
 

~30~ 

International Journal of Statistics and Applied Mathematics 2021; 6(3): 30-36 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSN: 2456-1452 

Maths 2021; 6(3): 30-36 

© 2021 Stats & Maths 

www.mathsjournal.com 

Received: 17-03-2021 

Accepted: 20-04-2021 

 

Chirchir AC  

MSc Applied Mathematics, 

University of Eldoret, School of 

Science, Department of 

Mathematics and Computer 

Science, University of Eldoret, 

Kenya 

 

Dr. Kandie JK  

MSc Applied Mathematics, 

University of Eldoret, School of 

Science, Department of 

Mathematics and Computer 

Science, University of Eldoret, 

Kenya 

 

Dr. Maremwa JS 

MSc Applied Mathematics, 

University of Eldoret, School of 

Science, Department of 

Mathematics and Computer 

Science, University of Eldoret, 

Kenya 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Chirchir AC  

MSc Applied Mathematics, 

University of Eldoret, School of 

Science, Department of 

Mathematics and Computer 

Science, University of Eldoret, 

Kenya 

 
 

 

 

 

 

 
 

 

 

The effect of a difference in angle in two lateral inflow 

channels on the main channel's velocity 

 
Chirchir AC, Dr. Kandie JK and Dr. Maremwa JS 

 
Abstract 

In this study, we examined the flow from two lateral inflow channels in a man-made open rectangular 

channel of an incompressible Newtonian fluid. The influences of the angles as it varies directly 

proportional to each other for two lateral inflow channels from zero to ninety degrees on how they affect 

the flow rate in the main rectangular open channel, were considered. When the flow rate increases, the 

discharge increases as well and a decrease in the flow velocity means a decrease in the discharge, 

because the discharge is directly proportional to the flow velocity. The flow-regulating equations are the 

continuity and momentum equations of movements that are extremely nonlinear and cannot be solved by 

an exact method. The method of finite difference is then used to numerically compute an approximate 

solution to these partial differential equations. Due to its precision, consistency, stability and 

convergence, these equations are solved using the finite difference method. MATLAB software used to 

generate the results which are analyzed using graphs. The analysis found that inclined lateral inflow 

channels at 450 increase the main channel's flow velocity more than 600 and 720, while 900 maintains the 

main channel's flow velocity constant. 
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List of notations 

𝑣: Mean velocity of flow (m/s) 

𝐿: Length of the lateral inflow channel (m) 

𝑔: Acceleration due to gravity (ms-2) 

𝑄: Discharge in the main channel (m3s-1) 

𝑄1 𝑎𝑛𝑑 𝑄2: Discharge of the lateral inflow channels (m3s-1) 

𝐴: Flow's cross-sectional area (m2) 

𝑛: The roughness manning coefficient (Sm-1/3) 

𝑆𝑜: The channel's bottom slope 

𝑆𝑓: Friction slope = 
𝑛2𝑣2

𝑅
4
3

 

𝑇: Top width of free surface (m) 

𝑦: Depth of flow (m) 

𝑡: Time (s) 

𝑞: Lateral uniform inflow (m2s-1) 

𝑅: Hydraulic radius (m) 

𝑥: Distance along the main flow direction (m) 

𝜃1 𝑎𝑛𝑑 𝜃2: Angle of lateral discharge channel in degrees 

∆: forward difference 
𝜕𝐴

𝜕𝑡
: Rate of change in area of flow with time (m2/s) 

𝜕𝑣

𝜕𝑥
: The rate at which the flow's mean velocity changes with distance (m/s) 

𝜕𝑦

𝜕𝑥
: Rate of change of depth of flow with distance (m/s2) 

𝜕𝑄

𝜕𝑥
: Rate of change in discharge with distance (m2/s) 

T3: Top width of the main channel (m) 

T1 & T2: Top width of the two lateral inflow channels (m) 

c: Resistance coefficient of flow (Chezy coefficient) 
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Introduction 
In 2018, 2019 and 2020, Kenya experienced heavy rainfall, resulting in bridges being swept away as rivers flooded and dams 
shattered its walls. Examples of this environmental disaster that occurred in 2018 are the Solai Dam in Nakuru, Kenya, which 
breached its walls and killed 47 people after it broke its walls and swept all people and everything in that village away. More so, 
in 2019 west Pokot land slide took place and roads were blocked and some bridges were swept away. In addition, Nakuru, Elgeyo 
Marakwet, Baringo, Nandi, Kisumu and many others are still affected by floods during normal rainfall. It is therefore very 
important to design channels that regulate such an environmental catastrophe and, more importantly, Use the same water to 
irrigate agricultural land. The fact that the flood problem still persists and the need to transport water for irrigation is still in 
demand means that an efficient channel model with two lateral inflows is needed to convey the maximum discharge. Perhaps 
there's a closed or open channel. 
Open channels are known to be channels with an open top, while channels with a closed top are called closed channels. Good 
examples of open channels are rivers and streams while examples of closed conduits are pipes and tunnels. Open channels made 
of earth and concrete have been designed which have been of different cross-sections such as trapezoidal, rectangular and circular.  
In the world at large, engineers have attempted, among other things, to channel water to a specific location, Irrigation grids and 
dams for power generation are examples. In Kenya, most road networks lack efficient drainage systems, especially rural roads; 
hence, Road carnage, fatalities, and economic devastation are all too common, particularly when it rains. This has a negative 
effect on the achievement of Kenya's 2030 vision that aims to create a high-quality, internationally competitive and prosperous 
nation by 2030. There are three main pillars of the 2030 vision that the government aims to accomplish. These are foundations of 
economic, political and social value. These three pillars are connected to our research due to the fact that inadequate drainage 
directly affects people's economy. For example, transport is disrupted when it rains and roads are cut off by runoff, and this affects 
the flow of goods and services. Large amounts of cash are often used to repair bridges, sewers, airports and playgrounds. Due to 
the blockade of sewers and highways, people have also gone on strike and this affects the smooth running of businesses. In 
addition, Diseases outbreaks and other related health issues pose a danger to the population's health if drainage is insufficient. As 
a result, our study aims to find solutions to these drainage-related issues in order to contribute to the 2030 vision. The analysis 
would focus on appropriate angles to align with two inflow channels in order to aid in the prevention of drainage channel 
blockages, which are a frequent occurrence in drainage systems. We hope that the results of this study will be useful in the design 
of drainage systems for road production, sewer building, street drainage, long dams, and airport construction in Kenya and 
elsewhere. 
 
Saint venant equation 
It was developed by two mathematicians, De Saint venant and Bousinnesque, in the nineteenth century. From navier equation for 
shallow water flow condition and one dimension. Dynamic routing is the solution to the St. venant equation, and it is often used to 
measure or compare other techniques. In open channels, it is the equations that characterize the propagation of a flood wave in 
terms of distance along the channel and time. It is made up of two equations: the continuity equation and the momentum equation. 
The inertial terms appearing in the momentum equation of the Saint-Venant equations can be ignored for most flood events in 
most rivers because they are comparatively smaller than the terms arising from gravity and resistance forces Henderson (1963) [4], 
resulting in a simplified model of open channel flow. The shallow water wave propagation in open channels is represented by the 
Saint-Venant hydrodynamic equations, which are obtained from the depth-averaged Navier-Stokes equations. For a rectangular 
channel, the one-dimensional Saint-Venant equations are as follows (Chow 1959) [2]: 
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Saint Venant suggested the above governing equations for one-dimensional unsteady flow in an open channel in 1871, which 
included continuity and momentum equations, and Shang et al. (2012) [11] accepted them. 
Tuitoek and Hicks (2001) [14] investigated flood management by simulating compound channels with erratic flow in order to better 
manage floods. By developing a model based on the Saint Venant equations of flow, they added some terminology in order to 
account for the momentum phenomenon of move to integrate an inconsistency in the flow in the compound channels. 
Kwanza et al. (2007) [6] studied the effects of lateral discharge and channel slope, width, velocity, and depth as they vary from one 
point in the channel to the next on fluid velocity and channel discharge in both trapezoidal and rectangular channels. They noted 
that in order to increase channel discharge, the channel's slope, width, and lateral discharge all need to be increased. Furthermore, 
by reducing the wetted perimeter, the fluid flow rate increased. 
Fluid flow in open rectangular and triangular channels was studied by Thiong'o (2011) [12]. Her observations on rectangular 
channels were close to those of Kwanza et al (2007) [6]. In an open rectangular channel, the flow velocity increased as the slope, 
discharge, and width increased, according to their findings. Increases in the wetted periphery of the channel, on the other side, 
resulted in a decrease in flow velocity. They both used the finite difference method as a computational instrument to solve the 
continuity and momentum equations. 
The main channel's ratio of downstream to upstream discharge, as defined by Ramamurthy and Satish (1988) [24], Ingle and 
Mahankal (1990) [18], is the most important parameter in evaluating open flow with a 90o lateral channel. When these results were 
compared to some experimental findings, it was discovered that the study yielded satisfactory results. 
The flow structure is defined by the roughness of the bed, as well as the velocity ratio between the branch and main channels, 
according to Neary and Odgaard (1993) [23]. 
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Barkdoll et al. (1999) discovered that the diversion flow ratio has the greatest impact on the lateral intake sediment diffusion ratio, 
and is done in a straight line with a 900 intake angle. 
Yang et al (2009) [16] looked at flow systems of 90°, 45°, and 30° diversion angles. To boost the flow pattern of the fluid, a 
diversion angle of 30° to 45° was suggested. 
For open channel flows with uniform and localized lateral inflow, Fan and Li (2005) [3] developed diffusive wave equations. In 
their formulation, they provided the continuity and momentum equations for an open channel with a lateral inflow channel 
intersecting the main open channel at a differing angle. 
When focusing on the sub-critical flow regime, Ramamurthy and Satish (1988) [24] theoretically and experimentally investigated 
dividing flows with a submerged lateral branch. The researchers theoretically developed a model by relating discharge ratios and 
downstream-to-upstream depth to the upstream Froude number. Their findings revealed that the re-circulatory zone downstream 
of the junction causes a contraction in the channel section, causing the flow to change to supercritical flow. The discharge in the 
branch of the lateral channel can be calculated using Mizumura et al. (2003)'s [22] formula for super-critical overflowing rivers, 
which compared well with Mizumura et al (2005)'s [21] results. 
Mohammed (2013) [9] studied how four different angles affect the discharge coefficient by using an oblique weir in the flow 
direction, in comparison to the side of the channel floor. 30o, 60o, 75o, and 90o were the four angles that changed depending on the 
direction of flow. The research discovered that the highest discharge was reached when the side weir was tilted at 30 degrees. 
Masjedi and Taeedi (2011) [8] looked into the effects of intake angle on lateral intake discharge ratio with 180o bend in the 
laboratory. The tests were carried out with a range of Froude numbers and intake angles. At a 45o lateral intake angle, the 
discharge ratio improved in all locations of the 180o flume bend, according to the study. 
Shamaa (2002) [20] solved open channel operation-type problems using the finite difference Preissmann implicit construct, built on 
the Saint Venant equations. The implicit finite difference method model showed less oscillation and more precision as compared 
to an explicit model. 
The diffusive schemes of Preissmann and Lax, which are two separate numerical methods for Saint Venant equations numerical 
solution, were investigated by Akbari and Firoozi (2010) [1]. With the aim of better understanding the propagation process, these 
equations regulate the flood waves propagate in natural waterways. The results of the study indicated that hydraulic parameters 
play a significant role in these waves. 
Chagas and Souza (2005) [17] used the study of floods in rivers to solve the Saint Venant equation. The aim of this analysis was to 
achieve a better understanding of the propagation process by using a discretization for the Saint Venant equations. According to 
their observations, hydraulic parameters play a significant part in the transmission of flood waves.  
Karimi et al. (2014) [19] conducted research on fluid modeling in the case of a single inflow channel on an open channel, and 
discovered that the velocity of the main open channel does not necessarily increase as the angle of the lateral inflow channel is 
increased. Angles between 30 and 50 degrees produce higher velocity values in the main open channel than other angles. 
In a statistical model of fluid flow in an open trapezoidal channel with lateral inflow channel, Samuel M.K. (2020) [10] found that 
decreasing the cross-sectional area increases flow velocity while increasing the length of the lateral inflow channel decreases flow 
velocity. It's also worth noting that increasing the lateral inflow channel's velocity increases the flow velocity, and that an angle of 
thirty to fifty degrees increased the flow velocity relative to other lateral inflow channel angles. 
 
Mathematical model case 
A mathematical model of an open rectangular channel with two angled lateral inflow channels. Q, q1 and q2 reflect the discharge 
into the rectangular open channel, as well as the two lateral inflow channels, respectively. L1, L2, ϴ1 and ϴ2 reflect the length and 
differing angles of the two lateral inflow channels, respectively. The top width of the two lateral inflow channels and the primary 
channel are T1, T2 and T3. At a time interval dt, the net amount of fluid that reaches the cell dx is taken into consideration. 
 

 
 

Fig 1: Mathematical model case 
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Assumption to be adopted: 

1. The fluid is Newtonian  

2. The fluid is considered incompressible where density is constant everywhere. 𝜌 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

3. unsteady flow (Changes in fluid variables relative to time at a point) 

4. Gravity alone is responsible for the forces causing the flow, and other forces produced in the junction region are ignored. 

5. The flow is one-dimensional, with the majority of momentum happening around the x-axis and being completely dependent 

on x. 

6. The length, diameter, depth and angles of the two inflow channels should be directly proportional to each other 

L1 = L2, T1 = T2, y1 = y2 ϴ1 = ϴ2 

7. There is no substantial accumulation of small particles between the primary open channel and the two lateral inflow channels. 

8. There is no major turbulent development between the primary open channel and the two lateral inflow channels. 

 

We consider approximation solutions by using the finite difference method and, more importantly, the use of MATLAB tools to 

derive the results in diagrams, using the conditions above and combining with the continuity equation and momentum equation of 

motions, which will yield nonlinear solutions. 

 

Mathematical formulation 

Continuity equation (Conservation of mass) 

The continuity equation is a type of differential equation that describes the movement of a conserved quantity, such as mass. 

Continuity equation governing flow in an open channel that isn't consistent of any shape is provided by, 

  

 
𝜕𝑄

𝜕𝑥
 +  

𝜕𝐴

𝜕𝑡
 =  𝑞  (3) 

 

From the model above the cell with lateral inflow dx, in a dt-interval, is considered total volume is 
𝑑𝑄

𝑑𝑥
𝑑𝑥𝑑𝑡. 

Discharge on the two lateral inflow channels will be twice 
𝑞

𝐿
sin 𝛳 𝑑𝑥𝑑𝑡 because it has been inclined at an angle ϴ while increment 

of fluid is 
𝑑𝐴

𝑑𝑡
𝑑𝑥𝑑𝑡 and density is constant. Using conservation law of fluid, we have 

  
𝑑𝑄

𝑑𝑥
𝑑𝑥𝑑𝑡 + 

𝑑𝐴

𝑑𝑡
𝑑𝑥𝑑𝑡 =  

𝑞1

𝐿1
sin 𝜃1 𝑑𝑥𝑑𝑡 + 

𝑞2

𝐿2
sin 𝜃2 𝑑𝑥𝑑𝑡  (4) 

 

According to Macharia et al. (2014) [19] and since the assumption shown above that 

  

𝑞1  +  𝑞2  =  2𝑞 𝑞1  =  𝑞2 𝐿1  =  𝐿2  =  𝐿 𝜃1  =  𝜃2  =  𝜃 

 

Hence 

 
𝑑𝑄

𝑑𝑥
𝑑𝑥𝑑𝑡 + 

𝑑𝐴

𝑑𝑡
𝑑𝑥𝑑𝑡 =  2

𝑞

𝐿
sin 𝛳 𝑑𝑥𝑑𝑡  (5) 

 

It can be reduce to 

  
𝑑𝑄

𝑑𝑥
 +  

𝑑𝐴

𝑑𝑡
 =  2

𝑞

𝐿
sin 𝛳 (6)  

 

A conserved quantity can neither decrease nor increase; it can only shift from one location to another. The equation, by Tsombe et 

al. (2011) [13], is 

 

𝑇
𝜕𝑦

𝜕𝑡
 +  𝑉𝑇

𝜕𝑦

𝜕𝑥
 +  𝐴

𝜕𝑉

𝜕𝑥
− 𝑞 =  0  (7) 

 

Substituting equation (6) to equation (7) and arranging we get 

  
𝜕𝑦

𝜕𝑡
 +  𝑉

𝜕𝑦

𝜕𝑥
 +  

𝐴

𝑇

𝜕𝑉

𝜕𝑥
 =  2

𝑞

𝑇𝐿
sin 𝛳  (8)  

 

Equation (8) is the general equation of continuity for open channel flow with two lateral inflow channels at an angle. 

 

Momentum equation  

The momentum equation is used to describe the motion of fluid particles. This equation is derived from Newton's second law of 

motion, along with the statement that fluid stress is the sum of the viscous diffusing term plus a pressure term. This is the pace at 

which the system's linear momentum changes over time. From the model above in a dt-interval, the total momentum for the cell 

dx is 
𝜕𝑄𝑉

𝜕𝑥
𝑑𝑥𝑑𝑡. The lateral inflow component of velocity in the flow direction is 𝑢 cos 𝛳. Thus, lateral inflow momentum into cell 

dx at a time interval dt becomes 
𝑞

𝐿
sin 𝛳 𝑢 cos 𝛳𝑑𝑥𝑑𝑡. 
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The fluid pressure and fluid weight in the direction of flow are 𝑔
𝜕 (𝑦𝐴)

𝜕𝑥
𝑑𝑥𝑑𝑡 and 𝑔𝐴 (𝑆𝑓 − 𝑆𝑂)𝑑𝑥𝑑𝑡 respectively. The momentum 

increment for the dx cell is 
𝜕𝑄

𝜕𝑡
 𝑑𝑥𝑑𝑡. Accordingly, In the momentum equation we have, according to the conservation law, where 

 
𝜕𝑄

𝜕𝑡
𝑑𝑥𝑑𝑡 + 

𝜕𝑄𝑉

𝜕𝑥
𝑑𝑥𝑑𝑡 +  𝑔

𝜕 (𝑦𝐴)

𝜕𝑥
𝑑𝑥𝑑𝑡 +  𝑔𝐴(𝑆𝑓 − 𝑆𝑜)𝑑𝑥𝑑𝑡 =  2

𝑞

𝐿
sin 𝛳 𝑢 cos 𝛳 𝑑𝑥𝑑𝑡  (9) 

 

Noting that Q = AV 

Substituting and rearranging the equation, we get  

 
𝜕𝑉

𝜕𝑡
 +  𝑉

𝜕𝑉

𝜕𝑥
 +  𝑔

𝜕𝑦

𝜕𝑥
 +  𝑔(𝑆𝑓 − 𝑆𝑜)  =  2

𝑞

𝐴𝐿
sin 𝛳 ( 𝑢 cos 𝛳 − 𝑉)  (10) 

 

Equation (3.8) is the general momentum equation of an open channel with two lateral inflow channels at varying angles. 

 

Solution procedure 

Since the governing equations (8) and (10) are nonlinear and thus cannot be solved numerically. Specifically, using the finite 

difference approach to diffuse scheme. 

 

We take 

 
𝜕𝑣

𝜕𝑡
 =  

𝑣(𝑖,𝑗 + 1)−𝑣(𝑖,𝑗))

∆𝑡
  (11) 

 
𝜕𝑦

𝜕𝑡
 =  

𝑦(𝑖,𝑗 + 1)−𝑦(𝑖,𝑗))

∆𝑡
  (12) 

 
𝜕𝑣

𝜕𝑥
 =  

𝑣(𝑖 + 1,𝑗)−𝑣 (𝑖−1,𝑗)

2∆𝑥
  (13) 

 
𝜕𝑦

𝜕𝑥
 =  

𝑦(𝑖 + 1,𝑗)−𝑦 (𝑖−1,𝑗)

2∆𝑥
  (14) 

 

Substituting the equation (11), (12), (13) and (14) to equation (8) 

 
𝑦(𝑖,𝑗 + 1)−𝑦(𝑖,𝑗)

∇𝑡
 +  𝑣(𝑖, 𝑗) (

𝑦(𝑖 + 1,𝑗)−𝑦 (𝑖−1,𝑗)

2∆𝑥
) +  

𝐴

𝑇
(

𝑣(𝑖 + 1,𝑗)−𝑣 (𝑖−1,𝑗)

2∆𝑥
)  =  

2𝑞

𝑇𝐿
sin 𝜃  (15) 

 

Rearranging we get 

 

𝑦(𝑖, 𝑗 +  1)  =  ∆𝑡 (−𝑣 (𝑖, 𝑗) (
𝑦(𝑖 + 1,𝑗)−𝑦 (𝑖−1,𝑗)

2∆𝑥
) −

𝐴

𝑇
(

𝑣(𝑖 + 1,𝑗)−𝑣 (𝑖−1,𝑗)

2∆𝑥
)  + 

2𝑞

𝑇𝐿
sin 𝜃) +  𝑦 (𝑖, 𝑗)  (16) 

 

Also substitute equation (10), We get 

 

𝑣(𝑖,𝑗 + 1)−𝑣 (𝑖,𝑗)

∆𝑡
 +  𝑣(𝑖, 𝑗) (

𝑣(𝑖 + 1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
) +  𝑔 (

𝑦(𝑖 + 1,𝑗)−𝑦 (𝑖−1,𝑗)

2∆𝑥
)  +  𝑔(𝑆𝑓 − 𝑆𝑂)  =  

2𝑞

𝑇𝐿 
sin 𝜃(𝑢 cos 𝜃 − 𝑣 (𝑖, 𝑗))  (17) 

 

Rearranging we get 

 

𝑣(𝑖, 𝑗 +  1)  =  ∆𝑡 (−𝑣(𝑖, 𝑗) (
𝑣(𝑖 + 1,𝑗)−𝑣(𝑖−1,𝑗)

2∆𝑥
) − 𝑔 (

𝑦(𝑖 + 1,𝑗)−𝑦 (𝑖−1,𝑗)

2∆𝑥
) − 𝑔(𝑆𝑓 − 𝑆𝑂)  +  

2𝑞

𝑇𝐿 
sin 𝜃(𝑢 cos 𝜃 − 𝑣 (𝑖, 𝑗)))  +  𝑣 (𝑖, 𝑗)  

 (18) 

 

The velocity uo = 10 m/s and channel depth yo = 0.5 m are now used as the original and boundary conditions in the form of finite 

differences. 

Initial conditions,  

 

 𝑦(0, 𝑥)  =  0 𝑣(0, 𝑥)  =  0 (19)  

 

The boundary conditions  

 

 𝑦(𝑡, 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙)  =  30 𝑣(𝑡, 𝑥𝑖𝑛𝑖𝑡𝑖𝑎𝑙)  =  20 (20)  

 𝑦(𝑡, 𝑥𝑓𝑖𝑛𝑎𝑙)  =  10 𝑣(𝑡, 𝑥𝑓𝑖𝑛𝑎𝑙)  =  20 (21)  

 

Very small values of ∆t are used to solve the two equations. We have set ∆x = 0 and ∆t = 0.0 in this analysis. It is understood that 

this finite difference process is convergent and numerically stable. The number of sub-divisions was taken to be 5 along the 

channel while it was taken to be 20 sub-divisions over the period. With reference to Kazezyilmaz-Alhan (2012) [5] appropriate 

slope for simulation range between 0.001 and 0.0001 hence we choose 0.002. 
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The following constants were also considered: 

 

𝑇 =  1 𝐿 =  1 𝑞 =  0.3 𝜃 =  
𝜋

3
 =  600 𝑔 =  9.82 𝑛 =  0.01 𝑅 =  1.1 

 

Results and Discussion 

The MATLAB software is used to simulate the equations (16) and (18) which appear in Appendix. This was done by varying i 

and j at various nodal points. Then the three graphs were plotted using the values of the velocity and the time at a certain location. 

Various flow parameters of area, length and angle were investigated to determine how they affect the velocity. 

 

Results 

 
Table 1: Velocity versus time: Angle = pi/4, pi/3, pi/2.5, pi/2 

 

 Time (s) 
Velocity (m/s/s) 

pi/4 pi/3 pi/2.5 pi/2 

0 0 0 0 0 

0.05 0.016 0.014 0.0098 0.001 

0.1 0.032 0.0279 0.0196 0.002 

0.15 0.0479 0.0419 0.0294 0.003 

0.2 0.0639 0.0558 0.0392 0.004 

0.25 0.0798 0.0697 0.0489 0.005 

0.3 0.0957 0.0835 0.0586 0.006 

0.35 0.1115 0.0973 0.0682 0.0069 

0.4 0.1272 0.111 0.0778 0.0077 

0.45 0.1429 0.1247 0.0872 0.0084 

0.5 0.1585 0.1382 0.0966 0.009 

0.55 0.1741 0.1517 0.1059 0.0096 

0.6 0.1895 0.165 0.115 0.01 

0.65 0.2048 0.1782 0.1241 0.0102 

0.7 0.22 0.1913 0.133 0.0103 

0.75 0.2351 0.2043 0.1417 0.0103 

0.8 0.2501 0.2172 0.1503 0.01 

0.85 0.265 0.2299 0.1588 0.0096 

0.9 0.2797 0.2425 0.1671 0.009 

0.95 0.2943 0.2549 0.1752 0.0082 

1 0.3088 0.2672 0.1832 0.0072 

 

 
 

Fig 2: Effect of angle on velocity 

 

Discussion  

Figure 2 shows that the rise in the angle above 450 contributes to a decrease in the velocity of the flow. The flow velocity is 

constant at 900, indicating no impact induced by the fluid from the lateral inflow channels, and from the above assumption, we 

conclude that the flow is laminar, so there is no turbulence in the junction. 
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The inflow channel angle of 450 is the most efficient angle for further discharge. 

In general, we advise designers to consider the angle of 450 for optimum discharge to occur in flat areas. 

 

Conclusion 

The goal was to look at the impact of the angle of the lateral inflow channels on the main channel flow velocity. The summary of 

the angle effect shows that 900 does not affect the key channel's flow velocity. 720 and 600 increases but 450 increases more the 

flow velocity.  
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