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ABSTRACT 

In this study, we examined the flow from two lateral inflow channels in a man-made 

open rectangular channel of an incompressible Newtonian fluid. The influence of cross-

sectional area, length of two lateral inflow channels, and angles as they vary directly 

proportionally to each other for two lateral inflow channels from zero to ninety degrees 

on how they affect the flow rate in the main rectangular open channel were investigated. 

When the flow rate increases, the discharge increases as well, and when the flow 

velocity decreases, the discharge decreases as well, since the discharge is directly 

proportional to the flow velocity. The flow-regulating equations are the continuity and 

momentum equations of motion that are extremely nonlinear and cannot be solved by 

an exact method. The method of finite differences is then used to numerically compute 

an approximate solution to these partial differential equations because of its precision, 

consistency, stability and convergence. MATLAB software used to generate the results 

which are analyzed using graphs. The analysis found that the rise in lateral inflow 

channels' cross-sectional area increase the flow velocity in the main channel and 

decrease in lateral inflow channel length increases the flow velocity in the main 

channel. Furthermore, inclined lateral inflow channels at 450 increase the main 

channel's flow velocity more than 600 and 720, while 900 maintains the main channel's 

flow velocity constant. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

In 2018, 2019 and 2020, Kenya experienced heavy rainfall, resulting in bridges being 

swept away as rivers flooded and dams shattered their walls. Examples of this 

environmental disaster that occurred in 2018 are the Solai Dam in Nakuru, Kenya, 

which breached its walls and killed 47 people after it broke its walls and swept all 

important resources like houses, trees, vehicles, animals and people in that village. 

More so, in 2019 West Pokot land slide took place and roads were blocked and some 

bridges were swept away. In addition, Nakuru, Elgeyo Marakwet, Baringo, Nandi, 

Kisumu and many others are still affected by floods during normal rainfall. As of June 

30th, 2020 the Kenya Red Cross Society reported in the Floods Situational Report that 

due to the experienced enhanced rainfall (MAM 2020) over most parts of the country 

resulting in landslides, flooding of rivers and displacement of people as more homes 

and household assets got destroyed. A total of 43 counties out of 47 counties reported 

floods effects with the most displacement in West Kenya region, Coastal region, North 

Eastern and North Rift region. The total number of displaced Households by floods was 

recorded as 42,064 HH affecting over 252,384 persons by end of June 2020. It is 

therefore very important to design channels that regulate such an environmental 

catastrophe and, more importantly, use the same water to irrigate agricultural land. The 

fact that the flood problem still persists and the need to transport water for irrigation is 

still in demand means that an efficient channel model with two lateral inflows is needed 

to convey the maximum discharge. 
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Open channels are known to be channels with an open top, while channels with a closed 

top are called closed channels. Good examples of open channels are rivers and streams 

while examples of closed conduits are pipes and tunnels. Open channels made of earth 

and concrete have been designed which have been of different cross-sections such as 

trapezoidal, rectangular and circular.   

In the world at large, engineers have attempted, among other things, to channel water 

to a specific location, Irrigation grids and dams for power generation are examples. In 

Kenya, most road networks lack efficient drainage systems, especially rural roads; 

hence, road carnage, fatalities, and economic devastation are all too common, 

particularly when it rains. This has a negative effect on the achievement of Kenya's 

2030 vision that aims to create a high-quality, internationally competitive and 

prosperous nation by 2030. There are three main pillars of the 2030 vision that the 

government aims to accomplish. These are foundations of economic, political and 

social value. These three pillars are connected to our research due to the fact that 

inadequate drainage directly affects people's economy. For example, transport is 

disrupted when it rains and roads are cut off by runoff, and this affects the flow of goods 

and services. Large amounts of cash are often used to repair bridges, sewers, airports 

and playgrounds. Due to the blockade of sewers and highways, people have also gone 

on strike and this affects the smooth running of businesses. In addition, Diseases 

outbreaks and other related health issues pose a danger to the population's health if 

drainage is insufficient. As a result, our study aims to find solutions to these drainage-

related issues in order to contribute to the 2030 vision.  

Following researches which has been done by different researchers for example Jomba 

et al (2015) investigated fluid flow in an open channel with a horseshoe cross-section, 

Ojiambo et al (2014) and Tsombe et al (2011) did an investigation that focused on 
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unsteady non-uniform flow on open channels with circular cross-section, Tuitoek and 

Hicks (2001) investigated flood management by simulating compound channels with 

erratic flow in order to better manage floods. By developing a model based on the Saint 

Venant equations of flow, they added some terminology in order to account for the 

momentum phenomenon of move to integrate an inconsistency in the flow in the 

compound channels and for open channel flows with uniform and localized lateral 

inflow, Fan and Li (2005) developed diffusive wave equations. In their formulation, 

they provided the continuity and momentum equations for an open channel with a 

lateral inflow channel intersecting the main open channel at a differing angle, 

Mohammed (2013) studied how four different angles affect the discharge coefficient 

by using an oblique weir in the flow direction, in comparison to the side of the channel 

floor. 30o, 60o, 75o, and 90o were the four angles that changed depending on the 

direction of flow and more so Karimi et al. (2014) and Samuel M.K. (2020) conducted 

research on fluid modeling in the case of a single inflow channel on an open rectangular 

channel and open trapezoidal channel respectively. 

According to the literature, a lot of research appears to have been done in open channels 

with no two lateral inflow channels. The research on the lateral inflow channel, on the 

other hand, has only been done in a single inflow channel and laboratory. As a result, 

little research has been done in open channels with two lateral inflow channels using 

mathematical modeling and numerical solutions. 

As a result, the problem is mathematically modeled using the Saint Venant equations, 

and the equations are solved using the finite difference method in this study. 

 The analysis would focus on appropriate cross sectional area, lateral inflow length and 

angles to align with two inflow channels in order to aid in the prevention of drainage 
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channel blockages, which are a frequent occurrence in drainage systems. We hope that 

the results of this study will be useful in the design of drainage systems for road 

construction, sewer building, street drainage, long dams, and airport construction in 

Kenya and elsewhere. 

1.2 Definitions of basic concepts 

Several terms will be used extensively in this thesis, and these terms are described in t

his section. 

1.2.1 Fluid 

Fluid is a matter which has been classified as liquids and gases. According to Brownian 

motion and kinetic theory of matter, it is made up of tiny particles. If pressure and 

temperature are applied to liquid and the volume changes are negligible then we treat 

as incompressible fluids while gases change dramatically and volume change is 

significant hence it is compressible. 

1.2.2 One dimensional flow 

This is the case of a fluid in which all fluid particle flows move in one direction. 

Mathematically, it is written as  

u=f(x)   (in x direction) 

Where u and x is the velocity and space coordinate. 

1.2.3 Unsteady flow 

Unsteadyflow refers to flow in which the velocity, pressure, or density varies with 

regard to a certain point in time. 

Mathematically, it is written as 
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(
𝜕𝑣

𝜕𝑡
) ≠ 0                                      (

𝜕𝑝

𝜕𝑡
) ≠ 0                                     (

𝜕𝜌

𝜕𝑡
) ≠ 0 

1.2.4 Incompressible flow 

This refers to type of flow in which the density is constant, or its change is negligible, 

or no change at all. 

Mathematically, written as:𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

1.2.5 Viscosity 

The resistance to flow is referred to as viscosity. Fluidity is the reciprocal of viscosity 

which is a measure of how quickly something moves. Molasses has a higher viscosity 

than oils, for example.Viscosity can be thought of as internal friction between the 

molecules, as part of a fluid that is required to flow carries over neighboring parts to 

some degree; such friction is opposed to the creation of variations in velocity within a 

fluid. The shear pressure divided by the rate of shear strain for a given fluid at a fixed 

temperature is constant. The viscosity dynamic, or absolute, or merely the viscosity are 

two terms for the same constant. 

Fluids that behave in this manner are referred to as Newtonian fluids after Sir Isaac 

Newton, who first suggested this scientific concept of viscosity. 

The dynamic viscosity dimensions = 
Force ×Time

Area
 

 The unit of viscosity is Newton-second per square meter, commonly expressed in SI 

units as Pascal-second. 
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1.2.6 Inertia forces 

These are forces that cause the acceleration of the fluid particles in motion to be zero. 

They resist change in the velocity of an object and are in the opposite direction of an 

applied force. 

1.2.7     Froude number 

The dimensionless Froude number is important in analyzing the effect of gravity in 

fluid flow. It's the ratio of inertial forces to gravitational forces. Mathematically is 

written as: 

𝐹𝑟 =
𝑉

√𝑔𝐷
, 

Where the hydraulic depth is D, the mean velocity is V and the gravity acceleration is 

g. If 𝐹𝑟 is one, it means that the inertial forces and gravity force are equivalent and 

critical flow exists. 

1.2.8 State of flow 

The viscosity effects control the state of open channel flow in relation to the inertial 

forces of the flow. Depending on the influence of viscosity relative to the forces of 

inertia, the flow may be laminar, transitional or turbulent. The fluid particles tend to 

travel in thin layers of fluid in laminar flow that appear to slip over neighboring layers 

with no interruptions between the layers. If the inertial forces are strong compared to 

the viscous forces, the flow is turbulent. The fluid particles travel in irregular directions 

during turbulent flow. When it is neither laminar nor turbulent, a flow is called 

transitional. 
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1.2.9 Reynolds number, Re 

This is a number without dimensions and is the proportion of forces of inertia to viscous 

forces. 

Mathematically is written as:  

𝑅𝑒 =
𝜌𝑉𝐿

𝜇
=

𝑉𝐿

𝑣
 

The kinematic viscosity is 𝑣, the mean flow velocity is V, and the characteristic length 

is L. Depending on the Reynolds number, the flow in the channel alters from laminar 

to turbulent. The flow is laminar if Re is less than approximately 2000 and the flow is 

turbulent if Re is greater than 4000. If it is between these values, the flow is in transition. 

It is understood that laminar flow occurs where thin sheets of water flow or where 

conditions are modified, as in model testing. 

1.2.10 Type of open channel 

There are two kinds of channels that are available, namely natural and artificial ones. 

Artificial channels are manmade channels. They include irrigation canals, canals for 

navigation, spillways, sewers, culverts, and ditches for drainage. They're usually 

designed with a clear cross-section shape all the way around. They are usually built of 

concrete in the field and have relatively well defined surface roughness, although this 

can change with age. The flow in such channels would yield relatively accurate results 

when analyzed. 

Natural channels are not common and their materials can vary widely. The roughness 

of the surface varies with time, distance, and elevation. As a result, studying natural 

channels correctly and achieving acceptable results is more difficult than analyzing 

man-made channels. If the boundary is not set due to erosion and sediment deposition, 
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this condition can be more complicated. Various geometric properties of the channel 

cross-sections are required for study. This can normally be described for artificial 

channels using simple geometric equations given the flow depth. 

1.2.11 Saint Venant equation 

It was developed by two Mathematicians, De Saint Venant and Bousinnesque, in the 

nineteenth century from Navier equation for shallow water flow condition and one 

dimension. Dynamic routing is the solution to the St. Venant equation, and it is often 

used to measure or compare other techniques. In open channels, it is the equations that 

characterize the propagation of a flood wave in terms of distance along the channel and 

time. It is made up of two equations: the continuity equation and the momentum 

equation. The inertial terms appearing in the momentum equation of the Saint-Venant 

equation can be ignored for most flood events in most rivers because they are 

comparatively smaller than the terms arising from gravity and resistance forces 

Henderson(1963), resulting in a simplified model of open channel flow. The shallow 

water wave propagation in open channels is represented by the Saint–Venant 

hydrodynamic equations, which are obtained from the depth-averaged Navier–Stokes 

equations. For a rectangular channel, the one-dimensional Saint–Venant equations are 

as follows (Chow 1959): 

Continuity equation (Conservation form)                                                                       (1.1) 

 

 

Momentum Equation                                                                                                         (1.2) 
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From equation (1.1) and (1.2) Q is the discharge, A cross sectional area, g gravitational 

force, y is the depth, 𝑠0 bottom slope and 𝑠𝑓 frictional slope 

Saint Venant suggested the above governing equations for one-dimensional unsteady 

flow in an open channel in 1871, which included continuity and momentum equations, 

and Shang et al (2012) research on the equation and confirm that it is a true equation to 

analyses one dimensional unsteady flow in an open channel. 

The Saint-Venant equations, also known as the dynamic wave model, are the governing 

equations for conservation of mass and momentum for unsteady open channel flow 

Chanson (2004). Solving these equations requires large amounts of data to prescribe 

channel geometry along the reach and elaborate numerical integration to ensure 

accuracy and convergence Szymkiewicz (2010) and more so simplified forms of the 

equations have been sought over the years that may be easier to use in practical 

applications such as operational flood forecasting. Among the most frequently used 

simplifications is the diffusive wave approximation which neglects the inertial terms. 

Though a more appropriate name “noninertia wave” has been proposed Yen and Tsai 

(2001), the term diffusive wave is still widely used which is also adopted here to avoid 

confusion. The diffusive wave model is attractive for a number of reasons Cappelaere 

(1997). It combines the system of equations into a single equation of a single state 

variable of flow. 

1.3    Statement of the problem 

Extensive fluid flow studies have been performed across open channels. 

Open channel Mathematical modeling with two lateral inflow channels has received 

little attention, however. The aim of this study is to see how the area, length, and angle 
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of the two lateral inflow channels influence the rate of flow of the open rectangular 

channel as it varies. The fluid in question is Newtonian, and the flow is slow. Therefore, 

this research is intended to establish an adequate flow model through two lateral inflow 

channels in a rectangular open channel. 

1.4Objectives of study 

1.4.1 General objective 

Analyze the flow of fluid in an open rectangular channel on the main flow with two la

teral     inflow channels in order to find suitable cross sectional area, lateral length and 

angle. 

1.4.2 Specific objectives 

1. To investigate the effect of variation in the cross-sectional area of two lateral 

inflow channels on velocity in the main open channel. 

2. To investigate the effect of variation in the length of the two lateral inflow 

channels on velocity in the main open channel. 

3. To investigate the effect of variation in the angles of the two lateral inflow 

channels on velocity in the main open channel. 

1.5 Justification 

To live and grow every living thing it needs water but excess of it will lead to death. In 

order for water to be regulated smoothly by lakes and rivers, men must create adequate 

channels. In Kenya the flood problem still exists, particularly when there is heavy rain 

or poor drainage, e.g. Narok town and some flat sections. Creating a channel that has 

two lateral inflow channels that it can effectively transmit the maximum amount of 

water remains a challenge so far. Therefore, an effective open channel model with two 

lateral channels of inflow must be built to meet these requirements. This study's 
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mathematical model can be used to make two lateral inflow channels to improve 

discharge while carrying transporting water to farms for irrigation and water drainage 

from flood-stricken areas. Furthermore, the model can be used in industries such as 

flour or garment manufacturing, as well as in the installation of water mills, which 

involve vast amounts of high-speed water to transform large turbines to power 

mechanical processes. 
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CHAPTER TWO 

LITERATURE REVIEW 

The literature review in this chapter deals with review of the equation that govern open 

channel flow, lateral inflow studies and numerical methods used and finally the 

summary why there is a gap in the literature to conduct the present study. 

Jomba et al (2015) investigated fluid flow in an open channel with a horseshoe cross-

section. From the study he established that for a fixed flow area, the flow velocity 

increases as depth increases towards the free stream. Also he established that an 

increase in hydraulic radius and roughness coefficient results to a reduction of velocity 

due to increased shear stresses. Tuitoek and Hicks (2001) investigated flood 

management by simulating compound channels with erratic flow in order to better 

manage floods. By developing a model based on the Saint Venant equations of flow, 

they added some terminology in order to account for the momentum phenomenon of 

move to integrate an inconsistency in the flow in the compound channels. 

Ojiambo et al (2014) did an investigation that focused on unsteady non-uniform flow 

on open channels with circular cross-section. The findings were that an increase in the 

cross-sectional area and depth of flow leads to decrease in the flow velocity. An 

increase in the lateral inflow rate per unit length of the channel leads to a decrease in 

the flow velocity. 

Kwanza et al. (2007) studied the effects of lateral discharge and channel slope, width, 

velocity, and depth as they vary from one point in the channel to the next on fluid 

velocity and channel discharge in both trapezoidal and rectangular channels. They 

noted that in order to increase channel discharge, the channel's slope, width, and lateral 



13 
 

 
 

discharge all need to be increased. Furthermore, by reducing the wetted perimeter, the 

fluid flow rate increased. 

Tsombe et al (2011) investigated flow in open channels having circular cross-sectional 

area. He found out that when the flow depth increases, it results to reduced fluid 

velocity. Also reduction in slope leads to a decrease in flow velocity. 

Fluid flow in open rectangular and triangular channels was studied by Thiong'o (2011). 

Her observations on rectangular channels were close to those of Kwanza et al (2007).In 

an open rectangular channel, the flow velocity increased as the slope, discharge, and 

width increased, according to their findings. Increases in the wetted periphery of the 

channel, on the other side, resulted in a decrease in flow velocity. They both used the 

finite difference method as a computational instrument to solve the continuity and 

momentum equations. 

The main channel's ratio of downstream to upstream discharge, as defined by 

Ramamurthy and Satish (1988), Ingle and Mahankal (1990), is the most important 

parameter in evaluating open flow with a 90o lateral channel. When these results were 

compared to some experimental findings, it was discovered that the study yielded 

satisfactory results. 

The flow structure is defined by the roughness of the bed, as well as the velocity ratio 

between the branch and main channels, according to Neary and Odgaard (1993). 

Barkdoll et al (1999) discovered that the diversion flow ratio has the greatest impact on 

the lateral intake sediment diffusion ratio, and is done in a straight line with a 900 intake 

angle. 
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Yang et al (2009) looked at flow systems of 90°, 45°, and 30° diversion angles. To 

boost the flow pattern of the fluid, a diversion angle of 30° to 45° was suggested. 

For open channel flows with uniform and localized lateral inflow, Fan and Li (2005) 

developed diffusive wave equations. In their formulation, they provided the continuity 

and momentum equations for an open channel with a lateral inflow channel intersecting 

the main open channel at a differing angle. 

When focusing on the sub-critical flow regime, Ramamurthy and Satish (1988) 

theoretically and experimentally investigated dividing flows with a submerged lateral 

branch. The researchers theoretically developed a model by relating discharge ratios 

and downstream-to-upstream depth to the upstream Froude number. Their findings 

revealed that the re-circulatory zone downstream of the junction causes a contraction 

in the channel section, causing the flow to change to supercritical flow. The discharge 

in the branch of the lateral channel can be calculated using Mizumura et al (2003)'s 

formula for super-critical overflowing rivers, which compared well with Mizumura 

(2005)'s results. 

Mohammed (2013) studied how four different angles affect the discharge coefficient 

by using an oblique weir in the flow direction, in comparison to the side of the channel 

floor. 30o, 60o, 75o, and 90o were the four angles that changed depending on the 

direction of flow. The research discovered that the highest discharge was reached when 

the side weir was tilted at 30 degrees. 

Masjedi and Taeedi (2011) looked into the effects of intake angle on lateral intake 

discharge ratio with 180o bend in the laboratory. The tests were carried out with a range 

of Froude numbers and intake angles. At a 45o lateral intake angle, the discharge ratio 

improved in all locations of the 180o flume bend, according to the study. 
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Shamaa (2002) solved open channel operation-type problems using the finite difference 

Preissmann implicit construct, built on the Saint Venant equations. The implicit finite 

difference method model showed less oscillation and more precision as compared to an 

explicit model. 

The diffusive schemes of Preissmann and Lax, which are two separate numerical 

methods for Saint Venant equations numerical solution, were investigated by Akbari 

and Firoozi (2010). With the aim of better understanding the propagation process, these 

equations regulate the flood waves propagate in natural waterways. The results of the 

study indicated that hydraulic parameters play a significant role in these waves. 

Chagas and Souza (2005) used the study of floods in rivers to solve the Saint Venant 

equation. The aim of this analysis was to achieve a better understanding of the 

propagation process by using a discretization for the Saint Venant equations. According 

to their observations, hydraulic parameters play a significant part in the transmission of 

flood waves. 

Karimi et al. (2014) conducted research on fluid modeling in the case of a single inflow 

channel on an open channel, and discovered that the velocity of the main open channel 

does not necessarily increase as the angle of the lateral inflow channel is increased. 

Angles between 30 and 50 degrees produce higher velocity values in the main open 

channel than other angles. 

Omari et al (2018) did an investigation on closed channel with circular cross-sectional 

area. The results obtained showed that an increase in the cross sectional area of sewer 

flow results to a decrease in the sewer depth. It was observed that a decrease in the 

friction slope leads to an increase in the sewer flow velocity. Also it was found out that 

an increase in tunnel angle of inclination results to an increase in sewer velocity.  
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In a statistical model of fluid flow in an open trapezoidal channel with lateral inflow 

channel, Samuel M.K. (2020) found that decreasing the cross-sectional area increases 

flow velocity while increasing the length of the lateral inflow channel decreases flow 

velocity. It's also worth noting that increasing the lateral inflow channel's velocity 

increases the flow velocity, and that an angle of thirty to fifty degrees increased the 

flow velocity relative to other lateral inflow channel angles. 
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CHAPTER THREE 

METHODOLOGY 

We will review Saint Venant equations which govern open channel flow then modified 

to incorporate an open channel with two lateral discharges at an angle. To modify the 

equations then we need to adopt some assumptions 

3.1 Mathematical model case 

A Mathematical model of an open rectangular channel with two angled lateral inflow 

channels. Let Q, q1 and q2 be the discharge into the rectangular open channel, as well 

as the two lateral inflow channels, respectively. L1, L2, ϴ1 and ϴ2 reflect the length and 

differing angles of the two lateral inflow channels, respectively. The top width of the 

two lateral inflow channels and the primary channel are T1,T2 and T3. At a time interval 

dt, the net amount of fluid that reaches the cell dx is taken into consideration. 

 

Figure 1: Mathematical model case 
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Assumptions to be adopted: 

i. The fluid is Newtonian  

ii. The fluid is considered incompressible where density is constant 

everywhere. 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

iii. unsteady flow (Changes in fluid variables relative to time at a point) 

iv. Gravity alone is responsible for the forces causing the flow, and other forces 

produced in the junction region are ignored. 

v. The flow is one-dimensional, with the majority of momentum happening 

around the x-axis and being completely dependent on x. 

vi. The length, top width, depth and angles of the two inflow channels should 

be directly proportional to each other has follows. 

L1=L2, T1=T2, y1=y2 ϴ1=ϴ2 

vii.  There is no substantial accumulation of small particles between the primary 

open channel and the two lateral inflow channels. 

viii. There is no major turbulent development between the primary open channel 

and the two lateral inflow channels. 

We consider approximation solutions by using the finite difference method and, 

more importantly, the use of MATLAB tools to derive the results in diagrams, using 

the conditions above and combining with the continuity equation and momentum 

equation of motion, which will yield nonlinear equation. 

3.2 Mathematical formulation 

3.2.1 Continuity equation (conservation of mass) 

The continuity equation is a type of differential equation that describes the movement 

of a conserved quantity, such as mass. 
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Continuity equation governing flow in an open channel that isn't consistent of any shape 

is provided by, 

𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 𝑞                                                                                                                        (3.1) 

From the model above the cell with lateral inflow dx, in a dt-interval, is considered 

Total volume is   
𝜕𝑄

𝜕𝑥
𝑑𝑥𝑑𝑡. 

Discharge from the two lateral inflow channels will be twice 
𝑞

𝐿
sin 𝛳 𝑑𝑥𝑑𝑡 because it 

has been inclined at an angle ϴ while increment of fluid is 
𝜕𝐴

𝜕𝑡
𝑑𝑥𝑑𝑡 and density is 

constant. Using conservation law of fluid, According to Macharia et al (2014) 

 we have  

𝜕𝑄

𝜕𝑥
𝑑𝑥𝑑𝑡 +

𝜕𝐴

𝜕𝑡
𝑑𝑥𝑑𝑡 =

𝑞1

𝐿1
sin 𝜃1 𝑑𝑥𝑑𝑡 +  

𝑞2

𝐿2
sin 𝜃2 𝑑𝑥𝑑𝑡                                                      (3.2) 

Since the assumptions shown above. 

Where  𝑞1 = 𝑞2 = 𝑞            𝑞1 + 𝑞2 = 2𝑞        𝐿1 = 𝐿2 = 𝐿               𝜃1 = 𝜃2 = 𝜃 

Applying on equation (3.2). We get 

𝜕𝑄

𝜕𝑥
𝑑𝑥𝑑𝑡 +

𝜕𝐴

𝜕𝑡
𝑑𝑥𝑑𝑡 = 2

𝑞

𝐿
sin 𝛳 𝑑𝑥𝑑𝑡                                                                                  (3.3) 

It can be reduce to equation (3.4) by both sides by dxdt 

𝜕𝑄

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
= 2

𝑞

𝐿
sin 𝛳                                                                                                              (3.4) 

A conserved quantity can neither decrease nor increase; it can only shift from one 

location to another. The equation, by Tsombe et al  (2011), is 
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𝑇
𝜕𝑦

𝜕𝑡
+ 𝑣𝑇

𝜕𝑦

𝜕𝑥
+ 𝐴

𝜕𝑣

𝜕𝑥
− 𝑞 = 0                                                                                          (3.5) 

Substituting equation (3.4) into equation (3.5) where 𝑞 = 2
𝑞

𝐿
sin 𝜃 and arranging we 

get  

𝜕𝑦

𝜕𝑡
+ 𝑣

𝜕𝑦

𝜕𝑥
+

𝐴

𝑇

𝜕𝑣

𝜕𝑥
= 2

𝑞

𝑇𝐿
sin 𝛳                                                                                             (3.6)   

Equation (3.6) is the general equation of continuity for open channel flow with two 

lateral inflow channels at an angle. 

3.2.2 Momentum equation 

The momentum equation is used to describe the motion of fluid particles. This equation 

is derived from Newton's second law of motion, along with the statement that fluid 

stress is the sum of the viscous diffusing term plus a pressure term. This is the pace at 

which the system's linear momentum changes over time. From the model above in a dt-

interval, the total momentum for the cell dx is 
𝜕𝑄𝑉

𝜕𝑥
𝑑𝑥𝑑𝑡. The lateral inflow component 

of velocity in the flow direction is𝑢 cos 𝛳. Thus, lateral inflow momentum into cell dx 

at a time interval dt becomes
𝑞

𝐿
sin 𝛳 𝑢 cos 𝛳𝑑𝑥𝑑𝑡. 

The fluid pressure and fluid weight in the direction of flow are 𝑔
𝜕(𝑦𝐴)

𝜕𝑥
𝑑𝑥𝑑𝑡   and 

𝑔𝐴(𝑆𝑓 − 𝑆𝑂)𝑑𝑥𝑑𝑡 respectively. The momentum increment for the dx cell is
𝜕𝑄

𝜕𝑡
 𝑑𝑥𝑑𝑡 . 

Accordingly, 

 In the momentum equation we have, according to the conservation law, where 

𝜕𝑄

𝜕𝑡
𝑑𝑥𝑑𝑡 +

𝜕𝑄𝑉

𝜕𝑥
𝑑𝑥𝑑𝑡 + 𝑔

𝜕(𝑦𝐴)

𝜕𝑥
𝑑𝑥𝑑𝑡 + 𝑔𝐴(𝑆𝑓 − 𝑆𝑜)𝑑𝑥𝑑𝑡

= 2
𝑞

𝐿
sin 𝛳 𝑢 cos 𝛳 𝑑𝑥𝑑𝑡 
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(3.7) 

Noting that 𝑄 = 𝐴𝑣 

Substituting Q=A𝑣   , differentiating partially with respect to x and rearranging the 

equation, we get  

𝜕𝑉

𝜕𝑡
+ 𝑣

𝜕𝑉

𝜕𝑥
+ 𝑔

𝜕𝑦

𝜕𝑥
+ 𝑔(𝑆𝑓 − 𝑆𝑜) = 2

𝑞

𝐴𝐿
sin 𝛳( 𝑢 cos 𝛳 − 𝑣)                                            (3.8) 

Equation (3.8) is the general momentum equation of an open channel with two lateral 

inflow channels at varying angles. 

3.2.3 Solution procedure 

Since the governing equations (3.6) and (3.8) are nonlinear and thus cannot be solved 

exact method. Specifically, using the finite difference approach to diffusive scheme 

specifically forward difference to approximate the results. 

We take  

𝜕𝑣

𝜕𝑡
=

𝑣(𝑖,𝑗+1)−𝑣(𝑖,𝑗))

∆𝑡
                                                                                  (3.9) 

𝜕𝑦

𝜕𝑡
=

𝑦(𝑖,𝑗+1)−𝑦(𝑖,𝑗))

∆𝑡
                                                                                (3.10) 

 

𝜕𝑣

𝜕𝑥
=

𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
                                                                                (3.11) 

𝜕𝑦

𝜕𝑥
=

𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
                                                                                 (3.12) 

Substituting the equations (3.9), (3.10), (3.11) and (3.12) into equation (3.6) 
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𝑦(𝑖,𝑗+1)−𝑦(𝑖,𝑗)

∆𝑡
+ 𝑣(𝑖, 𝑗) (

𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
) +

𝐴

𝑇
(

𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
) =

2𝑞

𝑇𝐿
sin 𝜃 

 (3.13) 

Rearranging we get 

𝑦(𝑖, 𝑗 + 1) = ∆𝑡 (−𝑣(𝑖, 𝑗) (
𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
) −

𝐴

𝑇
(

𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
) +

2𝑞

𝑇𝐿
sin 𝜃) + 𝑦(𝑖, 𝑗)                                                                                     (3.14) 

Also substitute equations (3.9),(3.10),(3.11) and (3.12) into equation (3.8) 

We get 

𝑣(𝑖,𝑗+1)−𝑣(𝑖,𝑗)

∆𝑡
+ 𝑣(𝑖, 𝑗) (

𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
) + 𝑔 (

𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
) + 𝑔(𝑆𝑓 − 𝑆𝑂) =

2𝑞

𝑇𝐿 
sin 𝜃(𝑢 cos 𝜃 − 𝑣(𝑖, 𝑗))       3.15) 

Rearranging we get 

𝑣(𝑖, 𝑗 + 1) = ∆𝑡 (−𝑣(𝑖, 𝑗) (
𝑣(𝑖+1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
) − 𝑔 (

𝑦(𝑖+1,𝑗)−𝑦(𝑖−1,𝑗)

2∆𝑥
) − 𝑔(𝑆𝑓 − 𝑆𝑂) +

2𝑞

𝑇𝐿 
sin 𝜃(𝑢 cos 𝜃 − 𝑣(𝑖, 𝑗))) + 𝑣(𝑖, 𝑗)                                    (3.16) 

The velocity uo=10 m/s and channel depth yo=0.5 m are now used as the initial and 

boundary conditions in finite differences form. 

Initial conditions,  

𝑦(0, 𝑥) = 0                       𝑣(0, 𝑥) = 0                                                                       (3.17)  

The boundary conditions  

𝑦(𝑡, 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 30              𝑣(𝑡, 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙) = 20                                                             (3.18)  
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𝑦(𝑡, 𝑥𝑓𝑖𝑛𝑎𝑙) = 10              𝑣(𝑡, 𝑥𝑓𝑖𝑛𝑎𝑙) = 20                                                               (3.19)  

Very small values of ∆t are used to solve the two equations. We have set ∆x=20 and 

∆t=0.05 in this analysis. It is understood that this finite difference process is convergent 

and numerically stable. The number of sub-divisions was taken to be 5 along the 

channel while it was taken to be 20 sub-divisions over the period. With reference to 

Kazezyilmaz-Alhan (2012) appropriate bottom slope for simulation range between 

0.001 and 0.0001 and Handerson (1966) preferred a slope greater than 0.002 for 

simulations of the natural flood waves in rivers hence we choose 0.002. 

The following constants were also considered: 

𝑇 = 1, 𝐿 = 1, 𝑞 = 0.3, 𝜃 =
𝜋

3
= 600, 𝑔 = 9.82,    𝑛 = 0.01,

𝑅 = 1.1 

Lin et al (1979) used manning’s formula and coefficient of n=0.01 throughout the study, 

Chung-Chieh (1998) study about flow at 900 equal-width open-channel junction with 

discharge range of 0.1≤ Q ≤ 0.9and he found that the results of Q=0.1, 0.4 and 0.8 reveal 

that large discharge ratios are associated with smaller depth-averaged flow angles and 

are less uniformly distributed across the branch channel entrance. Additionally, flow 

deflection at the upstream corner of the branch channel entrance increases with the 

discharge ratio.  

The MATLAB software is used to simulate the equations (3.14) and (3.16) which 

appear in Appendix. This was done by varying i and j at various nodal points. Then the 

three graphs were plotted using the values of the velocity   and the time   at a certain 

location. Various flow parameters of area, length and angle were investigated to 

determine how they affect the velocity. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1 Results 

 

Figure 2: Effect of area on velocity 

 

The graph above of velocity (m/s) against time (s) shows the effect of lateral cross 

section area in square meters. 
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Figure 3: Effect of length on velocity 

 

The graph above of velocity (m/s) against time (s) shows the effect of lateral length in 

meters. 
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Figure 4: Effect of angle on velocity 

 

The graph above of velocity (m/s) against time (s) shows the effect of lateral angle in 

degrees. 

4.2 Discussion 

Figure 2 indicates that the rise in the area of the two lateral inflow channels raises the 

discharge to the main channel in those channels and thus also increases the flow rate of 

the main channel as the increase in the discharge causes the velocity to increase with 

the constant the primary channel's cross-sectional area. 

Figure 3 shows that raising the length from 10 m to 10,000 m allows the flow velocity 

to decrease. This is due to the fact that as the length of the fluid channel increases, the 
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perimeter implies an increase in shear stress at the bottom of the conduit, leading to a 

decrease in the velocity of flow. The inflow channel length of 10m is the effective 

length for further discharge to occur. 

Figure 4 shows that the rise in the angle above 450 contributes to a decrease in the 

velocity of the flow. The flow velocity is constant at 900, indicating no impact induced 

by the fluid from the lateral inflow channels, and from the above assumption, we 

conclude that the flow is laminar, so there is no turbulence in the junction. 

The inflow channel angle of 450 is the most efficient angle for further discharge. 

In general, we advise designers to consider the shorter length of the lateral inflow 

channel (10m) and the angle of 450 for optimum discharge to occur in flat areas. 

The results obtained from this study were found to be in line with what other 

researchers have investigated and found for instance, Kwanza et al. (2007) studied the 

effects of lateral discharge and channel slope, width, velocity, and depth as they vary 

from one point in the channel to the next on fluid velocity and channel discharge in 

both trapezoidal and rectangular channels. They noted that in order to increase 

channel discharge, the channel's slope, width, and lateral discharge all need to be 

increased. Furthermore, by reducing the wetted perimeter, the fluid flow rate 

increased. 

Yang et al (2009) looked at flow systems of 90°, 45°, and 30° diversion angles. To 

boost the flow pattern of the fluid, a diversion angle of 30° to 45° was suggested. 

Masjedi and Taeedi (2011) looked into the effects of intake angle on lateral intake 

discharge ratio with 180o bend in the laboratory. The tests were carried out with a range 
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of Froude numbers and intake angles. At a 45o lateral intake angle, the discharge ratio 

improved in all locations of the 180o flume bend, according to the study. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The goal was to look at the impact of the area, length and angle of the lateral inflow 

channels on the main channel flow velocity. The following are the summary; 

i.  Increasing the lateral inflow channel area increases the discharge in the 

inflow channels, thus increasing the main channel flow velocity. 

ii.  As the lateral length of the inflow increases, the main channel flow rate 

decreases. 

iii. The angle of 900 does not affect the key channel's flow velocity. 720 and 600 

increases but 450 increases more the flow velocity.  

5.2 Recommendation 

There is still a room for verification of these theoretical results with laboratory 

results. The geometrical model above can be developed in laboratory for more 

investigation. 

 We recommended that future research can be done on; 

i. The effect of the slope, energy coefficient, top width and other parameters 

of inflow channels on the main channel on the flow velocity. 

ii. The flow in trapezoidal, circular, triangular with two lateral inflow channels 

in different point of the main flow. 
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APPENDICES 

APPENDIX I: MATLAB codes of effect of area on velocity 

% Date: 24/01/2021 

% Numerical Study  of Fluid Flow in an open rectangular  Channel 

% ################################################################ 

% solve y_t+ v*y_x+(A/T)v_x=(2q/TL)sin(theta) 0 <= x <= xf, 0 <= t <= tfinal 

%       v_t+ v*v_x+gy_x+g(sf-s0)=(2q/AL)sin(theta)(ucos(theta)-v) 0 <= x <= xf, 0 <= 

t <= tfinal  

% Initial Condition: y(x,0)= ity0(x) 

%                    v(x,0)= itv0(x) 

% 

% Boundary Conditions: y(0,t) = g0(t)=by0(t)  (left  BC) 

%                      y(xf,t)= g1(t)=byf(t) (right BC) 

%                      v(0,t) = h0(t)=bv0(t)  (left  BC) 

%                      v(xf,t)= h1(t)=bvf(t) (right BC) 

clc,clf,clear all,close all% clear screen,clear figure,clear all declared variables, close all 

figures 

T=1;                   % Top width 

L=1;                   % Lateral length 

q=0.3;                 % Discharge 

theta=pi/3;            % Angle of discharge 

g=9.82;                % gravitational force 

s0=0.002;   

n=0.01;R=1.1;  

u=10; 
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t0=0;                  % initial time 

x0=0;                  % initial distance 

xfinal=100;            % maximum distace final distance/distance at which concetration is 

to be calculated 

tfinal=1;            % maximum time (final time) 

M=5;                   % M = # of subintervals along x(distance) axis 

N=20;                  % N = # of subintervals along t(time) axis     

dx = (xfinal-x0)/M ;   % distance interval  

x = [0:M]'*dx;         % values of distance (x) 

dt = (tfinal-t0)/N;   % time  interval 

t = [0:N]*dt;         % values of time (t) 

% initial and boundary conditions formulae definitions(next three lines)  

ity0=inline('0','x','t');itv0=inline('0','x','t'); 

by0=inline('30','x','t');bv0=inline('20','x','t'); 

byf=inline('10','x','t');bvf=inline('20','x','t'); 

for i = 1:M + 1, 

        y(i,1) = ity0(x(i),t(1));   % initial condition evaluation 

        v(i,1) = itv0(x(i),t(1));   % initial condition evaluation 

end 

for j = 1:N + 1 

        y(1,j) = by0(x(1),t(j));    % boundary conditions evaluations 

        y(M+1,j)=byf(x(M+1),t(j));  % boundary conditions evaluations 

        v(1,j) = bv0(x(1),t(j));    % boundary conditions evaluations 

        v(M+1,j)= bvf(x(M+1),t(j)); % boundary conditions evaluations 

end 
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% if gt(dt/(2*dx),1)                                % stability condition: 2*D_L*dt/dx^2 <= 1 

%      error('stability condition not satisfied')   % error message if stability condition is 

not satisfied 

%      return                                       % return control to command line 

% end                                               % end of stability condition loop 

for A=[0.01 100 400 800] 

 for j = 1:N                                        % start of time loop 

   for i = 2:M                                      % start of distance loop  

  y(i,j+1)=dt*(-v(i,j).*((y(i+1,j)-y(i-1,j))/(2*dx))-(A/T)*((v(i+1,j)-v(i-

1,j))/(2*dx))+(2*q/(T*L))*sin(theta))+y(i,j) 

  v(i,j+1)=dt*(-v(i,j).*((v(i+1,j)-v(i-1,j))/(2*dx))-g*((y(i+1,j)-y(i-1,j))/(2*dx))-

g*(n^2*(v(i,j).^2/R^(4/3))-s0)+(2*q/(T*L)*sin(theta)*(u*cos(theta)-v(i,j))))+v(i,j) 

   end                                                % end of distance loop 

 end                                                % end of time loop 

 plot(t,v(end-1,:),'*:')                            % plot concentration against time 

 hold on 

end 

xlabel('Time(seconds)')                            % label x-axis 

ylabel('Velocity v(x,t) (m/s)')                    % label y-axis 

title('Effect of Area on Velocity ')               % title of 2D graph 

grid                                               % insert grid lines to graph 

legend('A=0.01','A=100','A=400','A=800',0) 

The following  values were obtain after running the program. 
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Table 1:Velocity versus time: Area =0.01,100,400,800 

  Velocity(m/s/s) 

Time(secs) A=0.01 A=100 A=400 A=800 

0 0 0 0 0 

0.05 0.0081 0.0081 0.0081 0.0081 

0.1 0.0162 0.0162 0.0162 0.0162 

0.15 0.0241 0.0243 0.0249 0.0257 

0.2 0.032 0.0328 0.0359 0.0413 

0.25 0.0398 0.042 0.0514 0.0709 

0.3 0.0475 0.0521 0.0746 0.1251 

0.35 0.0552 0.0636 0.1092 0.2172 

0.4 0.0628 0.0769 0.1595 0.3627 

0.45 0.0704 0.0924 0.2306 0.5786 

0.5 0.0779 0.1106 0.3279 0.8831 

0.55 0.0854 0.1322 0.4574 1.2946 

0.6 0.0928 0.1577 0.6251 1.8307 

0.65 0.1002 0.1877 0.8374 2.5079 

0.7 0.1075 0.223 1.1007 3.3399 

0.75 0.1149 0.2641 1.4212 4.337 

0.8 0.1222 0.3119 1.8051 5.5053 

0.85 0.1295 0.3671 2.2577 6.8453 

0.9 0.1367 0.4305 2.7841 8.3515 

0.95 0.144 0.503 3.3885 10.0118 

1 0.1512 0.5854 4.074 11.8069 
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APPENDIX II: MATLAB codes of effect of lateral inflow length on velocity 

% Numerical Study  of Fluid Flow in an open rectangular  Channel 

% ################################################################ 

% solve y_t+ v*y_x+(A/T)v_x=(2q/TL)sin(theta) 0 <= x <= xf, 0 <= t <= tfinal 

%       v_t+ v*v_x+gy_x+g(sf-s0)=(2q/AL)sin(theta)(ucos(theta)-v) 0 <= x <= xf, 0 <= 

t <= tfinal  

% Initial Condition: y(x,0)= ity0(x) 

%                    v(x,0)= itv0(x) 

% 

% Boundary Conditions: y(0,t) = g0(t)=by0(t)  (left  BC) 

%                      y(xf,t)= g1(t)=byf(t) (right BC) 

%                      v(0,t) = h0(t)=bv0(t)  (left  BC) 

%                      v(xf,t)= h1(t)=bvf(t) (right BC) 

clc,clf,clear all,close all% clear screen,clear figure,clear all declared variables, close all 

figures 

A=1; 

T=10;                   % Top width 

q=0.3;                 % Discharge 

theta=pi/3;            % Angle of discharge 

g=9.82;                % gravitational force 

s0=0.002;   

n=0.01;R=1.1;  

u=10; 

t0=0;                  % initial time 

x0=0;                  % initial distance 
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xfinal=100;            % maximum distace final distance/distance at which concetration is 

to be calculated 

tfinal=1;            % maximum time (final time) 

M=5;                   % M = # of subintervals along x(distance) axis 

N=20;                  % N = # of subintervals along t(time) axis     

dx = (xfinal-x0)/M ;   % distance interval  

x = [0:M]'*dx;         % values of distance (x) 

dt = (tfinal-t0)/N;   % time  interval 

t = [0:N]*dt;         % values of time (t) 

% initial and boundary conditions formulae definitions(next three lines)  

ity0=inline('0','x','t');itv0=inline('0','x','t'); 

by0=inline('30','x','t');bv0=inline('20','x','t'); 

byf=inline('10','x','t');bvf=inline('20','x','t'); 

for i = 1:M + 1, 

        y(i,1) = ity0(x(i),t(1));   % initial condition evaluation 

        v(i,1) = itv0(x(i),t(1));   % initial condition evaluation 

end 

for j = 1:N + 1 

        y(1,j) = by0(x(1),t(j));    % boundary conditions evaluations 

        y(M+1,j)=byf(x(M+1),t(j));  % boundary conditions evaluations 

        v(1,j) = bv0(x(1),t(j));    % boundary conditions evaluations 

        v(M+1,j)= bvf(x(M+1),t(j)); % boundary conditions evaluations 

end 

% if gt(dt/(2*dx),1)                                % stability condition: 2*D_L*dt/dx^2 <= 1 
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%      error('stability condition not satisfied')   % error message if stability condition is 

not satisfied 

%      return                                       % return control to command line 

% end                                               % end of stability condition loop 

for L=[10 100 1000 10000] 

 for j = 1:N                                        % start of time loop 

   for i = 2:M                                      % start of distance loop  

  y(i,j+1)=dt*(-v(i,j).*((y(i+1,j)-y(i-1,j))/(2*dx))-(A/T)*((v(i+1,j)-v(i-

1,j))/(2*dx))+(2*q/(T*L))*sin(theta))+y(i,j) 

  v(i,j+1)=dt*(-v(i,j).*((v(i+1,j)-v(i-1,j))/(2*dx))-g*((y(i+1,j)-y(i-1,j))/(2*dx))-

g*(n^2*(v(i,j).^2/R^(4/3))-s0)+(2*q/(T*L)*sin(theta)*(u*cos(theta)-v(i,j))))+v(i,j) 

   end                                                % end of distance loop 

 end                                                % end of time loop 

 plot(t,v(end-2,:),'*:')                            % plot concentration against time 

 hold on 

end 

xlabel('Time(seconds)')                            % label x-axis 

ylabel('Velocity v(x,t) (m/s)')                    % label y-axis 

title('Effect of Length on Velocity ')               % title of 2D graph 

grid                                               % insert grid lines to graph 

legend('L=10','L=100','L=1000','L=10000',0) 

 

The following  values were obtain after running the program. 
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Table 2:Velocity versus time:L=10,100,1000,10000 

  Velocity(m/s/s) 

Time(secs) L=10 L=100 L=1000 L=10000 

0 0 0 0 0 

0.05 0.0023 0.0011 0.001 0.001 

0.1 0.0046 0.0023 0.002 0.002 

0.15 0.0069 0.0034 0.0031 0.003 

0.2 0.0092 0.0046 0.0041 0.004 

0.25 0.0115 0.0057 0.0051 0.005 

0.3 0.0138 0.0068 0.0061 0.006 

0.35 0.016 0.0078 0.007 0.0069 

0.4 0.0182 0.0088 0.0079 0.0078 

0.45 0.0202 0.0097 0.0086 0.0085 

0.5 0.0222 0.0105 0.0093 0.0092 

0.55 0.0241 0.0111 0.0099 0.0097 

0.6 0.0258 0.0117 0.0103 0.0101 

0.65 0.0274 0.0121 0.0106 0.0104 

0.7 0.0289 0.0124 0.0107 0.0105 

0.75 0.0302 0.0124 0.0107 0.0105 

0.8 0.0313 0.0123 0.0104 0.0103 

0.85 0.0322 0.0121 0.01 0.0098 

0.9 0.033 0.0116 0.0094 0.0092 

0.95 0.0335 0.0109 0.0086 0.0084 

1 0.0339 0.01 0.0076 0.0073 
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APPENDIX III: MATLAB codes of effect of angle on velocity 

% Numerical Study of Fluid Flow in an open rectangular Channel 

% ################################################################ 

% solve y_t+ v*y_x+(A/T)v_x=(2q/TL)sin(theta) 0 <= x <= xf, 0 <= t <= tfinal 

%       v_t+ v*v_x+gy_x+g(sf-s0)=(2q/AL)sin(theta)(ucos(theta)-v) 0 <= x <= xf, 0 <= 

t <= tfinal  

% Initial Condition: y(x,0)= ity0(x) 

%                    v(x,0)= itv0(x) 

% 

% Boundary Conditions: y(0,t) = g0(t)=by0(t)  (left  BC) 

%                      y(xf,t)= g1(t)=byf(t) (right BC) 

%                      v(0,t) = h0(t)=bv0(t)  (left  BC) 

%                      v(xf,t)= h1(t)=bvf(t) (right BC) 

clc,clf,clear all,close all% clear screen,clear figure,clear all declared variables, close all 

figures 

L=1; 

A=1; 

T=10;                   % Top width 

q=0.3;                 % Discharge 

g=9.82;                % gravitational force 

s0=0.002;   

n=0.01;R=1.1;  

u=10; 

t0=0;                  % initial time 

x0=0;                  % initial distance 



43 
 

 
 

xfinal=100;            % maximum distace final distance/distance at which concetration is 

to be calculated 

tfinal=1;            % maximum time (final time) 

M=5;                   % M = # of subintervals along x(distance) axis 

N=20;                  % N = # of subintervals along t(time) axis     

dx = (xfinal-x0)/M ;   % distance interval  

x = [0:M]'*dx;         % values of distance (x) 

dt = (tfinal-t0)/N;   % time  interval 

t = [0:N]*dt;         % values of time (t) 

% initial and boundary conditions formulae definitions(next three lines)  

ity0=inline('0','x','t');itv0=inline('0','x','t'); 

by0=inline('30','x','t');bv0=inline('20','x','t'); 

byf=inline('10','x','t');bvf=inline('20','x','t'); 

for i = 1:M + 1, 

        y(i,1) = ity0(x(i),t(1));   % initial condition evaluation 

        v(i,1) = itv0(x(i),t(1));   % initial condition evaluation 

end 

for j = 1:N + 1 

        y(1,j) = by0(x(1),t(j));    % boundary conditions evaluations 

        y(M+1,j)=byf(x(M+1),t(j));  % boundary conditions evaluations 

        v(1,j) = bv0(x(1),t(j));    % boundary conditions evaluations 

        v(M+1,j)= bvf(x(M+1),t(j)); % boundary conditions evaluations 

end 

% if gt(dt/(2*dx),1)                                % stability condition: 2*D_L*dt/dx^2 <= 1 
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%      error('stability condition not satisfied')   % error message if stability condition is 

not satisfied 

%      return                                       % return control to command line 

% end                                               % end of stability condition loop 

for theta=[pi/4 pi/3 pi/2.5 pi/2] 

 for j = 1:N                                        % start of time loop 

   for i = 2:M                                      % start of distance loop  

  y(i,j+1)=dt*(-v(i,j).*((y(i+1,j)-y(i-1,j))/(2*dx))-(A/T)*((v(i+1,j)-v(i-

1,j))/(2*dx))+(2*q/(T*L))*sin(theta))+y(i,j) 

  v(i,j+1)=dt*(-v(i,j).*((v(i+1,j)-v(i-1,j))/(2*dx))-g*((y(i+1,j)-y(i-1,j))/(2*dx))-

g*(n^2*(v(i,j).^2/R^(4/3))-s0)+(2*q/(T*L)*sin(theta)*(u*cos(theta)-v(i,j))))+v(i,j) 

   end                                                % end of distance loop 

 end                                                % end of time loop 

 plot(t,v(end-2,:),'*:')                            % plot concentration against time 

 hold on 

end 

xlabel('Time(seconds)')                            % label x-axis 

ylabel('Velocity v(x,t) (m/s)')                    % label y-axis 

title('Effect of Angle on Velocity ')               % title of 2D graph 

grid                                               % insert grid lines to graph 

legend('Angle=pi/4','Angle=pi/3','Angle=pi/2.5','Angle=pi/2',0) 

 

The following values were obtained after running the program. 
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Table 3:Velocity versus time: Angle =pi/4,pi/3,pi/2.5,pi/2 

  Velocity(m/s/s) 

Time(secs) pi/4 pi/3 pi/2.5 pi/2 

0 0 0 0 0 

0.05 0.016 0.014 0.0098 0.001 

0.1 0.032 0.0279 0.0196 0.002 

0.15 0.0479 0.0419 0.0294 0.003 

0.2 0.0639 0.0558 0.0392 0.004 

0.25 0.0798 0.0697 0.0489 0.005 

0.3 0.0957 0.0835 0.0586 0.006 

0.35 0.1115 0.0973 0.0682 0.0069 

0.4 0.1272 0.111 0.0778 0.0077 

0.45 0.1429 0.1247 0.0872 0.0084 

0.5 0.1585 0.1382 0.0966 0.009 

0.55 0.1741 0.1517 0.1059 0.0096 

0.6 0.1895 0.165 0.115 0.01 

0.65 0.2048 0.1782 0.1241 0.0102 

0.7 0.22 0.1913 0.133 0.0103 

0.75 0.2351 0.2043 0.1417 0.0103 

0.8 0.2501 0.2172 0.1503 0.01 

0.85 0.265 0.2299 0.1588 0.0096 

0.9 0.2797 0.2425 0.1671 0.009 

0.95 0.2943 0.2549 0.1752 0.0082 

1 0.3088 0.2672 0.1832 0.0072 
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Appendix IV: Similarity Report 

 


