

35 6 0.25 0.25 0.25 0.25 0 1 

36 6 0.25 0.25 0.25 0.25 0 1 

37 7 0.25 0.25 0.25 0.25 0 -1 

38 7 0.25 0.25 0.25 0.25 0 -1 

39 7 0.25 0.25 0.25 0.25 0 -1 

40 7 0.25 0.25 0.25 0.25 0 -1 

41 7 0.25 0.25 0.25 0.25 0 -1 

42 7 0.25 0.25 0.25 0.25 0 -1 

43 8 0.25 0.25 0.25 0.25 −1.414 0 

44 8 0.25 0.25 0.25 0.25 −1.414 0 

45 8 0.25 0.25 0.25 0.25 −1.414 0 

46 8 0.25 0.25 0.25 0.25 −1.414 0 

47 8 0.25 0.25 0.25 0.25 −1.414 0 

48 8 0.25 0.25 0.25 0.25 −1.414 0 

49 9 0.25 0.25 0.25 0.25 1.414 0 

50 9 0.25 0.25 0.25 0.25 1.414 0 

51 9 0.25 0.25 0.25 0.25 1.414 0 

52 9 0.25 0.25 0.25 0.25 1.414 0 

53 9 0.25 0.25 0.25 0.25 1.414 0 

54 9 0.25 0.25 0.25 0.25 1.414 0 

 

Table 3.3 shows the proposed design 𝐴3 obtained using JMP, at different combination 

mixture components at 22 factorial arrangement of process variable with CCD. We also 
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created the design using the D-optimal criteria discussed in section 3.2.1. In this design 𝐴3, 

a simplex centroid design also runs at both low and high level of the remaining process 

variable as in the case of design 𝐴1 and 𝐴2. This design consists of all set of combination 

of the eleven point of the SCD plus the four simplex checkpoints for the four mixture 

blends. On the other hand, they are 22 factorial design with CCD plus center point (0, 0), 

axial point ((1,0), (0, 1), (−1, 0)) for the two process variables that makes it different from 

design A1 and A2. 

 

Table 3.3: The proposed design A31obtained using JMP version 15 at different 

combination mixture component at 𝟐𝟐 factorial arrangement of process variable with 

CCD 

 

Run Whole plot 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 

1 1 0.25 0.25 0.25 0.25 -1 1 

2 1 0 0 0 1 -1 1 

3 1 0 1 0 0 -1 1 

4 1 0.25 0.25 0.25 0.25 -1 1 

5 1 0 0 1 0 -1 1 

6 1 1 0 0 0 -1 1 

7 2 0.25 0.25 0.25 0.25 1 -1 

8 2 0.25 0.25 0.25 0.25 1 -1 

9 2 0 0 1 0 1 -1 

10 2 0 1 0 0 1 -1 

11 2 0 0 0 1 1 -1 

12 2 1 0 0 0 1 -1 

13 3 0.5 0.5 0 0 1 1 

14 3 0.5 0 0.5 0 1 1 

15 3 0.5 0 0 0.5 1 1 

16 3 0 0.5 0 0.5 1 1 

17 3 0 0.5 0.5 0 1 1 
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18 3 0 0 0.5 0.5 1 1 

19 4 0 0.5 0.5 0 -1 -1 

20 4 0.5 0.5 0 0 -1 -1 

21 4 0 0 0.5 0.5 -1 -1 

22 4 0.5 0 0.5  -1 -1 

23 4 0.5 0 0 0.5 -1 -1 

24 4 0.25 0.25 0.25 0.25 -1 -1 

25 5 1 0 0 0 0 0 

26 5 0 1 0 0 0 0 

27 5 0 0 1 0 0 0 

28 5 0 0 0 1 0 0 

29 5 0.25 0.25 0.25 0.25 0 0 

30 5 0.25 0.25 0.25 0.25 0 0 

31 6 1 0 0 0 0 1 

32 6 0 1 0 0 0 1 

33 6 0 0 1 0 0 1 

34 6 0 0 0 1 0 1 

35 6 0.25 0.25 0.25 0.25 0 1 

36 6 0.25 0.25 0.25 0.25 0 1 

37 7 1 0 0 0 0 -1 

38 7 0 1 0 0 0 -1 

39 7 0 0 1 0 0 -1 

40 7 0 0 0 1 0 -1 

41 7 0.25 0.25 0.25 0.25 0 -1 

42 7 0.25 0.25 0.25 0.25 0 -1 

43 8 0.25 0.25 0.25 0.25 −1.414 0 

44 8 0.25 0.25 0.25 0.25 −1.414 0 

45 8 0.25 0.25 0.25 0.25 −1.414 0 

46 8 0.25 0.25 0.25 0.25 −1.414 0 

47 8 0.25 0.25 0.25 0.25 −1.414 0 

48 8 0.25 0.25 0.25 0.25 −1.414 0 

49 9 0.25 0.25 0.25 0.25 1.414 0 

50 9 0.25 0.25 0.25 0.25 1.414 0 

51 9 0.25 0.25 0.25 0.25 1.414 0 

52 9 0.25 0.25 0.25 0.25 1.414 0 
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53 9 0.25 0.25 0.25 0.25 1.414 0 

54 9 0.25 0.25 0.25 0.25 1.414 0 

 

Table 3.4 shows the proposed design 𝐴4 obtained using JMP version at different 

combination mixture components at 22 factorial arrangement of process variable with 

CCD. We developed created the design using the D-optimal criteria. In this design 𝐴4 , a 

simplex centroid design also runs at both low and high level of the remaining process as in 

the case of design 𝐴1, 𝐴2, and 𝐴3. This design includes four pure mixture blends plus two 

replicates of (𝑥1 = 𝑥2 =  𝑥3 = 𝑥4 =
1

4
) at center point (𝑍1 = 0, 𝑍2 = 0 ) of design, 

permutation of binary mixture (0.5, 0.5, 0, 0) at axial point ((1,0), (0, 1), (0, −1)) for the 

two process variables and additional runs of overall SCD (0.25, 0.25, 0.25, 0.25) at axial 

point ((−1.414,0), (1.414, 0)) for one of the process variable (𝑍1) and this makes it 

different from design  𝐴1, 𝐴2, and 𝐴3. 
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Table 3.4: The proposed design A41obtained using JMP version 15 at different 

combination mixture component at 𝟐𝟐 factorial arrangement of process variable with 

CCD 

 

Run Whole plot 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 

1 1 0.25 0.25 0.25 0.25 -1 1 

2 1 0 0 0 1 -1 1 

3 1 0 1 0 0 -1 1 

4 1 0.25 0.25 0.25 0.25 -1 1 

5 1 0 0 1 0 -1 1 

6 1 1 0 0 0 -1 1 

7 2 0.25 0.25 0.25 0.25 1 -1 

8 2 0.25 0.25 0.25 0.25 1 -1 

9 2 0 0 1 0 1 -1 

10 2 0 1 0 0 1 -1 

11 2 0 0 0 1 1 -1 

12 2 1 0 0 0 1 -1 

13 3 0.5 0.5 0 0 1 1 

14 3 0.5 0 0.5 0 1 1 

15 3 0.5 0 0 0.5 1 1 

16 3 0 0.5 0 0.5 1 1 

17 3 0 0.5 0.5 0 1 1 

18 3 0 0 0.5 0.5 1 1 

19 4 0 0.5 0.5 0 -1 -1 

20 4 0.5 0.5 0 0 -1 -1 

21 4 0 0 0.5 0.5 -1 -1 

22 4 0.5 0 0.5  -1 -1 

23 4 0.5 0 0 0.5 -1 -1 

24 4 0.25 0.25 0.25 0.25 -1 -1 

25 5 1 0 0 0 0 0 

26 5 0 1 0 0 0 0 

27 5 0 0 1 0 0 0 
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28 5 0 0 0 1 0 0 

29 5 0.25 0.25 0.25 0.25 0 0 

30 5 0.25 0.25 0.25 0.25 0 0 

31 6 0.5 0 0.5 0 0 1 

32 6 0.5 0.5 0 0 0 1 

33 6 0.5 0 0 0.5 0 1 

34 6 0 0.5 0.5 0 0 1 

35 6 0 0.5 0 0.5 0 1 

36 6 0 0 0.5 0.5 0 1 

37 7 0.5 0 0.5 0 0 -1 

38 7 0.5 0.5 0 0 0 -1 

39 7 0.5 0 0 0.5 0 -1 

40 7 0 0.5 0.5 0 0 -1 

41 7 0 0.5 0 0.5 0 -1 

42 7 0 0 0.5 0.5 0 -1 

43 8 0.25 0.25 0.25 0.25 −1.414 0 

44 8 0.25 0.25 0.25 0.25 −1.414 0 

45 8 0.25 0.25 0.25 0.25 −1.414 0 

46 8 0.25 0.25 0.25 0.25 −1.414 0 

47 8 0.25 0.25 0.25 0.25 −1.414 0 

48 8 0.25 0.25 0.25 0.25 −1.414 0 

49 9 0.25 0.25 0.25 0.25 1.414 0 

50 9 0.25 0.25 0.25 0.25 1.414 0 

51 9 0.25 0.25 0.25 0.25 1.414 0 

52 9 0.25 0.25 0.25 0.25 1.414 0 

53 9 0.25 0.25 0.25 0.25 1.414 0 

54 9 0.25 0.25 0.25 0.25 1.414 0 

 

Table 3.5 shows the proposed design 𝐴5 obtained using JMP version 15 at different 

combination mixture components at 22 factorial arrangement of process variable with 

CCD. We developed created the design using the D-optimal criteria discussed in chapter 

two. In this design 𝐴5, a simplex centroid design also runs at both low and high level of 
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the remaining process as in the case of design  𝐴1, 𝐴2, 𝐴3 and 𝐴4.  This design includes 

four pure mixture blends plus eight replicates of (𝑥1 = 𝑥2 =  𝑥3 = 𝑥4 = 0.25) at center 

point (𝑍1 = 0, 𝑍2 = 0 ) of design, permutation of binary mixture (0.5, 0.5, 0, 0) at axial 

point (0, 1) for the two process variables and additional runs of overall SCD 

(0.25, 0.25, 0.25, 0.25) at axial point ((−1.414,0), (1.414, 0)) for one of the process 

variable (𝑍1)  which makes also different from the case of design  𝐴1, 𝐴2, 𝐴3 and 𝐴4.      

 

Table 3.5: The proposed design A51obtained using JMP version 15 at different 

combination mixture component at 𝟐𝟐 factorial arrangement of process variable with 

CCD 

 

Run Whole plot 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 

1 1 0.25 0.25 0.25 0.25 -1 1 

2 1 0 0 0 1 -1 1 

3 1 0 1 0 0 -1 1 

4 1 0.25 0.25 0.25 0.25 -1 1 

5 1 0 0 1 0 -1 1 

6 1 1 0 0 0 -1 1 

7 2 0.25 0.25 0.25 0.25 1 -1 

8 2 0.25 0.25 0.25 0.25 1 -1 

9 2 0 0 1 0 1 -1 

10 2 0 1 0 0 1 -1 

11 2 0 0 0 1 1 -1 

12 2 1 0 0 0 1 -1 

13 3 0.5 0.5 0 0 1 1 

14 3 0.5 0 0.5 0 1 1 

15 3 0.5 0 0 0.5 1 1 

16 3 0 0.5 0 0.5 1 1 

17 3 0 0.5 0.5 0 1 1 

18 3 0 0 0.5 0.5 1 1 

19 4 0 0.5 0.5 0 -1 -1 
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20 4 0.5 0.5 0 0 -1 -1 

21 4 0 0 0.5 0.5 -1 -1 

22 4 0.5 0 0.5  -1 -1 

23 4 0.5 0 0 0.5 -1 -1 

24 4 0.25 0.25 0.25 0.25 -1 -1 

25 5 1 0 0 0 0 0 

26 5 0 1 0 0 0 0 

27 5 0 0 1 0 0 0 

28 5 0 0 0 1 0 0 

29 5 0.25 0.25 0.25 0.25 0 0 

30 5 0.25 0.25 0.25 0.25 0 0 

31 6 0.5 0 0.5 0 0 1 

32 6 0.5 0.5 0 0 0 1 

33 6 0.5 0 0 0.5 0 1 

34 6 0 0.5 0.5 0 0 1 

35 6 0 0.5 0 0.5 0 1 

36 6 0 0 0.5 0.5 0 1 

37 7 0.25 0.25 0.25 0.25 0 0 

38 7 0.25 0.25 0.25 0.25 0 0 

39 7 0.25 0.25 0.25 0.25 0 0 

40 7 0.25 0.25 0.25 0.25 0 0 

41 7 0.25 0.25 0.25 0.25 0 0 

42 7 0.25 0.25 0.25 0.25 0 0 

43 8 0.25 0.25 0.25 0.25 −1.414 0 

44 8 0.25 0.25 0.25 0.25 −1.414 0 

45 8 0.25 0.25 0.25 0.25 −1.414 0 

46 8 0.25 0.25 0.25 0.25 −1.414 0 

47 8 0.25 0.25 0.25 0.25 −1.414 0 

48 8 0.25 0.25 0.25 0.25 −1.414 0 

49 9 0.25 0.25 0.25 0.25 1.414 0 

50 9 0.25 0.25 0.25 0.25 1.414 0 

51 9 0.25 0.25 0.25 0.25 1.414 0 

52 9 0.25 0.25 0.25 0.25 1.414 0 

53 9 0.25 0.25 0.25 0.25 1.414 0 

54 9 0.25 0.25 0.25 0.25 1.414 0 
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Table 3.6: The proposed design A61obtained using JMP version 15 at different 

combination mixture component at 𝟐𝟐 factorial arrangement of process variable with 

CCD 

 

Run Whole plot 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 

1 1 0.25 0.25 0.25 0.25 -1 1 

2 1 0 0 0 1 -1 1 

3 1 0 1 0 0 -1 1 

4 1 0.25 0.25 0.25 0.25 -1 1 

5 1 0 0 1 0 -1 1 

6 1 1 0 0 0 -1 1 

7 2 0.25 0.25 0.25 0.25 1 -1 

8 2 0.25 0.25 0.25 0.25 1 -1 

9 2 0 0 1 0 1 -1 

10 2 0 1 0 0 1 -1 

11 2 0 0 0 1 1 -1 

12 2 1 0 0 0 1 -1 

13 3 0.5 0.5 0 0 1 1 

14 3 0.5 0 0.5 0 1 1 

15 3 0.5 0 0 0.5 1 1 

16 3 0 0.5 0 0.5 1 1 

17 3 0 0.5 0.5 0 1 1 

18 3 0 0 0.5 0.5 1 1 

19 4 0 0.5 0.5 0 -1 -1 

20 4 0.5 0.5 0 0 -1 -1 

21 4 0 0 0.5 0.5 -1 -1 

22 4 0.5 0 0.5  -1 -1 

23 4 0.5 0 0 0.5 -1 -1 

24 4 0.25 0.25 0.25 0.25 -1 -1 

25 5 0.25 0.25 0.25 0.25 0 0 
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26 5 0.25 0.25 0.25 0.25 0 0 

27 5 0.25 0.25 0.25 0.25 0 0 

28 5 0.25 0.25 0.25 0.25 0 0 

29 5 0.25 0.25 0.25 0.25 0 0 

30 5 0.25 0.25 0.25 0.25 0 0 

31 6 0.5 0 0.5 0 0 -1 

32 6 0.5 0.5 0 0 0 -1 

33 6 0.5 0 0 0.5 0 -1 

34 6 0 0.5 0.5 0 0 -1 

35 6 0 0.5 0 0.5 0 -1 

36 6 0 0 0.5 0.5 0 -1 

37 7 0.25 0.25 0.25 0.25 0 0 

38 7 0.25 0.25 0.25 0.25 0 0 

39 7 0.25 0.25 0.25 0.25 0 0 

40 7 0.25 0.25 0.25 0.25 0 0 

41 7 0.25 0.25 0.25 0.25 0 0 

42 7 0.25 0.25 0.25 0.25 0 0 

43 8 0.25 0.25 0.25 0.25 −1.414 0 

44 8 0.25 0.25 0.25 0.25 −1.414 0 

45 8 0.25 0.25 0.25 0.25 −1.414 0 

46 8 0.25 0.25 0.25 0.25 −1.414 0 

47 8 0.25 0.25 0.25 0.25 −1.414 0 

48 8 0.25 0.25 0.25 0.25 −1.414 0 

49 9 0.25 0.25 0.25 0.25 1.414 0 

50 9 0.25 0.25 0.25 0.25 1.414 0 

51 9 0.25 0.25 0.25 0.25 1.414 0 

52 9 0.25 0.25 0.25 0.25 1.414 0 

53 9 0.25 0.25 0.25 0.25 1.414 0 

54 9 0.25 0.25 0.25 0.25 1.414 0 

 

Table 3.6 shows the proposed design 𝐴6 obtained using JMP at different combination 

mixture components at 22 factorial arrangement of process variable with CCD. We 

developed created the design using the D-optimal criteria. In this design 𝐴6, a simplex 
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centroid design also runs at both low and high level of the remaining process as in the case 

of design  𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5. This design includes twelve replicates of 

(𝑥1 = 𝑥2 =  𝑥3 = 𝑥4 = 0.25) at center point (𝑍1 = 0, 𝑍2 = 0 ) of design, permutation of 

binary mixture (0.5, 0.5, 0, 0) at star point (0, −1) for the two process variables and 

additional runs of overall SCD (0.25, 0.25, 0.25, 0.25) at axial point 

((−1.414,0), (1.414, 0)) for one of the process variable (𝑍1) as in the case of design  𝐴1, 

𝐴2, 𝐴3, 𝐴4 and 𝐴5.   

3.2.4 Evaluation of MPV Design with Split Plot Structure 

The analysis of the MPV design experiment within SPD is addressed in this section. When 

selecting the appropriate design, FDS plots for an MVP design within an SPD are 

developed and demonstrated for visual examination and evaluation. Besides, sliced fraction 

design space plots demonstrate the effect of mixture and process variables on prediction 

variance over the experimental area. 

3.2.4.1 Prediction Variance for MPVD with a Split Plot Structure 

The predicted expected response at any location 𝑥0 as described by Goldfarb et al. (2004) 

is given by  

 휁(𝑥0) = 𝑥0
′ �̂�∗ (3.12) 

where 𝑥0 is the point of interest in the experimental region, �̂�∗ denotes the vector of fixed 

effects resulting from mixture process variable settings and 휁(𝑥0) = �̂�(𝑥0). Therefore, 

prediction variance at 𝑥0 now given as 

 

 𝑉𝑎𝑟(휁(𝑥0)) = 𝑥0
′  (𝑋′𝑉−1𝑋)−1𝑥0 (3.13) 
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Furthermore, Cho (2010) pointed out that when the design is completely randomized, the 

covariance matrix 𝑉 = 𝜎2𝐼  is used because the best design for predicting variance is 

determined solely by the design space. Furthermore, because of the different sources of 

error in the SPD, the covariance matrix becomes more complex than the general form of V 

described by Cornell (2011). SPD prediction variance is a function of the variance 

component ratio given by whole plot space error variance and split plot space error 

variance, as well as the experimental region x. 

We take prediction variance as an objective to examine and evaluate the design. The 

prediction variance is scaled by the variance observation error to make the quantity scale-

free and, by design, size to penalize larger design. According to Liange et al. [15], the 

scaled predicted variance (SPV) for the split-plot structure is calculated by multiplying the 

prediction variance by the total number of runs, N, and then dividing by the observational 

error variance. As a result, the scaled prediction variance for SPDs is 

 

 
𝑆𝑃𝑉 =

𝑁𝑥0
′  (𝑋′𝑉−1𝑋)−1𝑥0

𝜎𝛿
2 + 𝜎2

= 𝑥0
′  (𝑋′𝐷−1𝑋)−1𝑥0 

(3.14) 

 

where 𝐷 = diagonal {𝐷1, … , 𝐷𝑛}. 𝐷𝑖 represents the correlation matrix of observations 

within plot 𝑖 as a whole. 

The size of the design in split-plot designs is not nearly related to the cost because the 

number of observations in SPDs is not the number of setups required to collect the data 

described by Cho (2010). The variance of the approximated means response divided by the 

variance of observational error (𝜎𝛿
2 + 𝜎2)  is modeled as given by  
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Predicted Variance =

𝑥0
′  (𝑋′𝑉−1𝑋)−1𝑥0

𝜎𝛿
2 + 𝜎2

= 𝑥0
′  (𝑋′𝐷−1𝑋)−1𝑥0, 

(3.15) 

 

Furthermore, in a split-plot design, unscaled variance is a valid alternative to scaled 

prediction variance, as reported by Cornell (2011). 

3.2.4.2  Fraction Design Space Plots for MPV Design within SPD 

Various methods involving prediction variance have been proposed in MPV Design to 

examine and evaluate a design's prediction performance. Zahran et al. (2003) proposed a 

fraction design space plot. When constructing the FDS plots, the scaled predicted variance 

is computed throughout the design space. Furthermore, the fraction of the experimental 

region that is less than or equal to a given SPV value is calculated. We develop FDS plots 

for mixture and mixture process variable designs. Design points are generated at random 

within the experimental region's constraints. The minimum scaled predicted variance is 

then plotted at a design space fraction of zero, while the maximum is plotted at a fraction 

of one. A desirable design starts with a small SPV and has a relatively flat slope on a cross-

section of the fraction design space plot. 

3.2.4.3  Sliced Fraction Design Space Plots for MPVD within SPD 

In this section we discuss how sliced FDS plots were developed. We created Sliced fraction 

design space plots to examine the prediction variance distribution across the subplot region 

at different whole plot shrinkage levels.  Furthermore, random points were generated 

throughout the subplot space at each whole plot shrinkage level from to one (in steps of 

0.1) depending on the variance component ratio, 𝑑. 
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 However, sliced FDS plots can also be constructed at different subplot shrinkage levels if 

one is interested in trends in the entire plot region for a given subplot shrinkage level. 

Furthermore, the sliced fraction design space plot provides the maximum scaled predicted 

variance value at each shrinkage level for the whole plot or split-plot used to build sliced 

FDS. It is preferable to keep the scaled predicted variance as small as possible. These sliced 

FDS also show how two regions, whole plot or split-plot, contributed to the change scaled 

predicted variance value.  

The sliced FDS plot was employed with different whole plot shrinkage levels since the 

whole plot location has a more significant impact on the SPV value than the split-plot 

location. Typically, this occurs when the fraction design space "slices" are spaced far apart, 

even though changing the entire plot location is insufficient to affect the SPV value 

significantly. However, if the sliced fraction design space plots start from a similar 

minimum scaled predicted variance and are evenly distributed, changes in the SPV values 

balance the two regions' contribution. In other words, the length of the plots represents the 

effect of the entire plot region on the SPV values, whereas the slope of the fraction design 

space plot represents the effect of the split-plot space on the SPV values. 

Furthermore, we analyzed the sliced FDS plot by constructing the FDS plot with a different 

variance component ratio, d, at the desired shrinkage level. These sliced fraction design 

spaces show SPV trends by changing the variance component ratio at a specific shrinkage 

of the whole plot or split-plot.  

3.2.6  Evaluation of a Desirable Design for MPV within SPD 

Using design criteria as discussed in Chapter two in this research is to find an appropriate 

experimental design that allows for efficient parameter vector estimation in the model 3.6. 
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We use the D- optimality criterion to find such a desirable design to fit the model, which 

seeks a design that minimizes the parameter estimates' generalized variance. Normally, the 

D- optimal criterion relies on ratio, 𝑑 =
𝜎𝛿
2

𝜎2
⁄ , of the two observational variance 

components (whole plot error variance denoted by 𝜎𝛿
2 and split plot error variance 

represented by 𝜎2) through covariance matrix 𝑉. To find the best appropriate design, we 

compare the alternative different design option (𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐴6) in this research 

and report relative D-, A-, G-, I- or V- efficiency where 𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐴6 denotes 

the model matrices of six different designs option. We evaluate and compare SPD options 

based on D−, A−, G−, I −  or V − optimality criterion performance. In this case, however, 

the A-optimal criterion seeks to reduce the mean-variance of the parameter estimates. On 

the other hand, as mentioned above, G-optimal design seeks to reduce forecast variability, 

 𝑀𝑎𝑥
(𝑍, 𝑎) ∈ 𝜒

 ℎ′(𝑍, 𝑎)(𝑋′𝑉−1𝑋) −1ℎ(𝑍, 𝑎), 
(3.16) 

Over the region of interest 𝜒 where 𝑍, and 𝑎 represents the two process variables, and four 

mixture components (𝑥1, 𝑥2, 𝑥3, 𝑥4), respectively. However, I- or V- optimal in this case 

minimizes the average forecast variance of that test region: 

 
𝑎𝑣𝑔 

𝑀𝑎𝑥
(𝑍, 𝑥) ∈ 𝜒

 ℎ′(𝑍, 𝑥)(𝑋′𝑉−1𝑋)−1 ℎ(𝑍, 𝑥). 
(3.17) 

Therefore, we report A, G and V relative efficiency of six designs with model matrices 

𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5 and 𝐴6 are then computed as 

 

 𝑡𝑟𝑎𝑐𝑒(𝐴𝑛
′ 𝑉−1𝐴𝑛)

−1

𝑡𝑟𝑎𝑐𝑒(𝐴𝑛−1
′ 𝑉−1𝐴𝑛−1)−1

, 

 

(3.18) 
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 𝑀𝑎𝑥
(𝑍, 𝑎) ∈ 𝜒

 ℎ′(𝑍, 𝑎)(𝐴𝑛
′ 𝑉−1𝐴𝑛) 

−1ℎ(𝑍, 𝑎)

𝑀𝑎𝑥
(𝑍, 𝑎) ∈ 𝜒

 ℎ′(𝑍, 𝑎)(𝐴𝑛−1
′ 𝑉−1𝐴𝑛−1) −1ℎ(𝑍, 𝑎)

, 

 

(3.19) 

and  

 

 

𝑎𝑣𝑔
𝑀𝑎𝑥

(𝑍, 𝑎) ∈ 𝜒
 ℎ′(𝑍, 𝑎)(𝐴𝑛

′ 𝑉−1𝐴𝑛) 
−1ℎ(𝑍, 𝑎)

𝑎𝑣𝑔 
𝑀𝑎𝑥

(𝑍, 𝑎) ∈ 𝜒
 ℎ′(𝑍, 𝑎)(𝐴𝑛−1

′ 𝑉−1𝐴𝑛−1) −1ℎ(𝑍, 𝑎)
, 

(3.20) 

respectively, where 𝑛 = 1,2, … ,6. Furthermore, G- and I- efficiency are calculated by 

exploring and evaluating the predictive variance at the design space's point. However, for 

an accurate evaluation of the different options competing for test designs, the grid must 

often cover the boundaries of the test area and its interior, as described by Goose and Donev 

(2007).  

Furthermore, the reported relative D-, A-, G-, V- or I-performance multiple values are 

defined to indicate progress in design with the sample matrix 𝑋𝑛. This is because the 

relative efficiency depends on the value of 𝑑 =
𝜎𝛿
2

𝜎2
⁄ . We, therefore, employed  𝑑 values, 

𝑑 = 0.5, 𝑑 = 1.0 and 𝑑 = 1.5 to evaluate the different design options in this thesis where 

design 𝐴1 and 𝐴2 used 𝑑 = 0.5, design 𝐴3 and 𝐴4 applied 𝑑 = 1.0, and finally design 𝐴5 

and 𝐴6 𝑑 = 1.5, but with modification of runs at axial point and center point of each design 

in order to make them unique and have clear distinction from each design created though 

all the six designs have some combination of mixture components that both runs at both 

low and high level of the remaining process variables. 

Therefore, with these facts we report the relative efficiencies using 𝑑 value 0.5, 1 and 1.5 

in order to evaluate design option (𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6). The relative efficiencies of D-
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, A-, G-, I- optimality criteria were computed using the formula described in Iwundu (2017) 

which also implemented in JMP software. We believe that SPDs often cause such small or 

large variance component ratings with few whole plot structure, and as a result, the worst 

estimate of the whole plot error variance. Therefore, for this reason, we have increased the 

number of total number of whole plot to nine compared to the seven whole plot used by 

Njoroge et al. (2017) when evaluating two different design options. 

However, design A4 was found desirable in fitting model 3.5 based on the results reported 

on FDS plots and design optimality criteria discussed in Chapter four. We therefore, used 

design A4 in conjunction with model 3.6 in modeling the yield of Glycine max as discussed 

in section 3.3. 

3.3 Employing the Modified MPV Model in Predicting the Yield of Glycine Max 

Reasonable Split-Plot And Main Plot Errors  

 

This section outlines the steps involves in modeling the yield of Glycine max within an 

optimal split-plot design in the context MPV setting taking into account SCD and how two 

sources of errors that arise from SPD are evaluated. 

3.3.1 Data Source 

They were two sources data where one was primarily collected from the field of experiment 

in consideration with use of SPD in the context of MPV settings and the other was 

simulated data based on (4, 2) SCD with the split-plot structure experiments. The data 

consist of eight response measurements obtained from Glycine max (L.) Merrill after the 

soybean varieties were subjected to different types of MPV treatments subject to SPD 

layout developed MPV design. These eight responses measured include the number of 
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branches per plant (𝑌1), number of pods on branches (𝑌2), pods per branch (𝑌3), pods on 

the main stem (𝑌4), entire pods per plants(𝑌5), number of seeds per plant (𝑌6), seeds per 

pod (𝑌7), and yield of seeds in grams per plant (𝑌8). The mixture settings included four 

components 𝑥1, 𝑥2, 𝑥3, and 𝑥4, derived from different organic matter varieties, which 

represent goat manure, cow manure, chicken manure, and sheep manure, respectively. The 

process variable in the model were 𝑍1 and 𝑍2 where 𝑍1 the control is process variable 

(seeding rate (seeds per acre) at a constant row spacing of Glycine max seed) and 𝑍2 is the 

noise process variable (soil PH).  The mixtures were the subplots and process variables the 

whole plots.  

3.3.2 Description of Experimental Sites 

The study was conducted in Spande and Munge's villages in Kakamega County, Mautuma 

Ward, Lugari Sub-District, and Western Kenya as shown in Figure 3.4. Both sites are about 

8 km apart. The two regions lie between (0.7063730 𝑁, 35.07220 𝐸) 

and (0.6953660 𝑁, 35.0280220 𝐸), with an elevation of between 1800 and 1900 m above 

sea level, respectively. The region receives bimodal rains with an annual mean 

precipitation of about 1971 mm, and an annual mean temperature of about 20. 40𝑐, as 

reported by Althof (2005) and Mbau et al. (2015). Additionally, prolonged rain usually 

occurs between April and July, while short precipitation occurs between August and 

December, as described by Mbau et al. (2015). Further, the reliability growth period for 

Glycine max (L.) Merrill lies between 75 and 140 days (Jaetzold et al., 2005). 

Further, as Isaev et al. (2020), the best period for sowing Glycine max is when the 

temperature in the 0 − 10 𝑐𝑚 layer of soil is about 12 − 140 𝑐. According to Tsikhungu 

(2016), the Lugari sub-county grounds are predominantly well-drained deep red to dark, 



119 
 

 
 

sandy loams to sandy clays that are not very fertile. Still, well-drained soils, with 

moderately to slightly condition with soil PH, lie between 5.3 to 5.9. However, some part 

of this region contains low inherent fertility as evidenced by low amounts of Nitrogen, soil 

organic carbon and exchangeable base as described by Mbau et al. (2015). The 

experimental site encompasses farmlands adjacent to the Lugari forest. The area was 

initially inhabited by a sparse population of former forest residence communities who 

practiced shifting cultivation, hunting, and gathering. The study sites have a settlement 

history dating more than a hundred years with relatively intensive sedentary mixed 

subsistence agriculture as reported by Kimetu et al. (2006) for over the last sixty years. 

Pender et al. (2006) found that landholding per household has reduced drastically because 

of the high population growth rate and immigration into the area. 

 

Figure 3.4: The map of Lugari Sub County in Kakamega County where the experiment was 

carried out (Tsikhungu, 2016). 

.  
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Currently, most agricultural land is characterized by low soil fertility, low crop yields, and 

low farm income (Mbau et al., 2015). However, cereals (maize), legumes (beans), and 

sugarcane have become the primary crops, with most fields described by Tsikhungu (2016). 

3.3.3 Composting Farmyard Manure through the Framework of Mixture Design 

Four agro-organic wastes commonly found in the test sites were selected for our study. The 

selection criteria for the required farm manure (FYM) obtained from livestock were based 

on the region's availability of material. FYM includes goat manure, chicken manure, sheep 

manure, and cow manure derived from the Spande farm. Compound composting was done 

using the pit method using the structure of the mixture design under control  

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1 

in reference to Figure 3.3. They were 11 composite pit sites as shown in Figure 3.5, 3.6, 

3.7, 3.8, 3.9, and 3.10. The first four pit sites comprised only one major organic waste 

applied at permutation of (0,1,0,0) from the mixture components either 𝑥1, 𝑥2, 𝑥3 or 𝑥4 

while the rest of materials aiding for formation of pit remaining unchanged across all the 

11 composite pit sites. Secondly, the 6 other pit sites formed at permutation of binary 

mixture of (0.5, 0.5,0,0) of 𝑥1, 𝑥2, 𝑥3 and 𝑥4 with other material used remaining constant. 

Finally, the composite pit in site 11 as shown in Figure 3.10 generated using the overall 

simplex centroid design (SCD) of (0.25, 0.25, 0.25, 0.25). The total organic manure from 

the four major components applied in each 11 compost pit sites was 100 𝐾𝑔 (𝑥1 + 𝑥2 +

𝑥3 + 𝑥4 = 100). Therefore, this implies that the first four pit consists 100 % of either 

𝑥1, 𝑥2, 𝑥3 or 𝑥4 which means that if 𝑥4 = 100 𝐾𝑔, then 𝑥1 = 𝑥2 = 𝑥3 = 0. Secondly, the 

other six pits in Figure 24, 25, and 26 implies that each pit site constitute two the 
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permutation of the major organic waste of either 𝑥1, 𝑥2, 𝑥3 or 𝑥4 at each 50 %, which 

therefore, means if 𝑥4 = 50 𝐾𝑔, 𝑥1 = 50𝐾 𝑔, then 𝑥2 = 𝑥3 = 0.  Lastly, the 11 pit sites 

imply that all the four components are applied at each 25 % of the total manure for the 

ingredients present and in this case is  (𝑥1 = 𝑥2 = 𝑥3 = 𝑥4 = 25 𝐾𝑔).  

According to the literature, we used the pit method (Agromisa et al., 2005, Mbau et al., 

2008). Further, 11 pits, each measuring 3 × 3 × 2 𝑚, were dug in the ground with a garden 

shovel in preparation for compositing. Lining the hole was made using masonry lining and 

packing in the sides and bottom of the hole to avoid the sides crumbling down into the pit. 

We first shredded large and bulky dry materials applied at equal proportion in all the 11 

composite pit sites to smaller pieces about 3 cm long to enhance decomposition rate. 

Layering within each of the eleven composite pits was done to a thickness of 20 cm.  

Ingredients were stacked in a mixed pile starting with dry grass, followed by a layer of 

vegetable waste and a layer of organic manure such as soil, goat, poultry, and sheep, all 

mixed with dirt and ash at the above relative ratio. Ash, in this case, helps to maintain the 

neutrality of the compost by decomposing the material in the compost pile, which may 

become somewhat acidic, so wood ash can help compensate for this as it is more alkaline. 

On the other hand, the soil was added to a decomposed compost pile to help the pile break 

down faster as it is rich in microbial activity. For example, a teaspoon may contain 100 

million bacteria and 400 to 800 feet of fungal thread, so adding soil also stimulates 

microbes to speed up the process and help keep insects at bay while the fruit is flying. Then 

flies can become a problem in a compost pile, especially in late spring and summer (Mbau 

et al., 2008). The compost pile was created basing on Jeavon's (2001) suggestion, who 

proposed a compost pile with 45 % dry material, 45 % green material, and 10 % soil.  
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However, three liters of water were sprinkled at the top of each pit to moisten the materials 

since composite need moisture between 40-60 % to multiply the beneficial microbes within 

the pile. This process was repeated for each of the eleven pits till there were about ten 

layers. Furthermore, dry grass was used to cover each of the 11 pits to ensure proper 

aeration and reduce moisture loss. The heaps for FYM were composited for not less than 

eight weeks. Turning decaying material in each of the 11 pits was done after every two 

weeks using a shovel to enhance and facilitate even decomposition. Approximately 10 

liters of water were sprinkled during the turning of each cavity to keep the pile moist. These 

compost pits were then cured for another period of four weeks and sieved using 5 mm in 

readiness for planting and did this after all the composts become brown and crumbly with  

an earthy smell, which implies that the composite manure was ready to plant. 

 

Figure 3.5: Only Sheep and Chicken manure considered for site 1 and 2, respectively 

 

 

Figure 3.6: Only Cow manure and Goat manure considered for site 3 and 4, respectively 
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Figure 3.7: Both cow and Goat, Sheep and Goat manure were considered for site 4 and 6, 

respectively 

 

 

 

Figure 3.8: Both chicken and Goat manure considered in this case 

 

 

 

 

Figure 3.9: both chicken and Cow, Sheep and Cow manure were considered for site 9 and 10, 

respectively 
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Figure 3.10: All the four-manure component considered  

3.3.4 Treatment combinations Manure through of MPV within SPD Context 

Field trials were performed on two farms. The experiment was carried out using a well 

randomized complete block in a split-plot arrangement with replication, as shown in Figure 

3.3. The split-plot structure comprised nine whole plots, with each field having six sub-

plot treatments.  Each plot's plot size was 95.5 𝑓𝑡 ×  170 𝑓𝑡, while each experimental 

subplot unit was 15.5 𝑓𝑡 ×  50 𝑓𝑡.  Split plot treatments were applied based on the 

proposed design in Figure 3.2 using composite compost manure from the 11 compost pits. 

They were four lime treatments (0, 1.7, 5, and 15 − ton a𝑔𝑙𝑖𝑚𝑒 /𝑎𝑐𝑟𝑒) being applied to 9 

main plots with at least twice at axial part as shown below with correspondence of soil  pH 

obtained after the application. 
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Table 3.7: The scaled seeding rate (𝒁𝟏)1and soil PH (𝒁𝟐) according to 𝟐𝟐 factorial 

design with CCD 

Whole 

plot 

Lime 

application 

(tons/ acre) 

Row 

spacing 

(inches) 

Un coded 

𝑍1 

Un coded 

𝑍2 

Coded 

𝒁𝟏 

Coded  

𝒁𝟐 

1 15 25 125000 7.0 -1 1 

2 1.7 15 225000 6.0 1 -1 

3 15 15 225000 7.0 1 1 

4 1.7 25 125000 6.0 -1 -1 

5 5 20 175000 6.5 0 0 

6 15 20 175000 7.0 0 1 

7 1.7 20 175000 6.0 0 -1 

8 0 30 100000 5.4 -1.414 0 

9 0 10 275000 5.4 1.414 0 

 

After initial testing of soil pH at the farm was 5.4, we prepared five different soils for 

selected plant growth at optimal pH values, as shown in Table 3.7, as shown in Figure 3.11 

of the guided soil pH chart. PH chosen deals from the initial 5.4 pH of the soil using a 

control method according to the literature (Brown et al., 2008; De Bruin & Peterson, 2008; 

Thompson et al., 2016): 



126 
 

 
 

 

 

Figure 3.11:  The soil pH chart indicating the ideal PH range for plant growth (Acid Soil 

Management, 2000) 

 The whole plots consisted of five primary seeding rates (100000, 125000, 175000, 225000, 

and 275 000 seeds per acre) applied to sub-plot experimental units taking into account row 

spacing whole plot as shown in Table 3.7.  According to the literature review, we used the 

seeding rate and row spacing (De Bruin and Pedersen, 2008). The Glycine max varieties 

were R 184, and Blyvoor was planted on April 24th, 2020. The seeds were first inoculated 

with Bradyrhizobium Japonicum, and each subplot was grown using row spacing specified 

in Table 3.7 and 1- inch depth. Plots were harvested on August 27th, 2020. Grain yields 

obtained were then adjusted to 13 % moisture.  .   

3.3.5 Soil Sample Analysis 

We randomly picked soil samples from four points on each of the two farms: Spande and 

Munge using soil augers to a depth of 20 cm. The two farms were labeled Farm A and B, 
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respectively, with one reference GPS, co-ordinate N 0042’20.064’’ E 350 0’4.74’’, 

defining only Munge village Mautuma ward, Lugari sub-county, Kakamega County. The 

soil picked was mixed correctly for each site. Two composite samples were taken for 

laboratory analysis at Kenya Agricultural and Livestock Research Organization (KALRO) 

located at Alupe, Busia County, and Western Kenya. Soil sample analysis from the two 

experimental sites gave the following result shown in Table 3.8.  The pH of Soil at Spande 

and Munge Farm is 5.4 and 6.0, respectively.  The PH of 6.0 indicates that the soil at Munge 

is weakly acidic and is within the optimum ranges. In contrast, a pH of 5.4 for Spande 

means that the ground is at the critical value for acidic soil and is within the optimum 

ranges for pH values for most crops to grow since most crop nutrients are available between 

pH of 5.4 and 7.0. Also, 0.1 % N means the soil is deficient in the nutrient since the 

deficiency level is any value below 0.2%  at Munge (Mbau et al., 2008).  On the other 

hand, 9.33 − 10.1 𝑝𝑝𝑚 indicates that phosphorous is deficient at the site since minimum 

level 30 ppm.  1.1 − 1.3 me % for potassium means the nutrient is adequate since any value 

below 0.24 is deficient. 2.2 me % for Calcium means the nutrient is adequate since any 

values below 2.0 for Calcium are deficient. Therefore, the Calcium nutrient in Spande Farm 

is deficient. 6.2 me % for Magnesium means Mg is adequate. Any values below 1.0 me % 

mean inadequacy. 0.2 % for Organic carbon level means the soil has deficient organic 

carbon. Any values below 1.33 are low. Therefore, according to the literature: Liming is 

recommended since both magnesium and calcium levels are below the critical levels 

needed. We should apply the mixture of Agricultural Calcitic and dolomitic lime at the rate 

of 300 kg per acre. Further, phosphate fertilizers like D.A.P during planting while 
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nitrogenous fertilizers like C.A.N should be used for topdressing to introduce nitrogen to 

the soil. 

Table 3.8: Soil analysis from the two1sites (KALRO June 17Th 2020, Maddo, Lab. No. 

556/20 (A), 557/20 (B) 

 

Study 

site 

PH 

(1: 2.5) 

N 

(%) 

P 

(ppm) 

K  

(𝑚𝑒 %) 

Ca  

(𝑚𝑒 %) 

Mg 

(𝑚𝑒 %) 

Organic 

Carbon 

% 

Sand 

% 

Silt 

% 

Clay 

ST 

Spande 

farm A 

5.4 0.5 9.3 1.1 1.2 0.2 0.4 5 57 38 SL 

Munge 

farm B 

6.0 0.1 10.1 1.3 2.2 6.2 0.2 4 42 54 SL 

*SL= Silty Loam, ST= Soil type 

Lastly, we should apply farmyard manure, green manure, compost, and green manure cover 

crops to raise the organic matter to the soil (Mbau et al., 2008; Wanyama, 2013). Therefore, 

the development of design A4 is shown in Table 3.4 and Figure 3.3 based on these two 

farms' soil sample analyses 

 

3.3.6 Exploration and Estimation of Parameters for MPV within Split Plot Layout 

This section outlines how the parameters in model (3.7) can be estimated using Ordinary 

Least Square (OLS),  Maximum likelihood (ML), Restricted Maximum likelihood, 

Bayesian method and Expectation Maximization Algorithm (EMA) thus enabling to 

evaluate the two sources errors (WPE and SPE) arising from split-plot design. 

3.3.6.1 Maximum Likelihood and Ordinary Least Square Method 

Estimation of the two parameters in model 3.7 using OLS and ML is based on following 

two cases 
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Case 1: Known covariance (𝚺)  for estimation of 𝜽 and 𝜹 

(i) Known covariance (Σ)  for estimation of 휃, the parameter can be obtained as 

 

(ii) Known covariance (Σ)  for estimation of 𝛿, the parameter 𝛿 can be obtained  as 

 𝑌~𝑁𝑛(𝑋휃, 𝑉),     𝛿~𝑁𝑏𝑞(0, 𝑍), (3.23) 

where 

  𝐶𝑜𝑣(𝑌, 𝛿) = 𝐶𝑜𝑣(𝑋휃 + 𝐷𝛿 + 휀, 𝛿),    

 = 𝐶𝑜𝑣(𝑋휃, 𝛿) + 𝐶𝑜𝑣(𝐷𝛿, 𝛿) + 𝐶𝑜𝑣(휀, 𝛿)  

= 𝐶𝑜𝑣(𝐷𝛿, 𝛿),,  

 

 = 𝐷𝐶𝑜𝑣(𝛿, 𝛿) = 𝐷𝑉𝑎𝑟(𝛿),  

 = 𝐷𝑍Since 𝑉𝑎𝑟(𝛿) = 𝑍.  

Therefore, 
(
𝑌
𝛿
)~𝑁𝑏𝑞+𝑛 ((

𝑋휃
0
) , [

𝑉 𝐷𝑍
𝑍𝐷′ 𝑍

]) 
(3.24 

The conditional expectation of 𝛿|𝑌 is shown to be 𝐸(𝛿|𝑌) = 𝑍𝐷′𝑉−1(𝑌 − 𝑋휃) the best 

linear unbiased predictor (BLUP) of 𝛿. Therefore, the empirical best linear unbiased 

predictor (EBLUP) estimator of 𝛿 can be shown to be 

Now for the case of known covariance (Σ) , then EBLUP of 𝛿 is given as 

Case 2: Unknown Covariance (𝚺) for Estimation of 𝜹 and 𝜽. 

 휃 = (𝑋′𝑉−1𝑋)−1𝑋′𝑉−1𝑌, (3.21) 

 휃̂ = (𝑋′Σ−1𝑋)−1𝑋′Σ−1𝑌, (3.22) 

𝛿 = 𝑍𝐷′𝑉−1(𝑌 − 𝑋휃̂)  (3.25)        

𝛿 = 𝑍𝐷′Σ−1(𝑌 − 𝑋휃̂)   (3.26)     
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For estimation of 𝛿 and 휃 when Σ is unknown we employ the joint optimum 

maximization of log likelihood of (𝑌′, 𝛿) with respect to (휃, 𝛿). We let  

 ℎ(𝑌, 𝛿) = ℎ(𝑌|𝛿). ℎ(𝛿)  

 
∝ 𝑒𝑥𝑝 {−

1

2
(𝑌 − 𝑋휃 − 𝐷𝛿)′𝑉−1(𝑌 − 𝑋휃 − 𝐷𝛿)} exp {−

1

2
𝛿′𝑍−1𝛿} 

 (3.27) 

Taking natural logarithm on both sides of Equation (3.39) we obtain 

 ln(𝑌, 𝛿) = ℒ(휃, 𝛿),  

 
ℒ(휃, 𝛿) =  −

1

2
(𝑌 − 𝑋휃 − 𝐷𝛿)′𝑉−1(𝑌 − 𝑋휃 − 𝐷𝛿) −

1

2
𝛿′𝑍

−1
𝛿 +  𝜕 

(3.28) 

  Where 𝜕 indicates a constant independent of (휃, 𝛿) and −
1

2
𝛿′𝑍

−1
𝛿 represent the 

penalty term of 𝛿. For estimation 휃 and 𝛿 using ML we take  

 𝜕

𝜕휃
ℒ(휃, 𝛿) = 0, 

 

 𝜕

𝜕𝜃
ℒ(휃, 𝛿) =  −2𝑋′𝑈−1𝑌 + 2𝑋′𝑈−1𝐷𝛿 + 2𝑋′𝑈−1𝑋휃,  

 𝜕

𝜕𝛿
ℒ(휃, 𝛿) =  2휃′𝑿𝑈−1𝐷 − 2𝐷′𝑈−1𝑌 + 2𝐷′𝑈

−1
𝐷𝛿 + 2𝑍−1𝛿,  

 𝑋′𝑈−1𝑌 = 𝑋′𝑈−1𝑋휃 + 𝑋′𝑈−1𝐷𝛿,  

 𝐷′𝑈−1𝑌 =  휃′𝑋𝑈−1𝐷 + (𝐷′𝑈−1𝐷 + 𝑍−1)𝛿,  

 For further simplification we obtain 

 
[𝑋

′𝑈−1𝑋 𝑋′𝑈−1𝐷
𝐷′𝑈−1𝑋 𝐷′𝑈−1𝐷 + 𝑍−1

] [
휃
𝛿
] = [𝑋

′𝑈−1𝑌
𝐷′𝑈−1𝑌

], 
 

 
(휃̂
𝛿
) = [𝑋

′𝑈−1𝑋 𝑋′𝑈−1𝐷
𝐷′𝑈−1𝑋 𝐷′𝑈−1𝐷 + 𝑍−1

]
−1

[𝑋
′𝑈−1𝑌

𝐷′𝑈−1𝑌
], 

(3.29) 

Solving Equation 3.29 using sage Math 9.0 software, we find the ML estimates of 𝛿 and 

휃̂to be 
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 𝛿 = 𝑍𝐷′�̂�−1(𝑌 − 𝑋휃̂) (3.30) 

 휃̂ = (𝑋′�̂�−1𝑋)
−1
𝑋′�̂�−1𝑌 (3.31) 

3.3.6.2  Estimation of 𝜽 and 𝜹 Using REML Method 

REML method is always employed whenever estimating parameters subject to unknown 

covariance structure. This method is usually preferred to ML by most researchers because 

the estimates parameters obtained is unbiased (Goldfarb et al. 2003; Kowalski et al., 2002; 

Njoroge et al., 2017).  To apply this method, we consider marginal model of Equation (3.8) 

with 𝑉 = 𝐷𝑍𝐷′ + 𝑈 under assumption that 𝑍 and 𝑈 are both known to the variance 

parameter 𝜑. For instance, we write Equation 3.10 in terms 𝜑 as  

 𝑉(𝜑) = 𝐷𝑍(𝜑)𝐷′ +𝑈(𝜑) (3.32) 

We now find maximum log likelihood for profile log likelihood given as (휃, 𝜑) as 

 
𝐿(휃, 𝜑) = −

1

2
{ln|𝑉(𝜑)| + (𝑌 − 𝑋휃)′𝑉(𝜑)−1(𝑌 − 𝑋휃)} + 𝛾 

where 𝛾 is a constant independent of (휃, 𝜑). If we take 

(3.33) 

  𝜕

𝜕𝜃
𝐿(휃, 𝜑) = 0, we obtain  

 휃̂(𝜑) = (𝑋′𝑉(𝜑)−1𝑋)−1𝑋′𝑉(𝜑)−1𝑌. (3.34) 

But this estimate 휃̂𝑀𝐿 obtained is biased and therefore REML is required for that case. We 

now employ REML method on Equation (3.34) by taking natural logarithms on both sides 

 
𝐿𝑅𝐸𝑀𝐿(𝜑) = ln [∫𝐿(휃, 𝜑)] 𝑑휃, 

(3.35) 
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But  
∫𝐿(휃, 𝜑) 𝑑휃 = ∫(2𝜋)

−𝑛
2 |𝑉(𝜑)|−

1
2. 𝑒𝑥𝑝 {−

1

2
(𝑌 − 𝑋휃)′𝑉(𝜑)−1(𝑌

− 𝑋휃)} 𝑑휃, 

(3.36) 

For further simplification we consider the following cases 

(𝑌 − 𝑋휃)′𝑉(𝜑)−1(𝑌 − 𝑋휃)

= 휃′𝑋′𝑉(𝜑)−1𝑋휃 − 2𝑌′𝑉(𝜑)−1𝑋휃 + 𝑌′𝑉(𝜑)−1𝑌, 

𝐶1(𝜑) = 𝑋
′𝑉(𝜑)−1𝑋, 

𝐶2(𝜑) = 𝐶1(𝜑)
−1𝑋′𝑉(𝜑)−1, 

𝐶2(𝜑)
′𝐶1(𝜑) = 𝑉(𝜑)−1𝑋𝐶1(𝜑)

−1𝐶1(𝜑) = 𝑉(𝜑)
−1𝑋, 

Therefore, using these four cases we have 

 
∫𝐿(휃, 𝜑) 𝑑휃 = (2𝜋)

−𝑛
2 |𝑉(𝜑)|−

1
2. 𝑒𝑥𝑝 {−

1

2
(𝑌′[𝑉(𝜑)−1

+ 𝐶2(𝜑)
′𝐶1(𝜑)𝐶2(𝜑)]𝑌)} .∫ 𝑒𝑥𝑝 {−

1

2
(휃

− 𝐶2(𝜑)𝑌)′𝐶1(𝜑)(휃 − 𝐶2(𝜑)𝑌)} 𝑑휃, 

(3.37) 

but 

 
∫𝑒𝑥𝑝 {−

1

2
(휃 − 𝐶2(𝜑)𝑌)′𝐶1(𝜑)(휃 − 𝐶2(𝜑)𝑌)} 𝑑휃 = (2𝜋)

𝑛
2 |𝐶1(𝜑)

−1|−1. 
 

 Using                휃̂(𝜑) = (𝑋′𝑉(𝜑)−1𝑋)−1𝑋′𝑉(𝜑)−1𝑌 =

𝐶1(𝜑)
−1𝑋𝑉(𝜑)−1 = 𝐶2(𝜑)𝑌 

 

 

 and  𝐶2(𝜑)
′𝐶1(𝜑)𝐶2(𝜑) = 𝑉(𝜑)

−1𝑋𝐶1(𝜑)
−1𝐶1(𝜑)𝐶2(𝜑) =

𝑉(𝜑)−1𝑋𝐶2(𝜑) 
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as the intermediate variable. We can therefore rewrite 3.37 as  

 
∫𝐿(휃, 𝜑) 𝑑휃 = (2𝜋)

−𝑛
2 |𝑉(𝜑)|−

1
2. 𝑒𝑥𝑝 {−

1

2
(𝑌 − 𝑋휃)′𝑉(𝜑)−1(𝑌

− 𝑋휃)} (2𝜋)
𝑛
2|𝐶1(𝜑)

−1|
1
2, 

 

 
⇒ 𝐿𝑅𝐸𝑀𝐿(𝜑) = ln [∫ℒ(휃, 𝜑)] 𝑑휃

= −
1

2
{ln|𝑉(𝜑)| + (𝑌 − 𝑋휃̂(𝜑)) ′𝑉(𝜑)−1 (𝑌 − 𝑋휃̂(𝜑))}

−
1

2
𝑙𝑛|𝐶1(𝜑)| + 𝐶 = 𝐿𝑃(𝜑) −

1

2
𝑙𝑛|𝐶1(𝜑)| + 𝐶, 

(3.38)  

   

 Therefore, �̂� 𝑅𝐸𝑀𝐿  is given as 𝐿𝑅𝐸𝑀𝐿(𝜑) = 𝐿𝑃(𝜑) −
1

2
𝑙𝑛𝑦|𝐶1(𝜑)| + 𝐶 which 

maximizes  

 

 𝐿𝑅𝐸𝑀𝐿(𝜑) = 𝐿𝑃(𝜑) −
1

2
𝑙𝑛|𝑋′𝑉(𝜑)−1𝑋| . 

 

 

In conjunction with ML and REML as method for estimating fixed effect and random effect 

parameters based on unknown covariance structure. We can be able to claim and make a 

summary from 

𝑉(𝜑) = 𝐷𝑍(𝜑)𝐷′ + 𝑈(𝜑) that the covariance parameter vector 𝜑  can be obtained by 

either �̂�𝑀𝐿 which maximizes the profile log likelihood given as 

 
𝐿(휃, 𝜑) = −

1

2
{ln|𝑉(𝜑)| + (𝑌 − 𝑋휃̂)′𝑉(𝜑)−1(𝑌 − 𝑋휃̂)} 

(3.39) 

Where 휃̂(𝜑) = (𝑋′𝑉(𝜑)−1𝑋)−1𝑋′𝑉(𝜑)−1𝑌   or by �̂�𝑅𝐸𝑀𝐿 that maximizes Equation (3.39). 

Therefore, the random vector effect (𝛿) and fixed vector (휃̂) effect is estimated by 
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 𝛿 = 𝑍𝐷′�̂�−1(𝑌 − 𝑋휃̂).  (3.40) 

 휃̂ = (𝑋′�̂�−1𝑋)
−1
𝑋′�̂�−1𝑌. (3.41) 

where �̂� = 𝑉(𝜑𝑀𝐿) or   �̂� = 𝑉(𝜑𝑅𝐸𝑀𝐿). 

3.3.6.3 Estimation Whole Plot Random Effect Using Bayesian Perspective Approach 

The random effect 𝛿𝑗 in Equation (3.6) in split plot experiment that is associated with whole 

plot can also be estimated using Bayesian approach. However, 𝛿𝑗 in this case is regarded 

to be known with probability distribution referred as prior distribution while 휃 and subplot 

error (휀) are fixed and known. This is because 휃  and 휀 are not considered as random 

quantities with suitable prior distribution from the perspective classical Bayesian approach 

but they are taken as fixed and known. For estimation purposes for whole plot random 

effect using this approach we let the prior distribution of 𝛿𝑗~𝑁(0, 𝒁) be ℎ(𝛿, 𝑧). In 

addition, we define the likelihood function which is assumed to be conditional normal 

distribution and basing on Bayes theorem as ℎ(|𝑥𝑗 , 𝛿𝑗 , 휃, 휀(𝑈)) where 𝑦|𝑥, 𝛿~𝑁(𝑿휃 +

𝑫𝛿,𝑈). Therefore, we can now define the posterior probability density function of 𝛿 

subject on observing the response variable 𝑌 = 𝑦𝑗 as  

 

ℎ(𝛿𝑗|𝑦𝑗 , 𝜽, 휀(𝑼), 𝒁) =
ℎ (𝑦𝑗|𝑥𝑗 , 𝛿𝑗 , 𝜽, 휀(𝑼)) ℎ(𝛿𝑗 , 𝑧).

ℎ(𝑦𝑗|𝑥𝑗 , 𝜽, 𝑍, 휀(𝑼)
 

for all 𝑗 = 1,2, . . . . . 𝑏   where 𝑏 represent the number of whole plots in 

split plot experimental layout structure and 

(3.42) 

 
ℎ(𝑦𝑗|𝑥𝑗 , 𝜽, 𝑍, 휀(𝑼) = ∫ℎ (𝑦𝑗|𝑥𝑗 , 𝛿𝑗 , 𝜽, 휀(𝑼)) ℎ(𝛿𝑗 , 𝑧)𝑑𝛿𝑗 

 

The Equation 3.324 which is referred to as posterior distribution is usually distributed with 

mean 
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 𝑍𝐷′�̂�(𝑦 − 𝑋휃) (3.43) 

However, the mean and mode are always equivalent under standardized normal distribution 

and often maximizes the posterior density. Therefore, when the estimates 휃̂ and �̂� are 

substitute in 3.43 yields Empirical Bayes estimator for 𝛿 as 

 𝛿 = �̂�𝐷′�̂�−1(𝑦 − 𝑋휃̂) (3.44) 

this estimate in 3.44 using the Bayesian approach can used to obtain the random effect 

associated with whole plot whenever there is prior knowledge of 𝛿𝑗 while 휃 and 휀(𝑈) is 

known and fixed. However, 휃 can also be estimated the same way as 𝛿𝑗 by using similar 

augment by basing on Bayes theorem but in this case 휃 is treated as random vector 

independent of 𝛿𝑗 (Davidian and Giltinan, 1995). 

3.3.6.4 Estimation of Parameters Using EMA Method 

The Expectation Maximization Algorithm (EMA) is often applied whenever missing 

observation exist. Therefore, most researchers prefer using this method over other method 

whenever ML and REML estimates are required since it usually follow the analogy to a 

missing data problem from viewing full data. This is usually done by maximizing ML or 

REML objective function. Here, we discuss how 𝛿 and 휃̂ can be estimated in the case of 

latent unobservable variable using this EMA method. We follow closely the work done by 

Laird et al. (1987), on the EM algorithm implementation and more so on how to obtain ML 

or REML estimates of vector of fixed and random effect associated with whole plots within 

the split plot layout structure experiments.  However, for us to comprehend and understand 

clearly how this method work we consider model in 3.3 where 휀𝑗 and 𝛿𝑗 are assumed to be 
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identical independent and normally distributed with both having a vector of mean zero and 

variance covariance 𝑍 and 𝑈𝑗respectively as 

 휀𝑗~𝑁(0, 𝑈𝑗), 𝛿𝑗~𝑁(0, 𝑍𝑗) but 𝑈𝑗 = 𝜎
2𝐼𝑛𝑗,𝑗 = 1,2, …… , 𝑏 (3.45) 

 We consider full data set that is expected to observed and measured from split plot design 

experiment to be (𝑦𝑗 , 𝑋𝑗, 𝛿𝑗), 𝑗 = 1,2, . . , 𝑏 but the actual observed data from whole plots is 

(𝑦𝑗 , 𝑋𝑗). Then we can notice that there is data is missing and, in this case, the random effect 

𝛿𝑗associated with whole plot. Therefore, 𝛿𝑗 treated as missing observation can be traced 

through conditioning on the data 𝑋𝑗 already observed. Furthermore, we can also find the 

sufficient statistics of 𝑍 and 𝜎2 estimates for the case no missing data. For us to achieve 

this, we employ the concept of joint density of (𝑦𝑗 , 𝛿𝑗|𝑋𝑗), 𝑗 = 1,2, . . , 𝑏 that is proportional 

to  

 

∏𝜎−1𝑒𝑥𝑝 {
(𝑦𝑗 − 𝑋𝑗휃 − 𝑑𝑗𝛿𝑗)

′
(𝑦𝑗 − 𝑋𝑗휃 − 𝑑𝑗𝛿𝑗)

2𝜎2
} |𝑍𝑗|

−
1
2 𝑒𝑥𝑝 {

−𝛿𝑗
′𝑍−1𝛿𝑗

2
}

𝑏

𝑗=1

 

(3.46) 

 

 The sufficient statistics 𝜎2 and 𝑍 in (3.46) can be shown to be 

 𝑡1 = ∑ 휀𝑗
′휀𝑗

𝑏
𝑗=1 ,  𝑡2 = ∑ 𝛿𝑗

′𝛿𝑗
𝑏
𝑗=1  where 휀𝑗 = 𝑦𝑗 − 𝑋𝑗휃 − 𝑑𝑗𝛿𝑗 (3.47) 

The estimators for 𝑍 and 𝜎2  can be estimated using (3.47) if full observed data exist and 

휃̂ can easily be computed. Therefore, the estimates for �̂� and �̂�2 when full data is available 

is given as  

 �̂�2 =
𝑡1
𝑁⁄ ,  �̂� =

𝑡2
𝑏⁄ .          (3.48) 
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  However, this estimates in Equation (3.48) applies only in the case of no missing 

observation. But the question that triggers many scholars is how to find those estimates 

regardless the latent unobservable variable. However, some scholars such as Laird et al. 

(1987) proposed EM algorithm as possible approach of getting the solution apart from other 

method can help the solve the same problem. In addition, the parameter 𝛿𝑗 can be estimated 

using the EM algorithm if it is treated as missing observation conditional on observing the 

data 𝑋𝑗 as 

 

(

𝑦𝑗
𝛿𝑗
휀𝑗
|𝑋𝑗)~ {(

𝑋𝑗휃

0
0

) , (

𝐷𝑗𝑍𝐷𝑗
′ 𝐷𝑗𝑍 𝜎2𝐼𝑛

𝑍𝐷𝑗
′ 𝑍 0

𝜎2𝐼𝑛 0 𝜎2𝐼𝑛

)} 

(3.49) 

 Laird et al. (1987) showed that the conditional expectation of 𝛿𝑗 on (𝑦𝑗 , 𝑋𝑗) when having 

the marginal joint distribution of (𝑦𝑗 , 𝛿𝑗) and (𝑦𝑗 , 휀𝑗) is  

𝐸 ((𝛿𝑗|𝑦𝑗 , 𝑋𝑗)) = 𝑍𝐷𝑗
′𝑉𝑗

−1(𝑦𝑗 − 𝑋𝑗휃), 
(3.50) 

given 𝑋𝑗 are embedded in (3.49). This (3.50) follows the standard calculation of conditional 

moments define as 

 

since  

𝑉𝑎𝑟(𝛿𝐽|𝑦𝑗 , 𝑋𝑗) = 𝑍 − 𝑍𝐷𝑗
′𝑉𝑗
−1𝐷𝑗𝑍, 

𝐸(𝛿𝑗𝛿𝑗|𝑦𝑗 , 𝑋𝑗) = 𝐸(𝛿𝑗|𝑦𝑗 , 𝑋𝑗)𝐸(𝛿𝑗|𝑦𝑗 , 𝑋𝑗)′ + 𝑉𝑎𝑟(𝛿𝑗|𝑦𝑗 , 𝑋𝑗),                                                                                               

 

(3.51) 

and  𝐸(휀𝑗|𝑦𝑗 , 𝑋𝑗) = 𝜎2𝑉𝑗
−1(𝑦𝑗 − 𝑋𝑗휃), 

= 𝑦𝑗 − 𝑋𝑗휃 − 𝐷𝑗𝑍𝐷𝑗
′𝑉𝑗
−1(𝑦𝑗 − 𝑋𝑗휃), 

 

(3.52) 

where   𝑉𝑎𝑟(휀𝑗|𝑦𝑗 , 𝑋𝑗) = 𝜎
2 (𝐼𝑛𝑗 − 𝜎

2𝑉𝑗
−1).  

However, they also noted that for easy implementation EM algorithm, then the standard 

result for quadratic form similar to (3.52) is required which is given as   
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  𝐸(휀𝑗
′휀𝑗|𝑦𝑗 , 𝑋𝑗) = 𝑡𝑟𝑎𝑐𝑒 {𝐸(휀𝑗휀𝑗

′|𝑦𝑗 , 𝑋𝑗)}, 

= 𝐸(휀𝑗|𝑦𝑗 , 𝑋𝑗)𝐸(휀𝑗|𝑦𝑗 , 𝑋𝑗)
′
+  𝑉𝑎𝑟(휀𝑗|𝑦𝑗 , 𝑋𝑗), 

 

 

(3.53) 

Now for implementation EM algorithm we base on Equation (3.52) and (3.53) in 

conjunction with tart some algebra ideas. Basing Laird et al. (1987) the EM algorithm 

should start values 𝜎2(0) and 𝑍(0) at 𝑘𝑡ℎ alteration, we let 

 𝑉𝑗
(𝑘)
= 𝜎2(𝑘)𝐼𝑛𝑗 +𝐷𝑗𝑍

(𝑘)𝐷𝑗
′, 

then we implement the EM algorithm using the following two steps: 

(3.54) 

 

(i)  We first obtain 

휃(𝑘) =∑(𝑋𝑗
′𝑉𝑗

(𝑘)−1𝑋𝑗)
−1

𝑏

𝑗=1

∑𝑋𝑗
′𝑉𝑗

(𝑘)−1𝑦𝑗,

𝑏

𝑗=1

 

 

(3.55) 

(ii)  Compute 𝜎2(𝑘) and 𝑍(𝑘) by first redefine 

𝜏𝑗
(𝑘)
= 𝑦𝑗 − 𝑋휃

(𝑘), 

𝛿𝑗
(𝑘)
= 𝑍(𝑘)𝐷𝑗

′𝑉𝑗
(𝑘)−1, 𝑗 = 1,2, . . , 𝑏 

There after update 𝜎2(𝑘) and 𝑍(𝑘) as 

𝜎2(𝑘+1) = 𝑁−1∑{(𝜏𝑗
(𝑘)
− 𝐷𝑗𝛿𝑗

(𝑘)
)
′

(𝜏𝑗
(𝑘)
− 𝐷𝑗𝛿𝑗

(𝑘)
)

𝑏

𝑗=1

+ 𝜎2(𝑘)𝑡𝑟𝑎𝑐𝑒 (𝐼𝑛𝑗 − 𝜎
2(𝑘)𝑉𝑗

(𝑘)−1
)}, 

𝑍2(𝑘+1) = 𝑏−1∑{(𝛿𝑗
(𝑘)
𝛿𝑗
(𝑘)′ + 𝑍(𝑘)) − 𝛿𝑗

(𝑘)
𝐷𝑗𝑍

(𝑘)}

𝑏

𝑗=1

. 

 

 

 

 

 

 

 

(3.56) 

The estimate of �̂�2 and �̂� are obtain after complete iteration of step one and two until 

convergence is achieved. However, the REML estimates of �̂�2 and �̂� can be obtained 

without difficulties by using SAS/JMP software. This because REML method is already 

implemented in JMP software which serves as another alternative way of implementing 
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direct maximization and optimization the estimates value of �̂�2 and �̂� without encountering 

any challenges. 

3.3.7 SPD Analysis Using a Full REML Method 

This section outline the specific method used to analyze MPV data within the split-plot 

structure arrangement.  

We did a split-plot design analysis using a full REML based on Equation (3.6). It is a well-

accepted estimation method for estimating variance components in mixed models and is 

based on the maximum likelihood estimation of the residual errors discussed in Section 

4.2. The analysis was done using statistical software (JMP division of SAS) since it 

produces tests of composite hypotheses or contrasts. In addition, it also provides both DFs 

and significance tests directly (Sitinjak and Syafitri, 2019). However, the REML  method 

implemented in JMP 15 provides both error variances (subplot and whole plot error 

variance) that can be plugged into the Equation (3.6) and thus be used to compute 𝑡 values 

and their 𝑝 -values for the effect or regression coefficient as evidenced with the results 

discussed in Section 4.2. The prime objective for using this method is because it can be 

used in all reasonably designed cases as described in Njoroge et al. (2017).  

3.4 Employing the Screening Methodology in the Framework of a Cox MPV Model 

in Modeling and Estimating the Predicted Yield of the Specific Variety of Glycine 

Max Using Simulation Technique. 

This section outline how the Cox mixture model is formulated, the anticipated yield of 

Glycine max estimated using screening methodology in context of Cox mixture model. 

Formulation of Cox Mixture Model in the Context of Screening Methodology 
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This section describes how the Cox polynomial mixture model was developed. The Cox 

mixture model was used in this context in order to explain each parameter and serves as an 

alternative to the Scheffe model described by Goos et al. (2016). Following the inherent 

barrier control for mixture tests (∑ 𝑥𝑖
𝑞
𝑖=1 = 1), Cox restricts parameter ratings if a 

parameter is a redundancy in a combination of tests, as Hassan et al. (2020) points out. The 

parameter 𝛽𝑖 represents the slopes in the Cox mixture model. Each 𝛽𝑖 represents a unit 

change by the response measured at a point, say 𝑥, for the response measured in a fixed 

combination, 𝑐, is now given; 

 𝑐 = (𝑐1, 𝑐2, …… , 𝑐𝑞). (3.57) 

Many researchers take c as the centroid of the region, but as Njoroge et al. (2017) points 

out, it is unnecessary. For example, if we add a small amount of ∆𝑞 to one of the 𝑞 elements 

in a selected fixed combination, a new point is formed, which is called 𝑥. But this small 

quantity ∆𝑞 is added in such a style that the other 𝑖𝑡ℎ components in 𝑐 remain the same, 

and only the ratio component changes. However, we can read what Cornell (2011) 

described as a component effect when we apply it in the same way. The new point 𝑥 is on 

the ray, representing component 𝑞 as an endless combination with the starting point 𝑐. 

Cornell (2011) define the 𝑥 point mathematically as  

 𝑥𝑞 = (𝑐𝑞 + ∆𝑞). (3.58) 

Whereas the remaining 𝑞 − 1 components in the mixture change according to their ratio 

 
𝑥𝑖 = (𝑐𝑖 −

∆𝑞𝑐𝑖

1 − 𝑐𝑞
) 

(3.59) 
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To start to formulate a model for small experiment to be carried, then we first define a 

standard first polynomial model as 

 

휁1(𝑥) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

, 
(3.60) 

We, therefore, expressed the difference between 𝑥 and 𝑐 as the relative change in the 

response due to Δ𝑞. 

 Δ휁1(𝑥) = 휁(𝑥) − 휁(𝑐), (3.61) 

Hence, following closely the discussion of Cornell (2011), this implies that 

 

Δ휁1(𝑥) = 𝛽0 +∑𝛽𝑖 ((𝑐𝑖 −
∆𝑞𝑐𝑖

1 − 𝑐𝑞
))

𝑞

𝑖=1

+ 𝛽𝑞(𝑐𝑞 + Δ𝑞) − 𝛽0

−∑𝛽𝑖𝑐𝑖

𝑞

𝑖=1

 

(3.62) 

 Following the substitution of 3.61 and 3.62 and further, utilizing the restriction on the 

parameters given Cornell (2011) as 

 

∑𝛽𝑖𝑐𝑖 = 0

𝑞

𝑖=1

 

(3.63) 

and therefore, cancelling terms using this restriction, this reduces model 3.62 to 

 

Δ휁1(𝑥) = 𝛽𝑞(𝑐𝑞 + Δ𝑞) +∑𝛽𝑖 ((𝑐𝑖 −
∆𝑞𝑐𝑖

1 − 𝑐𝑞
))

𝑞−1

𝑖=1

. 

(3.64) 

Further simplification result to 
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Δ휁1(𝑥) = 𝛽𝑞𝑐𝑞 + 𝛽𝑞Δ𝑞 +∑𝛽𝑖

𝑞−1

𝑖=1

𝑐𝑖 − ∑
𝛽𝑖𝑐𝑖∆𝑞

1 − 𝑐𝑞

𝑞−1

𝑖=1

. 

 

Therefore, combining terms using the restriction in 3.63, result to 

 

Δ휁1(𝑥) = 𝛽𝑞Δ𝑞 − ∑
𝛽𝑖𝑐𝑖∆𝑞

1 − 𝑐𝑞

𝑞−1

𝑖=1

. 

(3.65) 

However, if addition and subtraction is involved according to Weese, we obtain 

 

Δ휁1(𝑥) = 𝛽𝑞Δ𝑞 − ∑
𝛽𝑖𝑐𝑖∆𝑞

1 − 𝑐𝑞

𝑞−1

𝑖=1

+ 𝛽𝑞Δ𝑞
∆𝑞

1 − 𝑐𝑞
− 𝛽𝑞𝑐𝑞

∆𝑖
1 − 𝑐𝑖

 

 

and once again using the constraint 3.63 we obtain 

 

Δ휁1(𝑥) = 𝛽𝑞Δ𝑞 − ∑
𝛽𝑖𝑐𝑖∆𝑞

1 − 𝑐𝑞

𝑞−1

𝑖=1

+ 𝛽𝑞Δ𝑞
∆𝑞

1 − 𝑐𝑞

= 𝛽𝑞
∆𝑞

(1 − 𝑐𝑞)
−∑

𝛽𝑖𝑐𝑖∆𝑞

(1 − 𝑐𝑞)

𝑞−1

𝑖=1

. 

 

 

 

(3.66) 

Eventually, we define the change in the expected response as advocated by Njoroge et al. 

(2017) as 

 
Δ휁1(𝑥) = 𝛽𝑞

∆𝑞

(1 − 𝑐𝑞)
. 

(3.67) 

In particular, we concluded that the intercept 𝛽0 is the fixed point response at 𝑐. Further, 

we can obtain an estimate of the effect of component 𝑞 as described in Cornell (2011) as 

 
𝛽𝑞 =

Δ휁1(𝑥)(1 − 𝑐𝑞)

∆𝑞
. 

(3.68)  
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where Δ휁1(𝑥) = 𝐸 [𝑦(𝑥) − 𝑦(𝑐)] and 𝑦(𝑥), 𝑦(𝑐) represents the observed responses at 𝑥 

and 𝑐, respectively. Therefore, the difference in the heightened by incremental change ∆𝑞 in 

the proportion of component factor 𝑞 relative to the quantity (1 − 𝑐𝑞) according represents 

each 𝛽 value. However, a quadratic surface Cox’s model containing an additional term 

represents the response surface better than the Scheffe model. Therefore, we define the 

second-degree polynomial of the Cox model as. 

 

휁2(𝑥) = 𝛽0 +∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=1

𝑞

𝑖=1

 

(3.69)  

Where 𝛽𝑖𝑗 = 𝛽𝑖𝑖 since they are symmetric. Further, the change in the anticipated response 

between point 𝑥 and 𝑐 is given as  

 Δ휁2(𝑥) = 휁2(𝑥) − 휁2(𝑐). (3.70) 

Therefore,  

 

Δ휁2(𝑥) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

+∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=1

𝑞

𝑖=1

−∑𝛽𝑖𝑐𝑖

𝑞

𝑖=1

−∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞

𝑗=1

𝑞

𝑖=1

 

(3.71) 

For further simplification, the terms in model (3.71) are rearranged as follows 

 

Δ휁2(𝑥) =∑𝛽𝑖𝑥𝑖

𝑞

𝑖=1

−∑𝛽𝑖𝑐𝑖

𝑞

𝑖=1

+ 

 

 

∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=1

𝑞

𝑖=1

−∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞

𝑗=1

𝑞

𝑖=1

 

(3.72)  

Subject to the following restrictions 
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(i)  

∑𝛽𝑖𝑐𝑖

𝑞

𝑖=1

= 0, 
 

(ii)  

∑𝛽𝑖𝑗𝑐𝑗

𝑞

𝑗=1

= 0, 
 

as provided by Cornell (2011), then model (3.72) reduces to 

 

Δ휁2(𝑥) =∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗

𝑞

𝑗=1

𝑞

𝑖=1

+ 2∑𝛽𝑖𝑞𝑥𝑖

𝑞−1

𝑖=1

𝑥𝑞 + 𝛽𝑞𝑞𝑥𝑞
2

−∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞

𝑗=1

𝑞

𝑖=1

 

(3.73) 

Therefore, replacing the relations for 𝑥𝑞 and 𝑥𝑖 and letting 

휃 =
Δ𝑞

1 − 𝑐𝑞
, 

is equivalent to  

 

Δ휁2(𝑥) = ∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞−1

𝑗=1

𝑞−1

𝑖=1

(1 − 휃)2 + 2∑𝛽𝑖𝑞𝑐𝑖

𝑞−1

𝑖=1

(1 − 휃)(𝑐𝑞 + Δ𝑞)

+ 𝛽𝑞𝑞(𝑐𝑞 + Δ𝑞)
2
−∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞

𝑗=1

𝑞

𝑖=1

 

 

 

          = ∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞−1

𝑗=1

𝑞−1

𝑖=1

+ (휃2 − 2휃)2∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞−1

𝑗=1

𝑞−1

𝑖=1

+ 2∑𝛽𝑖𝑞𝑐𝑖

𝑞−1

𝑖=1

𝑐𝑞

+  2(Δ𝑞 − 휃𝑐𝑞 − 휃Δ𝑞)∑𝛽𝑖𝑞𝑐𝑖

𝑞−1

𝑖= 

+ 𝛽𝑞𝑞𝑐𝑞
2

+ 𝛽𝑞𝑞(2Δ𝑞𝑐𝑞 + Δ𝑞
2) −∑∑𝛽𝑖𝑗𝑐𝑖𝑐𝑗

𝑞

𝑗=1

𝑞

𝑖=1
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                           = (휃2 − 2휃)2∑𝑐𝑖

𝑞−1

𝑖=1

∑𝛽𝑖𝑗𝑐𝑗

𝑞−1

𝑗=1

+ 2(Δ𝑞 − 휃𝑐𝑞 − 휃Δ𝑞)∑𝛽𝑖𝑗𝑐𝑖

𝑞−1

𝑖= 

+ 𝛽𝑞𝑞(2Δ𝑞𝑐𝑞 + Δ𝑞
2 + (휃2 − 2휃)2)∑𝛽𝑖𝑞𝑐𝑖

𝑞−1

𝑖= 

𝑐𝑞

+ (−휃2 + 2휃)2∑𝛽𝑖𝑞𝑐𝑖

𝑞−1

𝑖= 

𝑐𝑞 + 2(Δ𝑞 − 휃𝑐𝑞 − 휃Δ𝑞)𝛽𝑞𝑞𝑐𝑞

− 2(Δ𝑞 − 휃𝑐𝑞 − 휃Δ𝑞)𝛽𝑞𝑞𝑐𝑞 

 

 = 𝛽𝑞𝑞{ 2Δ𝑞𝑐𝑞 + Δ𝑞
2 − 2휃𝑐𝑞

2 + 휃2𝑐𝑞
2 − 2Δ𝑞𝑐𝑞 + 2Δ𝑞휃𝑐𝑞

2 + 2휃Δ𝑞}  

and eventually,  

 Δ휁2(𝑥) = 𝛽𝑞𝑞{ Δ𝑞
2 + 휃2𝑐𝑞

2 + 2Δ𝑞휃𝑐𝑞
2} (3.74)  

Hence, substituting the value of θ in (3.74) and including this term onto the linear Cox 

model, we obtain the following expression for the anticipated yield of Glycine max as 

 
Δ휁2(𝑥) = 𝛽𝑞 (

Δ𝑞

1 − 𝑐𝑞
) + 𝛽𝑞𝑞 (

Δ𝑞
2

[1 − 𝑐𝑞]
2) 

(3.75) 

When the mixture constraints are an array of linear constraints over the parameters, we can 

fit the Cox polynomial using constrained least-squares as Cornell (2011) suggested. 

Alternatively, the coefficients can be calculated from the fitted Scheffe model as described 

in Goos et al. (2016). Jones & Sall (2011) developed the JMP statistical software, which 

allows a researcher to create a linear and double (quadratic) cox model from the Scheffe 

model to 𝑞 =  10.  

For instance if a fixed combination, 𝑐1 = 𝑐2 = 𝑐𝑞 not necessarily. A researcher wants to 

add ∆𝑞 to component 𝑖𝑡ℎ while removing ∆1 from the first component. In that style, only 
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the size of the first and last elements changes, while the others remain the same as 𝑐. 

Therefore, we define the new point as   

 𝜔 = (𝑐1 − ∆1, 𝑐2, 𝑐3, … . , 𝑐𝑞 + ∆𝑞), (3.76)  

Subject to the condition that ∆1= ∆𝑞 so that the points in 𝜔 sum up to a unity. Therefore, 

the change in the expected response between 𝑐 and the new point 𝜔 can be derived using 

the linear Cox model where the expected change in response can be represented as 

 ∆휁1(𝜔) = 휁1(𝜔) − 휁1(𝑐), (3.77)  

Substituting for 휁1(𝑐) and 휁1(𝜔) we obtain  

 

∆휁1(𝜔) = 𝛽0 + 𝛽1(𝑐1 − ∆1) + 𝛽𝑞(𝑐𝑞 + ∆𝑞) +∑𝛽𝑖𝑐𝑖

𝑞−2

𝑖=1

− 𝛽0 −∑𝛽𝑖𝑐𝑖

𝑞

𝑖=1

. 

 

Further simplification result to  

 ∆휁1(𝜔) = 𝛽𝑞∆𝑞 − 𝛽1∆1,  

                                                  = (𝛽𝑞 − 𝛽1)Δ   where ∆1= ∆𝑞= Δ. (3.78) 

The expression in Equation (3.78) demonstrates the simple interpretation of the Cox 

mixture model regression coefficients. Subtracting the amount Δ from each 𝑐𝑖 and 𝑐1again, 

the change in response from c to new point 𝜔 results from the difference in each 

component's slope weighed by the change Δ. Typically, if 𝛽𝑖 is greater than 𝛽1, adding 

more component 𝑖, automatically, the response will increase drastically, regardless of the 

amount Δ subtracted from component one. If the difference is nearly zero, then neither 

subtracting from one nor adding to the other will change the response much from the fixed 

point 𝑐, and the predicted response surface is flat in that direction. However, when 𝛽𝑞and 

𝛽𝑞𝑞 parameter in the Cox model deviates from the static combination, the effect of the 
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component 𝑞 shows the shape and direction of the response. Further, there is no need to 

experiment over the entire space if the interest lies only in a certain component or a few 

components, as pointed by Njoroge et al. (2017).  However, considering the four mixture 

components and two process variable used in this study we formulated the screening 

methods for agriculture mixture experimenters with the basic intuitive interpretation of the 

Cox mixture model with Glycine max as  

 �̂�(𝑥, 𝑧) = 𝛽0 + 𝛽1 𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4 𝑎4 + 𝛽11𝑥1
2 + 𝛽22𝑥2

2 + 𝛽33𝑥3
2

+ 𝛽44𝑥4
2 + 𝛽12 𝑥1𝑥2 + 𝛽13 𝑥1𝑥3 + 𝛽14 𝑥1𝑥4 + 𝛽23 𝑥2𝑥3

+ 𝛽24 𝑥2𝑥4 + 𝛽34 𝑥3𝑥4 + 𝛾11 𝑥1𝑧1 + 𝛾21 𝑥2𝑧1 + 𝛾31 𝑥3𝑧1

+ 𝛾41 𝑥4𝑧1 + 𝛾12 𝑥1𝑧2 + 𝛾22 𝑥2𝑧2 + 𝛾32 𝑥3𝑧2 + 𝛾42 𝑥4𝑧2 

 

 

(3.79) 

 

where �̂�(𝑥, 𝑧) represent the expected response variable, 𝛽0,𝛽𝑖,𝛽𝑖𝑖, and 𝛽𝑖𝑗 indicates the 

regression coefficient of variable intercept, linear, quadratic and interaction terms, 

respectively. On the other hand 𝛾𝑖𝑗 denotes the regression coefficient of interaction terms 

between the process variable and a mixture component. The simulation of predicted 

response of Glycine max was carried out based on model (3.70), (3.76) and (3.79) using 

the algorithms implemented in the JMP software version in conjunction with the prior 

knowledge of the anticipated yield of Glycine max described in Wanyama (2013). 
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3.5 Estimating the Optimal Yield of Glycine Max in the Framework of SPD 

This section outline how soybean yield is estimated from the actual field. Here, we follow 

closely the discussion of Chad and Herbek (2005), University of Kentucky College of 

Agriculture, on how to estimate soybean yield.  

Estimating 𝐺𝑙𝑦𝑐𝑖𝑛𝑒 𝑚𝑎𝑥 yield while the crop is still standing in the field can be a daunting 

task.  The estimating procedure can proceed with caution since variability population, seed 

per pod and seed size (seed per pound) can all drastically affect the final soybean yield. 

The best estimate can always be attained at the reproductive stage, as shown in Figure 3.12. 

Usually, this happens when the green pod's cavity is filled with seeds since the yield 

estimate may be inaccurate when carried out before the source serves is complete. 

Assumption of the final number of pods, seed per pod, and seed per pound may not 

accurately reflect those values at maturity. Therefore, when estimating the yield of 

components, the best approach is when 5 to 10 random locations across the field are used. 

Typically, this aid in obtaining a better field average yield since sampling from multiple 

locations in the area is regarded as the best way to improve the overall yield estimate per 

acre or ha. 
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Plate 3.1: Soybean plants at reproductive stage 

However, Soybean yield estimating Equation with the aim of estimating Glycine max yield 

per acre given as 

 

𝜼(𝒙, 𝒛) =
𝒀𝟎 × 𝒀𝟒 × 𝒀𝟕

𝝑𝟏 × 𝝉
∶

{
 
 
 

 
 
 

𝒀𝟎 = 𝐩𝐥𝐚𝐧𝐭𝐬 𝐩𝐞𝐫 𝐚𝐜𝐫𝐞          
𝒀𝟒 = 𝐩𝐨𝐝𝐬 𝐩𝐞𝐫 𝐩𝐥𝐚𝐧𝐭           
𝒀𝟕 = 𝐬𝐞𝐞𝐝𝐬 𝐩𝐞𝐫 𝐩𝐨𝐝            
𝝑𝟏 = 𝐬𝐞𝐞𝐝𝐬 𝐩𝐞𝐫 𝐩𝐨𝐮𝐧𝐝       
𝝉 = 𝐩𝐨𝐮𝐧𝐝𝐬 𝐩𝐞𝐫 𝐛𝐮𝐬𝐡𝐞𝐥 

 

 

 

(3.80) 
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Where 휂(𝑥, 𝑧) is the Glycine max yields estimated per acre in bushels(1 𝑏𝑢𝑠ℎ𝑒𝑙 =

 25.4 𝐾𝑔).  One bushel of Glycine max (L.) Merrill weighs 60 pounds as reported by Chad 

and Herbek (2005). 

3.5.1 Plants per Acre  

We obtain the total number of plants per acre for each sample area in the field. The sample 

space, in this case, is nine whole plots. The number of plants in 10 𝑓𝑡 of one row is counted 

and then divided by 10 to find plants per foot for widths of 30, 25, and 20 inches.  For the 

case of the width of 15 and 10 inches, the number of plants in 40 𝑓𝑡 of one row (or 10 𝑓𝑡 

of four separate rows) is counted to determine plants per acre. 

3.5.2 Pods per Plant 

The number of pods on each plant for 10 consecutive plants in one row is counted 

regardless of plant size. The average number of the pods is then determined. 

3.5.3 Seeds per Pod 

Count the number of seeds per pod on each plant for 10 consecutive plants used in Section 

3.5.1 above. Then the average of the number of the seeds per pods is determined. 

3.5.4 Seeds per Pound (Seed Size) 

Seeds per pound refer to a predetermined number of live seeds per square foot to attain a 

specific plant density. For instance, on average, they can be 22 seed per head and ten head 

plant stem, or 220 seeds per plant. If they are 100 plants per square foot, then the whole 

seeds are 2200, described as 2200 seeds per pound. Seed per pound, generally, may be the 

most daunting task to estimate, although research by Lee and Jim Herbek (2005) indicates 

that 2500 seed per pound is an average seed weight estimate, sometimes seeds per pound 
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can be high 3400. However, the initial seed size provides a reasonable indication of 

soybean seed size, but where the seed tag is not available, then Chad Lee and Jim Herbek 

(2005) recommend 2500 seed per pound to be used. We therefore, reported the result in 

Chapter Four using 2500 seed per pound since seed tag was not available. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Introduction  

This section outlines the statistical output obtained based on the split-plot designs 

implemented and mixture experiments that have been employed so as to solve each of the 

specific objectives.  

4.2 The Improved Model for Split-Plot Design in the Context of MPV 

This section outlines the results six different design option in their performance in fitting 

the developed model 3.5 and the proposed design in Figure 3.3. 

  

 

Figure 4.1: Sliced FDS plot of design A4 Relative to design A1, A2, A3, A5 and A6 

In this Figure 4.1, Sliced FDS plots shows that Design A4 is better than the rest of designs 

as it has smaller prediction variation less than 0.5. The D-, A-, I-, and G- efficiency of 
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design A4 relative to design A1, A2, A3, A4, A5, and A6 in Table 4.1 is above 1.0, which 

shows again that design A4 in this case is good as compared to others. 

Table 4.1: Optimality criterion1efficiency of design A4 Relative to design A1, A2, A3, 

A5 and A6 

 

Optimality 

Criterion 

Efficiency 

Efficiency 

of A4 

Relative to 

A1 

Efficiency 

of A4 

Relative to 

A2 

Efficiency 

of A4 

Relative to 

A3 

Efficiency 

of A4 

Relative to 

A5 

Efficiency 

of A4 

Relative to 

A6 

D-efficiency 1.450 1.328 1.067 1.159 1.239 

G-efficiency 2.572 2.567 1.758 1.834 1.176 

A-efficiency 2.007 1.807 1.507 1.307 1.395 

I-efficiency 1.298 1.277 1.207 1.181 1.119 

 

 

Figure 4.2: Sliced FDS plot of design A6 Relative to design A1, A2, A3, A4 and A5 
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Table 4.2: The optimality criterion1efficiency of design A6 Relative to design A1, 

A2, A3, A4 and A5 

 

Optimality 

Criterion 

Efficiency 

Efficiency 

of A6 

Relative to 

A1 

Efficiency 

of A6 

Relative to 

A2 

Efficiency 

of A6 

Relative to 

A3 

Efficiency 

of A6 

Relative to 

A4 

Efficiency 

of A6 

Relative to 

A5 

D-efficiency 1.171 1.072 0.861 0.935 0.807 

G-efficiency 2.104 2.100 1.438 1.534 0.812 

A-efficiency 1.439 1.296 1.080 0.937 0.717 

I-efficiency 1.178 1.149 1.069 1.044 0.891 

Design A6 relative to design A1, A2, A3, A4, and A5 in Figure 4.2 shows that the variance 

prediction above 0.5. Again, in Table 4.2 shows that not all the D-, A-, I-, and G- efficiency 

of design A6 relative to design A1, A2, A3, A4, and A5 is above 1.0. Therefore, design A6 

is not good comparative the other design. 

 

Figure 4.3: Sliced FDS plot of design A5 Relative to design A1, A2, A3, A4 and A6 
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In this Figure 4.3 shows that design A5 relative to design A1, A2, A3, A4 and A6 has scaled 

prediction variance above 0.5. Further, Table 4.3 shows that not all the D-, A-, I-, and G- efficiency 

of this design relative to design A1, A2, A3, A4, and A6 is above 1.0. Therefore, design A5 is not 

good comparative the other design. 

Table 4.3: Optimality criterion1efficiency of design A5 Relative to design A1, A2, 

A3, A4 and A6 

 Criterion 

Efficiency 

Efficiency 

of A5 

Relative to 

A1 

Efficiency 

of A5 

Relative to 

A2 

Efficiency 

of A5 

Relative to 

A3 

Efficiency 

of A5 

Relative to 

A4 

Efficiency 

of A5 

Relative to 

A6 

D-efficiency 1.252 1.146 0.921 0.863 1.069 

G-efficiency 1.402 1.399 0.958 0.545 0.667 

A-efficiency 1.536 1.383 1.153 0.765 1.067 

I-efficiency 1.121 1.102 1.024 0.843 0.957 

 

 

Figure 4.4: Sliced FDS plot of design A3 Relative to design A1, A2, A4, A5 and A6 
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In this Figure 4.4 shows that design A3 relative to design A1, A2, A4, A5 and A6 has 

scaled prediction variance above 0.5. Further, Table 4.4 shows that not all the D-, A-, I-, 

and G- efficiency of this design relative to design A1, A2, A4, A5, and A6 is above 1.0. 

Therefore, design A3 is not good comparative the other design. 

Table 4.4: The optimality criterion1efficiency of design A3 Relative to design A1, 

A2, A4, A5 and A6 

Criterion 

Efficiency 

Efficiency 

of A3 

Relative to 

A1 

Efficiency 

of A3 

Relative to 

A2 

Efficiency 

of A3 

Relative to 

A4 

Efficiency 

of A3 

Relative to 

A5 

Efficiency 

of A3 

Relative to 

A6 

D-efficiency 1.359 1.245 0.937 1.086 1.161 

G-efficiency 1.463 1.460 0.569 1.043 0.695 

A-efficiency 1.332 1.199 0.664 0.867 0.926 

I-efficiency 1.085 1.071 0.828 0.975 0.924 

 

 

 

 

 

 

 

 

Figure 4.5: Sliced FDS plot of design A2 Relative to design A1, A3, A4, A5 and A6 
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In this Figure 4.5 shows that design A2 relative to design A1, A3, A4, A5 and A6 has 

scaled prediction variance above 0.5. Further, Table 4.5 shows that not all the D-, A-, I-, 

and G- efficiency of this design relative to design A1, A3, A4, A5, and A6 is above 1.0. 

Therefore, design A2 is not good comparative the other design. 

Table 4.5: The Optimality criterion1efficiency of design A2 Relative to design A1, 

A3, A4, A5 and A6 
 

Criterion 

Efficiency 

Efficiency 

of A2 

Relative to 

A1 

Efficiency 

of A2 

Relative to 

A3 

Efficiency 

of A2 

Relative to 

A4 

Efficiency 

of A2 

Relative to 

A5 

Efficiency 

of A2 

Relative to 

A6 

D-efficiency 1.092 0.803 0.753 0.872 0.933 

G-efficiency 1.002 1.685 0.378 0.715 0.476 

A-efficiency 1.111 0.834 0.553 0.723 0.772 

I-efficiency 1.000 0.923 0.766 0.918 0.867 

 

  

 

Figure 4.6: Sliced FDS plot of design A1 Relative to design A2, A3, A4, A5 and A6 
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In this Figure 4.6 shows that design A1 relative to design A2, A3, A4, A5 and A6 has 

scaled prediction variance above 0.5. Further, Table 4.6 shows none of the D-, A-, I-, and 

G- efficiency of this design relative to design A2, A3, A4, A5, and A6 is above 1.0. 

Therefore, design A1 is not good comparative the other design. 

Table 4.6: The optimality criterion1efficiency of design A1 Relative to design A2, 

A3, A4, A5 and A6 

 

Criterion 

Efficiency 

Efficiency 

of A1 

Relative to 

A2 

Efficiency 

of A1 

Relative to 

A3 

Efficiency 

of A1 

Relative to 

A4 

Efficiency 

of A1 

Relative to 

A5 

Efficiency 

of A1 

Relative to 

A6 

D-efficiency 0.916 0.736 0.690 0.799 0.854 

G-efficiency 0.998 0.683 0.389 0.713 0.475 

A-efficiency 0.900 0.751 0.498 0.651 0.695 

I-efficiency 0.975 0.916 0.762 0.898 0.862 

  

However, we also report the D-efficiency and Average Variance Prediction obtained using 

JMP software division of SAS for each of the six design as shown in Table 4.7. 

Table 4.7: The D-efficiency and average1variance prediction for design A1, A2, A3, 

A4, A5 and A6 

Design D-efficiency Average Variance Prediction 

A1 0.850732 0.154656 

A2 0.985671 0.146223 

A3 1.17388 0.146866 

A4 1.391721 0.089642 

A5 1.212415 0.107664 

A6 1.049311 0.113173 
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According to scale provided by Jones and Sall (2011), then design A4 with D-efficiency 

1.391721 is best design since it has average variance prediction 0.089642 which is the 

smallest amongst all the other designs as shown in Table 4.7. Basing on relative efficiency 

shown in Table 4.1 to 4.6 together with sliced FDS plots in Figure 4.1 to 4.6, we conclude 

that design A4 is the best desirable design that support and fit combined second order 

mixture process variable model within the split-plot layout structure. We therefore, 

employed this design A4 for growing Glycine max (L.) Merrill in order to maximize the 

yield output of Soybean on small scale farm. 

4.2 The Modified MPV Model in Predicting the Yield of Glycine Max   

 This section outline the results obtained when modified MPV model in the context of split-

plot structure arrangement was employed in modeling the yield of Soybean with minimal 

split-plot and main plot errors. In addition, the MPV data obtained was categorized into 

two: simulated data and the actual data collected from the field of experiment for two 

variety of soybean used (R 184 and Blyvoor) using the same settings of MPV within SPD. 

4.2.1 Data Source 

Simulated and Experimental Results of Glycine max in the Context of SPD 

Table 4.8 shows the general simulated results of Glycine max crop based on MPV settings 

within SPD. On the other hand, Table 4.9 and 4.10 shows the experimental results for R 

184, and Blyvoor, respectively. In both cases, the MPV data consist of eight response 

measurements obtained from Glycine max (L.) Merrill after the soybean varieties were 

subjected to different types of MPV treatments subject to SPD layout developed MPV 

design. These eight responses measured include the number of branches per plant (𝑌1), 

number of pods on branches (𝑌2), pods per branch (𝑌3), pods on the main stem (𝑌4), entire 
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pods per plants(𝑌5), number of seeds per plant (𝑌6), seeds per pod (𝑌7), and yield of seeds 

in grams per plant (𝑌8). These results show that there is good agreement between simulated 

and experimental results. Therefore, this indicates that formulation MPV settings 

considering SPD layout and simulation using the same settings act as the guiding principle 

for the actual field MPV experiment utilizing the split-plot structure framework. The results 

depict that Blyvoor performed slightly better than variety R 184 with the same mixture 

process variable setting.  

Table 4.8: The simulated response of1Glycine max 

R W 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7 𝑌8 

1 1 0.25 0.25 0.25 0.25 -1 1 1.7 9.6 4.6 29.5 39.1 100.5 2.5 13.9 

2 1 0 0 0 1 -1 1 0.6 2 2.5 20.8 22.8 51.7 2.1 9.7 

3 1 0 1 0 0 -1 1 0.5 2.1 2.1 24.3 26.4 52.3 2.1 9.5 

4 1 0.25 0.25 0.25 0.25 -1 1 1.7 9.3 4.6 29.9 39.2 100.3 2.5 13.7 

5 1 0 0 1 0 -1 1 0.5 1.9 2.5 25.4 27.3 50.4 2.1 9.8 

6 1 1 0 0 0 -1 1 0.6 1.8 2.6 20.7 22.5 50.2 2.1 8.9 

7 2 0.25 0.25 0.25 0.25 1 −1 2.2 10.5 5.1 31.0 41.5 98.1 2.6 14.6 

8 2 0.25 0.25 0.25 0.25 1 −1 2.2 9.8 4.6 30.5 40.3 97.7 2.6 14.1 

9 2 0 0 1 0 1 −1 0.7 3.7 2.5 21.1 24.8 61.5 2.1 10.4 

10 2 0 1 0 0 1 −1 0.8 3.4 2.3 20.1 23.5 60.3 2.1 9.7 

11 2 0 0 0 1 1 −1 0.6 3.2 2.6 19.9 23.1 58.4 2.1 9.5 

12 2 1 0 0 0 1 −1 0.8 3.1 2.6 20.5 23.6 58.9 2.1 9.8 

13 3 0.5 0.5 0 0 1 1 2 5.5 4 29.5 35 83.9 2.4 12.3 

14 3 0.5 0 0.5 0 1 1 2 5.4 4.3 29.7 35.1 89.1 2.4 12.8 

15 3 0.5 0 0 0.5 1 1 1.9 5.3 4.1 30.2 35.5 87.2 2.4 12.4 

16 3 0 0.5 0 0.5 1 1 1.8 5.3 4 30 35.3 84.9 2.4 12.3 

17 3 0 0.5 0.5 0 1 1 1.9 5.1 4.2 29.1 34.2 89 2.4 12.4 

18 3 0 0 0.5 0.5 1 1 1 5.2 4.1 29.2 34.4 80.9 2.4 12.5 

19 4 0 0.5 0.5 0 -1 −1 1 5.3 3.4 21.6 26.9 80.6 2.2 11.3 

20 4 0.5 0.5 0 0 -1 −1 0.9 4.9 2.8 21 25.9 64.7 2.2 10.6 

21 4 0 0 0.5 0.5 -1 −1 0.8 5 2.9 20.9 25.9 67.4 2.2 10.9 

22 4 0.5 0 0.5  -1 −1 0.8 4.1 2.9 21 25.1 66.3 2.2 10.6 

23 4 0.5 0 0 0.5 -1 −1 0.9 4.8 2.7 21.2 26 64.6 2.1 10.5 
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24 4 0.25 0.25 0.25 0.25 -1 −1 0.9 3.8 2.9 22.3 26.1 66.5 2.1 10.8 

25 5 1 0 0 0 0 0 0.8 2.4 2.3 23.8 26.2 53.1 2.1 9.6 

26 5 0 1 0 0 0 0 0.8 2.8 2.5 23.9 26.7 57.8 2.1 9.9 

27 5 0 0 1 0 0 0 0.7 2.6 2.3 22.7 25.3 55.1 2.1 9.6 

28 5 0 0 0 1 0 0 0.7 2.5 2.5 22.9 25.4 52.5 2.1 9.9 

29 5 0.25 0.25 0.25 0.25 0 0 2.2 9.7 4.3 30.7 40.4 94.1 2.5 14.1 

30 5 0.25 0.25 0.25 0.25 0 0 2.1 9.6 4.3 31.5 41.1 94.8 2.5 13.8 

31 6 0.5 0 0.5 0 0 1 1.5 7.4 3.8 23 30.4 75.5 2.3 11.3 

32 6 0.5 0.5 0 0 0 1 1.4 7.1 3.9 24.3 31.4 79.5 2.3 11.5 

33 6 0.5 0 0 0.5 0 1 1.5 6.8 3.5 26.3 33.1 78.3 2.3 11.3 

34 6 0 0.5 0.5 0 0 1 1.4 6.2 3.6 27.5 33.7 75.1 2.3 11.5 

35 6 0 0.5 0 0.5 0 1 1.4 6.4 3.6 26.2 32.6 78.9 2.3 11.3 

36 6 0 0 0.5 0.5 0 1 1.3 6 3.6 24 30 70.8 2.3 11.6 

37 7 0.5 0 0.5 0 0 −1 1.3 6.7 3.7 20.5 27.2 80.6 2.3 12.1 

38 7 0.5 0.5 0 0 0 −1 1.3 5.9 3.5 23 28.9 73.4 2.2 11.3 

39 7 0.5 0 0 0.5 0 −1 1.2 5.9 3.5 22.7 28.6 69.6 2.3 11.9 

40 7 0 0.5 0.5 0 0 −1 1.2 5.6 3.4 21.1 26.7 67.5 2.3 11.1 

41 7 0 0.5 0 0.5 0 −1 1.1 5.6 3.3 20.8 26.4 67.7 2.3 11.2 

42 7 0 0 0.5 0.5 0 −1 1 5.7 3.4 21.3 27 68.2 2.2 11.7 

43 8 0.25 0.25 0.25 0.25 −1.414 0 1.8 8.1 4.5 27.8 35.9 93.9 2.5 13.5 

44 8 0.25 0.25 0.25 0.25 −1.414 0 1.9 8.8 4.4 27.4 36.2 89.9 2.5 13.6 

45 8 0.25 0.25 0.25 0.25 −1.414 0 1.7 8.9 4.5 29.7 38.6 93.1 2.5 13.7 

46 8 0.25 0.25 0.25 0.25 −1.414 0 1.6 8.6 4.4 29.1 37.7 92.2 2.5  13.3 

47 8 0.25 0.25 0.25 0.25 −1.414 0 1.7 8.6 4.4 29.6 38.2 91.7 2.4 13.4 

48 8 0.25 0.25 0.25 0.25 −1.414 0 1.6 8.2 4.5 30.6 38.8 90.2 2.4 13.4 

49 9 0.25 0.25 0.25 0.25 1.414 0 2.3 7.4 4.8 35.8 43.2 101.7 2.6 14.3 

50 9 0.25 0.25 0.25 0.25 1.414 0 2.4 10.5 4.7 33.2 43.7 103.6 2.6 14.6 

51 9 0.25 0.25 0.25 0.25 1.414 0 2.3 10.9 4.7 31.2  42.1 104.3 2.7 14.2 

52 9 0.25 0.25 0.25 0.25 1.414 0 2.3 10.3 4.8 32.9 43.2 106.8 2.7 14.5 

53 9 0.25 0.25 0.25 0.25 1.414 0 2.4 10.2 4.9 31.9 42.1 106 2.6 14.2 

54 9 0.25 0.25 0.25 0.25 1.414 0 2.3 11.4 5.1 32.3 43.7 106.8 2.7 14.4 

*R=run, W= whole plot 
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Table 4.9:  The experimental results of1Glycine max for R 184 

 

R W 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7 𝑌8 

1 1 0.25 0.25 0.25 0.25 −1 1 2.7 10.6 5.6 30.5 40.1 105 2.5 14.9 

2 1 0 0 0 1 −1 1 1.6 4.0 3.5 21.8 24.8 56.7 2.3 10.7 

3 1 0 1 0 0 −1 1 1.5 4.1 3.1 25.3 28.4 57.3 2.1 10.5 

4 1 0.25 0.25 0.25 0.25 −1 1 2.7 ` 5.6 30.9 40.2 105.3 2.5 14.7 

5 1 0 0 1 0 −1 1 1.5 3.9 3.5 26.4 29.3 55.4 2.4 10.8 

6 1 1 0 0 0 −1 1 1.6 3.8 3.6 21.7 24.5 55.2 2.2 9.9 

7 2 0.25 0.25 0.25 0.25 1 −1 3.2 11.5 6.1 32 43.5 104.1 2.6 15.6 

8 2 0.25 0.25 0.25 0.25 1 −1 3.2 10.8 5.6 31.5 43.3 102.7 2.6 15.1 

9 2 0 0 1 0 1 −1 1.7 4.7 3.5 22.1 26.8 66.5 2.3 11.4 

10 2 0 1 0 0 1 −1 1.8 5.4 3.3 21.1 25.5 65.3 2.2 10.7 

11 2 0 0 0 1 1 −1 1.6 5.2 3.6 20.9 25.1 63.4 2.1 10.5 

12 2 1 0 0 0 1 −1 1.8 5.1 3.6 21.5 25.6 63.9 2.2 10.8 

13 3 0.5 0.5 0 0 1 1 3 7.5 5.1 30.5 37 88.9 2.5 13.3 

14 3 0.5 0 0.5 0 1 1 3 7.4 5.3 30.7 37.1 94.1 2.4 13.8 

15 3 0.5 0 0 0.5 1 1 2.9 7.3 5.1 31.2 37.5 93.2 2.5 13.4 

16 3 0 0.5 0 0.5 1 1 2.8 7.3 5 31 37.3 89.9 2.4 13.3 

17 3 0 0.5 0.5 0 1 1 2.9 7.1 5.2 30.1 36.2 94 2.4 13.4 

18 3 0 0 0.5 0.5 1 1 2 7.2 5.1 30.2 36.4 85.9 2.4 13.5 

19 4 0 0.5 0.5 0 −1 −1 2 7.3 4.4 22.6 28.9 85.6 2.4 12.3 

20 4 0.5 0.5 0 0 −1 −1 1.9 6.9 3.8 22 27.9 69.7 2.2 11.6 

21 4 0 0 0.5 0.5 −1 −1 1.8 7 3.9 21.9 27.9 72.4 2.3 11.9 

22 4 0.5 0 0.5  −1 −1 1.8 6.1 3.9 22 27.1 71.3 2.3 11.6 

23 4 0.5 0 0 0.5 −1 −1 1.9 6.8 3.7 22.2 28 69.6 2.1 11.5 

24 4 0.25 0.25 0.25 0.25 −1 −1 1.9 5.8 3.9 23.3 28.1 71.5 2.3 11.8 

25 5 1 0 0 0 0 0 1.8 4.4 3.3 24.8 28.2 58.1 2.1 10.6 

26 5 0 1 0 0 0 0 1.8 4.8 3.5 24.9 28.7 62.8 2.2 10.9 

27 5 0 0 1 0 0 0 1.7 4.6 3.3 23.7 27.3 59.1 2.1 10.6 

28 5 0 0 0 1 0 0 1.7 4.5 3.5 23.9 22.4 57.5 2.0 10.9 

29 5 0.25 0.25 0.25 0.25 0 0 3.2 10.7 5.3 31.7 43.4 99.1 2.6 15.1 

30 5 0.25 0.25 0.25 0.25 0 0 3.1 10.6 5.3 32.5 43.1 99.8 2.5 14.8 

31 6 0.5 0 0.5 0 0 1 2.5 8.4 5.8 24 32.4 80.5 2.3 13.3 

32 6 0.5 0.5 0 0 0 1 2.4 8.1 4.9 25.3 33.4 84.5 2.4 13.5 

33 6 0.5 0 0 0.5 0 1 2.5 7.8 4.5 27.3 35.1 83.3 2.3 13.3 

34 6 0 0.5 0.5 0 0 1 2.4 7.2 4.6 28.5 35.7 80.1 2.3 13.5 
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35 6 0 0.5 0 0.5 0 1 2.4 7.4 4.6 27.2 34.6 83.9 2.3 13.3 

36 6 0 0 0.5 0.5 0 1 2.3 7.0 4.6 25 32 75.8 2.4 13.6 

37 7 0.5 0 0.5 0 0 −1 2.3 7.7 4.7 21.5 29.2 85.6 2.4 13.1 

38 7 0.5 0.5 0 0 0 −1 2.3 6.9 4.5 24 30.9 78.4 2.2 12.3 

39 7 0.5 0 0 0.5 0 −1 2.2 6.9 4.5 23.7 30.6 74.6 2.4 12.9 

40 7 0 0.5 0.5 0 0 −1 2.2 6.6 4.4 22.1 28.7 72.5 2.3 12.1 

41 7 0 0.5 0 0.5 0 −1 2.1 6.6 4.3 21.8 28.4 72.7 2.2 12.2 

42 7 0 0 0.5 0.5 0 −1 2.0 6.7 4.4 22.3 29 73.2 2.2 12.7 

43 8 0.25 0.25 0.25 0.25 −1.414 0 2.8 9.1 5.5 28.8 37.9 98.9 2.7 14.5 

44 8 0.25 0.25 0.25 0.25 −1.414 0 2.9 9.8 5.4 28.4 37.2 94.9 2.5 14.6 

45 8 0.25 0.25 0.25 0.25 −1.414 0 2.7 9.9 5.5 30.7 40.6 98.1 2.6 14.7 

46 8 0.25 0.25 0.25 0.25 −1.414 0 2.6 9.6 5.4 30.1 39.7 97.2 2.5  14.3 

47 8 0.25 0.25 0.25 0.25 −1.414 0 2.7 9.6 5.4 30.6 40.2 96.7 2.4 14.4 

48 8 0.25 0.25 0.25 0.25 −1.414 0 2.6 9.2 5.5 31.6 40.8 95.2 2.4 14.4 

49 9 0.25 0.25 0.25 0.25 1.414 0 3.3 8.4 5.8 36.8 45.2 106.7 2.6 15.3 

50 9 0.25 0.25 0.25 0.25 1.414 0 3.4 11.5 5.7 34.2 45.7 108.6 2.6 15.6 

51 9 0.25 0.25 0.25 0.25 1.414 0 3.3 11.9 5.7 32.2  44.1 109.3 2.8 15.2 

52 9 0.25 0.25 0.25 0.25 1.414 0 3.3 11.3 5.8 33.9 45.2 111.8 2.7 15.5 

53 9 0.25 0.25 0.25 0.25 1.414 0 3.4 11.2 5.9 32.9 44.1 111.5 2.8 15.2 

54 9 0.25 0.25 0.25 0.25 1.414 0 3.3 12.4 6.1 33.3 45.7 111.8 2.7 15.4 

*R=run, W= whole plot 
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Table 4.10: The experimental results of1Glycine max for Blyvoor 

R W 𝑋1 𝑋2 𝑋3 𝑋4 𝑍1 𝑍2 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7 𝑌8 

1 1 0.25 0.25 0.25 0.25 -1 1 2.8 10.7 5.8 31.5 41.1 107 2.6 15.9 

2 1 0 0 0 1 -1 1 1.7 4.1 3.7 22.8 25.8 58.7 2.3 11.7 

3 1 0 1 0 0 -1 1 1.6 4.2 3.3 26.3 29.4 59.3 2.2 11.5 

4 1 0.25 0.25 0.25 0.25 -1 1 2.8 10.4 5.8 31.9 41.2 107.3 2.5 15.7 

5 1 0 0 1 0 -1 1 1.6 5.9 3.7 27.4 30.3 57.4 2.4 11.8 

6 1 1 0 0 0 -1 1 1.7 4.8 3.8 22.7 25.5 57.2 2.2 10.9 

7 2 0.25 0.25 0.25 0.25 1 -1 3.3 11.6 6.3 33.0 44.5 107.1 2.6 16.6 

8 2 0.25 0.25 0.25 0.25 1 -1 3.3 11.8 5.8 32.5 44.3 104.7 2.7 16.1 

9 2 0 0 1 0 1 -1 1.8 6.7 3.7 23.1 27.8 68.5 2.3 12.4 

10 2 0 1 0 0 1 -1 1.9 6.4 3.5 22.1 26.5 67.3 2.2 11.7 

11 2 0 0 0 1 1 -1 1.7 6.2 3.8 21.9 26.1 65.4 2.1 11.5 

12 2 1 0 0 0 1 -1 1.9 6.1 3.9 22.5 26.6 65.9 2.4 11.8 

13 3 0.5 0.5 0 0 1 1 3.1 8.1 5.3 31.5 37.9 90.9 2.5 14.3 

14 3 0.5 0 0.5 0 1 1 3.1 8.4 5.5 31.7 38.5 96.1 2.6 14.8 

15 3 0.5 0 0 0.5 1 1 3.0 8.0 5.3 32.2 38.1 95.2 2.5 14.4 

16 3 0 0.5 0 0.5 1 1 2.9 7.8 5.2 32.0 38.3 90.9 2.4 14.3 

17 3 0 0.5 0.5 0 1 1 3.0 7.9 5.3 31.1 37.2 96.0 2.5 14.4 

18 3 0 0 0.5 0.5 1 1 2.2 7.7 5.2 31.2 37.4 87.9 2.4 14.5 

19 4 0 0.5 0.5 0 -1 -1 2.2 7.8 4.6 23.6 29.9 87.6 2.5 13.3 

20 4 0.5 0.5 0 0 -1 -1 2.0 7.4 4.0 23.0 28.9 70.7 2.2 12.6 

21 4 0 0 0.5 0.5 -1 -1 1.9 7.5 4.1 22.9 28.9 74.4 2.3 12.9 

22 4 0.5 0 0.5  -1 -1 1.9 7.6 4.1 23.1 28.1 73.3 2.3 12.6 

23 4 0.5 0 0 0.5 -1 -1 2.1 7.3 3.9 23.2 29.0 70.6 2.2 12.5 

24 4 0.25 0.25 0.25 0.25 -1 -1 2.0 7.8 4.0 24.3 29.2 73.5 2.3 12.8 

25 5 1 0 0 0 0 0 1.9 4.9 3.5 25.8 29.2 60.1 2.4 11.6 

26 5 0 1 0 0 0 0 1.9 5.3 3.7 25.9 29.7 64.8 2.3 11.9 
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27 5 0 0 1 0 0 0 1.8 5.1 3.5 24.7 28.3 61.1 2.1 11.6 

28 5 0 0 0 1 0 0 1.8 5.0 3.6 24.9 27.4 59.5 2.3 11.9 

29 5 0.25 0.25 0.25 0.25 0 0 3.1 10.8 5.5 32.7 44.4 101.1 2.5 16.1 

30 5 0.25 0.25 0.25 0.25 0 0 3.0 10.6 5.5 33.5 44.1 101.8 2.6 15.8 

31 6 0.5 0 0.5 0 0 1 2.6 8.5 5.0 25.0 33.4 82.5 2.5 14.3 

32 6 0.5 0.5 0 0 0 1 2.5 8.2 5.1 26.3 34.4 86.5 2.4 14.5 

33 6 0.5 0 0 0.5 0 1 2.6 7.9 4.7 28.3 33.5 85.3 2.3 14.3 

34 6 0 0.5 0.5 0 0 1 2.5 7.3 4.8 29.5 37.7 82.1 2.5 14.5 

35 6 0 0.5 0 0.5 0 1 2.6 7.5 4.8 28.2 35.6 85.9 2.3 14.3 

36 6 0 0 0.5 0.5 0 1 2.4 7.1 5.1 26.0 36.1 77.8 2.4 14.6 

37 7 0.5 0 0.5 0 0 -1 2.4 7.8 4.9 22.5 30.2 87.6 2.5 14.1 

38 7 0.5 0.5 0 0 0 -1 2.4 7.0 4.7 25.0 31.9 79.4 2.2 13.3 

39 7 0.5 0 0 0.5 0 -1 2.3 7.0 4.7 24.7 31.6 77.6 2.5 13.9 

40 7 0 0.5 0.5 0 0 -1 2.3 6.7 4.6 23.1 29.7 74.5 2.3 13.1 

41 7 0 0.5 0 0.5 0 -1 2.2 6.7 4.5 22.8 29.4 74.7 2.2 13.2 

42 7 0 0 0.5 0.5 0 -1 2.1 6.7 4.6 23.3 30.0 75.2 2.2 13.7 

43 8 0.25 0.25 0.25 0.25 −1.414 0 2.9 9.6 5.7 29.8 38.9 100.9 2.6 15.5 

44 8 0.25 0.25 0.25 0.25 −1.414 0 3.0 10.3 5.6 29.6 38.2 97.9 2.5 15.6 

45 8 0.25 0.25 0.25 0.25 −1.414 0 2.8 10.4 5.7 31.7 41.6 100.1 2.5 15.7 

46 8 0.25 0.25 0.25 0.25 −1.414 0 2.7 10.1 5.6 31.1 40.7 99.2 2.5  15.3 

47 8 0.25 0.25 0.25 0.25 −1.414 0 2.8 10.1 5.6 31.6 41.2 98.7 2.4 15.4 

48 8 0.25 0.25 0.25 0.25 −1.414 0 2.7 9.7 5.7 31.9 41.8 97.2 2.4 15.4 

49 9 0.25 0.25 0.25 0.25 1.414 0 3.4 11.6 6.0 37.8 46.2 108.7 2.6 16.3 

50 9 0.25 0.25 0.25 0.25 1.414 0 3.5 12.4 6.1 35.2 46.7 112.6 2.6 16.6 

51 9 0.25 0.25 0.25 0.25 1.414 0 3.4 11.7 5.9 33.2  45.1 111.3 2.8 16.2 

52 9 0.25 0.25 0.25 0.25 1.414 0 3.4 11.9 6.2 34.9 46.2 111.8 2.5 16.5 

53 9 0.25 0.25 0.25 0.25 1.414 0 3.5 11.4 5.9 33.9 45.1 111.5 2.5 16.2 

54 9 0.25 0.25 0.25 0.25 1.414 0 3.4 12.0 6.1 34.3 46.7 111.4 2.7 16.4 

*R=run, W= whole plot 
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4.2.2 Exploration and Estimation of Parameters for MPV within Split Plot Layout 

This section outline the estimates of parameters in model (3.6) and evaluated two sources 

of errors arising from Split-plot design as result of modeling the yield of Glycine max using 

modified MPV settings. The two sources errors includes Whole plot error (WPE) and split-

plot error (SPE)  

Evaluated WPE and SPE Using REML Method 

Table 4.11: The REML variance component1(𝝈𝜹
𝟐;  𝝈𝜺

𝟐) estimates obtained from the 

model 

 

Yield Random 

effect 

Variance 

ratio (𝑑) 

Variance 

component  

Standard 

error  

95% 

Lower 

95% 

Upper 

Wald  

𝒑 −value 

𝑌1 W 1.860 0.02602 0.01644 -0.006205 0.05825 0.1135 

R   0.01399 0.003606 0.008941 0.02497  

𝑌2 W 2.712 1.19444 0.736727 -0.249519 2.63840 0.1050 

R  0.440428 0.113656 0.2813097 0.786625  

𝑌3 W 2.208 0.0625945 0.0390899 -0.01402 0.139209 0.1093 

R   0.0283492 0.0073119 0.0181109 0.050615  

𝑌4 W 3.466 5.397922 3.2690654 -1.009329 11.80517 0.0987 

R   1.5574357 0.4016197 0.9950471 2.780324  

𝑌5 W 8.495 9.6251669 5.6705645 -1.488935 20.73927 0.0896 

R  1.1330746 0.2924273 0.7236878 2.023855  

𝑌6 W 2.677 0.0048252 0.0029668 -0.00099 0.010640 0.109 

R   0.0018023 0.0004647 0.0011515 0.003217  

W 1.909 25.881354 16.281081 -6.028979 57.79169 0.1119 
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𝑌7 R   13.55451 3.4925294 8.6627493 24.18453  

𝑌8 W 6.4905 0.4111375 0.2439755 -0.067046 0.889321 0.092 

R  0.0633445 0.0163494 0.0404565 0.113149  

*W= Whole plot, R= Residual 

The result in Table 4.11 shows that variance ratio for each of the eight responses. The 

variance ratio was obtained using whole plot and subplot variance error given as  

𝑑 =
𝜎𝛿
2

𝜎휀
2
, 

where 𝜎𝛿
2 represents the WPE variance whereas 𝜎2 is the SPE variance.  The results shows 

clearly that random effect as well as restricted randomization was completely solved with 

split-plot structure arrangement since WPE variance is greater than SPE variance as 

evidenced with variance ratio (𝑑). In addition, none of variance ratio was significant as 

indicated with the Wald 𝑝 − value at 5% significance level. 

Table 4.12: The summary fit of the eight1responses obtained using MPV setting 

model structure 

Summary of fit 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 𝑌7 𝑌8 

Multiple 𝑅2 0.9769 0.9789 0.9660 0.9551 0.9857 0.9711 0.9740 0.9875 

Adjusted 𝑅2 0.9660 0.9690 0.9500 0.9339 0.9790 0.9575 0.9617 0.9816 

RMSE 0.1183 0.1684 0.6636 1.248 1.064 0.0424 3.681 0.2517 

Mean response  1.407 3.659 6.239 26.06 32.30 2.331 78.48 11.94 

 

The averagely adjusted 𝑅2 from Table 4.12 shows that 96.23% of the variation in the 

response is explained by the model. The result shows clearly that the model fits the data 

well for the eight responses. Also, the results indicate that the second-order MPV model 
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formulated adequately represents the growth and pod development of Glycine max. We can 

also observe that the model has a reliability of 96.23% on average which can also provide 

some vital information regarding germination of Glycine max (L) Merrill.  RMSE in the 

Table stands for root mean squared error which is defined as the squared root of the square's 

mean of all of the error. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑆𝑖 − 𝑂𝑖)2,

𝑛

𝑖=1

 

 

(4.1) 

where 𝑂𝑖, 𝑆𝑖 and 𝑛 are the observations, predicted values of a variable (predicted response) 

and the number observations available for analysis, respectively. RMSE is commonly used 

because of its nature to provide a good degree of accuracy and compare the predictive 

errors of different models or model configurations for a given variable and between 

variables. It depends on the scale as described by Carlisle (2005). RMSE is reported for 

each of the eight responses fitted with the MPV setting model structure.  The RMSE value 

shown in Table 4.12 shows that the observation captured on the number of seed per pods 

was well fitted and explained by the model since the lower the value of RMSE, the better 

the model performance. Thus the more accurate the mixture data recorded. 
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4.2.3 ANOVA Tables Based on Data from Table 4.8, Analyzing of Mixture Process 

Data 

 

Table 4.13:  The t student test for the1fitted MPV model for the No. of branches 

Term Estimate Standard 

Error 

t value p value 

𝑋1 0.6260 0.0885 6.99 0.0001 

𝑋2 0.5927 0.0885 6.62 0.0001 

𝑋3 0.5260 0.0885 5.88 0.0001 

𝑋4 0.5260 0.0885 5.88 0.0001 

𝑋1𝑋2 3.8264 0.3004 12.74 0.0001 

𝑋1𝑋3 3.7600 0.3004 12.52 0.0001 

𝑋1𝑋4 3.7600 0.3004 12.52 0.0001 

𝑋2𝑋3 3.8264 0.3004 12.74 0.0001 

𝑋2𝑋4 3.6157 0.3357 10.77 0.0001 

𝑋3𝑋4 2.6215 0.2920 8.98 0.0001 

𝑋1𝑍1 0.4189 0.0867 4.83 0.0001 

𝑋2𝑍1 0.3395 0.0891 3.81 0.0009 

𝑋3𝑍1 0.1776 0.0869 2.04 0.0534 

𝑋4𝑍1 0.07090 0.0877 0.81 0.4277 

𝑋1𝑍2 0.2484 0.0875 2.84 0.0128 

𝑋2𝑍2 0.15491 0.0897 1.73 0.1039 

𝑋3𝑍2 0.0554 0.0874 0.63 0.5361 

𝑋4𝑍2 0.0800 0.0886 0.90 0.3805 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Scheffe model for the 

number of branches per plant observed. The fitted Scheffe model is therefore, 
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 �̂� = 0.626 𝑋1 + 0.5927𝑋2 + 0.5260 𝑋3 + 0.5260 𝑋4 + 3.8264 𝑋1𝑋2

+ 3.76 𝑋1𝑋3 + 3.76 𝑋1𝑋4 + 3.8264 𝑋2𝑋3 + 3.6157 𝑋2𝑋4

+ 2.6215 𝑋3𝑋4 + 0.4189 𝑋1𝑍1 + 0.3395 𝑋2𝑍1

+ 0.1776 𝑋3𝑍1 + 0.0709 𝑋4𝑍1 + 0.2484 𝑋1𝑍2

+ 0.1549 𝑋2𝑍2 + 0.0554 𝑋3𝑍2 + 0.08 𝑋4𝑍2 

 

 

(4.2) 

 

The significant factors 

were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4,  𝑋1 𝑍1,  𝑋2 𝑍1 and  𝑋1 𝑍2 as 

shown in Table (4.13).  Thus, the final model is  

 �̂� = 0.626 𝑋1 + 0.5927𝑋2 + 0.5260 𝑋3 + 0.5260 𝑋4 + 3.8264 𝑋1𝑋2

+ 3.76 𝑋1𝑋3 + 3.76 𝑋1𝑋4 + 3.8264 𝑋2𝑋3 + 3.6157 𝑋2𝑋4

+ 2.6215 𝑋3𝑋4 + 0.4189 𝑋1𝑍1 + 0.3395 𝑋2𝑍1

+ 0.2484 𝑋1𝑍2 

 

(4.3) 

Table 4.14:  The t student test for the 1fitted MPV model for the No. of Pods on 

branches 

 

Term Estimate Standard 

Error 

t value p value 

𝑋1 1.6009 0.5425 2.95 0.0078 

𝑋2 1.9342 0.5425 3.57 0.0019 

𝑋3 1.9009 0.5425 3.50 0.0022 

𝑋4 1.7342 0.5425 3.20 0.0044 

𝑋1𝑋2 20.8843 1.6868 12.38 0.0001 

𝑋1𝑋3 18.9509 1.6868 11.23 0.0001 

𝑋1𝑋4 19.5843 1.6868 11.61 0.0001 

𝑋2𝑋3 17.9843 1.6868 10.66 0.0001 

𝑋2𝑋4 18.4069 1.8851 9.76 0.0001 

𝑋3𝑋4 17.4320 1.6401 10.63 0.0001 
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𝑋1𝑍1 0.6569 0.5326 1.23 0.2344 

𝑋2𝑍1 0.2411 0.5447 0.44 0.6633 

𝑋3𝑍1 0.6596 0.5334 1.24 0.2331 

𝑋4𝑍1 0.4257 0.5378 0.79 0.4393 

𝑋1𝑍2 0.2478 0.5511 0.45 0.6611 

𝑋2𝑍2 -0.1548 0.5620 -0.28 0.7875 

𝑋3𝑍2 -0.0200 0.5503 -0.04 0.9716 

𝑋4𝑍2 0.0229 0.5565 0.04 0.9679 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Scheffe model for the 

number of pods on branches of Glycine max per plant stem observed. The fitted Scheffe 

model is therefore, 

 �̂� = 1.6009 𝑋1 + 1.9342𝑋2 + 1.9009 𝑋3 + 1.7342 𝑋4 + 20.8843 𝑋1𝑋2

+ 18.9509 𝑋1𝑋3 + 19.5843 𝑋1𝑋4 + 17.9843 𝑋2𝑋3

+ 18.4069 𝑋2𝑋4 + 17.4320 𝑋3𝑋4 + 0.6569 𝑋1𝑍1

+ 0.2411 𝑋2𝑍1 + 0.6596𝑋3𝑍1 + 0.4257 𝑋4𝑍1

+ 0.2478 𝑋1𝑍2 − 0.1548 𝑋2𝑍2 − 0.0200 𝑋3𝑍2

+ 0.0229 𝑋4𝑍2 

 

 

(4.4) 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3 and  𝑋3 𝑋4 as 

shown in Table (4.14).  Thus, the final model is  

 �̂� = 1.6009 𝑋1 + 1.9342𝑋2 + 1.9009 𝑋3 + 1.7342 𝑋4 + 20.8843 𝑋1𝑋2

+ 18.9509 𝑋1𝑋3 + 19.5843 𝑋1𝑋4 + 17.9843 𝑋2𝑋3

+ 18.4069 𝑋2𝑋4 + 17.4320 𝑋3𝑋4 

 

(4.5) 
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Figure 4.7: The QQ plot for the number of pods on branches verses the fitted quantile 

This Figure 4.7 shows that the second order model 3.5 was well fitted since it can be 

observed that the data obtained for the number of pods on branches satisfied the assumption 

of normality as most of the points lie on the straight line. The result also indicates that the 

mixture of experimental data collected from the field is normally distributed. Therefore, 

the problem of restricted randomization within split-plot design structure arrangements was 

solved. 
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Table 4.15:  The t student test for the1fitted MPV model for Pods on Main stem 

Term Estimate Standard 

Error 

t value p value 

𝑋1 20.2988 1.0824 18.75 0.0001 

𝑋2 21.3988 1.0824 19.77 0.0001 

𝑋3 21.6988 1.0824 20.05 0.0001 

𝑋4 19.8321 1.0824 18.32 0.0001 

𝑋1𝑋2 18.3605 3.1731 5.79 0.0001 

𝑋1𝑋3 21.7605 3.1731 6.86 0.0001 

𝑋1𝑋4 27.8938 3.1731 8.79 0.0001 

𝑋2𝑋3 20.8605 3.1731 6.57 0.0001 

𝑋2𝑋4 23.3040 3.5459 6.57 0.0001 

𝑋3𝑋4 21.1135 3.0854 6.84 0.0001 

𝑋1𝑍1 2.2803 1.0724 2.13 0.0509 

𝑋2𝑍1 1.2280 1.0937 1.12 0.2785 

𝑋3𝑍1 0.6804 1.0737 0.63 0.5360 

𝑋4𝑍1 2.0735 1.0815 1.92 0.0744 

𝑋1𝑍2 1.5415 1.1268 1.37 0.1996 

𝑋2𝑍2 2.9897 1.1458 2.61 0.0239 

𝑋3𝑍2 2.2016 1.1254 1.96 0.0774 

𝑋4𝑍2 2.0861 1.1361 1.84 0.0937 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Scheffe model for the 

number of pods on main stem of Glycine max per plant stem observed. The fitted Scheffe 

model is therefore, 



174 
 

 
 

 �̂� = 20.2988 𝑋1 + 21.3988𝑋2 + 21.6988 𝑋3 + 19.8321 𝑋4

+ 18.3605 𝑋1𝑋2 + 21.7605 𝑋1𝑋3 + 27.8938 𝑋1𝑋4

+ 20.8605 𝑋2𝑋3 + 23.3040 𝑋2𝑋4 + 21.1135 𝑋3𝑍4

+ 2.2803 𝑋1𝑍1 + 1.2280 𝑋2𝑍1 + 0.6804𝑋3𝑍1

+ 2.0735 𝑋4𝑍1 + 1.5415 𝑋1𝑍2 + 2.9897 𝑋2𝑍2

+ 2.2016 𝑋3𝑍2 + 2.0861 𝑋4𝑍2 

 

     

 

    

(4.6) 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4 and  𝑋2𝑍2 

as shown in Table (4.15).  Thus, the final model is  

 �̂� = 20.2988 𝑋1 + 21.3988𝑋2 + 21.6988 𝑋3 + 19.8321 𝑋4

+ 18.3605 𝑋1𝑋2 + 21.7605 𝑋1𝑋3 + 27.8938 𝑋1𝑋4

+ 20.8605 𝑋2𝑋3 + 23.3040 𝑋2𝑋4 + 21.1135 𝑋3𝑋4

+ 2.9897 𝑋2𝑍2 

 

 

(4.7) 
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Figure 4.8: The effect summary of MPV settings on Pod development on main stem 

The result in Figure 4.8 shows how pure mixture components (Chicken, Cow, Goat, and 

Sheep manure) have a great influence on soybean growth and pods development on the 

main stem and plant in general at a 5% significance level. However, this result helps 

soybean producers to achieve a better yield. We can also observe that the interaction effect 

resulting from the mixture components greatly impacts Glycine max growth and pod 

development at a 5% significance level. Again, we can observe that the type of variety seed 

used also has a slight impact on growth and pods development compared to the PH of the 

soil, which has little significance on Soybean yield's performance, as evidenced from the 

graph. We can also note that the combination of Goat and sheep manure mixture blend, 

when set at 1 of various seeds, outweighs the performance chicken and cow manure 
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mixture setting under the same condition within SPD layout with a significance level close 

to 5% (0.05088, 0.07437, respectively). We can conclude that chicken manure greatly 

influences the growth and pods development of Glycine max. We, therefore, recommend 

farmers embrace the use of these organic manures when planting different types of crops 

on the farm as they have good nutritional value on the growth of plants. 

Table 4.16: The least square means (LSM1for the number of pods on main stem   

Whole plot LSM of  𝑌4 Standard error 

1 29.98 1.3825 

2 30.00 1.3825 

3 28.65 1.3406 

4 27.90 1.3483 

5 31.37 0.6396 

6 25.95 1.0726 

7 26.67 1.0731 

8 31.15 1.2404 

9 30.60 1.2400 

 

 

Figure 4.9: The LSM  plot for the response 𝒀𝟒 on main stem within the whole plots 

Table 4.16 shows the least square mean (LSM) response on the number of pods 

development on the main stem. However, it was observed that the performance pods 
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development on the main stem is averagely the same across the nine whole plots subject to 

different treatment combinations using mixture process variable settings within each 

subplot. This also evidenced from Figure 4.9 showing where it was also that whole plots 5 

and 8 have posted a higher value with plot 5 being slightly higher with 0.2133 with standard 

deviation of 0.6396 and 1.0726 respectively with minimal variation in the total yield obtained 

from whole plot 5. The study therefore, recommend the mixture process variable settings to 

whole plots 5 and 8 to be used with farmers to achieve a better yield of Glycine max. 

Table 4.17:  The t student test for the1fitted MPV model for Pods per branch 

Term Estimate Standard 

Error 

t value p value 

𝑋1 2.3704 0.1317 18.00 0.0001 

𝑋2 2.1704 0.1317 16.48 0.0001 

𝑋3 2.3037 0.1317 17.49 0.0001 

𝑋4 2.4037 0.1317 18.25 0.0001 

𝑋1𝑋2 5.9847 0.4278 13.99 0.0001 

𝑋1𝑋3 6.0180 0.4278 14.07 0.0001 

𝑋1𝑋4 5.0180 0.4278 11.73 0.0001 

𝑋2𝑋3 6.4180 0.4278 15.00 0.0001 

𝑋2𝑋4 5.4782 0.4781 11.46 0.0001 

𝑋3𝑋4 5.342 0.4159 12.85 0.0001 

𝑋1𝑍1 0.3144 0.1284 2.45 0.0240 

𝑋2𝑍1 0.1553 0.1316 1.18 0.2514 

𝑋3𝑍1 0.1936 0.1285 1.51 0.1482 

𝑋4𝑍1 0.2618 0.1297 2.02 0.0574 

𝑋1𝑍2 0.2934 0.1310 2.24 0.0430 

𝑋2𝑍2 0.0961 0.1340 0.72 0.4849 

𝑋3𝑍2 0.2268 0.1308 1.73 0.1065 

𝑋4𝑍2 0.2113 0.1325 1.59 0.1336 
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The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Scheffe model for the 

number of pods per branch of Glycine max per plant stem observed. The fitted Scheffe 

model is therefore, 

 �̂� = 2.3704 𝑋1 + 2.1704𝑋2 + 2.3037𝑋3 + 2.4037 𝑋4 + 5.9847 𝑋1𝑋2

+ 6.0180 𝑋1𝑋3 + 5.0180 𝑋1𝑋4 + 6.4180 𝑋2𝑋3

+ 5.4782 𝑋2𝑋4 + 5.342 𝑋3𝑋4 + 0.3144 𝑋1𝑍1

+ 0.1553 𝑋2𝑍1 + 0.1936𝑋3𝑍1 + 0.2618𝑋4𝑍1

+ 0.2934 𝑋1𝑍2 + 0.0961 𝑋2𝑍2 + 0.2268 𝑋3𝑍2

+ 0.2113 𝑋4𝑍2 

 

(4.8) 

 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3, 𝑋3 𝑋4, 𝑋1𝑍1 and 

 𝑋1𝑍2 as shown in Table (4.17).  Thus, the final model is 

 

 �̂� = 2.3704 𝑋1 + 2.1704𝑋2 + 2.3037𝑋3 + 2.4037 𝑋4 + 5.9847 𝑋1𝑋2

+ 6.0180 𝑋1𝑋3 + 5.0180 𝑋1𝑋4 + 6.4180 𝑋2𝑋3

+ 5.4782 𝑋2𝑋4 + 5.342 𝑋3𝑋4 + 0.3144 𝑋1𝑍1

+ 0.2934 𝑋1𝑍2 

 

 

(4.9) 
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Figure 4.10: The graph of Studentized Residuals for No. of Pods per branch fitted by 

Scheffe Model 

From Figure 4.10, it can be observed that the residuals from the plot are randomly 

distributed. The studentized residual plot was used to check the independence assumption. 

As evidenced from this Figure 4.10 without any obvious trend to correlate them, there is 

no reason to suspect that the independence assumption was not valid. This Figure was also 

used to verify the linear model-related sample's inclusion and from the plot and it was 

concluded that there was no reason to suspect that the additivity assumption should not 

have been accepted since the plot's residuals are randomly distributed around zero. In 

addition, this plot does not indicate the growth of variance with an increase in the fitted 

value. Therefore, this enabled to check the adequacy SPD used it, and therefore, it is also 

worth pointing out the same diagnosis. And again, this reflects that the data was well fitted. 

  



180 
 

 
 

Table 4.18:  The t student test for the1fitted MPV model for the total No. of Pods 

Term Estimate Standard 

Error 

t value p value 

𝑋1 21.8741 1.2191 17.94 0.0001 

𝑋2 23.3074 1.2191 19.12 0.0001 

𝑋3 23.5741 1.2191 19.34 0.0001 

𝑋4 21.54074 1.2191 17.67 0.0001 

𝑋1𝑋2 39.36272 2.7087 14.53 0.0001 

𝑋1𝑋3 40.8294 2.7087 15.07 0.0001 

𝑋1𝑋4 47.5961 2.7087 17.57 0.0001 

𝑋2𝑋3 38.9627 2.7087 14.38 0.0001 

𝑋2𝑋4 41.6515 3.0267 13.76 0.0001 

𝑋3𝑋4 38.7299 2.6341 14.70 0.0001 

𝑋1𝑍1 2.9268 1.2446 2.35 0.0420 

𝑋2𝑍1 1.4991 1.2580 1.19 0.2615 

𝑋3𝑍1 1.3146 1.2454 1.06 0.3175 

𝑋4𝑍1 2.5141 1.2503 2.01 0.0433 

𝑋1𝑍2 1.7823 1.3687 1.30 0.2299 

𝑋2𝑍2 2.8601 1.3801 2.07 0.0716 

𝑋3𝑍2 2.1625 1.3679 1.58 0.1535 

𝑋4𝑍2 2.1221 1.3743 1.54 0.1614 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Scheffe model for the total 

number of pods of Glycine max per plant stem observed. The fitted Scheffe model is 

therefore, 
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 �̂� = 21.8741 𝑋1 + 23.3074𝑋2 + 23.5741𝑋3 + 21.54074 𝑋4

+ 39.36272 𝑋1𝑋2 + 40.8294 𝑋1𝑋3 + 47.5961 𝑋1𝑋4

+ 38.9627 𝑋2𝑋3 + 41.6515 𝑋2𝑋4 + 38.7299 𝑋3𝑋4

+ 2.9268 𝑋1𝑍1 + 1.4991 𝑋2𝑧1 + 1.3146𝑋3𝑍1

+ 2.5141𝑋4𝑍1 + 1.7823 𝑋1𝑍2 + 2.8601 𝑋2𝑍2

+ 2.1625 𝑋3𝑍2 + 2.1221 𝑋4𝑍2 

 

 

(4.10) 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3, 𝑋3 𝑋4 and  𝑋1𝑍1 

as shown in Table (4.18).  Thus, the final model is  

 �̂� = 21.8741 𝑋1 + 23.3074𝑋2 + 23.5741𝑋3 + 21.54074 𝑋4

+ 39.36272 𝑋1𝑋2 + 40.8294 𝑋1𝑋3 + 47.5961 𝑋1𝑋4

+ 38.9627 𝑋2𝑋3 + 41.6515 𝑋2𝑋4 + 38.7299 𝑋3𝑋4

+ 2.9268 𝑋1𝑍1 

 

(4.11) 

Table 4.19: The t student test for the1fitted MPV model for the No. of seeds per pod 

 

Term Estimate Standard 

Error 

t value p value 

𝑋1 2.0597 0.03460 59.52 0.0001 

𝑋2 2.0597 0.03460 59.52 0.0001 

𝑋3 2.0597 0.03460 59.52 0.0001 

𝑋4 2.0597 0.03460 59.52 0.0001 

𝑋1𝑋2 1.2119 0.10790 11.23 0.0001 

𝑋1𝑋3 1.1119 0.10790 10.30 0.0001 

𝑋1𝑋4 1.1119 0.10790 10.30 0.0001 

𝑋2𝑋3 1.2119 0.10790 11.23 0.0001 

𝑋2𝑋4 1.2207 0.12058 10.12 0.0001 

𝑋3𝑋4 1.0695 0.10491 10.19 0.0001 

𝑋1𝑍1 0.0719 0.03396 2.12 0.0491 
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𝑋2𝑍1 0.0426 0.03473 1.23 0.2352 

𝑋3𝑍1 0.0634 0.03400 1.86 0.0796 

𝑋4𝑍1 0.0795 0.03429 2.32 0.0326 

𝑋1𝑍2 0.0431 0.03511 1.23 0.2434 

𝑋2𝑍2 0.0097 0.03581 0.27 0.7916 

𝑋3𝑍2 0.0462 0.03505 1.32 0.2120 

𝑋4𝑍2 0.0492 0.03545 1.39 0.1898 

 

The estimate, standard errors, 𝑡 values and 𝑝 −values of the fitted Scheffe model for the 

total number of seeds per pod of Glycine max per plant stem observed. The fitted Scheffe 

model is therefore, 

 �̂� = 2.0597 𝑋1 + 2.0597𝑋2 + 2.0597𝑋3 + 2.0597 𝑋4 + 1.2119 𝑋1𝑋2

+ 1.1119 𝑋1𝑋3 + 1.1119 𝑋1𝑋4 + 1.2119 𝑋2𝑋3

+ 1.2207 𝑋2𝑋4 + 1.0695 𝑋3𝑋4 + 0.0719 𝑋1𝑍1

+ 0.0426 𝑋2𝑍1 + 0.0634𝑋3𝑍1 + 0.0795𝑋4𝑍1

+ 0.0431 𝑋1𝑍2 + 0.0097 𝑋2𝑍2 + 0.0462 𝑋3𝑍2

+ 0.0492 𝑋4𝑍2 

 

 

(4.12) 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3, 

 𝑋3 𝑋4,  𝑋1𝑍1 and  𝑋4𝑍1 as shown in Table (4.19).  Thus, the final model is  

 �̂� = 2.0597 𝑋1 + 2.0597𝑋2 + 2.0597𝑋3 + 2.0597 𝑋4 + 1.2119 𝑋1𝑋2

+ 1.1119 𝑋1𝑋3 + 1.1119 𝑋1𝑋4 + 1.2119 𝑋2𝑋3

+ 1.2207 𝑋2𝑋4 + 1.0695 𝑋3𝑋4 + 0.0719 𝑋1𝑍1

+ 0.0795𝑋4𝑍1 

 

(4.13) 
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Table 4.18 and 4.19 represents the analysis of variance results for the determination of the 

fit of the MPV model. They were both obtained using a REML method. The results in both 

Tables clearly shows that 𝑥1, 𝑥2, 𝑥3, 𝑥4, and all the interaction 𝑥1, 𝑥2, 𝑥3 and 𝑥4 are all 

significant and have a great impact on the number of pods on the main stem per plant. Also, 

the interaction between the process variable and mixture component factor 𝑥1𝑧1  and 𝑥4𝑧1 

are significant at 5%. Further, this suggest a possible effects of the mixture process variable 

interaction resulting from soil pH and the number of seeds used per acre. 

 

 

Figure 4.11: The number of seeds per plant observed in each subplot within a split plot 

layout arrangement 

The count chart as shown in Figure 4.11 for the number of seeds per plant indicates which 

subgroup treatment performed better than the other. This count chart was fitted using the 

Poisson distribution model. The subgroup between 0 to 5 and 5 to 54 indicates the high 

number of seeds harvested per plant within a whole plot. The process also at subgroup 
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indicates there is more likely high fertility at that particular point than the other points. The 

fitted Poisson model was used to find the maximum number of seeds to be attained with 

MPV settings. The Count chart also shows the maximum value obtained. 

Table 4.20:  The t student test for the1fitted MPV model for the total No. of seeds 

per plant 

Term Estimate Standard 

Error 

t value p value 

𝑋1 50.7922 2.8001 18.14 0.0001 

𝑋2 53.5255 2.8001 19.12 0.0001 

𝑋3 52.3922 2.8001 18.71 0.0001 

𝑋4 50.9255 2.8001 18.19 0.0001 

𝑋1𝑋2 113.8722 9.3495 12.18 0.0001 

𝑋1𝑋3 120.0388 9.3495 12.84 0.0001 

𝑋1𝑋4 114.3722 9.3495 12.23 0.0001 

𝑋2𝑋3 118.4722 9.3495 12.67 0.0001 

𝑋2𝑋4 111.4577 10.4494 10.67 0.0001 

𝑋3𝑋4 99.1119 9.0894 10.90 0.0001 

𝑋1𝑍1 8.0396 2.7149 2.96 0.0074 

𝑋2𝑍1 2.8369 2.7877 1.02 0.3197 

𝑋3𝑍1 4.4079 2.7193 1.62 0.1199 

𝑋4𝑍1 4.7505 2.7462 1.73 0.0979 

𝑋1𝑍2 4.6172 2.7449 1.68 0.1142 

𝑋2𝑍2 1.1349 2.8121 0.40 0.6920 

𝑋3𝑍2 1.4418 2.7397 0.53 0.6068 

𝑋4𝑍2 4.0959 2.7780 1.47 0.1612 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Scheffe model for the total 

number of seeds of Glycine max per plant stem observed. The fitted Scheffe model is 

therefore, 
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 �̂� = 50.7922 𝑋1 + 53.5255𝑋2 + 52.3922𝑋3 + 50.9255 𝑋4

+ 113.8722 𝑋1𝑋2 + 120.0388 𝑋1𝑋3 + 114.3722 𝑋1𝑋4

+ 118.4722 𝑋2𝑋3 + 111.4577 𝑋2𝑋4 + 99.1119 𝑋3𝑋4

+ 8.0396 𝑋1𝑍1 + 2.8369 𝑋2𝑍1 + 4.4079𝑋3𝑍1 + 4.7505𝑋4𝑍1

+ 4.6172 𝑋1𝑍2 + 1.1349 𝑋2𝑍2 + 1.4418 𝑋3𝑍2 + 4.0959𝑋4𝑍2 

 

 

(4.14) 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3, 𝑋3 𝑋4 and  𝑋1𝑍1 

as shown in Table (4.20).  Thus, the final model is  

 �̂� = 50.7922 𝑋1 + 53.5255𝑋2 + 52.3922𝑋3 + 50.9255 𝑋4

+ 113.8722 𝑋1𝑋2 + 120.0388 𝑋1𝑋3 + 114.3722 𝑋1𝑋4

+ 118.4722 𝑋2𝑋3 + 111.4577 𝑋2𝑋4 + 99.1119 𝑋3𝑋4

+ 8.0396 𝑋1𝑍1 

 

(4.15) 

Table 4.21:  The t student test for the1fitted MPV model for the total yield of seeds 

in grams 

Term Estimate Standard 

Error 

t value p value 

𝑋1 8.9459 0.26262 34.06 0.0001 

𝑋2 9.2126 0.26262 35.08 0.0001 

𝑋3 9.4459 0.26262 35.97 0.0001 

𝑋4 9.2126 0.26262 35.08 0.0001 

𝑋1𝑋2 12.1977 0.64035 19.05 0.0001 

𝑋1𝑋3 11.6311 0.64035 18.16 0.0001 

𝑋1𝑋4 11.9977 0.64035 18.74 0.0001 

𝑋2𝑋3 11.1977 0.64035 17.49 0.0001 

𝑋2𝑋4 11.0337 0.71553 15.42 0.0001 

𝑋3𝑋4 11.5295 0.62271 18.52 0.0001 

𝑋1𝑍1 0.7074 0.26594 2.66 0.0230 

𝑋2𝑍1 0.2008 0.26946 0.75 0.4718 



186 
 

 
 

𝑋3𝑍1 0.5138 0.26616 1.93 0.0809 

𝑋4𝑍1 0.2526 0.26744 0.94 0.3657 

𝑋1𝑍2 0.1243 0.28910 0.43 0.6780 

𝑋2𝑍2 0.0890 0.29211 0.30 0.7678 

𝑋3𝑍2 0.2594 0.28887 0.90 0.3942 

𝑋4𝑍2 0.2605 0.29057 0.90 0.3946 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Scheffe model for the total 

yield of seeds in grams of Glycine max per plant stem observed. The fitted Scheffe model 

is therefore, 

 �̂� = 8.9459 𝑋1 + 9.2126𝑋2 + 9.4459𝑋3 + 9.2126 𝑋4

+ 12.1977 𝑋1𝑋2 + 11.6311 𝑋1𝑋3 + 11.9977 𝑋1𝑋4

+ 11.9977 𝑋2𝑋3 + 11.0337 𝑋2𝑋4 + 11.5295 𝑋3𝑋4

+ 0.7074 𝑋1𝑍1 + 0.2008 𝑋2𝑍1 + 0.5138𝑋3𝑍1

+ 0.2526𝑋4𝑍1 + 0.1243 𝑋1𝑍2 + 0.0890 𝑋2𝑍2

+ 0.2594 𝑋3𝑍2 + 0.2605𝑋4𝑍2. 

 

(4.16) 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4,  𝑋1 𝑋2,  𝑋1 𝑋3,  𝑋1 𝑋4,  𝑋2 𝑋3, 𝑋3 𝑋4 and  𝑋1𝑍1 

as shown in Table (4.21).  Thus, the final model is  

 �̂� = 8.9459 𝑋1 + 9.2126𝑋2 + 9.4459𝑋3 + 9.2126 𝑋4

+ 12.1977 𝑋1𝑋2 + 11.6311 𝑋1𝑋3

+ 11.9977 𝑋1𝑋4 + 11.9977 𝑋2𝑋3

+ 11.0337 𝑋2𝑋4 + 11.5295 𝑋3𝑋4 + 0.7074 𝑋1𝑍1. 

 

(4.17) 
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Figure 4.12: The QQ plot and PP plot for the yield of seeds in grams per plants 

The QQ plot and PP plot in Figure 4.12 present diagnosis plots used to check the fitted 

model's adequacy. In the normal probability plot for QQ and PP plot, we may observe that 

there is no indication that normality assumption should not be accepted as most of the 

number of point lies on straight line. Therefore, we have no doubt to believe the data 

collected is normal distributed. However this also indicates that the second order modified 

MPV model 3.5 fits the data well. 

4.3 The Screening Methodology for Estimating the Predicted Yield Using Simulation 

Technique in the Cox MPV Model.  

This section outline the results of the predicted yield of Glycine max in a mixed 

environment in the presences of process variable in the framework of Cox Mixture Model 

using simulation technique. 



188 
 

 
 

4.3.1 Formulated of Cox MPV Model  

This section outline the ANOVA Table based on the results in Table 4.1, analyzing MPV 

data using REML method in the context of Cox mixture model. 

Table 4.22:  The t student test for the1fitted Cox MPV model for the No. of branches 

Term Estimate Standard 

Error 

t value p value 

Intercept  1.9024 0.0602 31.596 0.0001 

𝑋1 0.2242 0.0741 3.024 0.0051 

𝑋2 0.2076 0.0782 2.653 0.0126 

𝑋3 -0.1952 0.0726 -2.687 0.0116 

𝑋4 -0.2216 0.0741 -2.990 0.0055 

𝑋1
2 -1.5005 0.1116 -13.447 0.0001 

𝑋2
2 -1.5172 0.1151 -13.183 0.0001 

𝑋3
2 -1.1812 0.1096 -10.780 0.0001 

𝑋4
2 -1.1547 0.1114 4.426 0.0001 

𝑋1𝑋2 0.8086 0.1827 6.093 0.0001 

𝑋1𝑋3 1.0780 0.1769 6.265 0.0001 

𝑋1𝑋4 1.1045 0.1797 6.145 0.0001 

𝑋2𝑋3 1.1280 0.1800 6.265 0.0001 

𝑋2𝑋4 0.9438 0.2097 4.501 0.0001 

𝑋3𝑋4 0.2856 0.1724 1.657 0.1079 

𝑋1𝑍1 0.4189 0.08673 4.830 0.0001 

𝑋2𝑍1 0.3395 0.08908 3.811 0.0009 

𝑋3𝑍1 0.1776 0.08687 2.044 0.0534 

𝑋4𝑍1 0.0709 0.08774 0.808 0.4277 

𝑋1𝑍2 0.2484 0.0875 2.838 0.0128 

𝑋2𝑍2 0.1549 0.0897 1.727 0.1039 

𝑋3𝑍2 0.0554 0.0874 0.634 0.5361 

𝑋4𝑍2 0.0800 0.0886 0.903 0.3805 
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The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Cox polynomial model for 

the number of branches per plant observed. The fitted Cox mixture model is therefore, 

 �̂� = 1.9024 + 0.2242 𝑋1 + 0.2076𝑋2 − 0.1952𝑋3 − 0.2216 𝑋4

− 1.5005𝑋1
2 − 1.517𝑋2

2 − 1.1812𝑋3
2 − 1.1547𝑋4

2

+ 0.8086 𝑋1𝑋2 + 1.0780 𝑋1𝑋3 + 1.1045 𝑋1𝑋4

+ 1.1280 𝑋2𝑋3 + 0.9438 𝑋2𝑋4 + 0.2856 𝑋3𝑋4

+ 0.4189 𝑋1𝑍1 + 0.3395 𝑋2𝑍1 + 0.1776 𝑋3𝑍1

+ 0.0709 𝑋4𝑍1 + 0.2484 𝑋1𝑍2 + 0.1549 𝑋2𝑍2

+ 0.0554 𝑋3𝑍2 + 0.08 𝑋4𝑍2 

 

 

(4.18) 

The significant factors were 𝑋1,  𝑋2,  𝑋3,  𝑋4, 𝑋1
2, 𝑋2

2, 𝑋3
2, 𝑋4

2, 𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4 

,  𝑋1 𝑍1,  𝑋2 𝑍1, 𝑋1 𝑋2,  𝑋1 𝑋3 and  𝑋1 𝑍2 as shown in Table (4.22). Thus, the final model is  

 �̂� = 1.9024 + 0.2242 𝑋1 + 0.2076𝑋2 − 0.1952𝑋3 − 0.2216 𝑋4

− 1.501𝑋1
2 − 1.517𝑋2

2 − 1.1812𝑋3
2 − 1.1547𝑋4

2

+ 0.8086 𝑋1𝑋2 + 1.0780 𝑋1𝑋3 + 1.1045 𝑋1𝑋4

+ 1.1280 𝑋2𝑋3 + 0.9438 𝑋2𝑋4 + 0.4189 𝑋1𝑍1

+ 0.3395 𝑋2𝑍1 + 0.2484 𝑋1𝑍2 

 

(4.19) 
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Table 4.23:  The t student test for the1fitted Cox MPV model for Pods on branches 

Term Estimate Standard 

Error 

t value p value 

Intercept 8.8702 0.3950 22.458 0.0001 

𝑋1 0.5079 0.4176 1.216 0.2333 

𝑋2 0.3052 0.42351 0.7210 0.4767 

𝑋3 -0.4552 0.4235 -1.075 0.2910 

𝑋4 -0.3579 0.4176 -0.8570 0.3982 

𝑋1
2 -7.7772 0.62709 -12.402 0.0001 

𝑋2
2 -7.2412 0.63112 -11.474 0.0001 

𝑋3
2 -6.5142 0.63105 -10.323 0.0001 

𝑋4
2 -6.7781 0.62712 -10.808 0.0001 

𝑋1𝑋2 5.8659 1.0155 5.776 0.0001 

𝑋1𝑋3 4.6596 1.0022 4.649 0.0001 

𝑋1𝑋4 5.0289 1.0094 4.982 0.0001 

𝑋2𝑋3 4.2289 1.0094 4.189 0.0002 

𝑋2𝑋4 4.3876 1.1654 3.765 0.0007 

𝑋3𝑋4 4.1398 0.9766 4.239 0.0002 

𝑋1𝑍1 0.6569 0.5326 1.233 0.2344 

𝑋2𝑍1 0.2411 0.54474 0.4430 0.6633 

𝑋3𝑍1 0.6596 0.53337 1.237 0.2331 

𝑋4𝑍1 0.42571 0.5378 0.7920 0.4393 

𝑋1𝑍2 0.2478 0.5511 0.4500 0.6611 

𝑋2𝑍2 -0.1548 0.5620 -0.2750 0.7875 

𝑋3𝑍2 -0.01998 0.5503 -0.0360 0.9716 

𝑋4𝑍2 0.02288 0.5565 0.0410 0.9679 

 

The estimate, standard errors, 𝑡 values and 𝑝 −values of the fitted Cox polynomial model 

for the number of pods on branches of Glycine max per plant stem observed. The fitted 

Cox mixture model is therefore, 
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 �̂� = 8.8702 + 0.5079 𝑋1 + 0.3052𝑋2 − 0.4552𝑋3 − 0.3579 𝑋4

− 7.7772𝑋1
2 − 7.2412𝑋2

2 − 6.5142𝑋3
2 − 6.7781𝑋4

2

+ 5.8659 𝑋1𝑋2 + 4.6596 𝑋1𝑋3 + 5.0289 𝑋1𝑋4

+ 4.2289 𝑋2𝑋3 + 4.3876 𝑋2𝑋4 + 4.1398 𝑋3𝑋4

+ 0.6569 𝑋1𝑍1 + 0.2411 𝑋2𝑍1 + 0.6596 𝑋3𝑍1

+ 0.42571𝑋4𝑍1 + 0.2478 𝑋1𝑍2 − 0.1548 𝑋2𝑍2

− 0.01998 𝑋3𝑍2 + 0.02288 𝑋4𝑍2 

 

 

(4.20) 

 

The significant factors were  𝑋1
2, 𝑋2

2, 𝑋3
2  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4, 𝑋1 𝑋2,  𝑋1 𝑋3, and 𝑋4

2  as 

shown in Table (4.23).  Thus, the final model is  

 �̂� = 8.8702 − 7.7772𝑋1
2 − 7.2412𝑋2

2 − 6.5142𝑋3
2 − 6.7781𝑋4

2

+ 5.8659 𝑋1𝑋2 + 4.6596 𝑋1𝑋3 + 5.0289 𝑋1𝑋4

+ 4.2289 𝑋2𝑋3 + 4.3876 𝑋2𝑋4 + 4.1398 𝑋3𝑋4 

  

(4.21) 
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Table 4.24:  The t student test for the1fitted Cox MPV model for the No. of Pods on 

Main stem 

 

Term Estimate Standard 

Error 

t value p value 

Intercept 29.1417 0.8258 35.289 0.0001 

𝑋1 -0.1395 0.7821 -0.178 0.8596 

𝑋2 -0.2503 0.8254 -0.303 0.7637 

𝑋3 -0.0343 0.7664 -0.045 0.9646 

𝑋4 0.4161 0.7821 0.532 0.5986 

𝑋1
2 -8.7034 1.1788 -7.383 0.0001 

𝑋2
2 -7.4926 1.2158 -6.163 0.0001 

𝑋3
2 -7.4087 1.1576 -6.400 0.0001 

𝑋4
2 -9.7257 1.1767 -8.265 0.0001 

𝑋1𝑋2 2.1645 1.9278 1.123 0.2704 

𝑋1𝑋3 5.6485 1.8671 3.025 0.0050 

𝑋1𝑋4 9.4647 1.8967 4.990 0.0001 

𝑋2𝑋3 5.9593 1.9000 3.137 0.0038 

𝑋2𝑋4 6.0857 2.2128 2.750 0.0100 

𝑋3𝑋4 3.9791 1.8200 2.186 0.0366 

𝑋1𝑍1 2.2803 1.0724 2.126 0.0509 

𝑋2𝑍1 1.2280 1.0937 1.123 0.2785 

𝑋3𝑍1 0.6803 1.0737 0.634 0.5360 

𝑋4𝑍1 2.0735 1.0815 1.917 0.0744 

𝑋1𝑍2 1.5415 1.1254 1.368 0.1996 

𝑋2𝑍2 2.9897 1.1458 2.609 0.0239 

𝑋3𝑍2 2.2016 1.1254 1.956 0.0774 

𝑋4𝑍2 2.0861 1.1361 1.836 0.0937 
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The estimate, standard errors, 𝑡 values and 𝑝 −values of the fitted Cox MPV model for the 

number of pods on main stem of Glycine max per plant stem observed. The fitted Cox 

mixture model is therefore, 

 �̂� = 29.1417 − 0.1395 𝑋1 − 0.2503𝑋2 − 0.0343𝑋3 + 0.4161 𝑋4

− 8.7034𝑋1
2 − 7.4926𝑋2

2 − 7.40872𝑋3
2 − 9.72571𝑋4

2

+ 2.1645 𝑋1𝑋2 + 5.6485 𝑋1𝑋3 + 9.4647 𝑋1𝑋4

+ 5.9593 𝑋2𝑋3 + 6.0857 𝑋2𝑋4 + 3.9791 𝑋3𝑋4

+ 2.2803 𝑋1𝑍1 + 1.2280 𝑋2𝑍1 + 0.6803 𝑋3𝑍1

+ 2.07351𝑋4𝑍1 + 1.5415 𝑋1𝑍2 + 2.9897 𝑋2𝑍2

+ 2.2016 𝑋3𝑍2 + 2.0861 𝑋4𝑍2 

 

 

(4.22) 

The significant factors were 𝑋1
2, 𝑋2

2, 𝑋3
2,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4,  𝑋1 𝑋3, 𝑋2𝑍2, 𝑋4

2 and 

intercept as shown in Table (4.24).  Thus, the final model is  

 

  

 �̂� = 29.1417 − 8.7034𝑋1
2 − 7.4926𝑋2

2 − 7.40872𝑋3
2 − 9.72571𝑋4

2

+ 5.6485 𝑋1𝑋3 + 9.4647 𝑋1𝑋4 + 5.9593 𝑋2𝑋3

+ 6.0857 𝑋2𝑋4 + 3.9791 𝑋3𝑋4 + 2.9897 𝑋2𝑍2 

 

(4.23) 
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Table 4.25:  The t student test for the1fitted Cox MPV model for the No. of Pods per 

branch 

Term Estimate Standard 

Error 

t value p value 

Intercept 4.4537 0.0919 48.464 0.0001 

𝑋1 0.03169 0.1055 0.300 0.7660 

𝑋2 0.1059 0.1113 0.951 0.3494 

𝑋3 0.0948 0.1034 0.917 0.3663 

𝑋4 -0.2350 0.1055 -2.198 0.0358 

𝑋1
2 -2.1150 0.1589 -13.309 0.0001 

𝑋2
2 -2.3892 0.1639 -14.577 0.0001 

𝑋3
2 -2.2448 0.1560 -14.386 0.0001 

𝑋4
2 -1.8181 0.1586 -11.461 0.0001 

𝑋1𝑋2 1.4804 0.2601 5.693 0.0001 

𝑋1𝑋3 1.6581 0.2519 6.583 0.0001 

𝑋1𝑋4 1.0849 0.2559 4.240 0.0002 

𝑋2𝑋3 1.7840 0.2563 6.961 0.0001 

𝑋2𝑋4 1.2709 0.2985 4.258 0.0002 

𝑋3𝑋4 1.2799 0.2455 5.214 0.0001 

𝑋1𝑍1 0.3144 0.1283 2.450 0.0240 

𝑋2𝑍1 0.1553 0.1316 1.180 0.2514 

𝑋3𝑍1 0.1936 0.1285 1.506 0.1482 

𝑋4𝑍1 0.2618 0.1297 2.018 0.0574 

𝑋1𝑍2 0.2934 0.1310 2.239 0.0430 

𝑋2𝑍2 0.0961 0.1340 0.717 0.4849 

𝑋3𝑍2 0.2268 0.1308 1.734 0.1065 

𝑋4𝑍2 0.2113 0.1325 1.595 0.1336 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Cox polynomial model for 

the number of pods per branch of Glycine max per plant stem observed. The fitted Cox 

mixture model is therefore, 
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 �̂� = 4.4537 + 0.03169 𝑋1 + 0.1059𝑋2 + 0.0948𝑋3 − 0.2350 𝑋4

− 2.1150𝑋1
2 − 2.3892𝑋2

2 − 2.2448𝑋3
2 − 1.8181𝑋4

2

+ 1.4804 𝑋1𝑋2 + 1.6581 𝑋1𝑋3 + 1.0849 𝑋1𝑋4

+ 1.7840 𝑋2𝑋3 + 1.2709 𝑋2𝑋4 + 1.2799 𝑋3𝑋4

+ 0.3144 𝑋1𝑍1 + 0.1553 𝑋2𝑍1 + 0.1936 𝑋3𝑍1

+ 0.2618𝑋4𝑍1 + 0.2934 𝑋1𝑍2 + 0.0961 𝑋2𝑍2

+ 0.2268 𝑋3𝑍2 + 0.2113 𝑋4𝑍2 

 

 

(4.24) 

The significant factors were  𝑋4, 𝑋1
2, 𝑋2

2, 𝑋3
2,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4,  𝑋1 𝑋3, 𝑋1𝑍1, 𝑋4

2, 𝑋1𝑍2 

and intercept as shown in Table (4.25).  Thus, the final model is  

 �̂� = 4.4537 − 0.2350 𝑋4 − 2.1150𝑋1
2 − 2.3892𝑋2

2 − 2.2448𝑋3
2

− 1.8181𝑋4
2 + 1.4804 𝑋1𝑋2 + 1.6581 𝑋1𝑋3 + 1.0849 𝑋1𝑋4

+ 1.7840 𝑋2𝑋3 + 1.2709 𝑋2𝑋4 + 1.2799 𝑋3𝑋4

+ 0.3144 𝑋1𝑍1 + 0.2934 𝑋1𝑍2 

 

(4.25) 
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Table 4.26:  The t student test for the1fitted Cox MPV model for the total Pods per 

plant 

Term Estimate Standard 

Error 

t value p value 

Intercept 38.0156 1.0628 35.771 0.0001 

𝑋1 0.3800 0.6671 0.570 0.5731 

𝑋2 0.2077 0.7041 0.295 0.7700 

𝑋3 -0.6108 0.6538 -0.934 0.3576 

𝑋4 0.0534 0.6671 0.080 0.9367 

𝑋1
2 -16.5216 1.006 -16.417 0.0001 

𝑋2
2 -14.9159 1.03788 -14.372 0.0001 

𝑋3
2 -13.8307 0.9882 -13.995 0.0001 

𝑋4
2 -16.5283 1.0045 -16.455 0.0001 

𝑋1𝑋2 7.9252 1.6446 4.819 0.0001 

𝑋1𝑋3 10.4771 1.5928 6.578 0.0001 

𝑋1𝑋4 14.5462 1.6180 8.990 0.0001 

𝑋2𝑋3 10.216 1.6208 6.303 0.0001 

𝑋2𝑋4 10.2073 1.8879 5.407 0.0001 

𝑋3𝑋4 8.3710 1.5527 5.391 0.0001 

𝑋1𝑍1 2.9268 1.2446 2.352 0.0420 

𝑋2𝑍1 1.4991 1.2580 1.192 0.2615 

𝑋3𝑍1 1.3146 1.2454 1.056 0.3175 

𝑋4𝑍1 2.5141 1.2503 2.011 0.0733 

𝑋1𝑍2 1.7823 1.3687 1.302 0.2299 

𝑋2𝑍2 2.8601 1.3801 2.072 0.0716 

𝑋3𝑍2 2.1625 1.3679 1.581 0.1535 

𝑋4𝑍2 2.1221 1.3743 1.544 0.1614 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Cox polynomial model for 

the total number of pods of Glycine max per plant stem observed. The fitted Cox mixture 

model is therefore, 
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 �̂� = 38.0156 + 0.3800 𝑋1 + 0.2077𝑋2 − 0.6108𝑋3 + 0.0534 𝑋4

− 16.5216𝑋1
2 − 14.9159𝑋2

2 − 13.8307𝑋3
2 − 16.5283𝑋4

2

+ 7.9252 𝑋1𝑋2 + 10.4771 𝑋1𝑋3 + 14.5462 𝑋1𝑋4

+ 10.216 𝑋2𝑋3 + 10.2073 𝑋2𝑋4 + 8.3710 𝑋3𝑋4

+ 2.9268 𝑋1𝑍1 + 1.4991 𝑋2𝑍1 + 1.3146 𝑋3𝑍1

+ 2.5141 𝑋4𝑍1 + 1.7823 𝑋1𝑍2 + 2.8601 𝑋2𝑍2

+ 2.1625 𝑋3𝑍2 + 2.1221𝑋4𝑍2 

 

 

(4.26) 

The significant factors were 𝑋1
2, 𝑋2

2, 𝑋3
2,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4,  𝑋1 𝑋3, 𝑋4

2, 𝑋1𝑍1 and 

intercept as shown in Table (4.26).  Thus, the final model is 

 �̂� = 38.0156 − 16.5216𝑋1
2 − 14.9159𝑋2

2 − 13.8307𝑋3
2 − 16.5283𝑋4

2

+ 7.9252 𝑋1𝑋2 + 10.4771 𝑋1𝑋3 + 14.5462 𝑋1𝑋4

+ 10.216 𝑋2𝑋3 + 10.2073 𝑋2𝑋4 + 8.3710 𝑋3𝑋4

+ 2.9268 𝑋1𝑍1 

 

(4.27) 
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Figure 4.13: Histogram, Box plot and Normal Quantile plot fitted for the number of pods on 

branches 

The Histogram, Box plot, and Normal Quantile plot as shown in Figure 4.13 was to check 

the adequacy SPD in fitting MPV data in the context of Cox mixture model. It was found 

out that the number pods development on branches observed satisfied the normality 

property as most of the points lie on a straight line, as evidenced from the Normal Quantile 

plot. These data on the number of pod development on branches per plant shows that it is 

normally distributed when fitted using a normal distribution with a 95 % confidence 

interval, as shown in Table 4.27. The fitted normal distribution data was also represented 

plot shown in Figure 4.14. This Figure 4.14 shows that the maximum yield for Glycine max 

achieved was 16.2 with probability 0.981775 MPV settings having well been applied 

within SPD. However, this Figure 4.14 was also was used to analyze the reliability property 
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of design where the same result was checked using the goodness of fit test, in which the 

data collected was found to be fitted with a p-value of 0.0459 using the Shapiro-Wilk (SW) 

test with test statistics equal to 𝑊 = 0.956052. The SW test tests the null hypothesis that 

sample 𝑋1, 𝑋2, … , 𝑋𝑛 come from a normal distributed data with test statistics being defined 

as 

 
𝑊 =

∑ 𝛿𝑖𝑥𝑖
𝑛
𝑖=1

∑ (𝑥𝑖 − �̅�)2
𝑛
𝑖=1

, 
(4.28) 

 

where 𝑥𝑖 and �̅� represents the 𝑖th order statistics and sample mean respectively. The 

coefficients 𝛿𝑖  are given by: 

where ∅ is the vector norm: 

and vector 휂 = (휂1, 휂2, … , 휂𝑛)′  constitute the expected values of the order statistics of 

independent and identically distributed random variables (휂 = Ε(𝑎𝑖)) sampled from 

standard normal distribution as described by Shapiro (1965); finally, 𝑉 represents the 

covariance matrix of those normal order statistics. This SW test statistics (𝑊) was 

computed through Monte Carlo simulations in cooperated in JMP 15 software. 

 

 

  

 
(𝛿1, 𝛿2, … , 𝛿𝑛) =  

휂′ 𝑉−1

∅
, 

(4.29) 

 
∅ = ‖𝑉−1휂′‖ = (휂′𝑉−1𝑉−1휂)

1
2, 

(4.30) 
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Table 4.27: The fitted Normal 1distribution for total pods on branches 

Parameter Estimate  Standard error Lower 95% Upper 95% 

Location  𝜇 6.2389 0.3711 5.512 6.966 

Dispersion  𝜎 2.727 0.1611 2.429 2.826 

  Measures   

 −2∗Loglikelihood 260.596   

 AICc 264.831   

 BIC 268.574   

 

 

 

Figure 4.14: The distribution profiler for the normal distribution for the number of pods on 

branches 
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The maximum predicted number of branches was 16.2 as shown in Figure 4.14. The 

horizontal dotted line represents the desirable probability required to achieve the optimum 

yield with MPV settings within SPD. On the other hand the vertical dotted line shows the 

desirable number of pod to be attained with the corresponding probability of 99.987% with 

confidence interval. 

 

 

Figure 4.15: The response prediction for the number of pods on a branches subject to 

mixture setting in the presnces process variable. 

Figure 4.15 shows the comparison between the experimental and predicted values. From 

these Figure, it can be observed that the maximum desirable predicted number of pods on 
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branches is an averagely of 10.14296 with a 95 % confidence level. The predicted mixture 

process variable setting is indicated with a vertical dotted line, while the horizontal dotted 

line indicates the predicted response value. The blue line at maximum response predicted 

value shows the adjusted MPV setting within SPD can be done to the maximum or 

minimum value of the response at 95% confidence interval level as shown in Figure 4.15. 

The whole plot graph is also represented on the response prediction profiler showing the 

whole plot with the highest predicted response as evidenced from Figure 4.15. 

 

Figure 4.16: The interaction plot resulting from MPV setting in the framework of SPD 

From Figure 4.16 it was observed that either plot shows the effects of mixture variable on the 

predicted response (Number of pods on branches) is fairly constant at a low level of the PH of soil, 
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whether the variety of seeds is set at a high or low level. This similar scenario is also illustrated in 

response prediction profiler subject to MPV settings within SPD, as shown in Figures 4.15. 

However, at a wide or low-level variety of seeds (in terms of row spacing of the plant), the mixture 

factor component's effect on 𝑌 differs based on the mixture setting applied. Variety of +1 leads to 

a higher predicted 𝑌(𝑥, 𝑧) than a variety of seed at-1. In addition, it can be observed the interaction 

plot illustrates the interaction of the row effect with column effects. However, A line segment  

shown in Figure 4.15 and 4.16 joins the response value predicted by the model whereas non-parallel  

  

 

Figure 4.17: The overlaid survival and failure plots for each group (number of branches 

and pods development per plant stem) 

Figure 4.17 shows two graphs; the overlaid survival plots for each group (number of 

branches and pods development per plant stem). The graphs indicate at least 2.5 branches 

and pods development per plant stem will survive when MPV settings are well applied. 

The second graph shows each group's overlaid failure plot (proportion failing over time), 

which is a similar survival plot. The graph indicates that at most, two branches or pods 

per plant stem might not well be captured when plotting the recorded experimental field 

data. However, Figure 4.17 also shows that the second order Cox MPV model was well 



204 
 

 
 

fitted with minimal partial information missing as evidenced from failure plots although 

necessary measures need to be taken by experimenter. 

 

Table 4.28:  The t student test for the1fitted Cox MPV model for seeds per pod 

Term Estimate Standard 

Error 

t value p value 

Intercept 2.49262 0.02512 99.228 0.0001 

𝑋1 -0.00786 0.02660 -0.295 0.7697 

𝑋2 0.05649 0.02808 2.012 0.0532 

𝑋3 -0.02875 0.02607 -1.103 0.2789 

𝑋4 -0.01672 0.02660 -0.629 0.5344 

𝑋1
2 -0.42506 0.04008 -10.604 0.0001 

𝑋2
2 -0.48941 0.04134 -11.838 0.0001 

𝑋3
2 -0.40417 0.03936 -10.268 0.0001 

𝑋4
2 -0.4162 0.04001 -10.402 0.0001 

𝑋1𝑋2 0.29741 0.06558 4.535 0.0001 

𝑋1𝑋3 0.28265 0.06351 4.450 0.0001 

𝑋1𝑋4 0.27062 0.06452 4.195 0.0002 

𝑋2𝑋3 0.31829 0.06463 4.925 0.0001 

𝑋2𝑋4 0.31509 0.07527 4.186 0.0002 

𝑋3𝑋4 0.24914 0.06190 4.025 0.0004 

𝑋1𝑍1 0.07191 0.03396 2.118 0.0491 

𝑋2𝑍1 0.04264 0.03473 1.228 0.2352 

𝑋3𝑍1 0.06336 0.03400 1.863 0.0796 

𝑋4𝑍1 0.07954 0.03430 2.320 0.0326 

𝑋1𝑍2 0.04308 0.03511 1.227 0.2434 

𝑋2𝑍2 0.00966 0.03581 0.270 0.7916 

𝑋3𝑍2 0.04624 0.03505 1.319 0.2120 

𝑋4𝑍2 0.04918 0.03545 1.387 0.1898 
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The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Cox polynomial model for 

the number of seeds per pod of Glycine max per plant stem observed. The fitted Cox 

mixture model is therefore, 

 �̂� = 2.49262 − 0.00786 𝑋1 + 0.05649𝑋2 − 0.02875𝑋3 − 0.01672 𝑋4

− 0.42506𝑋1
2 − 0.48941𝑋2

2 − 0.40417𝑋3
2 − 0.4162𝑋4

2

+ 0.29741 𝑋1𝑋2 + 0.28265 𝑋1𝑋3 + 0.27062 𝑋1𝑋4

+ 0.31829 𝑋2𝑋3 + 0.31509 𝑋2𝑋4 + 0.24914 𝑋3𝑋4

+ 0.07191 𝑋1𝑍1 + 0.04264 𝑋2𝑍1 + 0.06336 𝑋3𝑍1

+ 2.5141 𝑋4𝑍1 + 0.04308 𝑋1𝑍2 + 0.00966 𝑋2𝑍2

+ 0.04624 𝑋3𝑍2 + 0.04918𝑋4𝑍2 

 

 

(4.31) 

The significant factors were 𝑋1
2, 𝑋2

2, 𝑋3
2,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4,  𝑋1 𝑋3, 𝑋4

2, 𝑋1𝑍1, 𝑋4𝑍1and 

intercept as shown in Table (4.28).  Thus, the final model is  

 �̂� = 2.49262 − 0.42506𝑋1
2 − 0.48941𝑋2

2 − 0.40417𝑋3
2

− 0.4162𝑋4
2 + 0.29741 𝑋1𝑋2 + 0.28265 𝑋1𝑋3

+ 0.27062 𝑋1𝑋4 + 0.31829 𝑋2𝑋3 + 0.31509 𝑋2𝑋4

+ 0.24914 𝑋3𝑋4 + 0.07191 𝑋1𝑍1 + 2.5141 𝑋4𝑍1 

 

(4.32) 
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Table 4.29:  The t student test for the1fitted Cox MPV model for the No. of seeds 

per plant 

Term Estimate Standard 

Error 

t value p value 

Intercept 94.2067 1.8939 49.743 0.0001 

𝑋1 1.4050 2.3072 0.609 0.5471 

𝑋2 4.0579 2.4347 1.667 0.1059 

𝑋3 -0.8141 2.2608 -0.360 0.7213 

𝑋4 -4.4684 2.3072 -1.937 0.0622 

𝑋1
2 -4.4.8195 3.4733 -12.904 0.0001 

𝑋2
2 -44.7391 3.5823 -12.489 0.0001 

𝑋3
2 -41.004 3.4105 -12.022 0.0001 

𝑋4
2 -38.8128 3.4671 -11.195 0.0001 

𝑋1𝑋2 24.3135 5.6859 4.276 0.0002 

𝑋1𝑋3 34.2189 5.5068 6.214 0.0001 

𝑋1𝑋4 30.7398 5.5942 5.495 0.0001 

𝑋2𝑋3 32.7326 5.6037 5.841 0.0001 

𝑋2𝑋4 27.9058 6.5256 4.276 0.0002 

𝑋3𝑋4 19.2987 5.3667 3.596 0.0011 

𝑋1𝑍1 8.0396 2.7149 2.961 0.0074 

𝑋2𝑍1 2.8369 2.7877 1.018 0.3197 

𝑋3𝑍1 4.4079 2.7193 1.621 0.1199 

𝑋4𝑍1 4.7505 2.7462 1.730 0.0979 

𝑋1𝑍2 4.6172 2.7449 1.682 0.1142 

𝑋2𝑍2 1.1349 2.8121 0.404 0.6920 

𝑋3𝑍2 1.4418 2.7397 0.526 0.6068 

𝑋4𝑍2 4.0959 2.7780 1.474 0.1612 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Cox polynomial model for 

the number of seeds per pod of Glycine max per plant stem observed. The fitted Cox 

mixture model is therefore, 
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 �̂� = 94.2067 + 1.4050 𝑋1 + 4.0579𝑋2 − 0.8141𝑋3 − 4.4684 𝑋4

− 4.4.8195𝑋1
2 − 44.7391𝑋2

2 − 41.004𝑋3
2 − 38.8128𝑋4

2

+ 24.3135 𝑋1𝑋2 + 34.2189 𝑋1𝑋3 + 30.7398 𝑋1𝑋4

+ 32.7326 𝑋2𝑋3 + 27.9058 𝑋2𝑋4 + 19.2987 𝑋3𝑋4

+ 8.0396 𝑋1𝑍1 + 2.8369 𝑋2𝑍1 + 4.4079 𝑋3𝑍1

+ 4.7505 𝑋4𝑍1 + 4.6172 𝑋1𝑍2 + 1.1349 𝑋2𝑍2

+ 1.4418 𝑋3𝑍2 + 4.0959𝑋4𝑍2 

 

 

 

(4.33) 

The significant factors were 𝑋1
2, 𝑋2

2, 𝑋3
2,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4,  𝑋1 𝑋3,𝑋4

2, 𝑋1𝑍1, and 

intercept as shown in Table (4.29).  Thus, the final model is  

 �̂� = 94.2067 − 4.4.8195𝑋1
2 − 44.7391𝑋2

2 − 41.004𝑋3
2 − 38.8128𝑋4

2

+ 24.3135 𝑋1𝑋2 + 34.2189 𝑋1𝑋3 + 30.7398 𝑋1𝑋4

+ 32.7326 𝑋2𝑋3 + 27.9058 𝑋2𝑋4 + 19.2987 𝑋3𝑋4

+ 8.0396 𝑋1𝑍1 

 

(4.34) 
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Table 4.30:  The t student test for the 1fitted Cox MPV model for the total yield of 

seeds in grams 

Term Estimate Standard 

Error 

t value p value 

Intercept 13.5545 0.2214 61.212 0.0001 

𝑋1 -0.0053 0.1577 -0.034 0.9734 

𝑋2 0.0210 0.1665 0.126 0.9006 

𝑋3 1.0292 0.1546 0.189 0.0414 

𝑋4 -0.0452 0.1577 -0.286 0.7765 

𝑋1
2 -4.6033 0.2379 -19.349 0.0001 

𝑋2
2 -4.3629 0.2454 -17.782 0.0001 

𝑋3
2 -4.1378 0.2336 -17.711 0.0001 

𝑋4
2 -4.2967 0.2375 -18.094 0.0001 

𝑋1𝑋2 3.2316 0.3888 8.311 0.0001 

𝑋1𝑋3 2.8900 0.3766 7.674 0.0001 

𝑋1𝑋4 3.0977 0.3826 8.097 0.0001 

𝑋2𝑋3 2.6970 0.3832 7.038 0.0001 

𝑋2𝑋4 2.3741 0.4463 5.319 0.0001 

𝑋3𝑋4 3.0950 0.3671 8.431 0.0001 

𝑋1𝑍1 0.7074 0.26590 2.660 0.0230 

𝑋2𝑍1 0.2008 0.2695 0.745 0.4718 

𝑋3𝑍1 0.5138 0.2662 1.931 0.0809 

𝑋4𝑍1 0.2526 0.2674 0.945 0.3657 

𝑋1𝑍2 0.1243 0.2891 0.430 0.6780 

𝑋2𝑍2 0.0890 0.2921 0.305 0.7678 

𝑋3𝑍2 0.2594 0.2889 0.898 0.3942 

𝑋4𝑍2 0.2605 0.2906 0.896 0.3946 

 

The estimate, standard errors, 𝑡 values and 𝑝 values of the fitted Cox polynomial model for 

the total number of seeds in grams of Glycine max per plant stem observed. The fitted Cox 

mixture model is therefore, 
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 �̂� = 13.5545− 0.0053 𝑋1 + 0.0210𝑋2 + 1.0292𝑋3 − 0.0452 𝑋4

− 4.6033𝑋1
2 − 4.3629𝑋2

2 − 41.004𝑋3
2 − 4.2967𝑋4

2

+ 3.2316 𝑋1𝑋2 + 2.8900 𝑋1𝑋3 + 3.0977 𝑋1𝑋4

+ 2.6970 𝑋2𝑋3 + 2.3741 𝑋2𝑋4 + 3.0950 𝑋3𝑋4

+ 0.7074 𝑋1𝑍1 + 0.2008 𝑋2𝑍1 + 0.5138 𝑋3𝑍1

+ 0.2526 𝑋4𝑍1 + 0.1243 𝑋1𝑍2 + 0.0890 𝑋2𝑍2

+ 0.2594 𝑋3𝑍2 + 0.2605𝑋4𝑍2 

 

 

(4.35) 

The significant factors were 𝑋1
2, 𝑋2

2, 𝑋3
2,  𝑋1 𝑋4,  𝑋2 𝑋3,  𝑋3 𝑋4,  𝑋1 𝑋3, 𝑋4

2,  𝑋3, 𝑋1𝑍1, and 

intercept as shown in Table (4.30).  Thus, the final model is  

 �̂� = 13.5545+ 1.0292𝑋3 − 4.6033𝑋1
2 − 4.3629𝑋2

2 − 4.1004𝑋3
2

− 4.2967𝑋4
2 + 3.2316 𝑋1𝑋2 + 2.8900 𝑋1𝑋3

+ 3.0977 𝑋1𝑋4 + 2.6970 𝑋2𝑋3 + 2.3741 𝑋2𝑋4

+ 3.0950 𝑋3𝑋4 + 0.7074 𝑋1𝑍1 

 

 

(4.36) 

4.3.2 Screening in a MPV Settings 

  In this section, we discuss how screening in mixture settings was done in the presence of 

a process variable. The screening methodology was done using the framework of the Cox 

mixture model approach. The Cox mixture model technique was applied because it 

provides the experimenter with detailed information about what will happen to the response 

when an incremental change is made in any direction from some mixture, as demonstrated 

in the response prediction profiler shown in Figures 47. This type of insight cannot be had 

when the Scheffe model approach is applied since there is no direct way to cooperate with 
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the current mixture. Also, the model's parameter does not describe the change in the 

predicted response, as pointed out by Cornell (2011). 

However, we can illustrate this insight using one of the presented results of eight responses 

of Glycine max measured and described in ANOVA Table based on data from Table 20, 

analyzing mixture process data. We estimated for Scheffe response for the total yield of 

seeds in grams of Glycine max per plant using REML method as 

 �̂�(𝑎) = 8.9459 𝑋1 + 9.2126𝑋2 + 9.4459𝑋3 + 9.2126 𝑋4 + 12.1977 𝑋1𝑋2

+ 11.6311 𝑋1𝑋3 + 11.9977 𝑋1𝑋4 + 11.9977 𝑋2𝑋3

+ 11.0337 𝑋2𝑋4 + 11.5295 𝑋3𝑋4 + 0.7074 𝑋1𝑍1 

 

(4.37) 

The estimate for the Cox mixture polynomial model with 𝑐 = (0.25, 0.25, 0.25, 0.25) for 

the same response are  

 �̂�(𝑥, 𝑧) = 94.2067 + 1.0292𝑋3 − 4.6033𝑋1
2 − 4.3629𝑋2

2 − 4.1004𝑋3
2

− 4.2967𝑋4
2 + 3.2316 𝑋1𝑋2 + 2.8900 𝑋1𝑋3 + 3.0977 𝑋1𝑋4

+ 2.6970 𝑋2𝑋3 + 2.3741 𝑋2𝑋4 + 3.0950 𝑋3𝑋4

+ 0.7074 𝑋1𝑍1 

 

    

(4.38) 

From (4.37), we see that the highest response will be an interaction binary mixture blend 

of components  𝑋1 and 𝑋2, which is also readily apparent from the fitted Cox mixture model 

approach (4.38). However, we know that at 𝑐, the response of the total yield of seeds of 

Glycine max in grams to our MPV within a split-plot design is 94.2067𝑔.  Therefore, 

adding 𝑋3, binary mixture interaction ( 𝑋1𝑋3, 𝑋1𝑋4, 𝑋2𝑋3,  𝑋2𝑋4,  𝑋3𝑋4) and taking away 

quadratic mixture component vertices of component  𝑋1, 𝑋2, 𝑋3, and 𝑋4 will increase the 

response. We can also observe that using the Scheffe model estimates, this type of insight 
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is not easily had as described in Hassan et al. (2020). To find out that the Cox compound 

polymorphism model referred to the deficiency of a stable compound, we directly 

compared the maximum growth of the current branch and the changes made with the pod 

growth on the main stem and branches, as shown in Figures 47 and 52. We can note that it 

is the most efficient way to experiment in an industrial and agricultural setting. 

Additionally, the Cox model aids the experimenter in quantifying the effect of individual 

components, either one or a few, but not necessarily all of the ingredients in the mixture. 

4.3.3 The Joint Factor Tests of MPV  Using the Cox Reference Mixture Model 

This section outline the effect of MPV used in the study on the growth and pod 

development of Glycine max. The results are shown in Table 44 using the joint factor test 

described in Goos and Jones (2007) using the framework of Cox mixture model. The 

impact of each mixture components together with process variable are indicated with 𝑝-

value at 5% significance level. 

Table 4.31: The ANOVA for the joint1Factor Tests of MPV 

Term Nparm DF DFDen 𝐹 Ratio Prop >  𝐹 

Whole plot 0 . . . . 

Goat manure 6 6 22.5 147.66 < .0001∗ 

Cow manure 6 6 22.8 148.53 < .0001∗ 

Chicken manure 6 6 22.4 154.51 < .0001∗ 

Sheep manure 6 6 22.5 148.42 < .0001∗ 

Variety of seeds 4 4 22.4 88.18 0.06309 

pH of soil 4 4 22.4 78.45 0.07855 

* Significantly difference with 𝑝 − value <  5 % 

From Table 4.31, using the joint factor test in the context of Cox reference mixture model 

it was observed that Goat, Cow, Chicken, and Sheep manure have great influence on 
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soybean growth and pod development as evidenced with 𝑝 − value <  5 %  significance 

level. However, it also observed that the effect of variety of seed and pH of soil on the 

growth of Glycine max are almost significant at the same level with 𝑝 = 0.06309 and 

0.07855, respectively. Further, this indicates a possible effects of the process variables 

which cannot be ruled out resulting from soil pH and the variety of seeds in terms of 

seeding rate. Therefore, with this findings, we recommends small scale farmers to take into 

account in order to achieve optimized yield in the framework of SPD with MPV settings. 

4.4 Estimated Optimal Yield of Glycine max in the Framework of Split-plot 

Structure Arrangement 

This section outline the result of optimal yield of Glycine max within a whole plot. In 

addition, this section also highlight significant MPV settings within SPD required to 

achieve maximum desirable output of predicted response of soybean yield. 

4.4.1 Response optimization in SPD in the presence of MPV 

This section presents the response optimization within the split-plot structure, taking model 

3.79 and design A4 into account. It can be observed that models 3.79 using design A4 

provide the lowest variance of a future response at the point of interest. Several 

formulations using screening methodologies through the Cox mixture model framework 

often result in the prediction of a new response equal to the maximum yield expected to be 

obtained (Guo et al., 2020; Sekaran et al., 2020). Consequently, a desirable prime objective 

is to minimize the variance of a new response among the combinations of formulation and 

process variables that result in predicted response of the eight measurements of variety 

seed of Glycine max.  For instance Figure 4.18 illustrates how the yield of Glycine max can 

be optimized number of seeds per plants can be obtained through SPD in the context of 
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Cox MPV settings. However, the Profiling as shown in Figure 4.18 is an approach to 

visualizing response surface by seeing what would happen if one or two factors at a time 

is changed following the MPV settings within split plot arrangement layout. Essentially, a 

prediction profiler is cross- section view as described by Goos et al. (2016). The interactive 

profilers again shown in the same Figure promote exploring opportunity spaces. This 

prediction profiler enables one to interpret the fitted Equation to MPV data desirable to 

optimize the response. This prediction profiler was used to recomputed the profiles and 

predict responses when the mixture variable component value were varied.  The vertical 

dotted line for MPV shows its current value. As shown in Figure 4.18, for each MPV, the 

value above the factor name (Goat, cow, chicken and sheep manure) is it current value. 

The horizontal dotted line shows the current predicted value of 𝑌 response (yield of seeds 

in grams per plant) for the current values of MPV settings.  The black lines shown shows 

how the predicted value changes when the current value of an individual mixture variables 

setting is changed.  In fitting the Equation data, 95% confidence interval for the predicted 

response value was found to be 14.65455𝑔 with MPV settings values shown in red color.  

However, this prediction profile was useful because of multiple response models in order 

to help judge which factor values can optimize a complex set of criteria. 

Figure 4.18 shows the relationship between the actual and predicted values for the yield of 

Glycine max crop. 
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Figure 4.18: The response  prediction profiler plus interaction effect 

 

Figure 4.19: The response contours of mixture experiment models on a ternery plot in the 

presences of process variable. 
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The response contours of MPV experiment models in Figure 4.19 was produced subject to 

restriction of Goat and Sheep manure = 0.25. It can be observed that response contours can 

be optimized to the response surface of the experiment.  The predicted response for the 

average number of seeds per plant was found to be 92.65.  If the MPV settings is applied 

as shown in Table 4.32 the maximum number of seeds can be harvested from each plant is 

averagely 102.05524 with the assumption that fertility of the land is uniform across. 

Table 4.32: The MPV setting that can1lead to optimum yield of Glycine max 

MPV 

settings 

Whole 

plot 

Goat 

manure 

Cow 

manure 

Chicken 

manure 

Sheep 

manure 

𝑍1 𝑍2 No. of seeds 

per plant 

Setting 1 1 0.25 0.2407 0.2593 0.25 0 0 94.21 

Setting 2 1 0.25 0.2407 0.2593 0.25 1 1 102.06 

 

The optimum yield as shown in Table 45 can be achieved through the mixture setting 2 in 

whole plot 1 run at both high seeding rate (variety of seeds) and pH of soil. The 

optimized yield is illustrated on Figure 4.20 
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Figure 4.20: The MPV setting with optimum predicted response of Glycine max. 

The contour plots of response prediction with factors setting of mixture ingredient are 

presented in Figures 4.19 and 4.20. It can be observed that to attain maximum prediction 

of response; the process variable settings must be  (𝑧1 = 𝑧2 = 0, 𝑧1 = 𝑧2 = 1)  by 

considering design A4 discussed in Section 3.3. Therefore, analyzing the contour plots, it 

can be observed that when the goat and sheep manure are fixed at the proportion of 0.25, 

then the mean response is near 99.65 and 99.75 for the number of seeds plant stem as shown 

in Figure 4.19 and 4.20, respectively. The result also shows that the optimum yield for the 

number of seeds is 102.05524, which can be achieved through the following formulation 

settings shown in Table 45. 
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4.4.2 Optimal Yield of Glycine max within SPD 

Table 4.33: Estimation of Glycine1max yield of variety two (Blyvoor and R 184) in 

Bushel per acre max 

Whole 

plot 

𝑌0 𝑌4𝐵 𝑌7𝐵 𝑌4𝑅 𝑌7𝐵 Bushels 

per acre for 

Blyvoor 

Bushels per acre for R 184 

1 125000 32.2 2.4 31.2 2.3 64.4 59.8 

2 225000 32.6 2.4 31.6 2.3 117.36 109.02 

3 225000 37.9 2.5 36.9 2.4 142.13 132.84 

4 125000 29 2.3 28 2.3 55.58 53.67 

5 175000 33.2 2.4 32.2 2.3 92.96 86.4 

6 175000 35.1 2.4 33.9 2.3 98.28 90.97 

7 175000 30.5 2.3 29.5 2.3 81.84 79.16 

8 100000 40.4 2.5 39.4 2.5 67.33 65.67 

9 275000 46 2.6 45 2.7 219.27 180.53 

*1 bushel = 25.4 Kg 

The Table 4.33 shows the predicted Glycine max yield per acre in Bushels for each variety basing 

on the yield obtained from each whole plot in terms 𝒀0, 𝒀𝟒 and  𝒀7 that represents plant per 

acre, Pods per plant and seed per pod, respectively based on the MPV data shown Table 

20. On the other hand, the subscript 𝐵 and 𝑅 denotes the variety Blyvoor and R 184.  We 

estimated optimal yield per acre in Bushel within SPD using the formula described in 

section 3.5 where one bushel of Glycine max (L.) Merrill weighs 60 pounds. The result 

shown in Table 46 indicates the Glycine max growth and pod development increase with 

the application of MPV settings used. Averagely, the variety Blyvoor does well as 

compared to variety R 184. The result also shows that the maximum Glycine max yield of 

the two variety is directly proportional to the number of plant per acre. In addition, the 
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result also indicates that the variety of the seed used has also the impact on the optimum 

yield obtained. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

We developed a parsimonious model for analyzing mixture process variable tests with 

control and hard changeable factor within a split-plot structure by expanding initial model 

produced by Njoroge et al. (2017) which considered only three mixture components in the 

presences of two process variable.  The model was developed by introducing SCD of 

mixture components in the presence of process variables. The SPD, therefore, constituted 

a simplex SCD of four mixture blends and a 22 factorial design with a CCD of the process 

variable. JMP software version 15 was used to construct D-optimal SPD. The optimality 

criteria A, D, I, and G was employed in study to compare the constructed designs' relative 

efficiency. Also, the graphical technique (fraction of design space plot) was used to display, 

elucidate, and evaluate experimental designs' performance in terms of precision of variance 

prediction properties of the six designs. The arrangement, where the subplots composed of 

more SCD points than pure mixture design points or binary mixture design points within a 

whole plot with presences of two processes both being high, was found to be more efficient 

and give more precise parameter estimates However, design A4 with D-efficiency 

1.391721 was found desirable and optimal in fitting second order MPV within SPD since 

its average variance prediction was 0.089642 which was the smallest amongst all the other 

designs (𝐴1, 𝐴2, 𝐴3, 𝐴4 and 𝐴5) 

The modified MPV model was employed in modeling and predicting the yield of Glycine 

max with minimal/ reasonable split-plot and main plot errors. The restricted maximum 
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likelihood method was used to estimate values for 𝑃 parameter models within the SPD.  

The experimental results was compared with simulated results using the same MPV setting 

within SPD found out that there was slight deviation between the simulated and analytical 

results variety one (R 184) and two (Blyvoor).  It was observed that the effect of mixture 

component at vertices of component 𝑋1, 𝑋2, 𝑋3 and 𝑋4 have the highest impact on the 

growth and pod development of Soybean together with permutation interaction of these 

mixture components at 5 % significance level with Chicken manure leading the effect with 

LogWorth = 12.925 and 𝑝 −value =  0.0000. On the other hand it was also observed that 

the effect of variety of seed and pH of soil on the growth of Glycine max crop are almost 

significant at the same level with 𝑝 = 0.06309 and 0.07855, respectively. Further, this 

indicates a possible effects of the process variables which cannot be ruled out resulting 

from soil pH and the variety of seeds in terms of seeding rate. The two source errors that 

result from main treatments and a subplot treatment for each of the eight responses 

measured and fitted using the same model formulated were analyzed using REML 

methods. It found that the average whole plot error variance and average subplot (split-

plot) error variance to be 5.325 and 2.099, respectively with corresponding variance ratio of 

2.537 since whole plot error variance is often larger than the split-plot error variance. 

Therefore, this implies that the model adequately represented the mixture data collected 

from the field, and also, restricted randomization was completely solved with the SPD 

layout. 

The screening methodology was done using the framework of the Cox mixture model 

approach. The Cox mixture model technique was applied because it provides the 

experimenter with detailed information about what will happen to the response when an 
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incremental change is made in any direction from some mixture, as demonstrated in the 

response prediction profiler since this type of insight cannot be had when the Scheffe model 

approach is applied since there is no direct way to cooperate with the current mixture. Also, 

the model's parameter does not describe the change in the predicted response. 

The variety Blyvoor was found to perform better than variety R 184 in terms of the yield 

of seeds harvested and the same condition mixture setting and pH of soil as evidenced. The 

optimum total yield of Glycine max for variety R184 and Blyvoor in Bushel per acre was 

180.53 and 219. 217, respectively on the 9𝑡ℎ Whole Plot with a pH of soil being 5.4. The 

predicted maximum optimum yield for the total number of seeds per plant stem of Glycine 

max was 102 and 15.7832 in grams using screening methodology formulated through the 

framework of the Cox mixture process variable settings.  

5.2 Recommendation 

We recommend using SPDs in experiments involving mixture settings formulations to 

measure the interaction effects of both the mixture components and the processing 

conditions like a pH of the soil and seeding rate. Further, we should also set up the mixture 

experiment at each of the factorial design points. We also recommend farmers embrace the 

use of these organic manures when planting different types of crops on the farm as they 

have good nutritional value for plants' growth. We also advocate for farmers to use soybean 

variety Blyvoor as it performs better than variety R 184. Again, we recommend screening 

mixture settings to see which factor components perform better than others in the long run 

leading to high optimum yield. 
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In this research, we considered hard-to-change variables (soil pH) as complete plot factors. 

The researcher can extend the split-plot structure arrangement to a situation where the 

mixture's components are considered noise variables (hard-change factor). They should 

develop the Cox mixture model structure's screening methodology to the same problem 

where the mix materials are considered noise variables. 
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APPENDICES 

APPENDIX I: R Code 

 

> library(lattice) ## loading package of lattice 

> library(daewr) 

> library(mixexp) 

> des1<-SLD(3,2) ##design points for simplex lattice design 

> des2<-SCD(3)##design points for simplex centroid design 

> DesignPoints(des1)## Figure 2 

> DesignPoints(des2)## Figure 6 

Alternatively, load AlgDesign package and apply the r codes shown below. 

> library(AlgDesign) 

> DesignPoints(des = NULL, nmxcmp=3, x = NULL, y = NULL, z = NULL,x1lower=0,x

1upper=0,  x2lower=0.05, x2upper=0, x3lower=0, x3upper=0,  cornerlabs = c("x3","x2","

x1"), 

+             axislabs=c("x1","x2","x3"),pseudo=FALSE) 

 

R Codes for Pseudo Components 

Actual_data <- Xvert(nfac = 3, lc = c(0.35, 0.2, 0.15), uc = c(1, 1, 1), ndm = 1, plot = FALSE)## 

nfac= No. of component factors 

Response1 <- c(15.3, 20.0, 28.6, 12.5, 32.7, 42.4) 

Actual_data <- cbind(Actual_data[1:6, ], Response1) 

Fitted_quadm <- lm(y ~ -1 + x1 + x2 + x3 + x1:x2 + x1:x3 + x2:x3, data = Actual_data) 
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 title <- c("Actual Component Space", "L Pseudo Component Space") 

option <- c(FALSE, TRUE) 

 for (i in 1:2) {ModelPlot(model =Fitted_quadm, dimensions = list(x1 = "x1", x2 = "x2", x3 = 

"x3"), 

              main = title[i], lims = c(0.35, 1, 0.20, 1, 0.15, 1), 

              constraints = TRUE, contour = TRUE, cuts = 6, fill = TRUE, 

               axislabs = c("x1", "x2", "x3"), cornerlabs = c("x1", "x2", "x3"), pseudo = option[i]} 
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APPENDIX II: Research Licenses  
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APPENDIX III: Similarity Report  

 

 

 

 

 

 


