
MATHEMATICAL MODELLING ON THE IMPACT OF 

HOSPITALIZATION IN THE MANAGEMENT OF TYPHOID FEVER 

 

 

 

BY 

 

KIPRUTO RYAN KIGEN 

 

 

 

 

 

 

 

 

 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE 

REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE IN 

APPLIED MATHEMATICS IN THE SCHOOL OF SCIENCE,  

UNIVERSITY OF ELDORET, KENYA 

 

 

 

JUNE, 2021 



ii 
 

DECLARATION 

Declaration by the Student 

 This thesis is my original work and has not been submitted for any academic award in 

any institution; and shall not be reproduced in part or full, or in any format without prior 

written permission from the author and/or University of Eldoret. 

Kipruto Ryan Kigen  

SSCI/MAT/M/004/18 

Signature: ............................................ Date .................................. 

 

Declaration by supervisors 

This thesis has been submitted with our approval as University supervisors.  

  

DR. JULIUS S. MAREMWA 

Department of Mathematics and Computer Science,  

University of Eldoret, Kenya. 

 

Signature ...................................................Date: ..............................  

 

DR. KANDIE K. JOSEPH 

Department of Mathematics and Computer Science, 

University of Eldoret, Kenya. 

 

Signature ................................................... Date ...................................... 

  

 



iii 
 

DEDICATION 

This thesis is dedicated to my son, Bradley. 

  



iv 
 

ABSTRACT 

Typhoid fever disease is an infectious ailment which mostly leads to diarrhoea, 

headache, high fever and stomach pains. This disease is majorly caused by a bacterial 

infection known as Salmonella typhi. Typhoid fever has caused a significant burden in 

most developing countries hence a concern to the health sector. In this thesis, a 

mathematical model has been developed, and based on the ordinary differential 

equations; the mathematical model is analyzed quantitatively basing on the impact of 

hospitalization in the management of typhoid fever disease. Hospitals play a big role in 

the control of typhoid fever through their admission of patients and treatment; therefore, 

in this thesis a model is developed which explains the effect of increasing 

hospitalization. The invariant region is worked out in which the model solution is 

bounded so as to obtain the feasible solution of the set. The next generation matrix 

method is used to attain the basic reproduction number. The disease free equilibrium 

and the local stability of the disease free equilibrium determined. The numeric results 

obtained are determined graphically by use of maple simulation method. The results 

indicated that; the rate of hospitalization is inversely proportional to the rate of 

infections while there is a constant rise in the carrier population. 
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CHAPTER ONE 

INTRODUCTION 

 1.1 Background to the Study 

 The other name of typhoid fever is enteric fever. It is a potentially deadly ailment 

caused mostly by Salmonella enterica of serotype typhi and, to a lower extent, 

Salmonella enterica of serotypes Paratyphi A, Paratyphi B and Paratyphi C these terms 

are mainly used as a description to the main serotypes. (Brusch, J.L,2019). Typhoid 

fever symptoms include high fever, headache, stomach pain and either constipation or 

diarrhea. It incubates for a period of between 7 and 14 days. (WHO SAGE November 

2007; and Muhammad A.K, 2017). It is commonly spread through contaminated foods 

or fluids such as water. Typhoid fever is endemic in most developing countries and is 

continuously becoming a public health problem and concern, despite recent 

improvement on water sanitation. (Lauria, D. T et al., 2009). Typhoid fever disease 

causes not less than 600,000 fatalities every year in the world. The disease has always 

been underestimated and to some extent ignored, even though it is a serious health 

problem. (Benard Ivanoff et al.,1994) Due to high infectivity rate and increasing disease 

strain which is burdening, typhoid fever constitutes a major world health problem. 

However, the vaccine for typhoid fever remains the essential tool for proper 

management of the disease. Recently there have been two main types of vaccines. 

Where one of the vaccines is bases on the well defined subunit “virulence (vi) 

polysaccharide antigen” and the vaccine may be administered by either intramuscularly 

or subcutaneously whereas the other vaccine is administered by use of the live 

attenuated bacteria which is administered orally (Carlos A Guzman, et al., 2006). 

Although many mathematical models have been developed, the models approached the 

typhoid fever under different aspects. However, these models did not take into account 
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the effect of hospitalization in the management of typhoid fever disease in detail. From 

their studies, an SIR model was developed which contained hospitalization and home-

based care compartments. The model emphasized hospitalization as a mode of reducing 

infections. 

1.2 Problem Statement 

Hospitalization is the process in which an individual suffering from typhoid fever is 

taken care of in a medical facility by qualified medical personnel. Hospital management 

of typhoid patients is not common in most areas; this is due to the stereotype that home 

based care is better compared to hospital management. Those taking care of typhoid 

patients at home end up endangering the patient’s life as well as their lives through new 

infections of the typhoid fever. This has mainly lead to continous increment of the 

typhoid fever disease. An increase in typhoid fever tend to increase the infectiousness 

of the fever which poses a greater risk to the people living in congested areas. 

Congestion lead to increased contact rate of the infected and those who are disease free 

hence new infections arise.  

 

In developing countries such as Kenya, specifically; people living in congested areas 

such as slums, they do not seek medical attention. As a result, it has become a killer 

disease. Most people in rural areas prefer herbal medication to conventional medicines, 

western medicine, bio-medicine etc, however, the herbalists may mis-diagnose the type 

of disease one is suffering from. Such people need proper sensitization on the 

importance of visiting hospitals for medication when they have typhoid symptoms. 

Hospitalization of typhoid patients may be hampered by; fewer hospitals in an area, 

may not be cost-effective and development of out-patient facilities. This thesis models 

hospitalization as a mode of reducing typhoid fever infections. The study guides on the 
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importance of; increasing hospitals in an area and equiping them with enough beds, 

discouraging out-patient services for infectious diseases and subsidizing the cost of 

admitted patients. From the studies of different scholars, hospitalization was not 

discussed exhaustively hence in this model, an attempt has been made to incorporate 

hospitalization in the management of typhoid fever disease. The importance of hospitals 

and hospital management of patients in curbing or reducing the rates of infections and 

deaths due to the disease in the society, has been analyzed. 

1.3 Objectives of the Study 

 1.3.1 General Objective 

To develop and analyze a mathematical model that incorporates hospitalization in the 

control of typhoid fever outbreak. 

1.3.2 Specific Objectives 

1. Developing a mathematical model incorporating the impact of hospitalization and 

home based care in the treatment of typhoid fever.  

2. To analyze the developed model by use of numerical simulation.  

3. To determine the relationship between hospitalization and the infectiousness of typhoid 

fever over time.  

 1.4 Significance of the Study 

 The study is important in analyzing the relationship between hospitalization and the 

infectiousness of the typhoid fever, this analysis reduces the chance of a disease 

outbreak. Research has been done by many scholars on the modelling of typhoid fever, 

however, there is limited research on the modeling of typhoid fever considering the 

impact of hospitalization. There is prevalence of typhoid fever in areas with high 

population and are as well low income earners. In such areas poor hygiene, 

contaminated water or food is common. When an outbreak occurs, many people will 

get infected since the disease is highly infectious and can be fatal if control measures 
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are not in place, this may lead to high burden to providers in families. The typhoid fever 

has led to high mortality rates in children under 5 years and also above 5 years in Kenya. 

The research model will assist public health officers to understand the dynamics of 

typhoid fever transmission therefore enabling them develop effective ways of handling 

patients. This research will reduce the prevalence of the disease and its infectiousness 

therefore the mortality rate will have reduced. The research will widen the potential of 

academic researches on the importance of incorporating hospitalization in the model as 

used. It further offers assistance to the governance in a country on the importance of 

having enough medical facilities in the case of typhoid fever outbreak.  
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CHAPTER TWO 

LITERATURE REVIEW 

Mathematical modelling of diseases is important in studying the trend of an infectious 

disease and making an analysis on how they can be curbed or reduced. An SIR model 

for spread of disease was formulated, the model consisted of Susceptible, Infective and 

Recovered which was used to determine the spread of an infectious disease over a given 

period of time (David and Lang; 2014). Most scholars have improved the SIR model 

for typhoid fever therefore providing normal and reasonable results.  

 

Getachew Teshome Tilahun et al. (2017) proposed and analyzed a compartmental 

mathematical model which is non-linear and deterministic for the outbreak of typhoid 

fever which contained optimal strategies for control of typhoid with changing 

population. They developed a compartment model with five classes of 𝑆 − 𝐶 − 𝐼 − 𝑅 −

𝐵𝑐 where 𝑆-Susceptible, 𝐼 Infected, 𝐶-Carrier, 𝑅- Recovered and 𝐵𝑐 - Bacteria 

population, from these compartments they formulated equations from the mathematical 

model. From the equations developed, the invariant region was obtained within which 

the solution was bounded. From the same equations, they worked out the positivity of 

the solutions, the disease free equilibrium (stability both globally and locally), the 

endemic equilibrium and the basic reproduction number. They did the sensitivity 

analysis and made interpretations. In their design, they applied Pontryagin Maximum 

principle which contained prevention strategy via sanitation, the process of vaccination, 

that is, treatment by use of appropriate medicine with carriers being screened and proper 

hygiene considered. They discussed and concluded that treatment and prevention is a 

good cost-effective strategy to the disease eradication. They discussed a model of 

incorporating bacterial population in the control strategy, which was their main 
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objective. From their discussion they worked out the basic reproduction number and 

found it less than one, implying that the disease free equilibrium becomes stable for 

both global and local. When the basic reproduction number is greater than one, it meant 

that the endemic equilibrium is stable locally and stable globally at equilibrium. They 

however did not consider hospital management of typhoid in their methodology. They 

obtained numerical results for analysis. However, from their research, hospitalization 

was not considered. 

 

Peter O.J et al. (2017) on their research article of mathematical model used in control 

of typhoid fever, they used Lipchitz condition to test for uniqueness and existence of 

solution.  

 

They further developed a compartment model with five classes P-S-I-T-R where P-

vaccinated but loses protection over time, S-susceptible, I-infectious, T-treated and R-

recovered. Their mathematical model was in the form of P-S-I-T-R from which they 

developed mathematical equations. Based on the developed equations, they determined 

the existence and the uniqueness of the solutions, they further worked out the states of 

equilibrium which determined their stability and did an estimate on the reproductive 

number. From the model equations they worked out the stability of the disease free 

equilibrium. Their discussions concluded that the disease can be controlled by ensuring 

the contact rate with infected people is minimized. They obtained basic reproduction 

number by use of next generation matrix and proved that disease free equilibrium is 

asymptomatically stable when the reproduction number is less than one, this implies 

that the disease will die out naturally. From their study, their main objective did not 

capture hospitalization.  
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Nthiiri J. K et al. (2016) on their mathematical model article, incorporated protection 

from infection of typhoid fever. The study formulated a model which based on the 

ordinary differential equation system which studied the dynamics of the typhoid fever 

and incorporated protection from infection. Nthiiri J. K et al. (2016) developed a 

compartmental model with four classes S-P-I-T where S is the Susceptible class, P is 

the Protected class, I am the Infected class and T is the Treated class. A mathematical 

model of P-S-I-T was formulated that came up with model equations. From these 

equations, they analyzed the model mathematically and worked out; the disease free 

equilibrium on stability, the endemic equilibrium and the basic reproductive number. 

They carried out the stability analysis and determined the condition which favoured the 

spread of typhoid fever disease. The findings on the numerical simulation showed low 

disease prevalence due to increase in protection. They made a conclusion that when 

typhoid fever is controlled effectively, it prevents fast progress to infection specifically 

in areas with scarce or less resources. In such areas, vaccination is deemed important. 

From their study, they majorly stressed on the incorporation of protection against 

infection of typhoid fever hence did not include hospital management of patients with 

the disease. 

 

Muhammad A. K et al., (2014) analysed mathematically a typhoid model which 

contained a saturated incidence rate. They developed a mathematical model of S- I- E 

-R where S is the susceptible sub-class, E is exposed sub-class, I is the infected sub-

class and R is the recovered sub-class. Muhammad A.  K et al. (2014) investigated local 

stability results and global stability. They assumed the population in the model mixed 

homogenously. From the model, they developed equations and tabulated parameters 
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with the descriptions. From the equations formulated, they were able to work out the 

equilibrium in the absence of disease, basic reproduction number was worked out, the 

stability of the basic equilibrium was also worked out and the stability of the disease 

equilibrium calculated. 

 

Numerical solutions were investigated for the proposed model since they had specified 

initial conditions. They obtained the solutions numerically by use of Runge-kutta 

method. They then presented the numerical results in the form of graphs. 

They investigated local stability and global stability were concluded that the 

reproduction number is less than unity, the disease free equilibrium was both stable 

globally and locally at equilibrium. They however in their model did not take into 

account the impact of hospital management. 

Peter O. J, et al., 2018 in their model of typhoid fever by variation iteration method, 

sub-divided the population of humans to four compartments namely; the susceptible 

S(t), the infected carrier Ic(t), the infected I(t) and the recovered R(t). In their model, 

they did an assumption on direct typhoid fever transmission from the infected people 

to susceptible people. They incorporated the real biological phenomenon in which 

typhoid is mainly contracted from the bacteria in the environment through 

contaminated; foods, water and drinks, added a compartment W(t) which represented 

the environmental bacteria. Assumptions made were, susceptible individuals are 

infected with typhoid disease at the rate which is proportional to the population which 

is susceptible. The study employed variation iteration method to the non-linear system 

of differential equations which gave a description of their model in which they did an 

approximation of the solutions which was in a sequence of the time intervals. In order 

to illustrate its accuracy, the results obtained were compared with the classical fourth 
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order of the Runge-kutta method. 

 

Stephen Edward, Nkuba Nyerere 2016 developed a transmission model which was 

deterministic, the model captured vaccination, treatment and education campaigns 

control strategies. In their study, the human population N(t) is sub-divided into five 

compartments namely; the susceptible sub-class S(t), the infectious sub-class I(t), the 

vaccinated sub-class V(t), the carriers sub-class Ic(t) and the recovered sub-class R(t). 

the recruitment of individuals to the susceptible population is by either immigration or 

birth at a constant rate. They assumed that a certain proportion of susceptible 

individual’s progress to carrier sub-class while the other remaining proportion of 

susceptible sub-class or individuals proceeded to the symptomatic infectious sub-class. 

The carriers may become symptomatic at a given rate or they can also die at a given 

rate due to typhoid fever disease. Infected individuals receive treatment and recover at 

a given rate. The recovered sub-class can also be susceptible once more meaning that 

after recovery, there is no permanent immunity. Individuals who are susceptible receive 

vaccination for protection against typhoid fever disease at a given rate. In their study, 

there was an education parameter which was catered in disadvantaging both carriers 

and the individuals who are symptomatic from spreading the typhoid fever disease. 

They calculated the disease free equilibrium and made a prove that it is locally 

asymptomatically stable when the reproduction number is less than one. They made a 

conclusion that to eradicate typhoid fever disease, education, vaccination and treatment 

are not the only modes. However, vaccines do not provide one with permanent 

immunity hence a possibility of the individual contracting the disease. The importance 

of hospitalization was not considered after a case of re-infection. 

Peter O.J, et al. (2020) developed a mathematical model which comprised of four 
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compartments namely the susceptible class, the carrier class and the recovered class. 

From these compartments, equations were formulated on the flow of the infectious 

disease, which were used for the determination of the existence and uniqueness of the 

model. They used the Lipchitz condition for the verification of the singularity of the 

solution. They further worked out the basic reproduction number and found it to be less 

than one which was an indication that every contagious person cannot cause an 

infection hence the disease always disappears. They performed numerical simulations 

and made a graphical description on the impact of long term through early treatment. 

They made a conclusion that through early treatment and detection, infectiousness of 

the typhoid fever disease may reduce. However, there was no specification on the kind 

of treatment, the factor of hospitalized care was not discussed. 

 

From the authors discussed above, formulations were made which has guided in the 

study of the model. This model mainly gives reasonable and normal results. 

Assumptions are always made to improve the model analysis and its spread under 

different states or conditions. In most cases, the improved models tend to consist more 

efficiency compared to SIR model. In this model, an improvement from the SIR model 

was done to compare infectiousness of typhoid fever with hospitalization. 
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CHAPTER THREE 

 METHODOLOGY 

3.1 Method of Formulation 

The SIR model formulated was improved to include carriers, home-based care and 

hospitalized individuals having typhoid fever. The model developed gave reasonable 

and normal results. Assumptions are always made to improve the model analysis and 

its spread under different states or conditions. In most cases, the improved models tend 

to consist more efficiency compared to SIR model. 

3.2 Model Description and Formulation 

The deterministic mathematical model developed contained different compartments 

which capture the effectiveness of hospitalization and home-based care. The model 

developed contains six compartments from the human population (N); that is, 

susceptible (S), Infectious (I), Carriers (C), Home-based care (Hb), hospitalized (H) 

and Recovered (R) compartments.  

The model developed is S-C-I-Hb-H-R, and the general form of the model is described 

by the diagram below in detail. 
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Figure  3.1 A compartmental model description including home-based care and 

hospitalization 

 

Some arrows indicate the movement of individuals from one compartment to another 

while other arrows point outside the compartments. The arrows pointing outside the 

compartments indicate an exit from the population. 

 Susceptible individuals are those likely to be affected by the typhoid fever. The carriers 

are those individuals who are likely to transmit typhoid fever to others but do not suffer 

from the typhoid fever. The infectious individuals are those who have the disease and 

can easily transmit to other people. The home-based care individuals contracted the 

disease and are taking medication at home prescribed by qualified medical personnel, 

over the counter medication or from herbalists. The hospitalized individuals are those 

infected by the disease and admitted in a medical facility; attended by qualified health 
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professionals. The recovered individuals are those who get well after a typhoid 

infection. 

Susceptible individuals are recruited into the population at the rate of 𝛬, the recruitment 

of individuals is mainly by birth and to a lesser extent through immigration. The rate at 

which the susceptible become carriers is represented by λ. The rate at which the carriers 

become infected is represented by 𝞪. The rate at which the infected are taken care of at 

home is 𝟂, if an individual is not taken care of at home, then they are hospitalized 

meaning the hospital representation is (1-𝟂). The rate at which the hospitalized recover 

is 𝞼 while the rate at which those on home-based care recover is τ. The rate at which 

the disease causes death is 𝞭 while the rate of death which do not result from the disease 

or death through natural causes is represented by µ. 

The table below indicates the summary of the parameters with their values and sources. 

 

Table  1: Summary of parameter descriptions 

 
 Parameter Interpretation Value Source 

Λ Recruitment rate to the 

population. 

200 Assumed 

𝛽 Rate of recruitment to infectious 

from susceptible 

0.0002 Mohammad A K et 

al., 

𝜆 Rate of recruitment of carriers 

from susceptible 

0.00005 Estimated 

𝛼 Rate of recruitment of carriers to 

infectious 

0.01 Estimated 

𝛿 Death rate as a result of typhoid 0.002 Mohammad et al., 
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fever. 2015 

𝜙 Recovery Rate 0.8 Joyce Nthiiri et al., 

2016 

𝜔 Home based care rate 0.7 Estimated 

1- 𝜔 Hospitalization rate 0.3 Estimated 

𝜏 Recovery rate for home-based 

patients 

0.9 Estimated 

𝜎 Recovery rate of hospitalized 

care patients 

0.8 Estimated 

𝜇 Death rate due to natural 

calamities. 

0.0143 Stephen Edward 

 

3.3 Model Equations 

Dynamic system and differential equations. 

Dynamic systems are set of equations which describes an event in nature that further 

describes primarily a time changing process. The properties which characterize these 

dynamical equations are either finite or infinite dimensions or being non-deterministic 

or deterministic in nature. The description of these systems is by use of differential 

equations. 

Differential equations are defined as equations which contain a single or more 

derivatives which are of unknown functions. 

The differential equations below are obtained from the model. 
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𝑑𝑆

𝑑𝑡
= Λ + 𝜙𝑅 − 𝜇𝑆 − 𝛽𝑆𝐼 − 𝜆𝑆𝐶                                      3.3.1

𝑑𝐶

𝑑𝑡
= 𝜆𝑆𝐶 − (𝛼 + 𝜇)𝐶                                                          3.3.2

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 + 𝛼𝐶 − (𝜇 + 𝛿 + 𝜔 + (1 − 𝜔))I                     3.3.3

𝑑𝐻

𝑑𝑡
= (1 − 𝜔)𝐼 − (𝜇 + 𝜎 + 𝛿)𝐻                                         3.3.4

𝑑𝐻𝑏

𝑑𝑡
= 𝜔𝐼 − (𝜇 + 𝜏 + 𝛿)𝐻𝑏                                                   3.3.5

𝑑𝑅

𝑑𝑡
= 𝜎𝐻 + 𝜏𝐻𝑏 − (𝜇 + 𝜙)𝑅                                              3.3.6 }

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

 

3.4 The Invariant Region 

 This is the region which the model solution lies positively. We took into account all 

the human population (N), in which 𝑁 = 𝑆 + 𝐶 + 𝐼 + 𝑅 + 𝐻 + 𝐻𝑏. Differentiating N 

with respect to time (t), we obtained;  

 
𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+
𝑑𝐶

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+
𝑑𝐻

𝑑𝑡
+
𝑑𝐻𝑏

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
     (3.4.7) 

 By combining 4.0.1 and 5.1.1 we obtained  

 
𝑑𝑁

𝑑𝑡
= −𝜇𝑁 + Λ − (𝐼 + 𝐻 + 𝐻𝑏)𝛿 (3.4.8) 

 In absentia of death due to typhoid fever disease, 𝛿 = 0 equation (5.1.2) becomes  

 
𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁        (3.4.9) 

 Integrating both sides of equation (5.1.3) we obtain;  

 ∫
𝑑𝑁

−𝜇𝑁+Λ
≤ ∫ 𝑑𝑡 

  

 −
1

𝜇
ln(−𝜇𝑁 + Λ) ≤ 𝑡 + 𝐶       (3.4.10) 

 Which then simplifies to;  

 −𝜇𝑁 + Λ ≥ 𝐴𝑒(−𝜇𝑡)       (3.4.11) 
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Applying the initial condition when A is constant 𝑁(0) = 𝑁0 in (5.1.5) yields  

 −𝜇𝑁 + Λ ≥ (−𝜇𝑁0 + Λ)𝑒
(−𝜇𝑡)      (3.4.12) 

 Then by rearranging (5.1.6) we obtain;  

 𝑁 ≥
Λ

𝜇
− (

Λ−𝜇𝑁0

𝜇
) 𝑒−𝜇𝑡       (3.4.13) 

 As t tends to infinity, that is 𝑡 → ∞ in equation (5.1.7), the population size 𝑁 →
Λ

𝜇
  

which means that  0 ≤ 𝑁 ≤
Λ

𝜇
. Thus implying that the feasible set of solution in the 

model remains and enters in the region.  

 Ω = {(𝑆, 𝐶, 𝐼, 𝐻𝑏, 𝐻, 𝑅) ∈ 𝑅 :𝑁 ≤
Λ

𝜇
}     (3.4.14) 

 This means that it is positively invariant and bounded. 

3.5 Basic Reproduction Number 

The basic reproductive number refers to the mean secondary infections which are 

caused by an infected individual who is able to transmit the disease over their entire 

time of being infectious. In the study of diseases, the basic reproduction number sets 

the pace or threshold in predicting the nature of the disease or its outbreak and evaluates 

possible control strategies. The persistence or the end of a disease is dependent on the 

basic reproductive value. The basic reproduction value is further used in analysis of 

equilibrium stability. If the basic reproduction value is less than one, this implies that 

an infectious individual causes less than a single secondary infection causing the 

disease to die out naturally. When the reproductive number is greater than unity, it 

means that an infectious individual will cause will cause more than one infections 

meaning that there will be an invasion of the disease in the population. A major 

pandemic may occur if the reproduction number is large. 

In this thesis, the mean number of new typhoid infections is accounted by the 

reproduction number in which a typhoid infected individual gets introduced to a fully 
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susceptible population.  

The basic reproduction number is computed by use of the next generation matrix 

approach. It is mostly denoted by 𝑅0 which is the mean number of secondary infections 

when an infected enters a susceptible population. The method of obtaining the 

reproduction number is worked out below.  

 𝑀𝑎𝑡𝑟𝑖𝑥    𝐺 = 𝐹𝑉−1       (3.5.15) 

 We let 𝑋 to be the vector of class which is infected, which are carriers, infectious, 

home-based care and hospitalized. We let 𝑌 be the vector of uninfected classes that is 

susceptible and recovered.  

 𝑋 = [

𝐶
𝐼
𝐻
𝐻𝑏

]       𝑎𝑛𝑑      𝑌 = [
𝑆
𝑅 ] 

 𝐹(𝑋, 𝑌) becomes the vector containing new infection rates. 

𝑉(𝑋, 𝑌) is the vector of all other rates not new infections.  

 𝐹 = {

𝜆𝑆𝐶
𝛽𝑆𝐼
0
0

}        (3.5.16) 

  

 𝑉 = {

(𝜇 + 𝛼)𝐶
−𝛼𝐶 + (𝜇 + 𝛿 + (1 − 𝜔) + 𝜔)𝐼
−𝜔𝐼 + (𝜇 + 𝜏 + 𝛿)𝐻𝑏
(1 − 𝜔)𝐼 + (𝜇 + 𝜎 + 𝛿)𝐻𝑏)

}     (3.5.17) 

 Calculating the jacobian of F and V becomes  

 𝐹 =

(

 
 
 
 
 
 

𝜕𝐹1

𝜕𝐶

𝜕𝐹1

𝜕𝐼

𝜕𝐹1

𝜕𝐻

𝜕𝐹1

𝜕𝐻𝑏

𝜕𝐹2

𝜕𝐶

𝜕𝐹2

𝜕𝐼

𝜕𝐹2

𝜕𝐻

𝜕𝐹2

𝜕𝐻𝑏

𝜕𝐹3

𝜕𝐶

𝜕𝐹3

𝜕𝐼

𝜕𝐹3

𝜕𝐻

𝜕𝐹3

𝜕𝐻𝑏

𝜕𝐹4

𝜕𝐶

𝜕𝐹4

𝜕𝐼

𝜕𝐹4

𝜕𝐻

𝜕𝐹4

𝜕𝐻𝑏

)

 
 
 
 
 
 

= (

𝜆𝑆 0 0 0
0 𝛽𝑆 0 0
0 0 0 0
0 0 0 0

)   (3.5.18) 
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 𝑉 =

(

 
 
 
 
 

𝜕𝑉1

𝜕𝐶

𝜕𝑉1

𝜕𝐼

𝜕𝑉1

𝜕𝐻

𝜕𝑉1

𝜕𝐻𝑏

𝜕𝑉2

𝜕𝐶

𝜕𝑉2

𝜕𝐼

𝜕𝑉2

𝜕𝐻

𝜕𝑉2

𝜕𝐻𝑏

𝜕𝑉3

𝜕𝐶

𝜕𝑉3

𝜕𝐼

𝜕𝑉3

𝜕𝐻

𝜕𝑉3

𝜕𝐻𝑏

𝜕𝑉4

𝜕𝐶

𝜕𝑉4

𝜕𝐼

𝜕𝑉4

𝜕𝐻

𝜕𝑉4

𝜕𝐻𝑏)

 
 
 
 
 

 

  

 𝑉 =

(

 
 

(𝜇 + 𝛼) 0 0 0

−𝛼 (𝜇 + 𝛿 + 𝜔 + (1 − 𝜔)) 0 0
0 −𝜔 (𝜇 + 𝜏 + 𝛿) 0
0 −(1 − 𝜔) 0 (𝜇 + 𝜎 + 𝛿)

)

 
 

 

           (3.5.19) 

 

 Obtaining 𝑉−1 becomes; 

 

 𝑉−1 =

[
 
 
 
 
 
(𝛼 + 𝜇)−1 0 0 0

𝛼

(𝛼+𝜇)(𝜇+1+𝛿)
(𝜇 + 1 + 𝛿)−1 0 0

𝜔 𝛼

(𝛼+𝜇)(𝜇+1+𝛿)(𝜇+𝛿+𝜏)

𝜔

(𝜇+1+𝛿)(𝜇+𝛿+𝜏)
(𝜇 + 𝛿 + 𝜏)−1 0

−
(−1+𝜔)𝛼

(𝛼+𝜇)(𝜇+1+𝛿)(𝛿+𝜇+𝜎)
−

−1+𝜔

(𝜇+1+𝛿)(𝛿+𝜇+𝜎)
0 (𝛿 + 𝜇 + 𝜎)−1]

 
 
 
 
 

 (3.5.20) 

  

 𝐹𝑉−1 =

[
 
 
 
 

𝜆 Λ

𝜇 (𝛼+𝜇)
0 0 0

𝛽 Λ 𝛼

𝜇 (𝛼+𝜇)(𝜇+1+𝛿)

𝛽 Λ

𝜇 (𝜇+1+𝛿)
0 0

0 0 0 0
0 0 0 0]

 
 
 
 

    (3.5.21) 

 The eigen values are given by  
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[
 
 
 
 
0
0

𝛽 Λ

𝜇 (𝜇+1+𝛿)

𝜆 Λ

𝜇 (𝛼+𝜇) ]
 
 
 
 

         (3.5.22) 

 The most dominant eigen value gives the basic reproduction number 𝑅0. Therefore  

 𝑅0 =
𝛽 Λ

𝜇 (𝜇+1+𝛿)
        (3.5.23) 

3.6 Disease Free Equilibrium 

 In disease free equilibrium, we qualitatively analyze the stability of its equilibrium. 

The disease free equilibrium points of the model at its steady state in the absence of 

disease. 

To obtain equilibrium points we let 

 
𝑑𝐻𝑏

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
= 0,      (3.6.24) 

 

 
𝑑𝑆

𝑑𝑡
≠ 0  This implies 

𝑑𝐻𝑏

𝑑𝑡
=

𝑑𝐶

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
= 0    (3.6.25) 

 

hence no differential. By setting the differential equations to be zero, we obtain; 

 

 

Λ + 𝜙𝑅 − 𝜇𝑆 − 𝛽𝑆𝐼 − 𝜆𝑆𝐶 = 0

𝜆𝑆𝐶 − (𝛼 + 𝜇)𝐶 = 0

𝛽𝑆𝐼 + 𝛼𝐶 − (𝜇 + 𝛿 + 𝜔 + (1 − 𝜔))I = 0

(1 − 𝜔)𝐼 − (𝜇 + 𝜎 + 𝛿)𝐻 = 0

𝜔𝐼 − (𝜇 + 𝜏 + 𝛿)𝐻𝑏 = 0

𝜎𝐻 + 𝜏𝐻𝑏 − (𝜇 + 𝜙)𝑅 = 0

 

 

 We assume that there is no disease, therefore, when 𝐶 = 0, 𝐼 = 0, 𝐻𝑏 = 0 𝐻 = 0 and 

𝑅 = 0. 𝑆 = 𝑁 but 𝑆 ≠ 0  

Λ + 𝜙𝑅 − 𝜇𝑆 − 𝛽𝑆𝐼 − 𝜆𝑆𝐶 = 0 
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We obtain; 𝛬 − 𝜇𝑆 = 0.       (3.6.26) 

  

Making S the subject of the formula, below is obtained; 

 

 𝑆 =
𝛬

𝜇
         (3.6.27) 

 

 Hence 𝐷. 𝐹. 𝐸 = (𝑆∗, 𝐶∗, 𝐼∗, 𝐻𝑏∗, 𝐻∗, 𝑅∗)  

𝐷. 𝐹. 𝐸 = (
Λ

𝜇
, 0,0,0,0,0) 

  

3.7 Local Stability of Disease Free Equilibrium 

 We analysed qualitatively the stability of disease free equilibrium that is the absence 

of disease. From the model system, we have jacobian matrix at disease free equilibrium 

of the linearized system given by;  

 

J= 

[
 
 
 
 
 
 
 
 −𝜇 −

𝜆 Λ

𝜇
−
𝛽 Λ

𝜇
0 0 𝜙

0
𝜆 Λ

𝜇
− 𝛼 − 𝜇 0 0 0 0

0 𝛼
𝛽 Λ

𝜇
− 1 − 𝛿 − 𝜇 0 0 0

0 0 1 − 𝜔 −𝛿 − 𝜇 − 𝜎 0 0
0 0 𝜔 0 −𝜇 − 𝛿 − 𝜏 0
0 0 0 𝜎 𝜏 −𝜇 − 𝜙]

 
 
 
 
 
 
 
 

 

           (3.7.28) 

  

which yields the following eigen values:  
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 ε =

[
 
 
 
 
 
 
 
−𝜇
−𝜇 − 𝛿 − 𝜏
−𝛿 − 𝜇 − 𝜎
−𝜇 − 𝜙
𝛽 Λ−𝛿 𝜇−𝜇2−𝜇

𝜇

𝜆 Λ−𝛼 𝜇−𝜇2

𝜇 ]
 
 
 
 
 
 
 

        (3.7.29) 

  

The first four eigen values are negative therefore to make the sytem stable we need to 

have  

 
𝛽 Λ−𝛿 𝜇−𝜇2−𝜇

𝜇
> 0        (3.7.30) 

 

 therefore  

 
𝛽 Λ

𝜇
> 𝛿 + 𝜇 + 1 

  

again  

 
𝜆 Λ−𝛼 𝜇−𝜇2

𝜇
> 0 

  

therefore  

 
𝜆 Λ

𝜇
> 𝛼 + 𝜇         (3.7.31) 

 

 In conclusion, if 
𝜆 Λ

𝜇
> 𝛼 + 𝜇 and 

𝛽 Λ

𝜇
> 𝛿 + 𝜇 + 1 this means the disease free 

equilibrium is asymptotically locally stable. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 The Invariant Region 

The total population N is the sum of the population in the susceptible, carriers, infected, 

home-based care, hospitalization and recovered i.e. N=S+C+I+R+H+Hb then 0 ≤ 𝑁 ≤

Λ

𝜇
; this shows that the total population (N) is greater than zero which is a proof that the 

model solution lies positively and is bounded. 

4.2 The Basic Reproduction Number 

The basic reproduction number is an estimation which determines if there will be an 

outbreak of the disease or not. 

If R0<1 then an individual cause less than one secondary infection therefore the disease 

dies out. 

If R0>1 means an individual cause more than one secondary infection therefore the 

disease invades the population. 

Since the basic reproduction number is estimation, the most dominant eigen value is 

picked which is 𝑅0 =
𝛽 Λ

𝜇 (𝜇+1+𝛿)
  from equation     (3.5.23) 

When 𝛃=0.0002 

µ=0.0143 

𝞭 =0.002 

𝛬=200 

Substituting these values R0=2.7523, therefore R0 > 1 which means that the disease 

invades the population and persists. The reproduction number is close to one, therefore 

a pandemic may not occur. 

4.3 The Disease Free Equilibrium 

The estimation of the basic reproduction number determines the disease free 
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equilibrium. At DFE, the determinant of the Jacobean matrix is positive at R0 > 1 then 

the model is stable. 

Hence 𝐷. 𝐹. 𝐸 = (𝑆∗, 𝐶∗, 𝐼∗, 𝐻𝑏∗, 𝐻∗, 𝑅∗)  

 

𝐷. 𝐹. 𝐸 = (
Λ

𝜇
, 0,0,0,0,0) 

𝑆 =
𝛬

𝜇
  The susceptible population is the total population which is free of the disease 

while C=I=Hb=H=R=0, this means that the carriers, the infected, home-based care and 

hospitalized are not there because there is no disease in the equilibrium. Since there is 

no disease, no one recovers, therefore R=0 

4.4 Local Stability of the Disease Free Equilibrium 

The equation  
𝜆 Λ

𝜇
> 𝛼 + 𝜇  is true, 

Proof: λ=0.00005 

          𝛬=200 

          µ=0.0143 

          𝞪=0.01 

Replacing the parameters with the values, 0.6993>0.0243 is obtained. 

The equation 
𝛽 Λ

𝜇
> 𝛿 + 𝜇 + 1 is true, 

Proof:  

          𝛬=200 

          µ=0.0143 

          𝛃=0.0002 

             𝞭=0.002 

Replacing the parameters with the values, 2.797>1.063 is obtained. 

This is the proof that the disease free equilibrium is asymptomatically locally stable. 
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4.5 Graphical Solutions 

4.5.1 Representation of the Dynamical System 

 

 

Figure 4.1 Graphical Representation of the Dynamical System 

 
The total population (N) is approximated at 10000 individuals in a location. The 

recruitment rate is 200 people per year, that is, mainly from births and to a lesser extent 

immigration. The recruitment rate would have been higher if the death rate was not 

considered; the recruitment rate is arrived at by taking an inclusion of immigration rate, 

birth rate and death rate then working out the average rate. This explains the constant 

rise of the total population in the dynamical system. The total population is assumed 

that at the initial year all the human population is susceptible to the typhoid fever 

disease; this implies that all individuals are likely to be affected by the disease. When 

an infectious disease enters a susceptible population, the susceptible population tends 

to decrease with increasing infectious population. When infections rise in a population, 

the population of the carriers increases with time leading to an increased widespread of 
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the infectious disease, this is attributed to the fact that carriers are asymptomatic. An 

increase in infections leads to the sick individuals being taken care of at homes. 

Similarly, an increase in infections implies an increase in hospitalization of patients. 

4.5.2 Clustered populations  

 

 

Figure 4.2 clustered populations 

 

Similar to Figure 4.1, an initial population of 10000 individuals is taken. The 

recruitment rate of humans to a clustered population is 𝛬. The rate is arrived at by 

averaging the approximate death mortality rate, the approximate birthrate and the 

approximate immigration rate to obtain the average recruitment rate (𝛬) of 200 humans 

per year. The whole human population at the initial time is assumed to be susceptible 

which means that all individuals are likely to be infected by the typhoid fever disease. 

Susceptibility reduces with increasing typhoid infections. However, there is no time 

when all humans lose their susceptibility to the disease, this is majorly caused by those 

who recover and attain new susceptibility. The disease free population is an individual 

who do not have the typhoid fever or are free of the typhoid fever. At the initial state, 
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the whole population is devoid of the disease. With new infections, the disease free 

population declines with increase in infections. However, the decline does not lead to 

the whole population being infected, this is due to those who recover from the disease 

hence not all the population will be infected. An increase in typhoid fever infections 

tends to lead to an increase in the carrier population.  

4.5.3 Infectious population at different rates of hospitalization. 

 

 

Figure 4.3: Graph of Infectious population at different rates of hospitalization 

 

From figure 4.1 and figure 4.2, the infectious population is approximately 2500 

individuals. Hospitalization is the process in which infected individuals are taken care 

of at a medical facility by medical practitioners. The rate of hospitalization or those 

infected by the disease are taken for medication is 𝟂 while the rate of infections is 𝛃. 

When the rate of new infections per year is high and less individuals being hospitalized, 

the infectious population is very high. In the case when 𝛃=0.0002 and 𝟂=0.1, the 

infectious population gets to its peak within a short period of time. Managing such cases 

can pose challenges to the health sector since they can get overwhelmed with the disease 
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because of high infections in an increasing population. At the rate when 𝛃=0.00018 and 

𝟂=0.3, this implies that the rate of hospital management is increased, there would be a 

decline in the number of infections. The infectious population gets to the peak after a 

long time compared to the first rate and the infectious population becomes lower. At 

the rate when 𝛃=0.00016 and 𝟂=0.5, this means that with the rate of hospital 

management increasing, the rate of infections decrease. The infectious population at 

this point lowers at its peak in a longer period of time. At the rate when 𝛃=0.00014 and 

𝟂=0.7, this shows an increase in hospital management of the disease being higher while 

the rates of infection decline. An increase in hospital management leads to a decline in 

infection rates. The infectious population will have been decreased considerably and 

can be managed with ease even at its peak. At the rate of 𝛃=0.00012 and 𝟂=0.9, this is 

a clear implication that the larger the hospitalization rate the lesser the number of 

infections. The graph in this case is steady meaning the disease has been contained and 

poses no risk to human life. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

5.1.1 Dynamical system 

There is increase in the total population with time in the dynamical system. Naturally, 

in a community set-up, there tend to be an increase in the total population due to the 

birth rate and immigration rate. Despite the fatalities caused by the disease or natural 

calamities, the population will still rise. The susceptible population is equal to the total 

population at the beginning of the first year. When the typhoid fever infections begin, 

the susceptible population drops drastically since most susceptible individuals will have 

been infected and others will become carriers of the typhoid fever disease. This 

concludes that an increase in the rate of infection leads to a decrease in susceptible 

population. The hospitalized and the home-based care individuals are responsible for 

the decline in the number of infections. This is clear in that the number of recoveries 

increases and then attains secondary susceptibility to the disease. The carrier population 

rises consistently since they are asymptomatic; therefore, it poses a risk since they 

transmit the disease unknowingly. The diagnosis of the carrier population is challenging 

therefore providing treatment to such individuals can be difficult. Hospitalization aids 

mainly in reducing the infections or the infectious rates of individuals with the typhoid 

fever disease. 

5.1.2 clustered populations. 

There is increase in the total population with time in the dynamical system. Naturally, 

in a community set-up, there tend to be an increase in the total population due to the 

birth rate and immigration rate. Despite the fatalities caused by the disease or natural 

calamities, the population will still rise. The susceptible population is equal to the total 
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population at the beginning of the first year, susceptibility of individuals’ drops with 

new infections of typhoid fever. With increased infections, the susceptible population 

reduces in number therefore susceptibility is inversely proportional to the number of 

infections. The disease free population is similar to the susceptible population; this is 

because at the beginning, the total population is equal to the disease free population. 

When infections rise in a population, those who are devoid of the disease tend to reduce. 

This implies that an increase in the infected population results to a decline in the 

population of those without the disease. Recoveries also contribute to an increase of 

those individuals without the disease. The population without the disease is more 

compared to those susceptible, since an individual may not have the disease but is not 

susceptible. The carrier population continuously increases with time hence controlling 

the carrier population becomes a challenge. The asymptomatic nature of the carrier 

population results to increased rates of infections. In general, an increase in infection 

results to a decline in the susceptible and disease free population classes. 

5.1.3 Infectious Populations at Different Rates of Hospitalization 

Hospital management of typhoid fever disease patients plays a major role in the control 

of typhoid fever infections. When the rate of hospital management or hospitalization is 

very low, the infectious population is high meaning that controlling the infected 

population can be tasking. A requirement in improving the health sector by increasing 

the number of hospitals as well as increasing the bed capacity is essential in the 

management of the disease.  This implies that an increase in the number of hospitals 

will require an increase in the health care providers. Figure 4.3 shows that increasing 

the hospital rate tends to decrease the infectious rate of the disease. The graph clearly 

shows that increasing hospitalization leads to a decline in the number of infected 

individuals hence this reduces the number of infections in which an individual can 
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transmit. When the rate of hospital management is low, the rate of infections can be 

very high, this implies that the number an infected individual can transmit within the 

period of infection can be very high in a population. In conclusion, the rate of 

hospitalization is inversely proportional to the infectious population. 

5.2 Recommendations 

The mathematical model focuses on the importance of hospitalization in the 

management of typhoid fever through its treatment. However, from the graphical 

analysis there is a risk in the rising case of carriers with time and do not drop or 

stabilizes with the constantly increasing population. This implies that attention need tro 

be given more on curbing the increasing number of carriers in the population. 
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