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ABSTRACT 

The lungs are a principal target of HIV-associated complications and persons with 

HIV-infection are at an increased risk for a wide spectrum of opportunistic 

Pneumonias. In this research an HIV/AIDS and Pneumonia co-infection model is 

presented and analyzed. The Pneumonia and HIV/AIDS sub-models are also 

presented and analyzed separately without any intervention strategy. Pneumonia is 

presented as a S.I.R. (Susceptible Infectious Recovered) simple epidemic model. On 

the other hand the HIV/AIDS is presented as an  S.E.I.A. (Susceptible Exposed 

Infectious AIDS) model. The HIV/AIDS-only model has a globally asymptotically 

stable disease-free equilibrium when its corresponding reproduction number is less 

than unity. We proceed to analyze the full HIV/AIDS-Pneumonia co-infection model. 

The thresholds and equilibria quantities for the models are determined and stabilities 

analyzed. Secondly, parameters are used for the numerical simulations of the model 

system from data for both Pneumonia and HIV/AIDS cases  sampled from Kapsabet 

District Hospital in Nandi County, Kenya for the period 2002 – 2011. Thirdly,  the 

effectiveness of control of Pneumonia through treatment and management of 

HIV/AIDS epidemic through Education Awareness are studied.  The minimum 

threshold for treatment is 97% and 72% for education  computed both analytically and 

also by numerical simulation of the model system through Runge-Kutta method 

encoded in MATLAB. 
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CHAPTER ONE 

INTRODUCTION 

Among the HIV-associated pulmonary complications, opportunistic pneumonias are 

major causes of morbidity and mortality. Pneumonia refers to any inflammation of the 

lungs. According to Huang et al., (2010), the lungs are a principal target of HIV-

associated complications and persons with HIV-infection are at an increased risk for a 

wide spectrum of opportunistic Pneumonias, neoplasms and Pulmonary conditions.  It 

can involve both lungs, one lung or one part of a lung. 

According to Huang et al., (2010), Bacterial Pneumonia is the most frequent 

opportunistic infection in the United States of America and Europe. The incidence of 

bacterial pneumonia among persons with HIV infection is greater than that among 

persons without HIV. In those with HIV, bacterial pneumonia is frequently recurrent, 

and recurrent pneumonia is an AIDS-defining condition. It further says that bacterial 

pneumonia may be the first manifestation of underlying HIV infection and thus the 

presence of HIV infection should be considered in any person presenting with 

bacterial pneumonia, especially if the individual has no other risk factors for 

pneumonia or if the pneumonia is recurrent.  

According  to Guide 4 Living (2011) - (an independent information journal online) 

Pneumonia requires hospitalization and can even lead to death .The spectrum of HIV-

associated opportunistic pneumonias is broad and includes bacterial, mycobacterial, 

fungal, viral, and parasitic pneumonias. It further says that Pneumocystis Carinii 

Pneumonia (known as PCP) is one of the most common AIDS-related illnesses which 

can develop in up to 85% of people with HIV if they don’t receive preventative 
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treatment. In the early days of AIDS,  it used to be one of the biggest killers but now 

thanks to improved medicines the death rate from the illness has dropped from around 

30% down to 14%. PCP is an incredibly serious infection which mainly affects the 

lungs causing a severe form of pneumonia. It’s rarely seen in people who are not 

infected with HIV. It has been known to develop in the liver, spleen, lymph nodes and 

eyes but these cases are extremely unusual. Caused by a very common fungal 

organism, Pneumocystis Carinii Pneumonia only attacks people with a very weak 

immune system. The same journal states that it generally appears in people when their 

CD4+ count goes below 200. This is the point at which a person is defined as having 

full blown AIDS, hence PCP’s reputation as a defining AIDS related illness. Like 

everyone who gets pneumonia, whether HIV positive or not, sufferers are likely to 

experience weight loss, fatigue and general weakness due to the illness. The initial 

signs are difficulty in breathing, rasping breath sounds and a very dry irritating cough. 

Some people may cough up large amounts of phlegm or have pain or tightness in their 

chest. The same journal staes that it is an illness that can kill someone with a very 

weak immune system so it’s important that patients with these symptoms see their 

doctor immediately.Unfortunately for someone with an immune system that is shot to 

pieces, the likelihood of getting PCP more than once is very high. And after each bout 

the likelihood of surviving it gets lower - up to 78% of people with HIV survive the 

first bout of PCP but the figure drops dramatically to 40% if the pneumonia strikes a 

second time. And if an HIV positive person smokes, studies have found that they can 

develop Pneumocystis Carinii Pneumonia three times faster than someone with HIV 

who doesn’t smoke – basically because not only is the immune system weak but the 

lungs are being damaged by the effects of smoke as well. For some people the 
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diagnosis of PCP is also the first time they hear they are HIV positive or, even worse, 

that they have full blown AIDS.  

According to Huang et al ., (2010), PCP has been increasingly reported especially in 

Sub-Saharan Afica with Kenya being part of it.  

According to Abdu-Raddad  et al ., (2006), HIV/AIDS has killed an estimate of 25 

million 

 people. The World Health Organization (WHO) report of 2004 states that AIDS was 

discovered in 1981 and has become one of the leading causes of death, globally, 

affecting mostly impoverished people already suffering from poor nutrition and 

health. While HIV does not kill, it causes the immune system to become defenseless 

against other opportunistic diseases it could normally fight off. Corbett (2002) states 

that opportunistic infections are fungal, bacterial or viral infections or a combination 

of these. Common HIV opportunistic infections are malaria, tuberculosis (TB) and 

pneumonia. Mathematical models of co-infection have been formulated by Kamal et 

al ., (2007),Wai-ki et al .,(2008) and Bhunu  et al ., (2009). 

The HIV/AIDS epidemic has had a major impact throughout the world. In December 

2007, the World Health Organization (WHO)/Joint United Nations Programme on 

HIV/AIDS (UNAIDS) estimated that there are 33 million people living with HIV. 

Most of these people are unaware of their HIV infection and, as a result, unknowingly 

contribute to the spread of the infection. 

The epidemic has disproportionately affected people residing in areas of the world 

that have fewer resources to combat the disease. The WHO/UNAIDS(2008) estimated 

that there were 2.7 million people who were newly infected with HIV in 2007 and 
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greater than 95% of these new infections occurred among persons residing in Low 

and Middle Income Countries (LMIC). Sub-Saharan Africa accounts for an estimated 

22 million cases of HIV/AIDS and has an estimated prevalence of 5% in adults ages 

15-49. In these LMIC, WHO/UNAIDS, (2008) says that the HIV/AIDS epidemic has 

often over-burdened the under-resourced health care infrastructure. It states that in 

addition to providing antiretroviral therapy to those with HIV infection, accurate 

diagnosis and appropriate treatment and prevention of HIV-associated opportunistic 

pneumonias are both important strategies for reducing the morbidity and mortality 

from HIV/AIDS.  

This thesis Mathematically Models HIV/AIDS and Pneumonia co-infection and 

formulates a model to test the effectiveness of control measures in controlling 

Pneumonia and managing HIV/AIDS. 

1.1.  BACKGROUND OF THE STUDY   

A mathematical model is a description of a system using mathematical concepts and 

language. The process of developing a mathematical model is termed mathematical 

modeling. According to Matt et al ., (2008) mathematical models are used not only in 

the natural sciences (such as physics, biology, medicine, earth science, meteorology) 

and engineering disciplines (e.g. Computer science, artificial intelligence), but also in 

the social sciences (such as economics, psychology, sociology and political science); 

engineers, statisticians, operation research, analysts and economists use mathematical 

models most extensively. Simple models have additional value as they are the 

building blocks of models that include more detailed structure. Detailed models are 

difficult to solve analytically and hence their usefulness for theoretical purposes is 

limited, although their strategic value may be high. 
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One of the early triumphs of mathematical epidemiology was the formulation of a 

simple model by Kermack W.O. and McKendrick that predicted behavior very similar 

to the behavior observed in countless epidemics. According to Matt et al ., (2008), 

The Kermack-McKendrick model is a compartmental model based on relatively 

simple assumptions on the rates of flow between different classes of members of the 

population. The basic compartmental models to describe the transmission of 

communicable diseases are contained in a sequence of 3 papers in Kermack W.O. and 

McKendrick in 1927, 1932 and 1933. The Kermack-McKendrick epidemic model is a 

special model. The general model included dependence on age of infection, that is, the 

time since becoming infected.  

According to Daley et al ., (1999) many of the early developments in the 

mathematical modeling of communicable diseases date back to the late 18
th
 century. 

The first known result in mathematical epidemiology is a defence of the practice of 

inoculation against smallpox in 1760 by Daniel Bernoulli, a member of a famous 

family of mathematicians (8 spread over 3 generations) who had trained as a 

physician. The first contributions to modern mathematical epidemiology are due to 

P.D En’ko between 1873 and 1894. According to  Daley et al ., (1999),  the 

foundations of the entire approach to epidemiology based on compartmental models 

was laid by Sir Ross R.A., W.H. Hamer, A.G. McKendrick , W.O Kermack and J. 

Brownlee (statistician). Dr Ross was awarded the second Nobel Prize in Medicine for 

his demonstration of the dynamics of the transmission of malaria between mosquitoes 

and humans. Daley et al ., (1999) state that after Ross formulated a mathematical 

model that predicted that malaria outbreaks could be avoided if the mosquito 

population could be reduced below a critical threshold level, field trials supported his 

conclusions and led to brilliant successes in malaria control. 
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According to Matt et al .,(2008) mathematical modeling now plays a key role in 

policy making, including health-economic aspects; emergency planning and risk 

assessment; control-programme evaluation; and monitoring of surveillance data. In 

research, it is essential in study design, analysis (including parameter estimation) and 

interpretation. 

With infectious diseases frequently dominating news headlines, public health and 

pharmaceutical industry professionals, policy makers, and infectious disease 

researchers, increasingly need to understand the transmission patterns of infectious 

diseases, to be able to interpret and critically-evaluate both epidemiological data, and 

the findings of mathematical modeling studies. Recently there has been rapid progress 

in developing models and new techniques for measurement and analysis, which have 

been applied to outbreaks and emerging epidemics, such as Influenza A (H1N1) and 

SARS. According to Matt et al ., (2008) a simple but powerful new technique for 

assessing the potential of different methods to control an infectious-disease outbreak 

was recently developed. 

1.2.   STATEMENT OF THE PROBLEM 

The HIV epidemic has been a major cause of morbidity and mortality worldwide. 

Among the HIV-associated pulmonary complications, opportunistic pneumonias are 

major causes of morbidity and mortality. The lungs are a principal target of human 

immunodeficiency virus (HIV)-associated complications and persons with HIV 

infection are at an increased risk for a wide spectrum of opportunistic pneumonias, 

neoplasms, and pulmonary conditions. The magnitude of the HIV/AIDS epidemic has 

led to an unprecedented worldwide effort to provide life-saving antiretroviral therapy 

and in addition to providing antiretroviral therapy to those with HIV infection, 
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accurate diagnosis and appropriate treatment and prevention of HIV-associated 

opportunistic pneumonias are both important strategies for reducing the morbidity and 

mortality from HIV/AIDS. The challenge of HIV infection is that the clinical and 

radiographic presentations of HIV-associated opportunistic pneumonias overlap and 

also that persons with HIV infection may present with more than one concurrent 

pneumonia.  

 Mathematical modeling in co-infection of HIV/AIDS and opportunistic infection is 

an area where most researchers are currently concerned. This is because mathematical 

models provide rigorous simulations to determine important parameters and 

effectiveness of various control strategies without necessarily carrying out clinical 

trials hence reducing time and costs. It is for this reason that in this thesis, we are 

concerned with Mathematical Modeling of HIV/AIDS and Pneumonia co-infection 

and formulating a model to test the effectiveness of  Treatment in controlling 

Pneumonia and  checking the effectiveness of Education in controlling the spread of 

HIV/AIDS. 

 

1.3.   OBJECTIVES OF THE STUDY  

 To determine equilibria quantities for the model and analyze stabilities of the 

full Pneumonia and HIV/AIDS co-infection model.  

 Modeling the effectiveness of Treatment of Pneumonia and the effectiveness 

of Education in controlling the spread of HIV/AIDS. 
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1.4.  SIGNIFICANCE OF THE STUDY  

The result of this study will be beneficial to the following parties:  

1.4.1. THE GOVERNMENT 

HIV/AIDS is a major concern to all governments. In Kenya, huge sums of money are 

used to find a lasting solution to HIV/AIDS pandemic and also loss of reproductive 

workforce and innocent children and mothers. Opportunistic infections including 

pneumonia are major killers. Effective management and treatment of pneumonia and 

government intensifying education on condom use and use of ARV’s can prevent the 

spread of HIV and prolong the lives of those infected by HIV/AIDS.  

Increase access of information to the public through education on control and 

management of Pneumonia and HIV/AIDS co-infection. 

1.4.2. OTHER RESEARCHERS 

Mathematically model HIV/AIDS and other opportunistic infections with a view to 

notifying health authorities of effectively treating opportunistic infections and 

providing ARV’s. 

Research on the effectiveness of these and other control measures in Kenya. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 INTRODUCTION TO SIMPLE EPIDEMIC MODELS 

This chapter starts with the simplest theoretical epidemiological models relating to 

both Pneumonia and HIV/AIDS. This chapter presents the mathematical equations 

describing these models, together with the kinds of model analyses that have proved 

useful to epidemiologists. These approaches encompass both deterministic and 

probabilistic frameworks.  According to Matt et al., (2008), the preliminary models 

will ignore a number of well-known and important heterogeneities such as differential 

susceptibility to infection, contact networks, variation immunological responses and 

transmissibility.  

According to Earn et al ., (1998), the process of modeling in epidemiology has the 

ultimate aim of attempting to understand the prevalence and distribution of a species, 

together with the factors that determine incidence, spread and persistence. Diets 

(1967) state that in epidemiological models, each individual host is considered as a 

patch of resource for the pathogen, with transmission and recovery analogous to 

dispersal and extinction. 

In this chapter Pneumonia is presented as a S.I.R (Susceptible-S, Infectious-I and 

Recovered-R) model while HIV/AIDS is presented as both a S.I. fatal infection model 

and a S.I.R. (Susceptible-S, Infectious-I and Removed-R) model. 
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2.2 THE PNEUMONIA S.I.R MODEL 

Pneumonia is an example of an infectious disease categorized as acute. The term 

acute refers to “fast” infections, where relatively rapid immune responses remove 

pathogens after a short period of time (days or weeks). The development of models 

focusses on acute infections, assuming the pathogen causes illness for a period of time 

followed by lifelong immunity. According to Diets (1967), this is mathematically best 

described by the S-I-R models. This formalism, which was initially studied in depth 

by Kermack et al .,(1927), categorizes hosts within the population as Susceptible (S), 

Infected (I) and Recovered (R).  

This epidemic model divides the host population (humans) into a small number of 

compartments, each containing individuals that are identical with respect to the 

disease in question. According to Brauer et al ., (2008), the SIR model contains  3 

compartments: 

1. Susceptible (S): Individuals, who have no immunity to the infectious agent, so 

might become infected if exposed. 

2. Infectious (I): individuals who are currently infected. 

3. Recovered (R): individuals who have successfully cleared the infection. 

The progression from S to I involves disease transmission which is determined by 3 

distinct factors: the prevalence of infected, the underlying population contact structure 

and the probability of transmission given contact.  

 

  

 

 

S 

 

I 

 

R 
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Figure 2.1. Flow diagram illustrating the essential epidemiological characteristics 

(Source: Brauer et al., 2008) 

The force of infection  is defined as the per capita rate at which individuals contract 

the infection. The transmission term is described by SI  . 

2.2.1 THE PNEUMONIA SIR MODEL WITHOUT DEMOGRAPHY 

To introduce the model equations, we consider a “closed population” without 

demographics (no births, deaths or immigration). We also assume homogeneous 

mixing, where intricacies affecting the pattern of contacts are discarded, yielding 

SI as the transmission term. According to Matt et al., (2008) since underlying 

epidemiological probabilities are constant, we get the following SIR equations: 

    

 (2.1) 

 

dI
SI I

dt
           

 (2.2) 

dR
I

dt
          

 (2.3) 

The parameter   is called the removal or recovery rate. Its reciprocal, 
1


 determines 

the average infectious period.  

dS
SI

dt
 
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Using S, I and R to represent proportions, S+I+R =1, hence knowing S and I will 

allow us to calculate R. These equations have the initial conditions 

     0 0, 0 0and 0 0.S I R    

Despite its extreme simplicity, the model equations (2.1) to (2.3) cannot be solved 

explicitly. An exact analytical expression for the dynamics of S and I cannot be 

obtained through time. The model is solved numerically. 

2.2.2 THE THRESHOLD PHENOMENON 

According to Matt et al., (2008) ,“Threshold phenomenon” by Kermack and 

McKendrick (1927) of equations (2.1) to (2.3) states that if the initial fraction of 

susceptibles   0 is less than , then 0
dI

S
dt




  and the infection “dies out”. 

We can re-write equation (2.2) in the form   
dI

I S
dt

      

 (2.4) 

Hamer, W.H., (1897 ) states that initially the proportion of susceptibles in the 

population must exceed this critical threshold for an infection to invade. Alternatively, 

we can interpret this results as requiring 



, the relative removal rate, to be small 

enough to permit the disease to spread. 

2.2.3 THE BASIC REPRODUCTION RATIO, 0R  

The basic reproductive ratio 0R is the inverse of the relative removal rate and is one of 

the most important quantities in epidemiology. Diekman et al., (2000) defines the 

basic reproduction number as the average number of secondary cases arising from an 

average primary case in an entirely susceptible population. The basic reproductive 
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ratio 
0R measures the maximum reproductive potential for an infectious disease. 

Lloyd-Smith et al ., (2005) states that assuming everyone in the population is initially 

susceptible,  0 1S  . A pathogen can invade if only 
0 1.R  Any infection, on 

average, which cannot successfully transmit to more than one new host is not going to 

spread. 

Anderson et al .,(1982) state that due to difference in demographic rates, rural-urban 

gradients and contact structure, different human populations may be associated with 

different values for the same disease. The value of 
0R depends on both the disease and 

the host population. According to Anderson et al., (1982), 
0R is the rate at which new 

cases are produced by an infectious individual (when the entire population is 

susceptible) multiplied by the average infectious period: 

i) For an infectious disease with an average infectious period given by 
1


and a 

transmission rate 0, its basic reproductive ratio isdetermined by .R





 

ii) In a closed population, an infectious disease with a specified 0R   value can 

invade only if there is a threshold fraction of susceptible cases greater than 

0

1

R
. 

iii) Vaccination can be used to reduce the proportion of susceptible cases  below 

0

1

R
and hence eradicate the disease.  
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2.2.4 EPIDEMIC BURNOUT 

 The above observations are informative about the initial stages, after an infectious 

agent has been introduced. We can also learn about the long-term (or asymptotic 

state). Dividing equation (2.1) by (2.3): 

0

dS S
R S

dR




            

 (2.5) 

Upon integrating with respect to R, we obtain 

      00
R t R

S t S e


         

 (2.6) 

assuming . 

As the epidemic develops, the number of susceptibles declines and with a delay to 

take the infectious period into account, the number of recovered increases. S always 

remains above zero because 0RR
e
 is always positive. There will always be some 

susceptibles in the population who escape infection. From this simple model, the 

chain of transmission breaks due to the decline in infectives, not due to a complete 

lack of susceptible. 

According to Waltman., (1974), this approach to model analysis can shed light on the 

fraction of the population who eventually contract an infection. The author says that it 

is possible to remove the variable I from the system by dividing equation (2.1) by 

(2.3). By definition, S+I+R =1 and the epidemic ends when I =0. Equation (2.6) can 

be rewritten  as: 
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             0 01 0 1 0 0
R R R R

S R S e R S e
   

            

 (2.7) 

Where  R  is the final proportion of recovered individuals, which is equal to the 

total proportion of the population that get infected. 

2.2.5 THE PNEUMONIA S.I.R. MODEL WITH DEMOGRAPHY 

The aim is to explore the longer-term persistence and endemic dynamics of an 

infectious disease, then demographic processes will be important. The most important 

ingredient necessary for endemicity in a population is the influx of new susceptibles 

through births. 

Brauer  (2002), introduces demography into the SIR model by assuming that there is a 

natural host “life-span”, 
1


years and the rate at which individuals (in any 

epidemiological class) suffer natural mortality is given by μ (This factor is 

independent of the disease). It is assumed that mortality acts only on the recovered 

class.  

Putting all these assumptions together, we get the generalized SIR model:

 

 

dS
SI S

dt
             

 (2.8)
dI

SI I I
dt

            

  (2.9) 

dR
I R

dt
                       

(2.10) 
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Hethcote (2000) says that maternally derived immunity needs to be explicitly 

incorporated into models.  

 If we assume that the entire population is susceptible (S =1), then the average number 

of new infections per infectious individual is the transmission rate multiplied by the 

infectious period: 

0R


 



          

 (2.11) 

This model has proved very useful for: 

1. Establishing disease prevalence at equilibrium. 

2. Determining the conditions necessary for endemic equilibrium stability. 

3. Identifying the underlying oscillatory dynamics and predicting the threshold 

level necessary for eradication. 

2.2.6 EQUILIBRIUM ANALYSIS 

The dynamics of the system is governed by n coupled Ordinary Differential Equations 

(ODEs in the SIR equations are 3): 

 1 2, ,..., , 1,2,...,i
i n

dN
f N N N i n

dt
         (2.12) 

Mathematical results have established that for a series of equations (2.12), the stability 

of an equilibrium point is determined by the sign of the eigenvalues of the Jacobian 

matrix. For a system of n ODEs, there will be n eigenvalues and stability is ensured if 

the real part of all eigenvalues are less than zero.  
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A Jacobian matrix, J is given by: 

* * *

1 1 1

1 2

* * *

2 2 2

1 2

* * *

1 2

...

...

. . . .

. . . .

. . . .

...

n

n

n n n

n

f f f

N N N

f f f

N N N

J

f f f

N N N

   
 
   

   
 
   

 
 
 
 
 
   
 
   

  

*

if  refer to the functions  1 2, ,...,i nf N N N evaluated at equilibrium. The eigenvalues 

i are the solutions of det   0iJ I 
 
where I is the identity matrix of the same order 

as J. 

Applying these ideas to the SIR system of equations,  Jacobian is worked out: 

 

* *

* *

0

0

0

I S

J I S

  

   

 

   
 

   
  

  

To obtain the characteristic polynomial, we subtract i  from the diagonal elements 

and calculate the determinant. This gives: 

         * * * * 0I S I S                         

 (2.13) 

Solving equation (2.13) at DFE, gives the solutions as: 

 1 2 3and                   

 (2.14) 

For this equilibrium to be stable, we need to ensure all eigenvalues are negative. For a 

system of n ODEs, there will be n eigenvalues  less than zero – these eigenvalues are 

usually complex numbers. This is to ensure that a small perturbation from the 
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equilibrium eventually does not grow. Hence the stability criterion becomes 

,     which translates into ensuring  
0 1R  . 

The endemic equilibrium is feasible only when 
0 1R   but it is always stable.  

Endemic equilibrium is obtained by setting (2.9) to 0 i.e.  

   0I S              

 (2.15) 

One universal condition on population variables is that they cannot be negative. 

Endemic equilibrium is biologically feasible if 
0 1R  . Utilizing * * * 1S I R    , the 

endemic equilibrium condition is given by: 

     * * *

0 0

0 0

1 1
, , , 1 ,1 1S I R R R

R R

 

 

 
     
 

     

 (2.16) 

The equilibrium is approached via oscillatory dynamics. The period of these damped 

oscillations, T, is: 

2T AG           

 (2.17)  where A is the Transmission rate and G is the infectious period where 

 0

1
denotes the mean ageat infection and

1
A

R



G determines the typical period of 

a host’s infectivity and is given by 
1

.G
 




 

2.2.7 OSCILLATORY DYNAMICS 

According to Matt et al .,., (2008), an important issue for any dynamical system 

concerns the manner in which a stable equilibrium is eventually approached. The SIR 

system is an excellent example of a “damped oscillator”, which means the inherent 

dynamics contain a strong oscillatory component, but the amplitude of these 
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fluctuations declines over time as the system equilibrates. From (2.17), the period of 

oscillations changes with the transmission rate and the infectious period. The period 

of oscillations becomes longer as the reproductive ratio approaches one; this is also 

associated with a slower convergence towards the equilibrium. 

2.2.8 MEAN AGE AT INFECTION 

According to Anderson et al ., (1991), the mean age at infection is the mean time 

from birth to infection. The average period spent in the susceptible class (is the 

inverse of the force of infection) is 
*

1

I
 . 

We calculate the average age at which susceptibles are infected by taking (2.8) and 

calculating the mean time an individual remains susceptible (the mean time from birth 

to infection). Upon substituting for 
*I  from (2.17), the mean age at infection  1A is 

obtained as 
 

1

0

1

1
A

R



         

 (2.18) 

This equation can be rephrased as 0

1

1
L

R
A

   where L is the host’s life expectancy. 

 

2.2.9 INFECTION-INDUCED MORTALITY 

According to Matt (2008), numerous infectious diseases including Pneumonia are 

associated with mortality risk. We incorporate a mortality probability into the SIR 

model. This is the probability,   , of an individual in the I class dying from the 

infection before either recovering or dying from natural cases. This quantity is 

estimated from clinical studies or case observations. Mathematically, this translates to 

the following equation:  
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   
1

dI
SI I I

dt


    


    


      

 (2.19) 

In order to convert this to a mortality rate, set  
1

m


 


 


. 

 The equation for the infection dynamics give  

 
dI

SI I mI
dt

                

 (2.20) 

Note that as  approaches unity, new infectives die almost instantaneously and 

0R drops to zero. 

 

2.3   AIDS: FATAL INFECTIONS 

Here infecteds are assumed to remain infectious for an average period of time 
1



 
 
 

 , 

after which they succumb to an infection. 

 

 

 

 

Figure 2.2.0: The SI model: (Source: Brauer et al., 2008) 

 

Assuming frequency-dependent transmission, the equations describing the SI model 

are: 

 

S 

 

I 
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dS SI
v S

dt N


            

 (2.21) 

 
dI SI

I
dt N


             

 (2.22) 

 

  

 

* *

0

Theendemicequilibrium , is feasibleas long as

1andisalways locallystable.

vv
S I

R

  

     



 

 
 

  

 


  

Assuming pseudo mass-action transmission, such that the contact rate scales with 

density, we obtain: 

dS
v SI S

dt
             

 (2.23) 

 
dI

SI I
dt

              

 (2.24) 

For this system, the endemic equilibrium  
* *and

v
S I

  

   


  


is feasible 

as long as 
 

0 1
v

R


  
 


 and is always locally stable. 

2.3.1 HIV/AIDS  WITHOUT IMMUNITY: THE S.I.S. MODEL 

Numerous infectious diseases including HIV/AIDS confer no long-lasting immunity. 

Individuals get infected multiple times throughout their lives with no apparent 

immunity.  



22 
 

 
 

 

  

 

 

Figure  2.2.1: The S.I.S. model:  

These SIS models shown in Figure 2.2.1. are described by a pair of coupled ordinary 

differential equations: 

dS
I IS

dt
            

 (2.25) 

dI
SI I

dt
            

 (2.26) 

2.3.2 RISK-STRUCTURE: SEXUALLY TRANSMITTED INFECTIONS 

The concepts of modeling population heterogeneity with the particular examples of 

sexually transmitted infections and 2 groups (high risk and low risk) are introduced. 

In Garnett et al ., (2000), The two-class model demonstrates the necessary tools and 

techniques.  Garnett et al .,(2000), states that HIV/AIDS is an epidemic since 1983 

and this has prompted research activity focussed on modelling these STIs and 

asserting effective means of control.  

 

S 

 

I 
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2.3.2.1 MODELING RISK STRUCTURE 

The sets of equations are derived for the various risk groups within the population and 

from these equations develop a robust generic framework to explain the interaction 

between risk and epidemiological dynamics as shown in Figure 2.2.2.1. 

 

 

 

 

 

 

 

 

Figure  2.2.2.1: High-Risk and Low-Risk groups  (Source: Matt et al., 2008). 

 

The number of susceptible and infectious group within the group are denoted by 

andH HS I  respectively and the total number in the high-risk group by .H H HN S I   

Using a frequency approach, andH HS I  refer to the proportion of the entire 

population that are susceptible or infectious respectively. A disease free population 

has 1H HS n  . The dynamics of either group is derived from two basic events, 

infection and recovery. (We do not allow the movement of individuals between risk 

groups). We let HH  denote transmission to high risk from high risk, HL  denote 

transmission to low risk from high risk and  LL  denote transmission to low risk from 

 

S 

 

I 

 

S 

 

I 
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low risk. Putting these elements together, we arrive at the following differential 

equation: 

H
HH H H HL H L

dI
S I S I

dt
           

 (2.28) 

L
LH L H LL L L

dI
S I S I

dt
           

 (2.29) 

There are 4 transmission parameters represented by a matrix   called the 

WAIFW(Who Acquires Infection From Whom) matrix: 

HH HL

LH LL

 


 

 
  
 

  

This matrix is a convenient way of capturing the mixing between different social 

groups. 

2.3.2.2 INITIAL DYNAMICS 

For unstructured models, the simple parameter   was vital in determining the basic 

reproductive ratio, 0R  and hence the rate of increase in infection following invasion. 

Heesterbeck (2002), says that to calculate the actual value of 0R , an eigenvalue 

approach is required to deal with the recursive nature of transmission. The initial 

behaviour of a structure model depends on the initial conditions, not just  0R . 

 



25 
 

 
 

2.3.2.3 EQUILIBRIUM PREVALENCE 

This is the calculation of the prevalence of infection at equilibrium. Mathematically, 

this is  where the rates of change are zero. 

   

   

Remembering that , we need tosolve:

0 ,

0 .

H H H

HH H H H HL H H L H

LH L L H LL L L L L

S n I

n I I n I I I

n I I n I I I

  

  

 

    

    

  

These equations contain quadratic terms and hence analytic solution is impossible. 

We solve the above equilibrium equations numerically or by iterating the model 

forward to find the equilibrium levels. 

2.3.2.4 GENERALIZING THE MODEL 

The matrix formulation of   can be adapted to model the interaction of multiple 

groups (eg high-, medium- and low-risk groups). Infected individuals in group i obey 

the following differential equation: i
ij i j i i

j

dI
S I I

dt
        

  (2.30) 

where the matrix form of   is used to parameterise transmission between the groups. 

The contact rates are specified as a matrix of values. We specify the number of 

infected (or susceptible ) individuals in each class as a vector. The full set of 

equations becomes: 

dI

dt
S I I 

  

 
    

 
 ,where    is the Kronecker product which refers to the 

piecewise multiplication of 2 vectors. If 0R >1, the infection can successfully invade. 

If 0R <1, the infection will always die out.  
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2.3.2.5 AGE-STRUCTURED EPIDEMIC MODELS 

 In the S.I.R. model, there are 3 compartments: 

1. Susceptible (S):individuals who become infected if exposed. 

2. Infectious (I): individuals who are currently infected and can transmit the 

infection to susceptible individuals whom  they get in contact with. 

3. Removed (R): individuals who are immune to the infection. 

Ianneli., (1995) supposes an age-structured population in which there is an infectious 

disease of S.I.R. type. We introduce functions 

       , , , , , ,S t a I t a R t a and t a representing the age distribution  a  at time t of 

susceptible, infective, removed members and disease prevalence  respectively so that  

       , , , ,S t a I t a R t a t a     

The rate of change in time of a function  ,S t a  of time and age is    , ,t aS t a S t a   

The following system of equations describes the transmission dynamics of the disease 

in the age-structured population: 

         

               

           

, , , , ,

, , , , , ,

, , , , .

t a

t a

t a

S t a S t a a t a S t a

I t a I t a t a S t a a a a I t a

R t a R t a a R t a a I t a

 

   

 

     

      

   

  

Here  a is the natural death rate in each class,  a is the recovery rate which in 

the HIV/AIDS case is 0,  a is the disease death rate and  ,t a is the infection 

rate. 

To this system of p.d.e’s we must add the initial conditions: 
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         0, , 0, , 0, 0S a a I a a R a          

 (2.31) 

where and   are the initial conditions of susceptibles and infectives respectively. 

In addition, the birth or renewal condition is given by: 

     
0

,0 ,S t a t a da 


          

 (2.32) 

Further analysis requires some assumption on the nature of the infection term  , .t a  

One possibility is intracohort mixing given as,      , ,t a f a I t a   corresponding to 

the assumption that infection can be transmitted only between individuals of the same 

age.  

Another possibility is intercohort mixing,      
0

, , ,t a b a I t d   


   , with 

 ,b a   giving the rate of infection from contacts between an infective of age   with 

a susceptible of age a  . 

2.3.4 A SIMPLE AGE-STRUCTURED S.I.A. AIDS MODEL: 

The population is divided into the groups of susceptibe individuals, infective 

individuals and the AIDS cases, denoted by S, I and A respectively. A simple age-

structured epidemic model is considered  in which HIV/AIDS is spread in a 

population of ages  0,a   , where 0a  is the minimal sexually active age. Assume that 

there is an input flow,  a  for all ages a  , entering only the susceptible group. We 
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further assume that the number of susceptible of age   
0a  is a constant B and that no 

individuals with age 
0a  are infected yet.  

Let  a be the natural death rate of all individuals in the population,  a be the 

HIV developing rate for infective individuals and  a is the AIDS induced death 

rate of AIDS cases. 

According to Hyman et al.,(1994), the transmission dynamics are governed by the 

following system of equations: 

            

 

   

              

 

   

           

 

 

0

0

0

( ). , , , ,

( ). , ,

( ). 0, ,

( ). , , , , ,

( ). , 0,

( ). 0, ,

( ). , , , , ,

( ). , 0,

( ). 0, 0,

t a

t a

t a

i S t a S t a a a t a S t a

ii S t a B

iii S a a

iv I t a I t a a a I t a t a S t a

v I t a

vi I a a

vii A t a A t a a A t a a I t a

viii A t a

ix A a

 



  



 

    





    





   





   (2.33) 

where   and   are the initial distributions and infectives respectively.  

The infection rate is determined by: 

       
 
 0

/

/ / /

/

,
, , , ,

,a

I t a
t a r a a a t a a da

T t a
  



       (2.34) 

where       , , ,T t a S t a I t a  is the total number of sexually active individuals, 

 r a is the number of partners that an individual of age a  has per unit of time, 



29 
 

 
 

 /,a a is the transmission probability of a susceptible individual of age a infected 

by an infected partner of age 
/a  and  /, ,a a t is the rate of pair formation between 

individuals of ages /and .a a   

The transmission probability is described by      / /,a a f a g a  , where  f a  is 

the susceptibility of individuals of age  /anda g a is the infectiousness of individuals 

of age 
/ .a  Then: 

         
 
 

 
0

/

/ / /

/

,
, , , 2.35

,a

I t a
t a r a f a g a t a a da

T t a
 



 

The Reproduction number in mathematical epidemiology determines whether an 

infectious disease spreads in a susceptible population when the disease is introduced 

into the population.  

According to Jacques et al .,(1991), Reproduction number is derived by determining 

the condition for local stability of the infection-free equilibrium. Model (2.33) has an 

infection-free equilibrium, 

0( , , ) ( ( ),0,0)S I A S a                   

(2.36) 

where 

0

0 ( ( ) ( ) ( )( ) ( )) M M

a

x

a

a xa Be M eeS xa d      with 

0

( )) .(

a

a

S dSM a    
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2.4 THE CONTROL OF EPIDEMICS 

According to Daley et al .,(1999), one of the purposes of modeling epidemics is to 

provide a rational basis for policies designed to control the spread of a disease. We 

consider two models for epidemics to illustrate possible prevention policies of:  

a) Control of  Pneumonia by Treatment. 

b) Control of spread of HIV/AIDS epidemic by Education Awareness Campaign. 

Modelling is of vital importance in evaluating the likely effects of spreading a disease 

deliberately as a means of biological control. Often the data available to decision 

makers are inadequate, as for example in the case of HIV/AIDS in Africa or South 

East Asia. Yet policies need  to be formulated, if only on the basis of rough qualitative 

measures. One may, for example, need to know the likely effects of spending funds 

on two alternative policies, or the optimal method of immunizing a population. Here, 

exact models may not be easy to formulate, though one tries to make all modeling as 

realistic as possible. Accurate data may be impossible to obtain, but one should 

always be in a position to minimize the cost of a policy or to compare the effects of 

policy A against those of policy B.  Examination of the control methods discussed in 

this chapter shows that they use and extend the simple methods discusssed previously.  

When a policy depends on a single variable, it is relatively easy to minimize the cost. 

If two policies are to be compared, one can examine their respective costs and choose 

the cheaper policy. Alternatively, if the criterion is not cost, one can rank the policies 

with respect to the criterion selected. The control methods we describe are in terms of 

the general model with pairwise transmission  rate β and removal rate γ. 
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According to Fenner et al., (1988), strategies are aimed at one or more of the 

following results: 

 Depressing the number of susceptibles in the population and where possible, 

to below the threshold level 1







described in the Kermack-McKendrick 

criticality theorem. 

 Accelerating the rate of removal of infectives to reduce their mixing with the 

population of  susceptibles i.e. decreasing β thereby increasing  ρ1 . 

 Lowering the pairwise rate of infectious contact between infectives and 

susceptibles (i.e. decreasing β thereby increasing  ρ1). 

For example, Treating  some or all of the population reduces the initial number S0 

of susceptibles; operating a screening program or raising public awareness of higher 

disease prevalence may raise γ or lower β (or both); discouraging the assembly of 

large crowds reduces β. 

According to Fenner et al ., (1988), immunization has long been used as a method for 

controlling the spread of an epidemic. The fact that parents are sometimes lax in 

ensuring that their children are immunized against preventable diseases like 

pneumonia (especially bacterial pneumonia)  has resulted in their  random recurrence. 

In considering immunization as a technique for controlling the spread of a disease, at 

least two policy questions arise, both subsumed in the pursuit of maximum effect with 

minimum effort: 

a) How widespread can (or, should) the immunization be, and 
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b) Which susceptibles should be immunized for this effort to produce the best 

effect (e.g. should individuals be immunized at random, or should groups such 

as schools or families be targetted)? 

These questions involve detailed modelling of the population where the immunization 

takes place, and in estimating its effect given some description of how the disease 

spreads. If infection spreads homogeneously through the population, then question (b) 

is void. Any quasi-realistic description of the spread of contagious infection usually 

requires recognition that the population  in which the process occurs is 

inhomogeneous. Yet even when the population is subdivided into groups of 

individuals belonging to different strata, those in a given strata are assumed to mix 

homogeneously amongst themselves and to behave similarly towards individuals of 

other srata. The neutral term ‘stratum’  describe such sub-populations within which 

individuals are regarded as identical apart from their disease status, noting that it may 

cover spatial variability or distinct social behaviour. Anderson et al ., (1991), describe 

an optimal immunization strategy within a spatially heterogeneous population.   

Becker and Dietz (1995,1996) have considered a population of a number of smaller 

units (households, clubs or schools) and computed the effects of different strategies 

determined by the characteristics of these units. The four particular strategies they 

discussed were: 

(i) Random immunization of individuals; 

(ii) Households chosen at random and all their members immunized; 

(iii)Preferential selection of large households for immunization; 

(iv) Immunization of a fixed fraction of members in every household. 
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The AIDS epidemic has spread rapidly throughout the world. But its effect has been 

more limited in countries where a campaign for information and education has been 

sponsored by the state or by a foundation eg in Switzerland. 

According to Daley et al.,(1999), a ‘STOP-AIDS’ advertising campaign launched in 

February 1987 by the Swiss AIDS Foundation to provide the population with detailed 

knowledge of the AIDS infection and its spread, and to discourage risk-prone 

behaviour by recommending the use of condoms in sexual contacts with multiple or 

casual patners, mutual faithfulness between sexual partners, and the use of clean 

needles in drug usage(i.e. no exchanges between users). 

O’Neill (1995), has also studied epidemic models in which behavioural change plays 

a role. 
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CHAPTER THREE 

METHODOLOGY 

 

3.1. MODEL DESCRIPTION OF PNEUMONIA AND HIV/AIDS INFECTIONS 

This section discusses the Pneumonia and HIV/AIDS model. It is assumed that the 

Pneumonia and HIV/AIDS model is similar to the HIV/AIDS and Tuberculosis co-

infection model as discussed by Bhunu et al ., (2009) and the HIV/AIDS and Malaria 

co-infection model in Sub-Saharan Africa by Kamal et al ., (2007). 

3.2. PNEUMONIA AND HIV/AIDS CO-INFECTION MODEL DESCRIPTION  

The model subdivides the human population into the following sub-population of 

susceptible individuals (S), those individuals infected with Pneumonia (  ), those 

who have recovered from Pneumonia ( ), those infected with HIV-only but showing 

no clinical symptoms of AIDS ( ), HIV-infected displaying AIDS symptoms ( ), 

HIV-infected individuals (pre-AIDS) class displaying Pneumonia symptoms (  ), 

and AIDS individuals dually infected with Pneumonia (  ). It is assumed that 

susceptible humans are recruited into the population at per capita rate . Susceptible 

individuals acquire HIV infection following contact with HIV-infected individuals at 

a rate  and acquire Pneumonia infection at a rate p .  

The total population size at time  is  and is given by 

 

3.2.1. PARAMETERS OF THE MODEL 

This section gives the parameters used in developing the model. 
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: Recovery rate from Pneumonia 

:  Natural death rate of persons in all classes. 

  Relative infectiousness of individuals infected with Pneumonia 

: Relative infectiousness of dually infected victims. 

:  Relative infectiousness of all HIV cases 

:  Relative infectiousness of all AIDS classes 

:  Increased susceptibility to Pneumonia due to HIV infection 

:  Increased susceptibility to HIV after recovery from Pneumonia Infection 

: Effective contact rate of HIV infection 

: Effective contact rate of Pneumonia infection 

:  Force of Pneumonia re-infection 

:  Increased HIV infection rate of Pneumonia infectives 

:  Accelerated Pneumonia death rate 

:  Rate of HIV progression to AIDS 

:  Progression rate to AIDS for HIV victims exposed to Pneumonia 

:  AIDS accelerated death rate 

e:  Education parameter in managing the spread of HIV/AIDS infection. 

tr:  Treatment parameter in controlling the spread and healing Pneumonia 

infection. 

HIV force of infection  

Pneumonia force of infection  

The above-mentioned 2 forces of infection are derived.  
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3.2.2. ASSUMPTIONS 

The following assumptions are used  in the analysis of the model: 

Pneumonia undergoes SIR 

HIV undergoes Susceptible Exposed Infected AIDS (SEIA) stages. 

AIDS cases are seriously sick and cannot contribute to new HIV infectives 

The model assumes a closed population with no migration. 

The model is not an age-structured model. 

3.2.3. MODEL EQUATIONS  

The model equations  are derived from the flow chart in Figure 3.1. below. 

   

   

   

     

 (3.1) 

   

   

   

 Where ( 
/ 
) denote differentiation with respect to time. 
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Figure  3.1: HIV-Pneumonia Co-infection Flow chart (Source: Author, 2012) 

 

 

3.2.4. INITIAL CONDITIONS 

All the 7 variables are positive. 

   

(3.2) 

 

3.2.5. REGION OF STUDY 

 

This model studies Heptagonal (seven) positive region given as  

           

(3.3) 

Which is positively invariant with respect to the model system (3.1).  

3.2.6. POSITIVITY AND BOUNDEDNESS OF SOLUTIONS 

The model system (3.1) describes human population. It is necessary to prove that all 

the variables  are non-negative 

for all time. Solutions of the model system (3.1) with positive initial data remain 

positive for all time 0t   and are bounded in .  

Theorem 1. Let 

             0, 0, 0, 0, 0, 0, 0p P H H PH APS t I t R t I t A t I t A t       . The 

solutions  of the model system 

(3.1) are positive for 0.t   For the model system (3.1), the region   is positively 

invariant and all the solutions starting in   either approach, enter or stay in   .  
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Proof:  

Under the given initial conditions, it is easy to prove that the components of solutions 

of the model system (3.1) are positive; if not, we assume a contradiction: that there 

exists a first time 

1 :t

                 /

1 10, 0, 0, 0, 0, 0, 0, 0, 0p P H H PH APS t S t S t I t R t I t A t I t A t        

for 
10 t t  or there exists a 

2t : 

                 /

2 20, 0, 0, 0, 0, 0, 0, 0, 0P P p P H H PH API t I t S t I t R t I t A t I t A t        

for 
20 t t   

Or there exists a 
3t : 

                 /

3 30, 0, 0, 0, 0, 0, 0, 0, 0P P p P H H PH APR t R t S t I t R t I t A t I t A t        

for 
30 t t   

Or there exists a 4t : 

                 /

4 40, 0, 0, 0, 0, 0, 0, 0, 0H H p P H H PH API t I t S t I t R t I t A t I t A t        

for 40 t t   

Or there exists a 5t :  

                 /

5 50, 0, 0, 0, 0, 0, 0, 0, 0H H p P H H PH APA t A t S t I t R t I t A t I t A t        

for 50 t t   

Or there exists a 6t : 

                 /

6 60, 0, 0, 0, 0, 0, 0, 0, 0PH PH p P H H PH API t I t S t I t R t I t A t I t A t        

for 60 t t   

Or there exists  a 

7t :
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                 /

7 70, 0, 0, 0, 0, 0, 0, 0, 0AP AP p P H H PH APA t A t S t I t R t I t A t I t A t        

for 
70 t t  . 

Evaluating the first equation of system (3.1) at , we obtain; 

 (  is positive  and thus a contradiction. We therefore state that there 

exist no such first time and thus  for all .  

In the second case, we have       /

2 2 2 0P P PI t S t R t    which is a 

contradiction meaning that   0PI t  for all 0t  . 

In the third case,    /

3 3 0P PR t I t   which is a contradiction meaning that 

  0PR t   for all 0t  . 

In the fourth case,      /

4 4 4 0H H H PI t S t R t     which is a contradiction 

meaning that   0HI t  for all 0t  . 

In the fifth case,      /

5 5 5 0PH P H H PI t I t I t    which is a contradiction 

meaning that   0PHI t   for all 0t  . 

In the sixth case,    /

6 6 0H HA t I t  which is a contradiction meaning that 

  0HA t  for all 0t  . 

In the seventh case,      /

7 7 7 0AP PH P HA t I t A t    which is a contradiction 

meaning that   0APA t  for all   0t  .  

3.2.7. BOUNDEDNESS 

Note that equation (1) of system (3.1) can be expressed in form of an inequality as 

shown below; 
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 (3.4) 

By separation of variables, the solution of (3.4) is given by,  

                                

 (3.5) 

For  the solution of equation (3.5) is always positive and 

bounded above by  for all positive time, . 

Equation (2) of system (3.1) can be expressed in the form of an inequality as: 

 /

P H P p PI I d I             

 (3.6) 

By separation of variables, the solution of (3.6) is given by  

        

0

H Pd t

P PI t I e
     

       

 (3.7)  

for 0 1H Pd       . The solution of (3.7) is always positive and bounded 

above 
0PI for all positive time,  . 

Equation (3) of system (3.1) can be expressed in the form of an inequality as: 

 /

P H P PR R            

 (3.8) 

By separation of variables, the solution of (3.8) is given by  
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   

0

H P t

P PR t R e
    

       

 (3.9) 

For 0 1H P      . The solution of (3.9) is always positive and bounded 

above 
0PR for all positive time,  . 

 Equation (4) of system (3.1) can be expressed in the form of an inequality as: 

 /

H P H HI I I            

 (3.10) 

By separation of variables, the solution of (3.10) is given by  

   

0

P t

H HI t I e
    

        

 (3.11)  

for 0 1P      . The solution of (3.11) is always positive and bounded above 

0HI for all positive time,  . 

 Equation (5) of system (3.1) can be expressed in the form of an inequality as: 

 /

PH P PHI d I           

 (3.12) 

By separation of variables, the solution of (3.12) is given by  

   

0

Pd t

PH PHI t I e
   

         

 (3.13)  
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for 0 1Pd     . The solution of (3.13) is always positive and bounded above 

0PHI for all positive time,  .  

Equation (6) of system (3.1) can be expressed in the form of an inequality as: 

 /

H P A HA d A           

 (3.14)        By separation of variables, the 

solution of (3.14) is given by  

   

0

P Ad t

H HA t A e
   

         

 (3.15)  

for 0 1P Ad     . The solution of (3.15) is always positive and bounded 

above 
0HA for all positive time,  . 

 Equation (7) of system (3.1) can be expressed in the form of an inequality as: 

/ ( )AP A P APA d d A          

 (3.16) 

 By separation of variables, the solution of (3.16) is given by  

 
0

( )A Pd d t

AP APA t A e
  

         

 (3.17)  

for 0 1A Pd d    . The solution of (3.17) is always positive and bounded above 

0APA for all positive time,  . 
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3.3. EQUILIBRIUM POINTS 

Let  represent the system (3.1) expressed in vector notation, where  

              , , , , , ,
T

P P H H PH APX S t I t R t I t A t I t A t


 and   denotes transpose.  

Then equilibrium points are obtained by solving .  

3.3.1. Disease Free Equilibrium (DFE) 

In the absence of either disease, the DFE is obtained as, 

                             

 (3.18) 

3.3.2. Stability of the system at DFE 

Matrix of linearization about a fixed point is used to determine stability of the system 

at that fixed point by examining the sign of the eigenvalues. The system is stable if all 

the eigenvalues are bounded to the left of the imaginary axis. 

3.3.3. Linearization matrix  

This is obtained using equation (2.12) as; 
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 (3.19) 

where    and  

 

with  

 ,  

  

,  

  

  

  

  

  

  

  

  

  

  

Note that this is a 7X7 matrix since we are dealing with 7 equations. 
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3.3.4. Pneumonia only Model Equations 

Pneumonia force of infection can be expressed as   and the 

expressions for S
/
, / /andP PI R  are; 

   

     

 (3.20) 

   

 

3.3.4.1. Population  

The population N(t) can be expressed at any time t as  

 , and the Force of infection of Pneumonia infection as 

 

 

3.3.4.2. Equilibrium points 

3.3.4.2.1. Disease Free Equilibrium (DFE) 

The DFE of Pneumonia infection is written as 

       

 (3.21) 

 Stability of  DFE 

This is obtained by evaluating linearization matrix about the fixed point (DFE) 
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 (3.22) 

where . 

The equilibrium point of system (3.20) is stable if all the eigenvalues of  evaluated 

at DFE are negative. Stability matrix (3.22) evaluated at DFE yields 

     

 (3.23) 

 

The eigenvalues of  are; 

 

Clearly, the first and the third eigenvalues are negative. The system is stable if the 

second eigenvalue is negative.  

 That is,   or  

 

       

 (3.24) 
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This condition implies that the eigenvalues of the linearization matrix  are all 

negative and the system (3.20) is locally asymptotically stable at DFE. 

3.3.4.2.2. Endemic Equilibrium Point (EEP) 

With the assumption that the Pneumonia recovered class have equal likely hood as 

those who have not contracted Pneumonia before, to be re-infected with Pneumonia, 

that is, ,  we have the endemic equilibrium point (EEP) defined as; 

    

 (3.25) 

where .  

Stability of EEP 

The EEP is stable if the eigenvalues of the Jacobian matrix linearized about EEP has 

all eigenvalues with the real part less than zero. 

Using matrix (3.22), the stability matrix is written as; 
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 (3.26) 

The first eigenvalue of the stability matrix  in (3.26)  is given by the 

characteristic roots of the equation  

 

The characteristic roots are all negative if  and .  

This result can be summarized in the following lemma. 

Lemma 1.  

The Pneumonia only model system (3.20) has a stable endemic equilibrium if . 

Proof. 

The characteristic roots of the Jacobian matrix (3.26) linearized about the equilibrium 

point (3.25) are obtained from the characteristic equation; 

 

Clearly,  

          

 (3.27) 

The other two  and  are obtained from the characteristic equation; 

         

 (3.28) 

This second order characteristic equation is equivalent to;  

 



50 
 

 
 

which can equally be obtained from a  matrix.  

 

The trace and determinant are given by,  

 

 

The eigenvalues are both negative if    and  where 

/P EEPA M I  .  

Given that  corresponding to endemic equilibrium point, the sign of the first 

eigenvalue (3.27) is negative if  

 

This implies that 

 

 or    or . 

Similarly, the other two eigenvalues  and  are negative if  

 

This clearly holds if . Lastly we should have  

 

This is true if  or  as described for the first eigenvalue. 
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3.3.5. HIV only model 

3.3.5.1. Model Equations 

The model equations for the HIV only case are given as, 

   

       

 (3.29) 

  , 

And the corresponding Population N(t) is 

 

The HIV force of infection is  

 

3.3.5.2. Equilibrium points 

3.3.5.2.1. Disease Free Equilibrium for HIV/AIDS-only case 

       

 (3.30) 

Stability of HIV/AIDS only case 

Linearization matrix for the DFE for HIV/AIDS infection is 

   

 (3.31) 

The equilibrium is stable if the eigenvalues of  evaluated at DFE has negative real 

parts with 
0S




  i.e: 
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 (3.32) 

 

The eigenvalues of (3.32) are all negative if  

The stability criterion is then defined as,  

 

With , the basic reproductive number for HIV only model system (3.29)  is 

given by 

          

 (3.33) 

 

The system (3.29) is Locallly Asymptotically Stable (LAS)  if . 

 

3.3.5.2.2. Endemic Equilibrium Point (EEP) 

With the existence of HIV, the symptomatic equilibrium with chronic infection is 

defined by  

       

 (3.34) 

where  

,      and   . 
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Stability of EEP 

Using the analogy of the linearization matrix (3.31), the corresponding matrix for EEP 

evaluated at  is given by;  

   

(3.35) 

The equilibrium point  is stable if the eigenvalues of linearization matrix (3.35) 

have  negative real parts. Thus, 

 

where  

 if 

 and .  

These two conditions when simplified results into the condition that,  

 

Also,  

 

when . This condition 

simplify to the condition that; 
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 (3.36) 

We thus conclude that all the eigenvalues of  have negative real part if the 

inequality above is satisfied. 

The inequality (3.36) suggests that the Endemic Equilibrium point (EEP) is locally 

asymptomatically stable if the reproductive ration  is less than the bifurcation 

parameter  after which the system becomes unstable. 

3.3.6. Analysis of the full model 

In this section the full model is analyzed  in system (3.1) without any intervention. 

Disease Free Equilibrium 

In the absence of any disease, DFE  defined in (3.18) is given as, 

                             

 (3.37) 

Stability of the system at DFE 

Matrix of linearization about a fixed point is used to determine stability of the system 

at that fixed point by examining the sign of the eigenvalues. The system is stable if all 

the eigenvalues are bounded to the left of the imaginary axis. 

Linearization matrix  defined in (3.19) is evaluated at DFE to obtain, 
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 (3.38) 

where . The eigenvalues of linearization matrix of the full 

model  are; 

 

All the eigenvalues except the sixth and the seventh are clearly less than zero i.e. 

negative. The sixth and the seventh are negative if  and  respectively. 

The dominant eigenvalues of  the linearization matrix of the full model at disease free 

equilibrium is  and  and these correspond to the reproduction numbers for the 

Pneumonia transmission model and the HIV/AIDS transmission model, respectively. 

Thus, the basic reproduction number, , for the full model is given by 

            

 (3.39) 

The following Theorem follows from  Driesche (2002), (Theorem 2). 

Theorem 2. The disease-free equilibrium point, , is locally asymptotically stable 

for 

 and unstable for . 
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Proof. 

The Jacobian matrix of the system (3.1) linearized about the equilibrium point  is 

given in (3.38). The trace and determinant of this matrix is, 

 

for . 

 

when the following conditions are satisfied. 

Case I:         and .  

Case II:              and  

Case I corresponds to management of pneumonia not to spread and persistence of 

HIV in the population. 

Case II corresponds to persistence of Pneumonia in the population and presence of 

HIV if  and management of HIV if . 
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3.4. MODELING THE CONTROL OF PNEUMONIA INFECTION BY 

TREATMENT AND MANAGING HIV/AIDS INFECTION BY 

EDUCATION 

Assumptions are the same as in equation (3.2.2), the initial conditions are same as in 

(3.2.4), the region of study is as in (3.2.5) and all the solutions are positive and 

bounded as in (3.2.6). 

The new HIV force of infection after education  is 

     1 H
He H PH A H PH PHe I I A A

N


             

 (3.40) 

Where e is the education awareness campaign parameter on HIV/AIDS. 

The new Pneumonia Force of infection after treatment  is          

   1 P

Pt P AP PHtr I A I
N


           

 (3.41) 

Where tr is the treatment parameter on Pneumonia infection.  

The model equations in (3.1) become: 

  

   

   

   

      

 (3.42) 
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The Disease Free Equilibrium after education awareness campaign and treatment of 

Pneumonia is obtained as in equation (3.18). 

 

3.4.1. LINEARIZATION MATRIX M1 

Linearization of a matrix  about a fixed point is used to determine the stability of the 

system at that fixed point by examining the sign of the eigenvalues. This is a 

7 7 matrix obtained by derivation  using equation (2.12) as:    
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 
 

 

 (3.43)  

where: 
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3.4.2. Analysis of the full model 

This section analyzed the full model in system (3.42) under the same assumptioons in 

(3.2.2.). 

 

Disease Free Equilibrium 

In the absence of any  disease, the DFE is defined as, 

                             

 (3.44) 

Stability of the system at DFE 

As mentioned earlier, the Matrix of linearization about a fixed point is used to 

determine stability of the system at that fixed point by examining the sign of the 
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eigenvalues. The system is stable if all the eigenvalues are bounded to the left of the 

imaginary axis. 

Linearization matrix  defined in (3.43) is evaluated at DFE to obtain, 
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21 22

31 32
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    (3.45) 

where  
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All the eigenvalues are clearly less than zero, if and only if  and . That 

is,  

                                            

 (3.46) 

and  
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 (3.47) 

 The dominant eigenvalues of  the linearization matrix of the full model at disease free 

equilibrium is  and  and these correspond to the reproduction 

numbers for the Pneumonia transmission model (equation 3.47) and the HIV/AIDS 

transmission models with intervention (equation 3.46), respectively.  

3.4.3. THRESHOLD VALUES FOR INTERVENTION STRATEGIES 

For stability matrix M1 the system is stable if equation (3.46) and (3.47) are satisfied. 

In terms of e and tr, these equations gives the minimum threshold values as: 

 
1

H H

e
v

  




         

 (3.48) 

 
1

p

P P

d
tr

v

  



 
        

 (3.49) 

Solving equations   (3.48) and (3.49) analytically using the data in Table (4.1), these 

values are: 

tr>0.97 and e>0.72      

 (3.50) 
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CHAPTER FOUR 

RESULTS 

4.1. NUMERICAL RESULTS AND ANALYSIS OF PNEUMONIA AND 

HIV/AIDS 

 

To bring out the analytical solutions in the previous section clearly, we illustrate the 

analytic results with specific numerical examples. We use the model discussed in 

section 3.2. A complete list of parameters and their estimated values that we use for 

the numerical simulations of the model system are given in Table 4.1. The majority of 

the values have been approximated from data taken from  Kapsabet District Hospital 

(a public hospital in Nandi county in Kenya).   

The following data is available at the hospital for inpatient incidences of both 

pneumonia and HIV/AIDS infections and deaths as from 2002 to 2011.  

Table 4.1.1. Pneumonia and HIV/AIDS Incidences and deaths at Kapsabet 

District Hospital from 2002 to 2011 

 

YEAR 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 

PNEUMONIA 

INCIDENCES 
502 123 415 357 285 421 170 340 267 356 

HIV/AIDS INCIDENCES 470 502 568 454 508 481 357 499 478 578 

PNEUMONIA & 

HIV/AIDS INCIDENCES 
972 625 983 811 793 902 527 839 745 934 

PNEUMONIA 

&HIV/AIDS DEATHS 
151 87 320 470 510 496 324 290 281 294 

RECOVERED 

PNEUMONIA 
490 105 400 345 275 407 163 329 262 334 

PNEUMONIA    

DEATHS 
12 18 15 12 10 14 7 11 5 22 

HIV/AIDS DEATHS 139 69 305 368 500 482 317 279 276 272 
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Table 4.1.2: Parameter Definitions  

 

Parameter Definition of the Parameter Value Source 


 

Recovery rate from pneumonia 0.0005180 Calculated 

µ Natural death rate of persons in all classes 0.0000756 Caculated 

p  Relative infetiousness of individuals infected 

with pneumonia 

0.0059910 Calculated 

p H
 

Relative infetiousness of dually infected 

victims 

0.0036600 Calculated 

H  
Relative infetiousness of all AIDS cases. 0.0045780 Caculated 


 

Increased susceptibility to pneumonia due to 

HIV infection. 

0.0160000 Calculated 

α Increased susceptibility to HIV after recovery 

from pneumonia infection 

0.0056200 Calculated 


H 

Effective contact rate of HIV infection 0.0052372 Caculated 


P 

Effective contact rate of Pneumonia infection 0.0077480 Calculated 


 Force of pneumonia re-infection. 1.6000000 Calculated 


 

Increased HIV infection rate of pneumonia 

infectives 

0.0011400 Caculated 

Pd
 

Accelerated pneumonia death rate 0.0000370 Calculated 


 Rate of HIV progression to AIDS 0.0051500 Calculated 

p  
Progression rate to AIDS for HIV victims 

exposed to pneumonia. 

0.0079000 Caculated 

Ad
 

AIDS accelerated death rate. 0.0022890 Calculated 


 

Human recruitment rate. 0.1320000 Calculated 

e Education parameter in managing HIV/AIDS. 0.1 - 0.9 Caculated 

tr Treatment parameter in controlling pneumonia 0.1 - 0.99 Calculated 
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4.2. GRAPHICAL SIMULATION OF RESULTS 

Using the data provided in Table 4.1.1 and Table 4.1.2, the numerical results are 

generated for the dynamics of  model (3.1) using MATLAB numerical solver which 

generate results for Runge-Kutta 4 (RK-4) of order 4. The 4th order Runge Kutta is 

chosen because of its computational speed and increased level of accuracy for solving 

non stiff ordinary differential equations. The results are illustrated  for the following 

situation: 

Figure 4.1.1  Population dynamics of various class populations in absence of any 

Intervention
 

When no intervention at all is used, that is where there is no treatment of Pneumonia 

cases and no education awarenes campaign about HIV/AIDS is conducted, the total 

susceptible population from time zero will be infected so that by the end of around 

700 days, (two years), there will be less than 50  uninfected people, over 200 HIV 

infected people and over 200 AIDS cases, and by then Pneumonia will start to 
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develop. By the end of 10 years, Pneumonia cases will have risen to almost 400 cases 

and a few recovered, while all the HIV/AIDS cases will be less than 50, because most 

of them will have died. 

If treatment of Pneumonia only is addressed, while HIV not intervened, the 

population dynamics will change slightly, with the susceptibles increasing. The 

required minimum threshold percentage of treatment required to cause an effect is 

calculated from Equation (3.49), and found to be 0.97. This is also confirmed form the 

plot of treatment against the reproductive ratio. The reduction of reproductive ratio to 

less than one is achieved at a minimum treatment of 97%. This means a total of 360 

cases must be treated for the threshold to be achieved. This is shown in Figure 4.1.2 

bvelow. 

 

Figure  4.2.2. Minimum treatment threshold of Pneumonia cases to achieve less 

than one reproductive ratio. 
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Similarly, the minimum level of education, (awareness campaign) that must be 

achieved, to cause an effect in HIV cases, and thus reduce the number of infected 

people is expressed in equation (3.50) and evaluated to be 72%. This is also simulated 

in the figure below, using the available data. It requires that at least 72% of the masses 

are aware of the preventive and control measures of HIV/AIDS. The graph below, 

Figure 4.2.3 illustrates the education threshold required. Reproductive number is plot 

against percentage level of education.                     

 

Figure  4.2.3. Minimum Education necessary to bring Reproductive ratio of 

HIV/AIDS infection to below one 

The intervention of both HIV/AIDS and Pneumonia by the said methods, at a level 

below threshold levels, say 50% for each, shows significant improvement of the 

susceptible cases and reduced number of infectives. Figure 4.2.4 below shows the 

simulated results for a 50-50 intervention strategy. It is evident that the susceptibles 

will remain as high as over 200 even after 10 years of endemic situation and the 

HIV/AIDS cases is slightly above 100. Meanwhile, the maximum Pneumonia cases is 
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below 200, unlike in the first case which was over 400 cases. This clearly shows an 

improvement of the situation.  Figure 4.2.5 shows a 75%-75% strategy. The results 

simulated shows great improvement, with over 400 susceptibles, around 70 

pneumonia recovered cases and only 300 pneumonia cases. We also note that 

HIV/AIDS cases will not be severe, and the graph shows less than 50 cases even after 

11 years. This is illustrated in Figure 4.2.5 below. 

 

 

Figure  4.2.4. Population dynamics at 50% treatment of Pneumonia and 50% 

awareness education campaign against HIV/AIDS
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Figure  4.2.5. Treatment and Awareness Education campaign  both at 75% each.
 

In this 75% - 75% strategy, the infected cases of Pneumonia is still as high as 300 

cases while the AIDS cases decreased to approximately 70 and the HIV cases the 

lowest (approximately 20) in a total population of 650 people after 11years. 

HIV is the primary disease and Pneumonia is a secondary disease whose dynamics are 

driven by the HIV/AIDS cases. There is need therefor for control HIV even more than 

Pneumonia, because, the later is an opportunistic disease and in absence of 

HIV/AIDS, its incidence is very low. The treatment of pneumonia only do not change 

the dynamics of the co-infection so much, and it is evident in Figure 4.2.6 below, 

illustrating 95% treatment of Pneumonia alone, with no intervention to HIV/AIDS. 

This graph at the same time demonstrates the significance of awareness education 

campaign as an HIV/AIDS control strategy. Althogh Pneumonia is significantly 

reduced, the masses are still affected by HIV/AIDS 
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Figure  4.2.6. Single strategy of 95% treatment of Pneumonia with no 

intervention of HIV/AIDS
 

If the threshold values are observed, that is 97% treatment and 72% education, a 

cumulative value of less than 100 people will contract HIV and out of these, over 50 

will live with AIDS while around 50 will die of AIDS related cases after 11 years. 

The total Pneumonia cases will be less than 50 and the susceptibles will remain as 

high as 370. This is the way forward in reserving rh masses from contracting the 

deadly HIV disease. The graph in Figure 4.2.7 illustrates the result if intervention is at 

least greater than the minimum threshold values. 
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Figure  4.2.7. Effects of a minimum threshold of 97% treatment of Pneumonia 

and 72% Education on HIV/AIDS Co-infection 

Simulation for a period of over 30 years shows that the susceptible population will 

oscillate then stabilize at a value greater than 470, while HIV only cases will remain 

at values less than 20 and people living with HIV/AIDS will remain at values less 

than 50. This represents a situation wher people dying of HIV is minimized and those 

already infected are able to live with the disease by controlling opportunistic diseases 

by use of Anti-retrovirals. The people living with HIV/AIDS and Pneumonia co-

infection will be eradicated completely. Figure 4.2.8 illustretes the long term 

dynamics at minimum threshold values of intervention strategies. 
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Figure 4.2.8. Long term dynamics of HIV/AIDS Co-infection dynamics for a 

period of over 50 years 

 

 

 

 

 



73 
 

 
 

 

CHAPTER FIVE 

 

CONCLUSION AND RECOMMENDATION 

5.1  CONCLUSION  

In this particular thesis we have Mathematically modelled the Pneumonia and 

HIV/AIDS co-infection. We have provided  rigorous simulations to determine 

important parameters and effectiveness of various control strategies without 

necessarily carrying out clinical trials hence reducing time and costs. In this thesis, a 

Mathematical Model of HIV/AIDS and Pneumonia co-infection is formulated and 

analyzed to test the effectiveness of Treatment in controlling Pneumonia and checking 

the effectiveness of Education in controlling the spread of HIV/AIDS. This objective 

has thus been achieved with a minimum threshold of 97% treatment of Pneumonia 

cases (485 people in 500 cases) and a minimum threshold of 72% in HIV/AIDS cases 

(educating a minimum of 360 people in 500 cases). This gives the required epidemic 

burn-out of the 2 infections. The minimum threshold and the required graphs were 

achieved by numerically simulating the data using MATLAB which generate results 

using 4
th
 – order Runge-Kutta scheme. At the minimum threshold, the reproduction 

numbers of both Pneumonia (97%) and HIV/AIDS (72%) are less than 1 as generated 

using MATLAB simulation code. This agrees with the analytic results computed in 

chapter 3 which calculation gives the minimum threshold for education at 

 and minimum threshold for treating Pneumonia at 
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5.2  RECOMMENDATIONS 

From the results obtained analytically and justified using the data obtained from 

Kapsabet District Hospital, it is recommended that the proposed intervention strategy 

is implemented and strictly adhered to in order to achieve the desired results. In a 

period of over 11 years, the there will be less than 20 cases of new incidences of HIV 

and less than 50 people living with HIV/AIDS. There will be no pneumonia related 

deaths and no HIV-Pneumonia co-infection. The cost factors need to be asssessed on 

how the strategy will be implemented but the most effective way is incorporating 

HIV/AIDS awareness education materials in School Syllabus, so that the students are 

taught by their teachers. Also a small group of peer counsellors can be trained to reach 

the masses in the village. 

In this study, the results presented depicts a situation created using assumptions which 

does not necessarily hold in every day life. Our model assumes that the masses under 

study is a closed population and there is zero emigration and transfer of individuals 

from one point to the other. We have also assumed that apart from Pneumonia, there 

is no other opportunistic disease and the only cause of death is either AIDS or 

Pneumonia. This is not always true and it is recommended that a detailed study of a 

model including a parameter to account for the effect of other opportunistic diseases 

is conducted.  
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APPENDICES 

Appendix I: MATLAB Simulation Code for Effects of Education on HIV 

function Effects of Education on HIV/AIDS Pneumonia Treatment 

Simulation Code %Includes the effect of CD8 on the viral population 
tspan = [0, 5000]; 
global N; 
N = 500;% Total Population 
Iv = [N; 1; 0; 1; 0; 0; 0]; 
[t,dy] = ode45(@red4lag,tspan,Iv); 
%.............................................. 
figure; 
plot(t,dy) 
axis([0 4000 0 1000]); 
%title('HIV/Pneumonia dynamics'); 
xlabel('Time in days') 
ylabel('Population') 
legend('S','I_p','R_p','I_h', 'I_{ph}','A_h','A_{ap}'); 
grid,hold on; 
%--------------------------------------------------------------------

----- 
function dy = red4lag(t,v) 
dy = zeros(7, 1);% dimension of solution vector 
global N; 
%N = 600;% Total Population 
g = 0.000518;% Recovery rate from Pneumonia (sigma) 
a = 0.132;% Constant recruitment rate (Delta) 
u = 0.0000756;% Natural death rate (mu) 
c = 1.6;% Force of Pneumonia re-infection (phi) 
d = 0.00299;%0.05114;% Increased HIV infection rate of Pneumonia 

infectives (delta) 
np = 0.005991;% Relative infectiousness of individuals infected with 

Pneumonia (eta_p) 
nph = 0.00366;% Relative infectiousness of dually infected victims. 

eta_ph) 
nh = 0.004578;% Relative infectiousness of all HIV cases (eta_h) 
o = 0.016;% Increased susceptibility to Pneumonia due to HIV 

infection (theta) 
al = 0.00562;% Increased susceptibility to HIV after recovery from 

Pneumonia Infection (alpha) 
beh = 0.02034;%0.075 Effective contact rate of HIV infection (beta-h) 
bep = 0.005244;%0.075 Effective contact rate of Pneumonia 

infection(beta-p) 
dp = 0.0000370;%0.03041;% Accelerated Pneumonia death rate (d_p) 
p = 0.00515;% Rate of HIV progression to AIDS (rho) 
y = 0.0079;% Progression rate to AIDS for HIV victims exposed to 

Pneumonia (gamma) 
da = 0.002289;% AIDS accelerated death rate (d_a) 
e = 0.72;% Education (e) 
tr = 0.97;% Treatment (tr) 
%............................................................. 
dy = [a - (1-tr)*(bep/N)*(v(2)+v(5)+v(7))*v(1)-(1-

e)*(beh/N)*(v(4)+v(5))*v(1) - u*v(1) 
    (1-tr)*(bep/N)*(v(2)+v(5)+v(7))*(v(1) + c*v(3))- d*v(2)*(1-

e)*(beh/N)*(v(4)+v(5))-(u+g+dp) 
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    g*v(2)- (al*(1-e)*(beh/N)*(v(4)+v(5)) + u + c*(1-

tr)*(bep/N)*(v(2)+v(5)+v(7)))*v(3) 
    v(1)*(1-e)*(beh/N)*(v(4)+v(5)) + al*(1-

e)*(beh/N)*(v(4)+v(5))*v(3) - o*(1-tr)*(bep/N)*(v(2)+v(5)+v(7))*v(4)-

(p+u)*v(4) 
    o*(1-tr)*(bep/N)*(v(2)+v(5)+v(7))*v(4)+d*(1-

e)*(beh/N)*(v(4)+v(5))*v(2)-y*p*v(5)-(u+dp)*v(5) 
    p*v(4)-o*np*(1-tr)*(bep/N)*(v(2)+v(5)+v(7))*v(6)-(u+da)*v(6) 
    y*p*v(5)+o*np*(1-tr)*(bep/N)*(v(2)+v(5)+v(7))*v(6)-

(u+da+dp)*v(7)];  

 

Appendix II: MATLAB Simulation Code for minimum percentage of Education 

for effective control of HIV/AIDS infection 

function Minimum Education Simulation Code 

%Parameters 
N = 500;% Total Population 
g = 0.000518;% Recovery rate from Pneumonia (sigma) 
a = 0.132;% Constant recruitment rate (Delta) 
u = 0.0000756;% Natural death rate (mu) 
c = 1.6;% Force of Pneumonia re-infection (phi) 
d = 0.00299;%0.05114;% Increased HIV infection rate of Pneumonia 

infectives (delta) 
np = 0.005991;% Relative infectiousness of individuals infected with 

Pneumonia (eta_p) 
nph = 0.00366;% Relative infectiousness of dually infected victims. 

(eta_ph) 
nh = 0.004578;% Relative infectiousness of all HIV cases (eta_h) 
o = 0.016;% Increased susceptibility to Pneumonia due to HIV 

infection (theta) 
al = 0.00562;% Increased susceptibility to HIV after recovery from 

Pneumonia Infection (alpha) 
beh = 0.02034;%0.075 Effective contact rate of HIV infection (beta-h) 
bep = 0.005244;%0.075 Effective contact rate of Pneumonia infection 

(beta-p) 
dp = 0.0000370;%0.03041;% Accelerated Pneumonia death rate (d_p) 
p = 0.00515;% Rate of HIV progression to AIDS (rho) 
y = 0.0079;% Progression rate to AIDS for HIV victims exposed to 

Pneumonia (gamma) 
da = 0.002289;% AIDS accelerated death rate (d_a) 
%e = 0.5;% Education (e) 
%tr = 0.966;% Treatment (tr) 
%.................................................................. 
tr=[0:0.001:1]; 
R0 = 1; 
%R1 = ((1-tr)*(bep*a)/(u*N*(u+g+dp))) 
for tr = 0:0.001:1; 
    R1 = ((1-tr)*(bep*a)/(u*N*(u+g+dp))); 
    plot(tr,R1,'-'), hold on, gr 
    plot(tr,R0,'r'),grid on 
end 
grid 
xlabel('Percentage Treatment') 
ylabel('Reproductive Number R_0') 
tr = 1- ((u*N*(p+u))/(bep*a)) 
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Appendix III: MATLAB Simulation Code for minimum Treatment Simulaton 

Code 

function Minimum Treatment Simulation Code 

%Parameters 
N = 500;% Total Population 
g = 0.000518;% Recovery rate from Pneumonia (sigma) 
a = 0.132;% Constant recruitment rate (Delta) 
u = 0.0000756;% Natural death rate (mu) 
c = 1.6;% Force of Pneumonia re-infection (phi) 
d = 0.00299;%0.05114;% Increased HIV infection rate of Pneumonia 

infectives (delta) 
np = 0.005991;% Relative infectiousness of individuals infected with 

Pneumonia (eta_p) 
nph = 0.00366;% Relative infectiousness of dually infected victims. 

(eta_ph) 
nh = 0.004578;% Relative infectiousness of all HIV cases (eta_h) 
o = 0.016;% Increased susceptibility to Pneumonia due to HIV 

infection (theta) 
al = 0.00562;% Increased susceptibility to HIV after recovery from 

Pneumonia Infection (alpha) 
beh = 0.02034;%0.075 Effective contact rate of HIV infection (beta-h) 
bep = 0.005244;%0.075 Effective contact rate of Pneumonia infection 

(beta-p) 
dp = 0.0000370;%0.03041;% Accelerated Pneumonia death rate (d_p) 
p = 0.00515;% Rate of HIV progression to AIDS (rho) 
y = 0.0079;% Progression rate to AIDS for HIV victims exposed to 

Pneumonia (gamma) 
da = 0.002289;% AIDS accelerated death rate (d_a) 
%e = 0.5;% Education (e) 
%tr = 0.966;% Treatment (tr) 
%.................................................................. 
tr=[0:0.001:1]; 
R0 = 1; 
%R1 = ((1-tr)*(bep*a)/(u*N*(u+g+dp))) 
for tr = 0:0.001:1; 
    R1 = ((1-tr)*(bep*a)/(u*N*(u+g+dp))); 
    plot(tr,R1,'-'), hold on, gr 
    plot(tr,R0,'r'),grid on 
end 
grid 
xlabel('Percentage Treatment') 
ylabel('Reproductive Number R_0') 
tr = 1- ((u*N*(p+u))/(bep*a)) 

 

 

 


