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ABSTRACT 

Analysis of variance (ANOVA) is a standard method for describing and estimating 

heterogeneity among the means of a response variable across the levels of multiple 

categorical factors. In most experimental settings, ANOVA is used to test the presence of 

treatment effects. Bayesian hypothesis testing literature on ANOVA is scant; the 

dominant treatment is still classical or frequentist. One impediment to adoption of 

Bayesian approach is lack of practical development, particularly lack of ready-to-use 

formulae and algorithms. The aim of this research was to construct a Bayesian 

hierarchical model for hypothesis test in ANOVA designs using non-informative priors, 

conditionally conjugate priors as well as the Zellner-g priors. First, the posterior 

distributions were obtained. Then the effects of various hyper parameters on variance 

parameters in ANOVA were illustrated. Markov Chain Monte Carlo (MCMC) and Gibbs 

sampling were then used to obtain posterior point estimates from these posterior 

distributions. The 95% credible intervals were also obtained and then used to draw 

inferences. Posterior F-values were obtained for the different priors and finally compared 

with those obtained using classical approach. Conditional conjugate Normal posterior 

distribution for means was obtained while conditional conjugate inverse gamma posterior 

distributions for the variances were also obtained. An F-Value of 4.598 was obtained 

using the classical approach while posterior F-value of 4.56 was obtained for normal 

priors for means and conjugate inverse Gamma for the variances. Posterior F-value of 

4.62 was obtained using Zellner-g prior (g=n=30) whereas Posterior F-value of 4.52 was 

obtained using Zellner-g prior (g=k
2
=30).The results indicated that the F-Values obtained 

using the classical and the Bayesian approach are similar. The Bayesian test for ANOVA 

designs is useful to both researchers and students; both groups will get to appreciate the 

importance of Bayesian approach when applied to practical statistical problems. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

In statistical inference, there are two broad categories of interpretations of probability: 

Bayesian inference and frequentist (classical or traditional) inference. These views often 

differ with each other on the fundamental nature of probability. Frequentist inference 

loosely defines probability as the limit of an event's relative frequency in a large number 

of trials, and only in the context of experiments that are random and well-defined. 

Bayesian inference, on the other hand, is able to assign probabilities to any statement, 

even when a random process is not involved. In Bayesian inference, probability is a way 

to represent an individual's degree of belief in a statement, or given evidence. Within 

Bayesian inference, there are also different approaches and interpretations of probability. 

The most popular interpretations and approaches are objective Bayesian inference 

(Berger, 2006) and subjective Bayesian inference (Anscombe and Aumann, 1963). 

Objective Bayesian inference is often associated with (Jeffreys, 1961). Subjective 

Bayesian inference is often associated with (Brooks, 2003; Gilks, 1994; and De-Finetti, 

1937). The first major event to bring about the rebirth of Bayesian inference was by (De-

Finetti, 1937).  

In many social science settings, the data available for analysis span multiple groups. In 

these settings it is often plausible that any statistical model that might fit to the data need 

to be flexible, so as to capture variation across the groups, typically accomplished by 

letting some or all of the parameters vary across the groups. Examples include survey 
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data gathered over a set of locations (e.g., states, districts, countries); experimental 

studies deployed in multiple locations; studies of educational outcomes where the 

subjects are students, who are grouped in classes or schools, which are in school districts, 

which in turn are in states etc. 

In analysis of data of this type, the researcher is interested with the parameters that vary 

at each group level. These group level parameters go by different names, in different 

contexts, in different disciplines, and depending on the estimation method being used. 

Examples include “contextual effects”, “fixed effects”, “random effects”, and “varying” 

or “stochastic coefficients”. This between-group parameter variation is potentially of 

great substantive interest, since it speaks to a fundamental issue in empirical social 

science. Moreover, group by-group analysis is often an important preliminary step in data 

analysis: a useful and easily-implemented method for assessing parameter heterogeneity, 

but one that is often overlooked (Berger, 2006). Indeed, one of the most vocal proponents 

of Bayesian modeling in the social sciences, Andrew Gelman, refers to group-by-group 

analysis as “secret weapon”: A “weapon” in that group-by-group analysis can be 

enormously helpful, but “secret” in that in the rush to implement various panel data 

estimators or Bayesian models and the like, analysts often neglect to take advantage of 

the insights available from group-by-group analysis. But the general point is that 

breaking a large data set into group specific pieces will generally result in a better fit to 

the group-specific data than from a pooled analysis (Gelman, 2007) 

Bayesian methods have become increasingly popular in almost all scientific disciplines 

(Poirier, 2006). One important reason for this gain in popularity is the ease with which 

Bayesian methods can be applied to relatively complex problems involving, for instance, 
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hierarchical modeling or the comparison between non-nested models. These tests are the 

cornerstone of data analysis in fields such as biology, engineering, economics, sociology, 

and psychology. Most researchers report p-values from t-test and F-tests as evidence 

favoring certain theoretical positions and disfavoring others, but Bayesian approach 

offers advantages even when the analysis to be run is not complex.  For, instances, a 

traditional frequestist approach to a t-test or one-way analysis of variance ANOVA; two 

or more group design with one outcome variable would result in a p-value which would 

be interpreted as the probability of the data (result) assuming the null hypothesis is true. 

Often the p-values interpretation is abbreviated and it is interpreted as indicating 

empirical support for or against a null hypothesis. Thus, the first goal of this research was 

to show how the Bayesian framework of hypothesis testing can be carried out in ANOVA 

designs. ANOVA is one of the most popular statistical methods used to assess whether or 

not two or more population means are equal in most experimental settings. 

1.2 Statement of the problem 

This study entailed constructing Bayesian hierarchical model by applying simulation 

based techniques; Markov Chain Monte Carlo (MCMC) and Gibbs sampling for carrying 

out hypothesis tests in ANOVA designs using non-informative priors, conditionally 

conjugate inverse-Gamma priors and the Zellner-g priors. 

1.3 Objectives of the research 

I. To obtain the posterior means using non-informative priors. 

II. To obtain posterior variance parameters in ANOVA using Zellner g-priors 

and normally distributed data. 
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III. To obtain posterior variance parameters using conditionally conjugate 

inverse-Gamma priors and normal data. 

IV. To develop posterior estimates for the unknown parameters i.e the 

posterior mean, median, “between”, and “within”, variances,2.5
th
 and 

97.5
th
 quartiles. 

V. To compare the results under Bayesian to those under the classical 

approach. 

1.4 Significance of the study 

 Bayesian approach give better results than frequentist approach by accommodating 

uncertainty in the estimation of parameters in the models, and lead to more appropriate 

inferences. In classical statistics, computing the uncertainty of functions of random 

variables such as parameters is not straightforward and involves approximations such as 

the delta method (Williams et al., 2002). In a Bayesian analysis with Markov Chain 

Monte Carlo, estimating such and much more complex models and there derived 

quantities including their uncertainty is trivial once we have a random sample from the 

posterior distribution of their constituent parts. 

Moreover, the greatest impediment to the large-scale adoption of the Bayesian approach 

to statistical analysis is the lack of ready and easy-to-use formulas, algorithms and tests 

for statistical models that can be used in practice. Therefore, there is a dire need to 

conduct this research to help both researchers and students appreciate Bayesian inference 

when applied to statistical models. 



5 
 

 
 

1.5 Outline of the thesis 

The organization of this thesis is as follows. Chapter one covers basic concepts of 

standard methods that are both widely taught and employed, as well as recent shifts in the 

practice of ANOVA. Chapter two presents an alternative framework of ANOVA along 

with modifications to the standard ANOVA table summary. Chapter three illustrates 

Bayesian method and compares it to the classical approaches. In particular, Chapter three 

it presents an example in which the classical ANOVA yields identical F-values as those 

of classical approach. Chapter five and six presents the discussion of results obtained in 

Chapter 4. Recommendations are finally made at the end of this Chapter. 
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CHAPTER TWO 

LITERATURE REVIWIEW 

2.1 Introduction 

Bayesian statistics became applicable from the beginning of the 21st century. Until late 

years of the 1980’s, Bayesian statistics had been considered as an interesting alternative 

to the ‘classical’ theory. The main tools of Bayesian theory were probability theory since 

all unknown quantities included in the model are considered as random variables. Hence 

Bayesians were considered as a kind of heretic scientists for several reasons. 

Many statisticians accused Bayesian theory to be subjective since a specification of a 

prior distribution was needed in order to set up inference. But, as history had improved, 

the main reason for preventing Bayesian theory to expand and establish an accepted 

quantitative approach for data analysis was the intractabilities involved in the calculation 

of the posterior distribution except for some simple cases. Asymptotic methods had given 

solutions to specific problems, but no generalization was possible. Until the early 1990’s, 

two groups of Bayesians; (Gelfand, et al., 1992), (re)discovered Markov Chain Monte 

Carlo methods (MCMC). Physicists were familiar with MCMC methodology from 

1950’s. Nick Metropolis and his associates had evolved one of the first electronic super-

computers (for those days) and had been testing their theories in Physics using Monte 

Carlo techniques. The implementation of the MCMC methods in combination with the 

fast evolution of personal computers had made the new computational tool popular within 

a few years. Bayesian statistics suddenly became fashionable opening new avenues for 

statistical research. Using MCMC, complicated models that describe and solve problems 
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that could not be solved with traditional methods can now be set-up and estimated. Since 

1990, when MCMC firstly appeared in statistical science, a lot of important related 

papers had appeared in the bibliography. During 1990-95, MCMC related research 

focused on the implementation of the new methods in various popular models (for 

example Gelman & Rubin, 2004; Dellaportas & Smith, 1993; Gelfand et al, 1992). The 

development of MCMC methodology has also promoted the implementation of random 

effects and hierarchical models. 

Bayesian models deal with the possibility of parameter variation across groups by 

positioning a model for the parameters above the model for the data. The “hierarchy” 

then arises because the model for the parameters sits “above” the model for the data. 

Indeed, in this sense all Bayesian models are hierarchical, in that a prior for θ sits above 

the model for y, the latter indexed by the parameter θ. This notion of a statistical model as 

a nested hierarchy of stochastic relations permeates all hierarchical modeling, 

highlighting why hierarchical models are very amenable to Bayesian analysis. 

Generically, Bayesian hierarchical statistical models have the form: 

yj|θ f(yj|θ) (model for the data in group j = 1, . . . , J ) 

θ|υ f(θ| ) (between-group model or “prior” for the parameters θ) 

υ P(υ) (prior for the hyper parameters υ),  

Writing the hierarchy from “bottom” to “top” i.e, the model for the parameters is above 

that of the data. The inferential challenge is to compute the posterior density of all the 

parameters, θ = (θ1, . . . ,θJ, υ)’ and any marginal posterior densities for specific elements 
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of θ that are of interest. Markov chain Monte Carlo and Gibbs sampling are extremely 

well-suited to this task. 

2.2 Advantages of the Bayesian approach to statistics 

Key advantages of the Bayesian approach and of the associated computational methods 

include the following: 

2.2.1 Numerical Tractability 

Many statistical models are currently too complex to be fitted using classical statistical 

methods, but they can be fitted using Bayesian computational methods (Link et al., 

2002). However, it is reassuring that, in many cases, Bayesian inference gives answers 

that numerically closely match those obtained by classical methods. 

2.2.2 Absence of asymptotics 

Asymptotically, that is, for a large sample, classical inference based on maximum 

likelihood (ML) is unbiased, i.e., in the long run right on target. However, for finite 

sample sizes, i.e., for a data set, ML may well be biased (Le Cam, 1990). Similarly, 

standard errors and confidence intervals are valid only for large samples. In contrast, 

Bayesian inference is exact for any sample size.  

2.2.3 Ease of Error Propagation 

In classical statistics, computing the uncertainty of functions of random variables such as 

parameters is not straightforward and involves approximations such as the delta method 

(Williams et al., 2002). In a Bayesian analysis with Markov Chain Monte Carlo, 

estimating such and much more complex models and their derived quantities including 
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their uncertainty is trivial once we have a random sample from the posterior distribution 

of their constituent parts. 

2.2.4 Formal Framework for Combining Information 

By basing inference on both what we knew before (the prior) and what we see now (the 

data at hand), and using solely the laws of probability for this combination, Bayesian 

statistics provides a formal mechanism for introducing external knowledge into an 

analysis. This may greatly increase the precision of the estimates (McCarthy and Masters, 

2007); some parameters may only become estimable through this precise combination of 

information. 

In classical statistics, we always feign total ignorance about the system under study when 

analyzed. 

However, within some limits, it is also possible to specify ignorance in a Bayesian 

analysis. That is, under the Bayesian paradigm, one can base the inference on the 

observed data alone and thereby obtain inferences that are typically very similar 

numerically to those obtained in a classical analysis. 

2.2.5 Intuitive Appeal 

The interpretation of probability in the Bayesian paradigm is much more intuitive than in 

the classical statistical framework; in particular, we directly calculate the probability that 

a parameter has a certain value rather than the probability of obtaining a certain kind of 

data set, given some Null hypothesis. 

Hence, popular statements such as “I am 99% sure that …” are only possible in a 

Bayesian mode of inference, but they are impossible in principle under the classical mode 
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of inference. This is because, in the Bayesian approach, a probability statement is made 

about a parameter, whereas in the classical approach, it is about a data set. 

Furthermore, by drawing conclusions based on a combination of what we knew before 

(the prior, or the “experience” part of learning) and what we see now (the likelihood, or 

the “current observation” part of learning), Bayesian statistics represent a mathematical 

formalization of the learning process, i.e., of how we all deal with and process 

information in science as well as in our daily life 

2.3 Comparison of Bayesian approach with frequentist approach. 

Bayesian inference considers the data to be fixed (which it is), and parameters to be 

random because they are unknowns. Frequentist inference considers the unknown 

parameters to be fixed, and the data to be random and estimation is not based on the data 

at hand only, but the data at hand plus hypothetical repeated sampling in the future with 

similar data. “The Bayesian approach delivers the answer to the right question in the 

sense that Bayesian inference provides answers conditional on the observed data and not 

based on the distribution of estimators or test statistics over imaginary samples not 

observed" (Link et al., 2010). 

Bayesian inference estimates a full probability model. Frequentist inference does not. 

There is no frequentist probability distribution associated with parameters or hypotheses. 

Therefore Bayesian inference estimates are given as P(hypothesis│data). In contrast, 

frequentist inference estimates are P(data│hypothesis). Even the term 'hypothesis testing' 

suggests that it should be the hypothesis that is tested, given the data, not the other way 

around. 
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Bayesian inference has an axiomatic foundation (Cox, 1946) that is uncontested by 

frequentists. Therefore, Bayesian inference is coherent to a frequentist, but frequentist 

inference is incoherent to a Bayesian. Bayesian inference has a decision theoretic 

foundation (Roberts, 2007; Bernardo and Smith, 2000). The purpose of most of statistical 

inference is to facilitate decision making (Roberts, 2007). Therefore the optimal decision 

is the Bayesian decision. 

 Bayesian inference includes uncertainty in the probability model, yielding more realistic 

predictions. Frequentist inference does not include uncertainty of the parameter estimates, 

yielding less realistic predictions. Bayesian inference is consistent with much of 

philosophy of, where knowledge cannot be built entirely through experimentation, but 

requires prior knowledge (Roberts, 2007) 

 Bayesian inference may use Deviance Information Criteria (DIC) to compare models 

with different methods including hierarchical models, where frequentist model fit 

statistics cannot compare different methods or hierarchical models. 

 Bayesian inference safeguards against over fitting by integrating over model parameters. 

While Bayesian inference is not immune to over fitting, over fitting is largely a 

frequentist problem. Bayesian inference uses observed data only. Frequentist inference 

uses both observed data and future data that are unobserved and hypothetical. 

Bayesian inference uses prior distributions, so more information is used and 95% 

probability intervals of posterior distributions should be narrower than 95% confidence 

intervals of frequentist point-estimates. 

Finally, Bayesian inference via MCMC algorithms allows more complicated models that 

frequentist are unable to estimate. 
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2.4 Reasons why Bayesian approach has not been widely adopted. 

Given all the advantages of the Bayesian approach to statistics mentioned above, it may 

come as a surprise that currently most statisticians still use classical statistics. 

The resistance to the Bayesian philosophy is widely due to its perceived subjectivity of 

prior choice and the challenge of avoiding to, unknowingly; inject information into an 

analysis via the priors. However, the lack of a much more widespread adoption of 

Bayesian methods in statistics mostly has practical reasons. First, a Bayesian treatment 

shines most in complex models, which may not even be fit in a frequentist mode of 

inference (Link et al., 2002). Hence, until very recently, most applications of Bayesian 

statistics featured rather complex statistical models. These are neither the easiest to 

understand in the first place, nor may they be relevant to the majority of scientists. 

Secondly, typical introductory books on Bayesian statistics are written in what is fairly 

heavy mathematics to most researchers. Hence, getting to the entry point of the Bayesian 

world of statistics has been very difficult for many researchers. Thirdly, Bayesian 

philosophy and computational methods are not usually taught at universities. Finally, and 

perhaps most important, the practical implementation of a Bayesian analysis has typically 

involved custom-written code in general-purpose computer languages such as 

FORTRAN or C++. Therefore, for someone lacking a solid knowledge in statistics and 

computing, Bayesian analyses are essentially out of reach. 
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CHAPTER THREE 

STATISTICAL MODELLING AND BAYESIAN ESTIMATION 

3.1 Introduction 

This study sought to give a summary to Bayesian statistics and how it is conducted in 

practice by applying simulation-based methods (MCMC and Gibbs sampling). First, 

Bayesian estimation and model selection were explained in general. Non-informative 

priors, conditionally conjugate priors and Zellner-g prior were then used to generate 

posterior distributions. MCMC and Gibbs sampling techniques were then used to obtain 

posterior point estimates for the parameters from these posterior distributions. Credible 

bounds analog to Classical confidence intervals were also obtained. 

3.2 General Modeling Principles. 

Statistical models are used to describe real life problems observed under uncertainty. A 

statistical model is a collection of probabilistic statements (and equations) that describe 

and interpret present or predict future performance. It consists of three important 

components: 

1. The response variable (or variables) Y  

2. The explanatory variables X1, X2, . . . , XJ and 

3. A linking mechanism between the two set of variables. 

The response variables Y are the main study variables and they compose the stochastic 

part of the model. Concerning these variables, we are frequently interested in describing 

the mechanism underlying or leading to the appearance of a certain outcome of Y and 
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predict a future outcome of Y. Since the response variable is the stochastic component of 

the model, we can write: 

Y ∼Distribution (θ) 

Where, θ, is the parameter vector of the distribution used. For example, for a normal 

regression model, the response-stochastic component of the model is written as 

Y ∼Normal(μ,σ
2
). 

Parameter vector θ is expressed as a function of the explanatory variables and a new 

alternative set of parameters, (α,σ
2
) which substitutes the original ones in terms of 

estimation and inference. Concerning the new set of parameters, the vector θ summarizes 

the association between the response and the explanatory variables while the rest refer to 

other characteristics of the distribution such as the variance or the shape. Usually, the 

mean of the response model is associated with the response variables, but, in more 

complicated models, the variance or other moment functions can be also estimated via the 

explanatory variables. The function used to connect the stochastic and the deterministic 

part of the model (variables Y and Xi’s) can be called the ‘generalized linking’ function. 

The above terminology and principles were originally introduced in the definition of 

generalized linear models (McCullagh and Nelder, 1989) but they can be adopted for a 

wide range of models. 

3.3 Definition of statistical models 

The most important phenomena in statistical science is the construction of probability 

models that represent, or sufficiently approximate, the true generating mechanism of a 

phenomenon under study. The construction of such models is usually based on 

probabilistic and logical arguments concerning the way that phenomenon works. 
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Assume a random variable Y, called response, which follows a probabilistic rule with 

density or probability function f(y|θ), where θ is the parameter vector. Then consider an 

independent and identically distributed (i.i.d) sample,y
T
= [y1, . . . , yn] of size n for this 

variable.  

The joint distribution f(y|θ) = is the likelihood function for the model which 

contains all the available information provided by the sample. Usually models are 

constructed in order to assess or interpret causal relationships between the response 

variable Y and various characteristics expressed as variables Xj, j ∈ V, called covariates 

or explanatory variables; j indicates a covariate or model term and V the set of all terms 

under consideration. In such cases, the explanatory variables are linked with the response 

variables via a deterministic function and part of the original parameter vector is 

substituted by an alternative set of parameters (denoted by β) that usually encapsulate the 

effect of each covariate on the response variable. For example, in a normal regression 

model with y ∼N(Xβ, σ
2
I) the parameter vector is given by θ

T
= [β

T
,σ

2
]. 

3.4 Bayes theorem 

According to Bayesian paradigm, the unobservable parameters in a statistical model are 

treated as random. When no data is available, a prior distribution is used to quantify our 

knowledge about the parameter. When the data is available, we can update our prior 

knowledge using conditional distribution of parameters, given the data. The transition 

from the prior to posterior is possible via Bayes theorem. 
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Let us consider two possible outcomes A and B. Moreover assume that A = A1∪ A2∪. . . 

∪An for which Ai ∩ Aj= ∅ for every i j. Then Bayes’ theorem provides an expression 

for the conditional probability of Ai given B which is equal to 

f(Ai|B) =  = …………….……………………………(3.1) 

In a simpler and more general form, for any outcome A and B, we can write 

f(A|B) = ……………………..…………………………………….…..…......(3.2) 

The above equation is also called Bayes’ rule. Bayesian inference is based on this 

rationale. The above equation, offers a probabilistic mechanism of learning from data 

(Bernardo and Smith, 1994).The denominator in Bayes’ rule, f(B), contains high-

dimensional integrals which are analytically intractable. Historically, they had to be 

solved by more or less adequate numerical approximations. Often, they could not be 

solved at all. Ironically therefore, for a long time Bayesians thought that they had better 

solutions in principle than classical statisticians but unfortunately could not practically 

apply them to any except very simple problems.  These were solved with the introduction 

of MCMC and Gibbs sampling methods. 

 Hence, after observing data (y1, y2, . . . ,yn) we calculate the posterior distribution 

f(θ|y1, . . . , yn) which combines prior and data information(likelihood).The posterior 

distribution is therefore proportional to the product of the prior density and the likelihood 

function as follows. 

 

f(θ )= ….………….........(3.3) 
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In case there are k unknown parameters then the posterior distribution takes the following 

form. 

f(θ1,θ2,….,θk│  = g( )………...……..(3.4) 

Further, if the random variables are independent, then for one unknown parameter 

 = f( θ) f( θ),…… f( θ)………………………………….……..(3.5) 

 

And for k independent unknown parameters, 

 = ,….,  

…………………………………………………………………………………………(3.6) 

The posterior distribution obtained may be highly complex and hence difficult to integrate or 

use it to compute summary statistics such as the posterior mean, variance or even the 

posterior probabilities. A dramatic change of this situation came with the advent of 

simulation based approaches like MCMC and related techniques that draw samples from 

the posterior distribution (Link and Barker, 2010; Swain et al., 2009; McCarthy and 

Masters, 2007; Mazzetta et al., 2007 and Gelman, 2006)).  These techniques circumvent 

the need for actually computing the normalizing constant in Bayes rule. Therefore, it is 

imperative to compute the necessary quantities of interest using Monte Carlo approach. 

However, simulating from an arbitrary high dimensional distribution is always difficult and 

often impossible to do directly. Markov Chain Monte Carlo (MCMC) simulates in a Markov 

Chain from posterior distribution as the stationary or limiting distribution. 

This, along with the ever-increasing computer power which is required for these highly 

iterative techniques, has made the Bayesian revolution in statistics possible (Brooks, 

2003). The ease with which difficult computational problems are solved by MCMC 
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algorithms is one of the main reasons for the recent upsurge of Bayesian statistics, rather 

than the ability to conduct an inference without assuming that one is completely ignorant 

(i.e., has no prior knowledge about the analyzed system). Therefore this posterior 

distribution is the key element in Bayesian inference. 

3.5 Bayesian estimation 

In Bayesian estimation (O’Hagan and Forster, 2004; Lindley, 2000; Bernardo and Smith, 

1994), uncertainty about parameters is quantified by probability distributions. 

Suppose we have a model M and we wish to estimate the model parameters, . Then, we 

have to define a prior distribution over these parameters; f(θ|M). When data Y come in, 

this prior distribution f(θ|M) is updated to yield the posterior distribution f(θ|Y,M). 

According to Bayes’ rule: 

 f( ) =  

                  = …........................................................................………(3.7) 

……..…………..……...………………........…......…(3.8)      

                 = Likelihood x prior 

Hence, the posterior distribution for  is proportional to the likelihood times the prior. In 

Bayesian parameter estimation, the researcher is interested in the posterior distribution of 

the model parameters f(θ|Y,M). However, in Bayesian model selection the focus is on 

f(Y | M), the marginal likelihood of the data under model M. 
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3.6 Bayesian model selection 

In Bayesian model selection, competing statistical models or hypotheses are assigned 

prior probabilities. Consider two competing models, M1 and M2 with prior probabilities 

f(M1) and f(M2). After observing the data, the relative plausibility of M1 and M2 is given 

by the ratio of posterior model probabilities, that is, the posterior 

 = …………………………………………..…………………….(3.9) 

Hence, the posterior odds are given by the product of the prior odds and the ratio of 

marginal likelihoods. The latter component is known as the Bayes factor (Kass and 

Raftery, 1995; Berger and Sellke, 1987; Dickey, 1971 and Jeffreys, 1961) and quantifies 

the change from prior to posterior odds; therefore, the Bayes factor does not depend on 

the prior model probabilities f(M1) and f(M2) and quantifies the evidence that the data 

provide for M1 versus M2. 

In linear regression and analysis of variance (ANOVA), two models of special interest 

are the null model, MN, that does not include any of the predictors (but does include the 

intercept) and the full model, MF, which includes all relevant predictors. In this scenario, 

the main difficulty with the Bayes factor is its sensitivity to the prior distribution for the 

model parameters under test (Gelman, 2008; Berger, 2006; Press et al., 2003 and Gelman 

et al., 1996). 

When there is limited knowledge about the phenomenon under study, the prior 

distribution for the parameters should be relatively uninformative. However, in order to 

avoid paradoxical results, the prior distribution cannot be too uninformative. 

In particular, the Jeffreys-Lindley-Bartlett paradox (Robert, 1993; Berger and 

Delampady, 1987; Lindley, 1980 and Jeffreys, 1961) shows that with vague 
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uninformative priors on the parameters under test, the Bayes factor will strongly support 

the null model. The reason is that the marginal likelihood f(Y |M) is obtained by 

averaging the likelihood over the prior; when the prior is very spread out relative to the 

data, a large part of the prior distribution is associated with very low likelihoods, 

decreasing the average. 

3.7 Prior distributions 

3.7.1 Conjugate Prior distributions 

A prior distribution that is a member of the distributional family D with parameters α is 

said to be conjugate to the distribution f(y|θ)  if the resulting posterior distribution f(θ|y) 

is also member of the same distributional family. Therefore 

If θ D(α) then D( ); 

Usually the target posterior distribution is not analytically tractable. In the past, 

intractability was avoided via the use of ‘conjugate’ prior distributions. These prior 

distributions have the nice property of resulting to posteriors of the same distributional 

family as the priors. Extensive illustration of conjugate priors is provided by (Bernardo 

and Smith, 1994). Where α and  are the prior and posterior parameters of D 

respectively. In many simple cases, the posterior parameters are expressed as weighted 

means of the prior parameters and maximum likelihood estimators.  

3.7.2 Non-informative and weakly-informative prior distributions 

 A prior distribution is characterized as weakly informative if it is proper but is set up so 

that the information it does provide is intentionally weaker than whatever actual prior 

knowledge is available. Non-informative prior distributions are intended to allow 
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Bayesian inference for parameters about which not much is known beyond the data 

included in the analysis at hand. 

In many occasions we are interested in expressing our prior beliefs in a simpler and more 

straightforward manner. Usually such prior information is extracted by experts who are 

not familiar with simply probability notions such as dependence and correlation. 

Therefore, we need to simplify the prior structure using independent distributions for μ 

and ω
2 

(or equivalently σ
2
) and directly specify the prior precision of μ, instead of setting 

it proportional to σ
2
. For example we may consider 

f(μ,σ
2
) = f(μ)f(σ

2
) with f(μ) = Normal( ,

2
) and f(σ

2
) = Inverse Gamma(α, β) . 

In this case, the resulting posterior distribution is of an unknown form. Consequently, it is 

difficult to evaluate the posterior summaries and their corresponding marginal densities. 

In cases that conjugate priors are considered to be unrealistic or are unavailable, either 

asymptotic approximations such as Laplace approximation (Kass and Raftery, 1995) or 

numerical integration techniques can be used. Another appealing alternative is the usage 

of simulation based techniques. These methods generate samples from the posterior 

distribution.  

3.7.3 Conditionally conjugate prior distributions 

A family of prior distributions f(θ) is conditionally conjugate for θ if the conditional 

posterior distribution, f(θ|y) is also in that class. In computational terms, conditional 

conjugacy means that, if it is possible to draw θ from a class of prior distributions, then it 

is also possible to perform a Gibbs sampler draw of θ in the posterior distribution. 

Perhaps more important for understanding the model, conditional conjugacy allows a 

prior distribution to be interpreted in terms of equivalent data. 
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In this research we used, the normal prior distributions for the means across the samples, 

i.e αj’s which are conditionally conjugate given the other parameters, that is, the priors 

for αj’s give normal posterior distributions, conditional on all other parameters in the 

model. 

The Inverse gamma priors on variance parameters were used in this study. The inverse-

gamma family is conditionally conjugate, in the sense that if has an inverse-gamma prior 

distribution, then the conditional posterior distribution is also inverse-gamma. 

3.7.4 Zellner g-prior 

This is a conjugate prior which is considered when a Normal-inverse-gamma prior 

distribution is assigned to the parameters under consideration. These prior takes the form 

αj  and 

Inverse Gamma( /2, /2) 

Where g is the parameter controlling the overall magnitude of the prior variance and 

V=(X
T
X)

-1
. 

The default choice of g=n is usually adopted since it has an interpretation of adding prior 

information equivalent to one data point ( Kass and Wasswerman, 1995). Another choice 

of g is to set it equal to the square of the number of predictors of the regression model: 

g=k
2

, where k is the number predictors in the model, i.e, the Risk Inflation Criterion, 

(Foster and George, 1994). Furthermore, (Fernandez et al., 2001) suggested to take 

g=max{n,k
2
} as a "benchmark prior” This prior has been widely used because it 

considerably simplifies posterior computations and reduces the number of prior variance 

parameters that remain to be specified down to one. It also allows for comparison 
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between different values of g (Liang et al., 2008) for discussion and extensions 

concerning the g-priors. 

When no information is available, the above prior set up is simplified by letting the 

matrix  

  V= gIj with j=J+1 and g set large to express prior ignorance (for example g=100). This 

means that the components of the vector  will be a priori independent. Hence this prior 

can be simply written as 

αj for j=1,…..,J. 

Where, are components of the prior mean vector, . 

Another alternative is to consider a case where all parameters are a priori independent. It 

is not conjugate, and hence MCMC methods need to be implemented in order to estimate 

posterior distribution. However, this prior set up is conditionally conjugate resulting in 

conditional posterior distributions for αj’s and allowing for construction of an efficient 

Gibbs sampler. 

3.8 Modeling data and parameters that vary by groups 

Let, yij be the response variable, i = 1, . . . ,nj indexes observations within groups j = 1, . . 

. , J  and let n = be the total number of observations. Within each group the mean of y 

is αj ; for simplicity, we assume homoskedasticity across groups such that V(yj ) = σ
2
 for 

all j . The means 1, . . . , j and an estimate of the common variance 
2
 are sufficient 

statistics for the data if we assume a normal model for the data. We are interested in the 

possibility that the means vary across groups. The following hierarchical model 

operationalizes this possibility. 
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                        i=1,2,…,nj 

                        j=1,2,….,J 

                        V( )= σ
2
 

yij |αj,σ
2

Normal(αj,  σ
2
)……...………………………...................……..…………..(3.10) 

αj  ,
2 

Normal( )
…………………………..………..……...….….……...(3.11) 

Equation (3.10) is a normal model for the data, with parameters αj and σ
2
, while equation 

(3.11) is a model for how αj(means), vary across the groups. The parameter μ0 is the 

mean of the distribution of the group means, and this group-level distribution has 

variance, , also known as the between variance;,σ
2
 is known as the within variance for 

groups j. The parameters in the group-level model, μ0 and  are known as hyper 

parameters. Prior densities for these Parameters, along with a priors for the σ
2
 “within 

variance”, are necessary to complete the specification of these models. 

3.9 Derivation of posterior distributions 

Proposition 1 

Assume the model yij  Normal(αj,σ
2
) and αj Normal( ) where i = 1, . . . , nj 

indexes observation with group j , j = 1, . . . , J. Then  

αj|yj, σ
2
,  ,

2
) Normal(  ,νj)

 

Or µj=   and vj  =  
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And where = nj
-1

  is the maximum likelihood estimate of αj (i.e., the group 

mean).  

3.9.1 Posterior distribution from Normal prior and normal likelihood case 

This is when continuous data are available and we are interested in making inference on 

how the means vary across the groups assuming that the variance σ
2 

is known and that the 

data yij follow a normal distribution. Observing the data y1,…yn from the groups j=1,…J, 

we consider the case where the  parameters in the model are θ=( ,…αJ,µo,ωo
2
,σ

2
).The 

Bayesian Model is therefore, 

Normal(αj,σ
2
),   model for the data. 

Normal(µo,ωo
2
), model for how the means vary across the groups, where i=1,…nj are 

observations in the samples j, j=1,…,J 

The posterior distribution for the model was estimated where the likelihood of the data is 

normal with mean and variance σ
2
. The conjugate normal prior on µ was used, with 

mean µo variance  

f(αj│y, σ
2
) f(y│αj, σ

2
)f(αj) 

  likelihood  prior 

Then the parameter of interest is denoted by θ, in this case αj,  

    αj│yj,σ
2
,µo,ωo

2
 Normal(û,Ṽ) 

Posterior distribution  likelihood prior 

f(αj│y, σ
2
) f(y│αj, σ

2
)f(αj) 

 Normal (αj,σ
2
)  Normal prior ( ) 
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Let  represent the parameter of interest, ie, αj, then 

f(αj│y) =  

exp  

 = exp  

 = exp  

=exp  

The brackets are then opened in order to get the equation in terms of sufficient statistic,  

f( ) exp  

             = 

exp  

The terms are then factored into several parts. Since   and do not 

contain, , then they are represented by a constant T, which will drop into the 

normalizing constant.   

f(αj│y)  exp  

                 = exp  

                 = exp  

is simplified by multiplying the above by   . 
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f(αj│y) exp  

                =exp  

                = exp  

This is a density function of a normal distribution i.e 

f( )  exp     ,with 

 

Posterior mean:  =        

Posterior variance: =     

Posterior precision:  =  

Posterior precision is therefore the sum prior precision and data precision.  

We also look more closely at how the prior mean  and the posterior mean  relate to 

each other; 

   Posterior mean: =  
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=  

=   

=  

As n increases, the data mean dominates the prior mean and as  decreases(less prior 

variance, greater prior precision) the prior mean become more important. 

3.9.2 Posterior distribution from inverse gamma prior with normal likelihood case 

This was to estimate posterior distribution of a model whose likelihood is from a normal 

distribution with a conjugate inverse Gamma prior with shape parameter  and scale 

parameter  

f(σ
2
│y,µ)  f(y│µ, σ

2
)f(σ

2
) 

Posterior distribution is therefore, Normal(µ, σ
2
)  Inverse Gamma( ), where =  

and  =  

Letting θ to be the parameter of interest, in this case σ
2 
, then 

f(σ
2
│y,µ)  

 



29 
 

 
 

=  

=  

=  

=  

=  

This is a density function of an Inverse Gamma distribution with parameters  and  

Then the posterior distribution f(σ
2
│y,µ)  

 =  

 =  

The posterior is then Inverse Gamma( ) distribution. 
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3.9.3 Hierarchical One-Way ANOVA 

Analysis of variance (ANOVA) is the generalization of a t-test to more than two groups. 

There are different kinds of ANOVA: one-way, with just a single factor, and two- or 

multi-way, with two or more factors, and main- and interaction-effects models. Here, we 

presented a one-way ANOVA and introduce the concept of random effects. In random-

effects models, a set of effects (e.g., group means) are constrained to come from some 

distribution, which is most often a normal.  We will first generate and analyze fixed-

effects and then random-effects ANOVA. 

A full specification of the normal, one-way ANOVA model as a Bayesian hierarchical 

model is: 

yij|αj, σ
2

Normal(αj,σ
2
)……………………….…….......……..…......(3.12)                                  

αj│µo, o
2

Normal(µo, o
2
)……………….…...……………......….…(3.13) 

                   0 Normal(b0, B0) 
……………….………………..…..…....(3.14) 

             σ
2

inverse-Gamma(v0/2,σ
2
 v0/2)…................................…..(3.15) 

              2
inverse-Gamma(k0/2, k0 /2)….………………..…............(3.16) 

A model with unit-wise heteroskedasticity results when we let the “within-unit” variance 

parameter σ
2
 vary over units (i.e., instead of σ

2
, we would have the parameters; σ1

2
, 

σ2
2
,…,σJ

2
)The hyper parameters of the normal prior for  (the mean b0 and the variance 

B0) and the hyper parameters of the priors for the model parameters are in the vector,  = 

(α1, . . αJ,μ0,σ
2
, ). 

 The hierarchical structure of the model implies that the prior density for  can be 

factored as follows: 
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f( ) = f(α1, . . . , αJ, μo, σ
2
, ) 

       = f((α1, . . . , αJ│μ0, ) f(μ0)f( σ
2
)f( ) 

       =  

3.10 Markov Chain Monte Carlo (MCMC) and Gibbs Sampling  

MCMC is a set of techniques to simulate draws from the posterior distribution f(θ│Y) 

given a model, a likelihood f(Y│θ), and data Y, using dependent sequences of random 

variables. That is, MCMC yields a sample from the posterior distribution of a parameter. 

MCMC was developed in 1953 by the physicists Metropolis, and later generalized by 

Hastings (1970), and so one of the main MCMC algorithms is called the Metropolis 

Hastings algorithm. Many different algorithms of MCMC are available now. One of the 

most widely used MCMC techniques is Gibbs sampling 

(Geman, 1984). It is based on the idea that to solve a large problem, instead of trying to 

do all at once, it is more efficient to break the problem down into smaller sub units and 

solve each one in turn. Here is a sketch of how Gibbs sampling works: 

Let the data be Y andθ be the vector of unknowns parameters to be investigated, ie θ = 

(α1,…αJ,µ0,ω0
2
,σ

2
), hence the Gibbs sampler algorithm works as follows for the  

unknown parameters. 

1. Choose starting (initial) values α1
(0)

,…,αJ
(0)

,µ0
(0)

 ω0
2(0)

,σ
2(0)

 

2. Simulate α1
(1)

 from the distribution  Normal  

Simulateα2
(1)

,from f(α2│ α1
(1)

,…αJ
(0)

,µ0
(0)

,ω0
2(0)

,σ
2(0)

,Y) 

Simulate α3
(1)

, from f(α3│ α1
(1)

,α2
(1)

,α4
(0)

,…αJ
(0)

,µ0
(0)

,ω0
2(0)

,σ
2(0)

,Y) 
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. 

. 

.Simulate ω
2(1)

 from distribution Inverse Gamma  

-Simulate σ
2(1)

 from distribution Inverse Gamma  

 - Iterate this procedure 

3. Repeat step 2 many times (e.g. 100s, 1000s,100000s, etc) to eventually obtain a 

sample from f(θ│Y), i.e target density or the limiting distribution 

Step 2 is called an update or iteration of the Gibbs Sampler and after convergence is 

reached, it leads to one draw (Posterior sample) consisting of k values from the joint 

posterior distribution f(θ│Y). The conditional distributions in this step are called “full 

conditionals” as they condition on all other parameters. The sequence of random draws 

for each of k parameter resulting from step 3 forms a Markov Chain. Therefore, a simple 

summary of a Bayesian statistical analysis is as follows: 

1. We use a degree-of-belief definition of probability rather than a definition of 

probability based on the frequency of events among hypothetical replicates. 

2. We use probability distributions to summarize our beliefs or our knowledge (or lack 

thereof) about each model parameter and apply Bayes rule to update that knowledge with 

observed data to obtain the posterior distribution of every unknown parameter in the 

model. The posterior distribution quantifies all our knowledge about these unknowns 

given the data, the model, and prior assumptions. All statistical inferences are based on 

the posterior distributions. 
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3. However, posterior distributions are virtually impossible to compute analytically in all 

but the simplest cases; hence, we use simulation methods (MCMC) to draw a series of 

dependent samples from the posterior distribution and base our inference on that sample. 

WinBUGS (the MS Windows operating system version of BUGS: Bayesian Analysis 

Using Gibbs Sampling) is a versatile package that has been designed to carry out Markov 

chain Monte Carlo (MCMC) computations for a wide variety of Bayesian models) 

applies a MCMC algorithm for the model specified and includes the data set and 

conducts the iterative simulations for the target distributions, (Link et al., 2006). 

3.10.1Output from MCMC Algorithm 

Once the iterations of MCMC are completed, a series of random numbers from the joint 

posterior distribution f(θ│Y)are obtained. Essentially, it is important to make sure that 

these numbers come from a stationary distribution, i.e., that the Markov Chain that 

produced them was at an equilibrium. If that is the case, then this becomes the estimate of 

the posterior distribution. Also, these numbers should not be influenced by the choice of 

initial parameter values supplied to start the Markov Chains (the initial values); and these 

successive values are correlated. This is called convergence monitoring. Once 

convergence is attained, the posterior samples are summarized to estimate any desired 

feature of the posterior distribution, for instance, the mean, median, or mode as a measure 

of central tendency. This is a Bayesian point estimate or the standard deviation of the 

posterior distribution and is a Bayesian measure of the uncertainty of a parameter 

estimate. 
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3.10.2 Convergence Monitoring 

This term refers to whether the algorithm has reached its equilibrium (target) distribution. 

If this is true, then the generated sample comes from the correct target distribution. Hence 

monitoring the convergence of the algorithm is essential for producing results from the 

posterior distribution of interest. 

There are many ways to monitor convergence. The simplest way is to monitor the MC 

(Markov Chain) error since small values of it will indicate that the quantity of interest has 

been calculated with precision. Monitoring autocorrelations is also very useful since low 

or high values indicate fast or slow convergence respectively. 

A second way is to monitor the trace plots, i.e. the plots of the iterations versus the 

generated values. If all values are within a zone without strong periodicities and 

(especially) tendencies then assumes convergence. After the burn-in period the generated 

sampled values are stabilized within a zone. Most methods use at least two parallel 

chains, but another possibility is to compare successive sections of a single long chain. 

The simplest method is just to inspect plots of the chains visually: they should look like 

nice oscillograms around a horizontal line without any trend. Visual checks are routinely 

used to confirm convergence. 

The first step in making an inference from an MCMC analysis is to ensure that an 

equilibrium distribution has indeed been reached by the Markov Chain, i.e., that the chain 

has converged. For each parameter, the chain started at an arbitrary point (the initial value 

or init chosen for each parameter), and because successive draws are dependent on the 

previous values of each parameter, the actual values chosen for the initial values is 

noticeable for a while. Therefore, only after a while the chain is independent of the values 
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with which it was started. These first draws are discarded as a burn-in as they are 

unrepresentative of the equilibrium distribution of the Markov Chain. 

Another, more formal check for convergence is based on the Gelman Rubin (or Brooks 

Gelman Rubin) statistic (Gelman et al., 2004), called Rhat when using WinBUGS from R 

via R2WinBugs. Values near 1 indicate likely convergence, and 1.1 is considered by 

some as an acceptable threshold (Gelman and Hill, 2007; Gelman et al., 2004 and 

Bernardo, 2003). With this approach, it is important to start the parallel chains at different 

selected or at random places. 

3.10.3 Summarizing the Posterior for Inference 

The aim of a Bayesian analysis is not the estimate of a single point, as the maximum of 

the likelihood function in classical statistics, but the estimate of an entire distribution. 

That means that every unknown (e.g. parameter, function of parameters, prediction, and 

residual) has an entire distribution. The posterior can be summarized graphically, e.g., 

using a histogram or a kernel-smoother. 

Alternatively, the mean, median, or mode can be used as a measure of central tendency of 

a parameter (i.e., as a point estimate) and the standard deviation of the posterior as a 

measure of the uncertainty in the estimate, i.e., as the standard error of a parameter 

estimate. Finally, the Bayesian analog to a 95% confidence interval is called a Bayesian 

credible interval (CRI) and is any region of the posterior containing 95% of the area 

under the curve. There is more than one such region, and one particular CRI is the 

highest-posterior density interval (HPDI). However, in this research, we only considered 

95% CRI’S, bounded by the 2.5
th
 and the 97.5

th
 percentile points of the posterior sample 

of a parameter. 
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3.10.4 Forming Predictions 

Predictions are expected values of the response for future samples or of hypothetical 

values of the explanatory variables of a model, or more generally, of any unobserved 

quantity. Predictions are very important for: 

 (a) Presentation of results from an analysis and  

(b) To understand what a model entails. For example, the biological meaning of an 

interaction or a polynomial term can be difficult to determine from a set of parameter 

estimates. Because predictions are functions of parameters and of data (values of 

covariate), their posterior distributions can again be used for inference with the mean and 

the 95% CRIs often used as the predicted values along with a 95% prediction interval. 

3.11 Algorithm for Gibbs Sampler 

The posterior density for this problem f(  |Y) f( )f(Y| ) is high dimensional:   

contains Jαj’s parameters, plus μ0, and the two variances σ
2 

and  making a total of J + 

3 parameters. This is where the Gibbs Sampler becomes especially very useful. 

Characterizing the J+3 dimensional posterior density f(  |Y) was done by successively 

sampling from J+3 conditional densities. 

Figure 3.1, below provides a graphical representation of the hierarchical model provided 

from which it will be straight forward to deduce the forms of the conditional distributions 

required to implement a Gibbs Sampler. The conditional independence relations among 

the random quantities in the model are shown in the diagram: e.g., given that αj, the data 

yij are conditionally independent of the hyper parameters μ0 and the between-unit 

variance 
2
. Moreover, given other components (data or parameters) of the model, αj and 
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μo are conditionally independent of one another, means that these group-specific 

parameters can be updated one at a time, in a series of iterative updating steps (Robert, 

2007). 

 

 

 

 

 

 

 

 

 

Figure 3.1: Graphical displays of data, priors and hyper parameters for the  

   hierarchical model. 
 

This then leads to the specific conditional distributions needed to implement the Gibbs 

sampler. 

1. f(αj|y, μ0, , σ
2
), j = 1, . . . , J .Each αj has  priors with parameters μ0 and  

and the data in groups, j=1,2,…J, and this data yij has the priors with parameters αj 

and σ
2
.Therefore  

        Since f(αj│μ0,
2
) N(μ0, ) and f(yij│αj,σ

2
) N(αj,σ

2
.). This conditional 

distribution then leads to 

                αj|y, μ0, , σ
2
)  Normal  from proposition. 

bo Bo 
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2. f( 0|bo,B0), The prior for μ0 are the hyper parameters, the prior mean b0 and prior 

variance B0 respectively. This again becomes Normal distribution (from 

proposition) and therefore leads to 

                       0|y,bo,B0 Normal  

3.  f(
2
| k0, ). The priors for

2 
are just its prior hyper-parameters, ko and . 

These priors are conditioned to the αj; and this has its priors
2
 and μ0. Hence, 

The prior density f(
2
│ko, ) is an inverse-Gamma density, while the αj have normal 

densities, and so the results of Proposition 1 apply. That is, the inverse-Gamma prior over 

2
 is conjugate with respect to the normal “likelihood” over the αj and so  

f(
2
│ko, ) Inverse Gamma  

Where Su =  

4. f(σ
2
|vo, .).The priors for σ

2 
are just its prior hyper parameters, vo and .  

These priors are combined with the likelihood i.e the data yij; to give a posterior 

distribution. 

The prior density f(σ
2
|vo,σ

2
)  is an inverse-Gamma density, while the yij have 

normal densities, and again, the results of Proposition 1 apply. That is 

σ
2
|vo, Inverse-Gamma ( ) 

   Where n= is the total number of observations in group j and 

        SY= is the total sum-of-squares of Y. 
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An iteration of the Gibbs Sampler consists of sampling from each of these conditional 

distributions, with the sampled values stored and available as conditioning arguments in 

subsequent steps. Formally, the Gibbs Sampler makes the transition from: 

   θ
(t)

=(α1
(t)

,…..αJ
(t)

,ų0
(t)

,
2(t)

,
2(t) 

) to    θ
(t+1) 

as follows 

1. Sample, αj
 (t+1)

 from the normal density given in equation 3.13, with the conditioning 

arguments ų0,
2
,

2
 set to ų0

(t)
, ,

2(t)
,

2(t) 
 respectively 

2. Sample μo
(t+1)0

 from the normal density given in equation 3.14, with the conditioning 

arguments ų and 
2
 set to  and 

2(t)
 respectively (i.e αj’s the were “updated” in step 

1). 

3. Sample σ
2(t+1)

 from the inverse-Gamma density in equation 3.15, with the conditioning 

argument SY updated to SY
(t+1)

. That is, Sy is a function of the αj, which were updated to 

αj
(t+1) 

in step 1 

4. Sample 
2(t+1)

 from the inverse-Gamma density in equation 3.16, with the conditioning 

argument Su set to Su
(t+1)

. That is, Sμ is a function of both αj and μ0; the αj were updated to 

were updated to αj
(t+1) 

in step 1 and μ0 was updated to μ
(t+1) 

in step 2 

After these four steps, a complete, θ
(t+1)

 has been sampled, and becomes conditioning 

arguments in the next iteration. The one-way ANOVA can be parameterized in various 

ways. We adopted a means parameterization of the linear model for the fixed-effects, 

one-way ANOVA: 

yi = αj + εi 

εi  Normal (0,σ
2
) 
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Here, yi is the observation i in group j, αj is the mean group j, and residual εi is the 

random deviation of, i from its population mean αj. It is assumed to be normally 

distributed around zero with constant variance σ 
2
. 

Without any further assumption, the population means αj’s are simply some unknown 

constants that are estimated in a fixed-effect’s ANOVA. If, however, a distributional 

assumption about the population means αj’s is added, we obtain a random-effects 

ANOVA: 

yi = αj + εi 

εi ~ Normal (0,σ
2
) 

αj ~ Normal (μ0,ω
2
) 

The interpretation of αj and εi as population mean and residual, respectively, is 

unchanged. But now, the αj’s parameters are no longer assumed to be independent; rather, 

they come from a second normal distribution with mean μ0 and variance ω
2
. The latter are 

also called hyper parameters, because they are one level higher than the parameters αj’s 

that they govern. 

Thus, typical fixed-effects factors would be sex or cereal variety in an agricultural 

experiment etc. Typical random-effects factors might be time (e.g., year, month, or day) 

or location, such as experimental blocks or other spatial units on which repeated 

measurements are taken. This similarity is because of the common stochastic process that 

generated them and thus creates a stochastic relationship among the effects of the levels 

of a random-effects factor. 
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In contrast, when factor levels are modeled as fixed they are considered unrelated or 

independent. Therefore, the reasons for moving from fixed-effects ANOVA to the 

corresponding random-effects ANOVA include: 

 1. Extrapolation of inference to a wider population, 

2. Improved accounting for system uncertainty, and 

3. Efficiency of estimation. 

 First, viewing the studied effects as a random sample from some population enables one 

to extrapolate to that population. This generalization can only be achieved by modeling 

the process that generates the realized values of the random effects (i.e., by assuming a 

normal distribution for the αj (above). Second, declaring factor effects as random 

acknowledges that when repeating the study, we obtain a different set of effects, so the 

resulting parameter estimates will differ from those under study. Random-effects 

modeling properly accounts for this added uncertainty in our inference about the analyzed 

system. Third, when making random-effects assumption about a factor, these effects are 

no longer estimated independently; instead, estimates are influenced by each other and 

therefore are dependent. Specifically, individual estimates are “pulled in” toward the 

common mean μ, i.e., they are closer to μ than the corresponding fixed-effects estimates. 

This is why random effects estimators are said to be “shrinkage estimators”. Estimates 

that are more imprecise and are based on a smaller sample size are shrunk more. When 

effects are indeed exchangeable, shrinkage results in better estimates (e.g with smaller 

prediction error) than the estimates obtained from a fixed-effects analysis (Gelman, 2007) 

WinBUGS software has been developed to carry out MCMC computations on a broad 

range of statistical models within the Bayesian framework that treats all quantities as 
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random variables. The model it assumes consists of a joint distribution over all 

unobserved quantities such as parameters (or nodes in WinBUGS terms), and observed 

quantities such as collected data. It then conditions on the data to obtain a posterior 

distribution over the parameters through Bayes theorem. To obtain inferences on the 

unknown quantities of interest from the model, it marginalizes the posterior distribution 

by using the MCMC simulation techniques. 
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CHAPTER FOUR 

DATA ANALYSIS AND RESULTS 

4.1 Introduction 

This chapter gives a presentation of results in the form of tabulations and their 

accompanying graphs. A short discussion of these results is also made. 

One-way ANOVA design is used to illustrate the differences between the various priors 

and the effects they have on variance parameters. 

This followed the data from an experiment that was set up to investigate to what extent 

the yield of dyestuff differs between batches of the raw material. The experiment featured 

six batches with five observations each as shown in the table below. 

Table 4.1: Data from a balanced experiment with five samples each with six 

 randomly chosen bathes of raw material 

                                               Batch  Yield (in grams)   

                                      1 1545 1440 1440 1520 1580 

                                      2 1540 1555 1490 1560 1495  

                                      3 1595 1550 1605 1510 1560 

                                      4 1445 1440 1595 1465 1545 

                                      5 1595 1630 1515 1635 1625 

                                      6 1520 1455 1450 1480 1445  

 

Source: (Box and Tiao, 1973) 
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The data in table 4.1, arose from a balanced experiment in which the total product yield 

was determined for 5 samples from each of 6 randomly chosen batches of raw material. 

In order to illustrate the behavior of the various parameters when the null hypothesis is 

true, the difference between the batch mean and the overall mean was subtracted from the 

batch data. The objective was to determine the relative importance of between batch 

variation versus variation due to sampling and analytic errors.  We assume that the 

batches and samples vary independently, and contribute additively to the total error 

variance. 

First, a classical one-way ANOVA is carried out to compute the F statistic and the 

corresponding p value for the data set. We used the following model for the yield 

 

Where;  is a fixed effect 

’s are fixed contrasts from  (so they sum to zero) 

, independent and identically distributed, (iid), are random draws for  

deviations from  

There are seven parameters to be estimated: 5 ’s (6 minus 1 constraint),  and . 

Where yij is the yield for group j,  is the mean yield of batch j, within is the inverse of 

the within-sample variance σ2
within ,( i.e. the variation due to sampling and analytic 

error), is the true average yield for all the batches and ώ-within is the inverse of the 

between-sample variance ώ2
between. 
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4.2 Classical (Frequentist or traditional) approach 

In general, one way (factor) ANOVA techniques can be used to study the effect of k (>2) 

levels of a single factor. 

To determine if different levels of the factor affect measured observations differently, the 

following hypothesis was tested. 

Ho: =   

 Versus 

H1: . 

To compare the means of J different populations, we have j groups of sizes, .This can also 

be written as: 

yij= μ + τj+ εij, where j = 1,…, J (groups or samples) and i = 1, 2, ..., nj 

That is, an observation is the sum of three components:  

1. The grand mean μ of the combined populations. 

2.  A treatment effect τj associated with the particular population from which the 

observation is taken; put in another way, τj is the deviation of the group mean 

from the overall mean.  

3. A random error term εij. This reflects variability within each population 

An alternative way to write the model is: 

yij= μj+ εij, 
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Where μj= mean of the jth population = μ + τj. 

Assumptions 

When applying one way analysis of variance there are key assumptions that should be 

satisfied. They are essentially the same as those assumed for k = 2, levels, and they 

include: 

1. The population at each factor level is (approximately) normally distributed  

2. The observations are obtained independently from the populations defined 

by the factor levels. 

3. These normal populations have a common variance, σ
2
. 

4. The random error terms are independent, i.e the ε’s are independent and 

identically distributed, (iid) 

5. εij  N(0,σ
2
 ) 

Thus for factor level i, the population is assumed to have a distribution which is N(µi,σ
2
). 

The following computational value for F and notations cater for both equal and unequal 

sample sizes. 

Then, if H0 is true, 

                 F = F(J-1, N-J)  

That is, if H0 is true, then the test statistic F has an F distribution with J - 1 and N - J 

degrees of Freedom. 
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Table 4.2: Coefficient values obtained using the classical approach 

________________________________________________________________________ 

                        Coefficients       Estimate Std. Error        t value                   Pr(>|t|) 

________________________________________________________________________ 

(Intercept)          1527.50                  9.04                       168.985                   < 2e-16 *** 

  Batch 1             -22.50                    20.21                      -1.113                      0.27666     

  Batch 2             0.50                       20.21                       0.025                       0.98047     

  Batch 3             36.50                     20.21                       1.806                       0.08351 

  Batch 4             -29.50                   20.21                       -1.459                      0.15739     

  Batch 5             72.50                     20.21                       3.587                       0.00149  

 s-within              42.00 

 s-between           49.5 

________________________________________________________________________ 

 Residual standard error: 49.51 on 24 degrees of freedom. Multiple R-Squared: 0.4893,     

Adjusted R-squared: 0.3829 .F-statistic: 4.598 on 5 and 24 DF,  p-value: 0.004398 

Most of the coefficients are non-significant, suggesting that the batch means do not differ 

significantly from the grand mean. The coefficients for batch 6 is –sum(the rest) = -57.5. 
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This model can also be given using the “mixed effects” linear model: 

 

Where:  is a fixed intercept. 

, iid, is a random draw for batch mean’s deviation from  

, iid, is a random draw for  deviations from  

This structure of this model remains the same as the one given above, but the number of 

parameters here are only three; . 

The, is a fixed is a ”fixed effect”,  together are one “random effect”, and  

are called “variance components”. Therefore, this model is equivalent to  

 

However, in this model,  are no longer independent of each other:  in the same batch 

j depend on the same random draw  and so are dependent. 

Linear mixed-effects model fit by REML 

Data: dyes 

              AIC               BIC              LOGLIK 

           325.6543       329.7562        -159.8271 
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Random effects 

                 Intercept             Residual 

Std Dev     42.0061             49.5101 

Fixed effects 

                      Value        Std.error        DF      t-value       p-value 

(Intercept)      1527.5       19.38342        24    78.80448     0.000 

From these, it is evident that 

s-within, i.e  = 42.00 

s-between, i.e  = 49.5 

Formulae and notations used in classical approach. 

Formulae and notations: 

Number of samples (or levels)                 =       J 

 Number of observations in i
th

sample       =      nj 

Total number of observations                  =  N =  

Observation j in i
th
 sample                       =  yij, j=   1,2,….. ni 

Sum of ni observations in the i
th

 sample  = Hi =    
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Sum of all N observations               =    H =  =  

Within sum of squares, SSW                  =SST-SSB 

Hence, 

Total mean square,                         = MST =  

Between samples mean square       = MSB =  

Within samples mean square,         = MSW =  

Where MST, MSB, and MSW are mean total sum of squares, mean between sum of 

squares and mean within sum of squares respectively whereas SST, SSB and SSW are 

defined in the formulae and notations above. 

The degrees of freedom, (DF) is then given by: (J-1) + (N - J) = (N-1) 

Sum of squares for between variation, (SSB) captures the variability between the groups. 

If all groups had the same mean, SSB would equal 0. The term SSExplained is also used 

because it reflects variability that is “explained” by group membership. Since there are J 

groups, and one grand mean, hence DF for Between variation = J - 1.  

 Total sum of squares                      =  SST =         -  

Between sum of squares,                = SSB=  -  
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Sum of squares for within variation (SSW) captures variability within each group. If all 

group members had the same score, SSW would equal to 0. It is also called SS Errors or 

SS Residual, because it reflects variability that cannot be explained by group 

membership. There are nj degrees of freedom associated with each individual group, so 

the total number of degrees of freedom within = Σ(nj- 1) = N - J 

From the data given above, the classical (frequentist) analysis is done as follows: 

Total sum of squares                  = SST = - = 70,112,875  -  

                                                                                     =   115,187.5 

                                                                                    =  -  = 56,357.5 

    =   (7525
2
/5+7640

2
/5+7820

2
/5+7490

2
/5+8000

2
/5+7350

2
/5) -  = 56,357.5 

Within samples sum of squares,    SSW =SST-SSB   =  

                                                                                      = 58,830 

Therefore, 

 Total sum of squares = between samples sum of squares + within samples sum of square 
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Table 4.3: ANOVA- table using classical method 

________________________________________________________________________ 

  Source        DF       Sum of squares         Mean square                      F 

________________________________________________________________________ 

  Between     5               56,357.5              11,271.5                         F =  = 4.598 

   Within       24             58,830                 2,451.25                

   Total         29              115,187.5           4,215.98 

________________________________________________________________________ 

At a level of α= 0.05, the classical approach gave an F value (calculated) of 4.598 which 

was then compared with table values. 

F(J-1,N-J) = F(5,24) = 2.7763 < Fcalculated = 4.598. 

We reject the null hypothesis i.e the means are not equal. 

4.3 Bayesian approach in data analysis 

Graphical display for the model  

Figure 4.1, demonstrates how the Bayesian hierarchical model for ANOVA can be 

analyzed using WINBUGS. Theta refers to the posterior grand mean, mu[i]’s are the 

posterior means across the groups while sigma2.btw and sigma2.with are between and 

within variances respectively. 
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for(j IN 1 : samples)

for(i IN 1 : batches)

sigma2.btw

sigma2.wi th

tau.btw

tau.with

theta

mu[i ]

y[i , j ]

 

Figure 4.1: WinBugs Graphical display for the Bayesian model. 

The posterior summaries after 100,002 iterations and additional discarded 5,000 burn-in 

iterations using Normal prior for the mean and Inverse-Gamma prior for the variance 

parameters will be produced. It also gives the posterior means for the batches, posterior 

between and within variances. Finally it also gives 95% credible set analog to confidence 

interval in frequentist approach 
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Table 4.4: Posterior point estimates from Normal posterior for means and inverse 

 gamma posterior for variance. 

___________________________________________________________________ 

 mean sd           MC_error val2.5pc median val97.5pc start sample 

______________________________________________________________________________________ 

mu[1] 1514.0 20.47 0.1963 1471.0 1515.0 1552.0 5000 100002 

mu[2] 1528.0 19.31 0.1142 1489.0 1528.0 1566.0 5000 100002 

mu[3] 1550.0 22.19 0.2991 1510.0 1550.0 1595.0 5000 100002 

mu[4] 1509.0 21.28 0.241 1466.0 1510.0 1549.0 5000 100002 

mu[5] 1572.0 29.16 0.5545 1516.0 1575.0 1625.0 5000 100002 

mu[6] 1492.0 25.92 0.4349 1443.0 1491.0 1541.0 5000 100002 

s-with  49.74 9.24 0.1301 39.35 52.47 75.03 5000 100002 

 s-btw             41.65 27.15 0.4727 0.3101 37.34 102.4 5000 100002 

sigma2.with 2474.54 4151.0 33.04 0.09619 1394.0 10490.0 5000 100002 

sigma2.btw 1734.72    1069.0 15.35 1548.0 1753.0 5630.0 5000 100002 

theta 1528.0 21.98 0.116 1483.0 1528.0 1572.0 5000 100002 

     F 4.56 8.355 0.06948 1.122E-4 2.589 21.19 5000 100002 

 

The results in Table 4.4, above  gives posterior numerical summaries from the model 

after 100,002 iterations and additional discarded 5,000 burn-in iterations using Normal 

prior for the mean and Inverse-Gamma prior  for  the variance parameters. MCMC 

algorithm gives the posterior means for the batches, posterior between and within 

variances. It also gives 95% credible set analog to confidence interval in frequentist 

approach. This gives a grand posterior mean of 1528.0, posterior within variance of 

2474.54 and posterior between variance of 1734.72. These results closely agree with 

those obtained using frequentist approach. Posterior F-value was 4.56 which is similar to 

that obtained using Classical approach.  
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Table 4.5:  Posterior summaries using Zellner’s g-prior (g = n = 30) 

________________________________________________________________________ 

                       mean  sd MC_error val2.5pc median val97.5pc start sample 

mu[1] 1514.0 20.25 0.2181 1472.0 1515.0 1552.0 5000 100002 

mu[2] 1528.0 18.91 0.1426 1490.0 1528.0 1566.0 5000 100002 

mu[3] 1549.0 22.08 0.3141 1509.0 1548.0 1593.0 5000 100002 

mu[4] 1510.0 21.08 0.2589 1467.0 1511.0 1548.0 5000 100002 

mu[5] 1570.0 29.62 0.5769 1515.0 1573.0 1624.0 5000 100002 

mu[6] 1494.0 26.2 0.4547 1444.0 1493.0 1542.0 5000 100002 

s-with 51.02 9.424 0.139 39.38  50.7 75.71 5000 100002 

s-btw 42.89 26.06 0.4665 0.5191 35.07 95.89 5000 100002 

sigma2.with 2603.40 3516.0 31.67 0.2695 1230.0 9194.0 5000 100002 

sigma2.btw 1839.55 1097.0 16.24 1551.0 2777.0 5732.0 5000 100002 

theta 1528.0 20.89 0.1496 1486.0 1527.0 1569.0 5000 100002 

    F 4.62 8.335 0.06848 1.122E-4 2.542  21.16 5000 100002 

______________________________________________________________________________________ 

 

The results in Table 4.5, above gives posterior summaries for the data after 100,002 

iterations and additional discarded 5,000 burn-in iterations using Zellner’s g-prior with g 

= n = 30, where n is the total number of observations in the data set. When g=n=30, the 

posterior grand mean was 1,528.0, posterior within variance was 2,603 and posterior 

between variance was 1,839.  Posterior F-value was 4.62 which is similar to that obtained 

using classical approach. 
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Table 4.6: Posterior summaries using Zellner’s g-prior (g = k
2
= 25). 

________________________________________________________________________ 

                               mean   sd         MC_error val2.5pc median val97.5pc start sample 

______________________________________________________________________________________ 

mu[1] 1514.0 20.38 0.2367 1471.0 1515.0 1551.0 5000 100002 

mu[2] 1528.0 19.17 0.1186 1489.0 1528.0 1566.0 5000 100002 

mu[3] 1550.0 22.15 0.4009 1511.0 1549.0 1595.0 5000 100002 

mu[4] 1510.0 21.13 0.3012 1466.0 1511.0 1548.0 5000 100002 

mu[5] 1572.0 29.34 0.7553 1517.0 1575.0 1625.0 5000 100002 

mu[6] 1492.0 25.99 0.5722 1443.0 1491.0 1540.0 5000 100002 

s-with 48.71 9.227 0.1691 39.39 52.57 74.94 5000 100002 

s-btw 39.86 27.12 0.6395 0.3025 37.12 102.0 5000 100002 

sigma2.with 2372.0 3894.0 44.48 0.09148 1378.0 10410.0 5000 100002 

sigma2.btw 1541.34     1068.0 19.77 1552.0 2764.0 5615.0 5000 100002 

theta 1534.0 20.89 0.1496 1486.0 1527.0 1569.0 5000 100002 

     F 4.52 8.255 0.06948 1.122E-4 2.592 21.26 5000 100002 

______________________________________________________________________________________ 

 

The results in Table 4.6, above gives WinBUGS posterior summaries for the data after 

100,002 iterations and additional discarded 5,000 burn-in iterations using Zellner’s g-

prior with g = k
2
= 25, where k is the number of observations from each group. The 

effects of using different values of, g, is also demonstrated in Table 6 and Table 7 above. 

From Table 7, posterior grand mean is 1,528.0, whereas posterior within variance is 

2,372.0 and posterior between variance is 1,584.34. Posterior F-value was 4.52 which is 

similar to that obtained using Classical approach.  

 

 



57 
 

 
 

 

4.3.1 Box Plots 
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Figure 4.2: Box plots for within sample variance, posterior means and between  

  sample variance respectively 

Figure 4.2, above shows a graphical display of the posterior means across the groups. 

This is a posterior distribution of means which conditionally conjugate given the other 

parameters. These means are ranging from 1492 to 1572, with the posterior grand mean 

being 1527.5. 
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4.3.2 Posterior densities 
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Figure 4.3: MCMC Posterior densities for the parameters. 

These plots are like smoothed histograms. Instead of counting the estimates into bins of 

particular widths like a histogram, the effect of each iteration is spread around the 
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estimate via a Kernel function e.g. a normal distribution. This means that at each point we 

get the sum of the Kernel function parts for each iteration.  

4.4 Tests for Convergence 

4.4.1 Time Series Trace Plots 

First we checked whether the Markov chains have indeed reached a stable equilibrium 

distribution, i.e., have converged. Figures 4.4a-4.4j show the time series trace plots of the 

posterior means and the posterior variances. 

TRACEPLOTS 
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Figure 4.4a: Trace plot test for convergence for posterior mean of batch one. 
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Figure 4.4b: Trace plot test for convergence for posterior mean of batch two. 
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          Figure 4.4c: Trace plot test for convergence for posterior mean of batch three. 
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         Figure 4.4d: Trace plot test for convergence for posterior mean of batch four. 
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             Figure 4.4e: Trace plot test for convergence for posterior mean of batch five. 
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           Figure 4.4f: Trace plot test for convergence for posterior mean of batch six. 
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           Figure 4.4g: Trace plot test for convergence for posterior between variance. 
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            Figure 4.4h: Trace plot test for convergence for posterior within variance. 
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             Figure 4.4i: Trace plot test for convergence for posterior grand mean 
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Figure 4.4j: Time series trace plot for convergence for posterior F-value 

It was apparent from these plots that the effects of the initial values of the parameters and 

initial data took a while before the process begun to appear stationary. However, plots of 

the mean of the parameters against the number of iterations of the sampler produced 

smoother plots than did the raw sample values and could make it easier to identify and 

understand any non-stationarity. 



64 
 

 
 

4.4.2 Gelman–Rubin (BGR) diagnostic statistic 

These were done visually or by inspecting the Brooks Gelman–Rubin (BGR) diagnostic 

statistic that WinBUGS displays. Values around 1 indicate convergence, with 1.1 

considered as acceptable limit by (Gelman and Hill, 2007). 

 DIAGNOSTIC PLOTS 
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Figure 4.5a: Diagnostic plot for between variance  
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   Figure 4.5b: Diagnostic plot for between variance 

  



65 
 

 
 

 

theta chains 1 : 2

start-iteration

5255 10000 20000b
gr

 d
ia

g
no

st
ic

0
.0

0
.5

1
.0

 

Figure 4.5c: Gelman-Rubin statistic diagnostic plot as a measure of convergence for 

  the posterior grand mean. 

All the plots suggested that convergence was achieved after 5,000 iterations of the 

sampler. Therefore the first 5,000 draws (the burn-in) were removed and the remaining 

100,002draws were used to conduct the subsequent analysis. 

These values are close to 1 indicating convergence. Visual inspection of the time series 

plot produced by the trace diagrams below again suggests that the Markov chains have 

converged 

4.4.3Autocorrelation plots 
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    Fig 4.6a: Autocorrelation plot for posterior between variance 
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           Figure 4.6b: Sampler Autocorrelation plot for posterior between variance 
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          Figure 4.6c: Sampler Autocorrelation plots for the simulated parameters 
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The Autocorrelation function (ACF) measures how correlated the values in the chain are 

with their close neighbours. The lag is the distance between the two chains to be 

compared. 

An independent chain will have approximately zero autocorrelation at each lag. 

The plot of autocorrelations against the lag revealed that the correlations of the draws 

diminished as the chain progressed in length. The diminishing autocorrelations was a 

clear indication that convergence had been achieved and hence the draws were regarded 

as the draws from the target distribution. 
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CHAPTER FIVE 

DISCUSSION OF RESULTS 

5.1 Introduction 

This study gives a summary to Bayesian testing analysis of variance and how it is 

conducted in practice using simulation-based methods, i.e MCMC and Gibbs sampling. 

WinBUGS (the MS Windows operating system version of BUGS: Bayesian Analysis 

Using Gibbs Sampling) is a versatile package that has been designed to carry out Markov 

chain Monte Carlo (MCMC) computations for a wide variety of Bayesian models. 

After a burn-in of 5,000 draws (the first 5,000 draws from each Markov chain are 

discarded as not representative of the stationary distribution of the chain i.e the posterior 

distribution of the parameters in the model) and a further 100,002 iterations for each 

chain, the MCMC produced the summary statistics for the samples as shown in Table 4.4 

and Table 4.5 and Table 4.6 respectively. As a Bayesian point estimate, typically the 

posterior means or the posterior medians (or sometimes also the mode), were reported in 

these tables, while the posterior standard deviation was used as a standard error of the 

parameter estimate. The range between the 2.5th and 97.5th percentiles represents a 95% 

Bayesian confidence interval and is called a credible interval. 

Numerical summaries of the model using different priors appear in Table 4.4, Table 4.5 

and Table 4.6, for the posterior grand mean μ, the “between” variance (ω
2
) and the 

“within”, variance (σ
2
). The left column summarizes the results of the WinBugs run, 

showing the mean of the MCMC output for each of the parameters, the standard 
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deviation, and an estimate of the 95% HDR of the marginal posterior density of each 

parameter. 

Assessing these plots indicates that the parameter traces look like straight hairy colorful 

caterpillars, with the two chains fluctuating rapidly around their equilibrium, and that 

there are no obvious upward or downward trends. Besides, the autocorrelation plots show 

little correlations, and kernel density plots show bell-like posterior distributions, and the 

Gelman-Rubin statistic show that the ratio of between to within variability is close to 1. 

All plots assume us that the model is converged. 

These posterior point estimates give results similar to those obtained when using the 

classical or frequentist approach.  
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CHAPTER SIX 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusion 

In this thesis, Bayesian approach to hypothesis testing for ANOVA was investigated. 

Posterior means, within-variance, between-variance and Posterior F-values were also 

obtained. Specifically, inferences when following the Bayesian approach to analyzing 

this problem was based on 95% credible sets. This approach provides a more natural 

form of the inference for this problem than the likelihood testing in frequentist approach 

which relies on asymptotic theory. An F-Value of 4.598 was obtained using the classical 

approach. This is shown in ANOVA table 4.3.  Posterior means were illustrated in tables 

4, 5 and 6 for the different priors. Posterior F-value of 4.56 was obtained for normal 

priors for means and conjugate inverse Gamma for the variances. Posterior F-value of 

4.62 was obtained using Zellner-g prior (g=n=30). Posterior F-value of 4.52 was obtained 

using Zellner-g prior (g=k
2
=30). Posterior point estimates, i.e, means, modes and 

medians for posterior means mu’s and posterior variances are also shown in tables 4.4,4.5 

and 4.6.The results indicated that the results obtained using the classical and those of 

Bayesian approach are similar. 

It was also shown that posterior values for the means, variances and F-values yielded 

values that closely agree with those obtained using the Classical Approach. 
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6.2 Recommendations 

Application of Bayesian methods in analysis of variance should be used as it gives exact 

posterior point estimates. Estimation of parameters using Bayesian methods also allow us 

to include estimation of uncertainty that go along with these parameters. This work can 

be extentended to multi-facor ANOVA models. Such models can be fitted using dummy 

variables and constraints (corner constraints and sum-to-zero constraints) must be 

introduced in order to carry out analysis in Multifactor ANOVA designs. 

More importantly, WinBUGS extends the SAS functionality. It can be used to fit a great 

variety of linear and nonlinear models, including Generalized Linear Models, categorical, 

and survival models, with or without random effects. 
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