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Abstract 
 
In the presence of process variables, a mixture design has become well-known in statistical modeling due to 
its utility in modeling the blending surface, which empirically predicts any mixture's response and serves as 
the foundation for optimizing the expected response blends of different components.  In the most common 
practical situation involving a mixture-process variable, restricted randomization occurs frequently. This 
problem is solved when the split-plot layout arrangement is used within the constraints. This study's primary 
goal was to find the best split-plot design (SPD) for the settings mixture-process variables. The SPD was 
made up of a simplex centroid design (SCD) of four mixture blends and a factorial design with a central 
composite design (CCD) of the process variable and compared six different context split-plot structure 
arrangement.  We used JMP software version 15 to create D-optimal split-plot designs. The study compared 
the constructed designs' relative efficiency using A-, D-, I-, and G- optimality criteria. Furthermore, a 
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graphical technique (fraction of design space plot) was used to display, explain, and evaluate experimental 
designs' performance in terms of precision of the six designs' variance prediction properties. We discovered 
that arranging subplots with more SCD points than pure mixture design points within SPD with two high 
process variables is more helpful and provides more precise parameter estimates. We recommend using SPDs 
in experiments involving mixture process settings developments to measure the mixture components' 
interaction effects and the processing conditions. Also, the investigation should be set up at each of the points 
of a factorial design. 
 
 
Keywords: Process variable; mixture design; simplex centroid design; split plot design. 
 

1 Introduction 
 
Mixture process variable (MPV) experiments are typical in several fields, including agriculture and industry. 
Cornell [1], describes the MPV experiment in detail. Except for Goos and Donev [2] and Goldfarb et al. [3] 
presented MPV experiments with difficult to modify variables in practice, but they did not recognize 
randomization problems. As Chung et al. [4] discovered, when the process variable is included in the 
mixture experiment, the number of runs dramatically increases, making complete randomization impractical. 
As a result, Cho et al. [5] proposed a split-plot design to cope with restricted randomization.  
 
In mixture experiments, several designs are available for specific objectives, as pointed out by Scheffe [6], 
Kowalski et al. [7], and Lawson and Willden [8]. For example, according to Cornell [9], Cho [10], Kowalski 
et al. [11] and Yeddes et al. [12] the design with the smallest number of experimental is often preferred if it 
offers sufficient details on the model's coefficients. According to Goldfarb and Montgomery [13], a second 
feature for design selection is forecasting capability. The scaled prediction variance (SPV) is a suggested 
measure of prediction efficiency that penalizes large designs by considering the total sample size [14-17].  
Furthermore, when the cost is not the primary concern, an alternative goal is unscaled prediction variance, 
which compares variance without regard to sample size, as Cho et al. [5] reported. The critical concern is the 
estimation variance at a particular position; design efficiency is often a good choice for comparing, 
analyzing, and assessing various design options. G-, I-, V-, and Q-optimality are architecture optimality 
parameters that rely on prediction variance as pointed out by Wangui P. [18]. The overall distribution of 
scaled prediction variance across the design space takes into account when evaluating the design's prediction 
capability instead of evaluating only a single point prediction calculation, such as G-, I-, or V-efficiency 
because prediction variances vary at different points [10,19,20]. As a result, the preferred design is a 
relatively constant SPV across the entire experimental area (design space). 
 
Box and Hunter [21] suggested the principle of rotatability in experimental design, which involves constant 
prediction variance equidistant from the centre of experimental design space. Jensen and Myers [20] 
implemented a graphical method for spherical design space that shows the experimental field's prediction 
variance properties. The variance dispersion graph is the name of this graphical technique (VDG). Rozum 
and Myers [22] later expanded this approach to include designs of cuboidal regions. This technique for 
evaluating various design options in mixture design has wowed many researchers [17,23]. Goldfarb et al. 
[19] also implement three-dimensional VDGs for MPV experiments in their paper. As a supplement to the 
VDG, Zahran, et al. [24] introduced a new graphical approach. Fraction design space (FDS) plot is the new 
name for this new technique. The FDS plots are created by computing the SPV across the design space and 
then determining the fraction of the design space that is less than or equal to the SPV values [15]. Goldfarb 
et al. [3] later proposed using a random sampling approach for FDS plots in mixture design.  
 
Furthermore, Cho [10], Kowalski et al. [11], Njoroge et al. [25], Sitinjak and Syafitri [26] found the optimal 
split-plot design when three mixture components and two processes are involved. They established out that 
mixture components set up at each factorial point provide the best predictive capability. However, they 
failed to consider a set of points of SCD at the different settings of CCD in the framework factorial 
arrangement of each of the process variables when more than three mixture blends are involved. 
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The study addresses the gap on the split-plot and mixture experiments designs in improving the anticipated 
research methodology to start with. First, a general understanding of mixture and MPV experiments is given, 
as well as statistical models for data from mixture components, experimental area, and the experimental 
situation in mixture design, and robust parameter design for MPV with hard-to-modify factors. Finally, the 
best design parameters for mixture process variables are provided, along with graphical resources like FSD 
plots and VDG for comparing various design options. 
 

2. Mixture Design and Statistical Mixture Models  
 
Let ��, ��, … … . . , ��  be � mixture components. This mixture components act as explanatory variables in 

designed experiment subject to 
 

∑ ��
�
��� = � ′1� = 1                                                                                                                         (1) 

 

where 1� represent a � −dimensional column vector of ones and � ′ = ���, ��, … … . . , ���. Goos et al. [2] 

defined this mixture restriction produces a Simplex-shaped experimental region that significantly affects the 
models that can fit. Cornell [9] points out that a regression model involving linear terms in mixture blends 
cannot contain the intercept. Otherwise, as many scholars have suggested, we cannot estimate the model's 
parameters uniquely. According to many scholars, a second significant implication is that cross-products of 
proportions and squares of proportions cannot be used in the study because model parameters are not 
estimable uniquely [3]. It is evident that for each proportion �� , this is the case. 
 

��
� = �� �1 − � ��

�

��� ��� 

� = �� − � ����

�

��� ��� 

, 

 
            (2) 

 

 

The square of a proportion ��
� is, in most cases, a linear combination of that proportion and its cross-products 

with any of the other � − 1 mixture blends. 
 
Scheffe [6] proposed the Scheffe mixture models, which take these considerations into account and describe 
the first order Scheffe model as 
 

�(�) = � ����

�

���
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                          (3) 
 

 

The second-order Scheffe model, on the other hand, 
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while a unique cubic model such as 
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and the full cubic model as 
 



 

�(�) = � �

�

���

 

where �(�) denotes the predicted response, 

and ���� represents the regression coefficient of interaction terms. 

 
Scheffe [27], Cornell [1], Smith [
In the literature, this degree model has gotten a lot of coverage. But, due to an increase in the number of 
unique higher-order terms in special cubic models, which becomes tedious 
estimation, this model is not widely used.
 

2.1 Simplex Lattice Design (SLD)
 
A {�, �} simple lattice design (SLD) for 

each of which has a q unique mixture part that belongs to the set 

of design points in a {�, �} SLD is given as
 

�
� + � − 1

�
 � 

 
A (3, 1) SLD, for example, has three candidate points 
components are what these points are called 
the points (0.5, 0.5, 0), (0.5, 0, 0.5
 

 
Fig. 1. 
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denotes the predicted response, �� denotes the regression coefficient linear term while 

represents the regression coefficient of interaction terms.  

[1], Smith [28] and Goos et al. [29] advocated that the ��� polynomial degree model. 
In the literature, this degree model has gotten a lot of coverage. But, due to an increase in the number of 

order terms in special cubic models, which becomes tedious during model parameter 
estimation, this model is not widely used. 

Simplex Lattice Design (SLD) 

simple lattice design (SLD) for � mixture components entails all possible mixture formulations, 

each of which has a q unique mixture part that belongs to the set �0,
�

�
,

�

�
, … ,1�. As a result, the total number 

SLD is given as 

A (3, 1) SLD, for example, has three candidate points (1,0,0), (0,1,0), and (0,1,0), (
components are what these points are called [6,29]. For the case a (3,2) SLD involves 6 candidate points, 

5), (0, 0.5, 0.5) and as well as the pure blends as illustrated in 

. 1. Shows the SLD with 3 mixture components 
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(6) 
 

denotes the regression coefficient linear term while ���, ���  

polynomial degree model. 
In the literature, this degree model has gotten a lot of coverage. But, due to an increase in the number of 

during model parameter 

mixture components entails all possible mixture formulations, 

As a result, the total number 

) (0,0,1). Pure mixture 
SLD involves 6 candidate points, 

and as well as the pure blends as illustrated in Figs. 3 and 4. 

 



The points involving 50% of one mixture blend and 50% of another are commonly referred to as binary 

mixtures. In totality, they are � pure blends and 

[29]. 
 
However, double simple lattice design also exists in the form of 
According to Cornell [1] double SLD implies double mixture where each mixture itself is a mixture or a 
mixture of mixtures, blended with proportion and 
as  ∑ �

�
��� = � and  ∑ �

�
��� = 1 −

 
The SLD can also be depicted using 

 
2.2 Simplex Centroid Design (SCD)
 
The complete SCD consists of 2�

the (�, 3) ternary mixture mixes permutations

ingredients given as �
�

���
,

�

���
,

�

��

includes seven design points, pure component of mixture, binary mixture points 

(0.5,0.5,0), (0.5,0,0.5), (0,0.5,0.5)

 

 
Fig. 1. Shows a second order 

 
This example indicates that for every number of mixture ingredient 
Fig. 2 with a black dot at center, but rest is the family of SLD.  Moreover, SCD involves the overall centroi

given as �
�

�
,

�

�
,

�

�
, … ,

�

�
� and �

�

���
,

�

in Fig. 8. An important fraction of the SCD involves the pure blends, the binary and ternary mixtures [
However, the special cubic model is estimated using these fractions. The fraction being referred in this case 
is as the (�, 3) SCD. Further, a fraction as the 
of a larger fraction of the SCD. 
 
Our study aimed at developing a new model for analyzing MPV tests with control and hard changeable 
factor within a split-plot structure by expanding the Goldfarb [3] models that assume complete 
randomization. We, therefore, extended their model to four mix
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The points involving 50% of one mixture blend and 50% of another are commonly referred to as binary 

pure blends and (� 2 ) =
�(���)

�
 binary mixture as pointed by Goos et al. 

However, double simple lattice design also exists in the form of {�, �;  �, �}  as illustrated in 
According to Cornell [1] double SLD implies double mixture where each mixture itself is a mixture or a 
mixture of mixtures, blended with proportion and 1 − � defined by multiple component constraint equalities 

− �.  

The SLD can also be depicted using Fig. 6 in the case of a four-component mixture. 

Simplex Centroid Design (SCD) 

− 1 design points: the q pure blends, the (�, 2) binary mixture ingredients, 

ternary mixture mixes permutations �
�

�
,

�

�
,

�

�
, … ,0�, and finally, the q permutations of the mixture 

�

��
, … ,

�

���
, 0� as provided by Cornell [1,9]. A (3,2

includes seven design points, pure component of mixture, binary mixture points 

), and the centroid points �
�

�
,

�

�
,

�

�
�, as illustrated in Fig. 

hows a second order model, a SCD of three mixture components

This example indicates that for every number of mixture ingredient �, there is only one SCD as shown in 
2 with a black dot at center, but rest is the family of SLD.  Moreover, SCD involves the overall centroi

�

���
,

�

���
, … ,

�

���
, 0� are the centroids of all lower dimensional simplices as 

8. An important fraction of the SCD involves the pure blends, the binary and ternary mixtures [
However, the special cubic model is estimated using these fractions. The fraction being referred in this case 

SCD. Further, a fraction as the (�, 5) SCD involves quaternary and Quinary mixtures because 

Our study aimed at developing a new model for analyzing MPV tests with control and hard changeable 
plot structure by expanding the Goldfarb [3] models that assume complete 

randomization. We, therefore, extended their model to four mixture components in the presence of two 
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The points involving 50% of one mixture blend and 50% of another are commonly referred to as binary 

binary mixture as pointed by Goos et al. 

as illustrated in Fig. 5.  
According to Cornell [1] double SLD implies double mixture where each mixture itself is a mixture or a 

defined by multiple component constraint equalities 

binary mixture ingredients, 

and finally, the q permutations of the mixture 

2) SCD, for example, 

includes seven design points, pure component of mixture, binary mixture points 

as illustrated in Fig. 2. 

 

model, a SCD of three mixture components 

there is only one SCD as shown in 
2 with a black dot at center, but rest is the family of SLD.  Moreover, SCD involves the overall centroid 

are the centroids of all lower dimensional simplices as 

8. An important fraction of the SCD involves the pure blends, the binary and ternary mixtures [6,27]. 
However, the special cubic model is estimated using these fractions. The fraction being referred in this case 

SCD involves quaternary and Quinary mixtures because 

Our study aimed at developing a new model for analyzing MPV tests with control and hard changeable 
plot structure by expanding the Goldfarb [3] models that assume complete 

ture components in the presence of two 
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process variables. We considered six different arrangements alternative of the design points of mixture 
components at the different sets of Simplex centroid design considering the Central composite design (CCD) 
at the process variable's factorial arrangement. 
 
Also, to find an optimal split-plot design that could perform an MPV experiment that would give concise 
parameter estimates and have the best predictive capabilities. To do this, we first compared the different 
split-plot design arrangements using A-, D-, I- and G-performance to find the best suitable design 
arrangement for MPV testing. A D's construction was done using JMP software and employing the most 
appropriate design arrangement obtained in the first step. The precision of the D- of the six designs' 
parameter estimates were measured and compared using A-, D-, I- and G-optimal values and efficiencies, 
respectively. The prediction capability of the two SPDs were measured using FDS plots. 

 
3 Material and Methods 

 
The SPD was made up of a simplex centroid design (SCD) of four mixture blends and a 2� factorial design 
with a central composite design (CCD) of the process variable. The SPD comprised 54 treatment 
combinations. The four mixture blends were denoted as ��, ��, ��, ��  and set up in SCD with the following 
eleven blends; 
 

(��, ��, ��, ��)
=  (1, 0, 0,0), (0, 1, 0,0), (0, 0, 1,0), (0, 0, 0,1), (0.5, 0.5, 0,0), (0.5, 0, 0.5,0), (0.5, 0, 0,0.5), 

 
 (0, 0.5, 0.5,0), (0,0.5, 0,0.5), (0, 0,0.5, 0.5), (0.25, 0.25, 0.25, 0.25 ).  

(7) 

 
The two process variables were coded as ��� and ��� had two levels each plus additional point of CCD as 

shown in the Equation (8) and Fig. 3 where ��� = ��, ��� = �� is sub-plot and whole-plot, respectively. 

 

����, ���� =  (1, 1), (1, −1, ), (−1, 1, ), (−1, −1), (1.414, 0), (−1.41, 0), (0, 0), 

 
 (0, 1.414), (0, −1.414), (1.414, 1.414), (−1.414, −1.414).  

 
 
(8) 

 
These initial model as described by Njoroge et al. [25], was proposed and extended from 3 to 4 mixture 
components as shown Fig. 5. Their model 1 consisted of seven mixture blend set up at each of the four 
points of the factorial arrangement. In model 2, they set up four points of the factorial design at each of the 
seven mixture blends of the simplex centroid design. Still, they found that model 1 was more efficient. It 
also provided more concise parameter estimates in terms of A-, D- and E-optimality criteria because it had 
more sub-plots than whole-plots since SPD provides room to measure the effect of change of process 
variable the different mixture ingredients. We extended model 1 by looking at six other alternative 
arrangements of design points in a split-plot design of model 1. The process variables were the whole-plots 
and the mixture ingredient the split-plots as shown in Fig. 4. Our split-plot design consisted nine whole-plot 
with each having six sub-plot for all the six alternative arrangement of the candidate points in a SPD. We 
created the six different design option using D-optimal as discussed section 4.0 purposely to assess the best 
design can suitably fit model (3.2) using the proposed SPD shown in Fig. 4 and 5. 
 
However, the Fig. 4 shows a Proposed Design for Split-Plot layout to Support Fitting mixture process 
variable with Central Composite Design of second order polynomial model. 
 

3.1 New design for split-plot layout to support fitting MPV combined second-order 
MPV model with CCD for split plot structure  

 
Fig. 5 depicts the newly developed Design for Split-Plot Structure to Support Fitting the Combined Second-
Order MPV model after extending Model 1 proposed by Cho [10] and Njoroge et al. [25]. The center point 
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[��, ��] = {0,0}, � times is replicated, and each time the centroid (��, ��, ��, ��) = �
�

�
,

�

�
,

�

�
,

�

�
�,  � times is 

replicated. Also, the centroid (��, ��, ��, ��) = �
�

�
,

�

�
,

�

�
,

�

�
�  at each axial setting is replicated � times.  

 
We formulated of the model within a split plot design as follows 
 

� = ℎ��, ���, ���� = ℎ������′��� + ℎ���, ���, ����′��� + � + �   (9) 
 

Where ���  is a vector representing the coefficient terms drawn from the Whole-plot  variable, ���  is a 

vector containing the coefficient terms resulting from the sub-plot variable, �~�(0, ���
� ), represent the 

random error associated with the entire plot factor by itself during the randomization level, and �~�(0, ���
� ) 

indicate the random error that is associated with sub-plot randomization level. However, ���
�  and ���

�  are 

assumed to be statistically independent and distributed. This model (9) can still be simplified by omitting 

ℎ������′��� because whole-plot factor affects only the response through the interaction mixture component 

variable. Therefore, simplified model reduces to 
 

� =
∑ ����� + ∑ ∑ ���������� + ∑ ∑ ���������� + ∑ ∑ ∑ ������������� + ∑ ∑ ���������������� +

∑ ∑ ∑ ������������������� +��� ∑ ∑ ∑ ����������������� +���

�<����������������������+�+�                                                                                 (10) 

 
However, the model (10) under split plot design can be further simplified to 
 

��� = ���� + ����� + ���.        (11) 

 
where ���  represents whole plot �  at ���  measurement response variable subject to split-plot factors and 

process variable, �� denotes the number whole plot while ��number of measurements in whole plot �, ���  

indicates a covariate vector of ���   whole plot at ���  measurement for random effects �� ∈ ℝ�  associated 

with whole plot effect where � is the number of factor components applied in split plot layout experiment.  
 



Fig. 2. Shows 
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of process variable 



Fig. 3. Shows a Proposed Design for Split
 
 

 
Fig. 5. Shows a proposed design for split

 
3.1.1 Matrix formulation of statistical model for split plot layout
 
 From Equation (11) we can have matrix formulation of statistical model by taking into consideration the 
following variable  

Wanyonyi et al.; AJPAS, 12(3): 1-36, 2021

 
hows a Proposed Design for Split-Plot layout to fit MPV model with CCD

 

proposed design for split-plot layout for combined 2nd order MPV with CCD

formulation of statistical model for split plot layout 

From Equation (11) we can have matrix formulation of statistical model by taking into consideration the 

 
 
 
 

36, 2021; Article no.AJPAS.67747 
 
 

 
9 

 

 

layout to fit MPV model with CCD 

 

order MPV with CCD 

From Equation (11) we can have matrix formulation of statistical model by taking into consideration the 
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� = �

��

��

⋮
��

� �ℝ�  such that � = ∑ ��
�
� , 

� = �

��

��

⋮
��

� �ℝ�×�,  � ∈ ℝ�, 

 

 

� = �

�� 0 … 0

0 �� … 0
⋮
0

⋮
0

⋱
…

⋮
��

� �ℝ��×�,  ���×� = �

0 0 … 0
0 0 … 0
⋮
0

⋮
0

⋱
…

⋮
0

� �ℝ��×�, 

 
 

= �

��
�

��
�

⋮
��

�

� �ℝ�×�,  � = �

��

��

⋮
��

� �ℝ�,   

 

= �

�� 0 … 0
0 �� … 0
⋮
0

⋮
0

⋱
…

⋮
��

� �ℝ�×� = ����,   

 
Therefore, the statistical linear model matrix formulation can be written as  
 

� = �� + �� + � (12)  
 
   
 

Where �
�
�

� ~�����  ��
0
0

� , �
� 0
0 �

�� and � = ��
� 

 

 
3.1.2 Estimation of parameters for MPV within split plot layout   
 
If we let  
 
 � = �� + �∗  where �∗ = �� + � = [� ��×�] �

�
�

� (13) 

 
This implies that 
 

 �∗~�(0, �), (14) 
 
Where 

  

 
 

� = �� + � �
�
�

�  since � = [� ��×�],  

���(�) = ��� �� �
�
�

��,  

���(�) = ���� �
�
�

� �′,  

���(�) = [� ��×�] �
� 0
0 �

� �
�′   

 ��×�
� = ���′ + � 

 

⇒ � = ���′ + � (15) 
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where � is the WPE and � is the SPE. From equation (13) and (14) are termed as marginal model. Therefor 
from this the statistical model can be written as two-level hierarchical model if the random effect in the 
whole plot is known. 
   

 
From Equation (16) implies that �~��(0, �), the parameters � and � can estimated using Ordinary Least 
Square (OLS), maximum likelihood (ML), restricted maximum likelihood (REML) and Bayesian method. 
We can also employ the method of machine learning (ML) to estimate these parameters as described in 
Liakos et al. [30] as it is known to provide higher accuracy and more robust parameter estimates when 
compared to conventional regression methods. In addition, the ML algorithms have emerged with big data 
technologies to create new opportunities in the agricultural domain and industrial sector [30]. However, in 
this case, we restrict to ML and REML. 
 
3.1.3 Estimation of  �  and � using ML method based on the following cases 
 

a) Case 1: Known covariance (Σ)  for estimation of � and � 
 
(i) Known covariance (Σ)   for estimation of �, the parameter �  can be first be obtained using the 

method of Ordinary least square as 
 
Now with Σ is know and therefor � can be obtained as 

(ii) Known covariance (Σ)  for estimation of �, he parameter � can be first be obtained using OLS 
method as 
 

 �~��(��, �),     �~���(0, �),   

 
we take 
 
   ���(�, �) = ���(�� + �� + �, �),     
              = ���(��, �) + ���(��, �) + ���(�, �)  = ���(��, �),,   
                        = ����(�, �) = ����(�),  
                 = ��  Since ���(�) = �. 

 
 

Therefore, 
 �

�
�

� ~�����  ��
��
0

� , �
� ��

��′ �
��  

(17) 

 
The conditional expectation of �|�  is shown to be �(�|�) = ��′���(� − ��)  the best linear unbiased 

predictor (BLUP) of �. Therefore, the empirical best linear unbiased predictor (EBLUP) estimator of �� can 
be shown to be 

 

Now for the case of known covariance (Σ) , then EBLUP of �� is given as 

 
b) Case 2:  Unknown covariance (Σ) for estimation of � and �. 

 
For estimation of � and � when Σ is unknown we employ the joint optimum maximization  

�|�~��(�� + ��, �), (16) 

� = (�′����)���′����,  

�� = ��′Σ����
��

�′Σ���,  

�� = ��′����� − ����              (18) 

�� = ��′Σ���� − ����         (19) 
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 �� = ��′�� ���� − ����  (20) 

 
 
 

�� = ��′�� ����
��

�′�� ��� (21) 

3.1.4 Estimation of � and � using REML method 
 
The REML method is always employed whenever estimating parameters subject to unknown covariance 
structure. This method is usually preferred to ML by most researchers because the estimates parameters 
obtained is unbiased [10,11,31]. To apply this method, we consider marginal model of equation (14) with 
� = ���′ + � under assumption that � and � are both known to the variance parameter �.  Therefore, the 
unknown � and � value can be estimated as [31]  
 
 �� = ��′�� ���� − ����.  (22) 

   
 �� = ��′�� ����

��
�′�� ���.  (23) 

  
where �� = �(���) or   �� = �(�����) 

 
 

3.2 Construction of MPVD for Split Plot Structure Using D – Optimal Designs  
 
The design algorithms are required to find D-optimal SPDs for MPV designs. In the literature on finding the 
optimal design of experiments, the most popular algorithms are either the point transfer algorithms or the 
candidate-set free integration transmission algorithms implemented statistical software JMP. Furthermore, 
most of the D-optimal design used in the study were calculated by Goos and Vandebrook's [32] point 
algorithms. The algorithm is developed primarily to calculate A-. G-, I-, and D-optimal efficiency with given 
numbers and sizes of whole plots. 
 
The FORTRAN code of the algorithm and the input files needed to compute the designs are executed in 
SAS's JMP software section. This algorithm implemented in JMP software requires a specification of 
observations and split-plot configurations, including the total number of whole plot, ���, and the number of 
��  observations in each complete plot. Furthermore, a prior guess of the variance component ratio � =
��

�

��
��  has to be given. It is always good to assume that � =  1 in many practical cases as pointed out Goos 

et al. [29]. Still, it turns out that the generated designs may not be sensitive to a particular � value. Referring 
to another leads to the same designs. 
 
However, Goose and Donev [2] define the algorithm as a classical point exchange algorithm that requires 
user-specific candidate design points. A simple way to create a good candidate set when designing a split-
plot for a compound process variable test is to, as Cornell [1,9] points out, the response to a factorial design 
or process variable is to bypass the design of the MPV with the surface design. However, conditions 
involving unrestricted simplex-shaped composite design spaces can do this by passing SLDs or SCDs for the 
factorial arrangement of MPV by Goose & Donev [2] and others. Snee [33] suggested the use of fringe 
centroids and verticals to create better test designs in case of handling irregularly shaped mixture design 
region. Therefore, for examining and evaluating different design options in terms of G- and V- efficiency, 
the candidate points should also include interior points other than the overall centroid as reported by Goos 
and Donev [2]. The simplex check points as described by Snee [33] can be used as interior points for the 
case a simplex shaped region whereas for a constrained design region, pairwise averages of the overall 

centroid �
�

�
,

�

�
,

�

�
,

�

�
�  and other points in the candidate set can be used as interior points [1,6,10,11]. 
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However, to create the desired design, the algorithm begins with generation of a starting design with the 
specified number of whole plots,��� = 9 and whole plot sizes, �� = 6, �� = 6, �� = 6, �� = 6, �� = 6, �� =
6, �� = 6, �� = 6, �� = 6. Part of this is done at random as stated by Goos and Donev [2]. The initial design 
is completed by adding consecutive candidate points with the largest prediction variations. Therefore, the 
algorithm explores and evaluates all possible exchanges of design points and candidate points and possible 
transfers of design points across different whole-plots, as Goos and Vanderbroek [32] stated. Better transfer 
or swap is done for each iteration. However, the search will stop when further improvement is not possible. 
Several startup designs [29] developed to increase the probability of finding the best overall D-optimized 
design. 
 
Furthermore, the Candidate set free coordinate algorithm described in Jones and Goose [34] was 
implemented  allowing the creation of D-optimal SPDs in the absence of a candidate package. Except for the 
candidate set, the algorithm's input is similar to that required for Goos and Vandebrook's [32] algorithm. 
Furthermore, Goose et al. [29] showed that D-optimized designs could act as building blocks in the 
construction of new designs that will require duplication and additional points for the absence of fit tests in 
the presence of sample uncertainty.  
 

3.3 D- optimal designs for split-plot design 
 
The set of candidate design points in Equation (7) is used as an input to the design construction method 
described in Goos and Vanderbroek [32] to determine the D-optimal design test. This set includes all 
combinations of all points of the SCD and two checkpoints for the four composite components, including the 
permutation of the binary compound (mixture) and the overall centroid point. On the one hand, the two 
process variable 2� factorial design arrangements with central composite design (CCD), plus the center point 
for the two process variables. We use Goos and Vanderbroek [32] algorithm for construction A1, A2, A3, 
A4, A5, and A6 because FORTRAN code was freely available and could easily be modified to solve and 
handle nonstandard problems. In this design creation, we utilized �  as mentioned above since we needed the 
alluring plan to fit demonstrate (11) from the distinctive design. The alternative design was proposed since 
the relative D- and A- proficiency does not depend exceptionally much on the � esteem, but as it were, the 
relative G- and V- productivity (efficiency) diminish with �, and this concurring to discoveries detailed by 
Goos and Donev [2]. They also noted that D- optimal designs outperform the designs initially proposed by 
Kowalski et al. [11]. They called benchmark design in terms of the G and V optimality criterion with the 
value of � that ranges from 0.1 to 10. 
 
Furthermore, during this design generation, we increased the center points in design A6 compared to the rest. 
According to the literature review, additional center points allow for extra other boundary points in the D- 
optimal designs that provide an opportunity to improve the efficiency of the methods substantially [1,2,27]. 
Since lack of center points in the optimal design is, however, criticized by several researchers [2,6,10] and 
would probably cause the D- optimal designs to be biased, this is attributed to modifying different design 
options until found desirable. It is possible to construct designs that are substantially more efficient than 
those without or contain several center points. Design A1 to design A6 was also built using the candidate set 
free algorithm. We reported the D-, A-, G-, and I- efficiency together with a sliced FDS plot for each design 
relative to each other to select a desirable that supports and fits combined second-order MPV with CCD for 
split-plot layout structure. 
 

3.4 Construction of SPD for combined MPV with CCD formulated 
 
 They were six design namely ��, ��, ��, ��, �� and �� extended from the model 1 created by Njoroge et al. 
[25] by considering the set of SCD design point at different settings of 2 � factorial arrangement plus 
additional points of CCD in order to find the best MPV settings. We subjected designs to various optimality 
criterion and FDS plot techniques to select the best design. The design in Tables 1-6 were generated using 
the candidate set free algorithm based on the design proposed by Kowalski et al. [11] Vinyl thickness 
experiment involving three mixture components and two process variables.  But in this case, this design A1 
involves four mixture components (��, ��, �� and �� ) and two process variables. However, the data set for 



mixture components for the six different design options can also
conjunction with process variables in a designed split
 
Table 1 shows the proposed design 
2� factorial arrangement of process variable with CCD. We created the design using the D
discussed in section 3.3. A simplex centroid d
of the remaining process variables since it allows for identifying component factors that are deemed 

unimportant. Further, this design includes replicates of the center point 

�� =
�

�
� that can be used to compute pure error estimates. This design also includes replicates at the axial 

point({�� = 0, �� = −1}, {�� = 0
�� = 0.25), 
that makes the created design different form the one proposed by Cho [10] and Njoroge et al. [25].
 

Table 1. Showing the proposed design A1 obtained using JMP version 15 at different combination 
mixture component at 
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the six different design options can also be generated by genetic algorithms in 
conjunction with process variables in a designed split-plot experiment as described in Cho [10]

Table 1 shows the proposed design �� obtained using JMP at different combination mixture components at 
factorial arrangement of process variable with CCD. We created the design using the D

A simplex centroid design was used in this design runs at both low and high levels 
of the remaining process variables since it allows for identifying component factors that are deemed 

unimportant. Further, this design includes replicates of the center point ��� = �� =

that can be used to compute pure error estimates. This design also includes replicates at the axial 

0, �� = 1}, {�� = −1.414, �� = 0}, {�� = 1.414, �� =

makes the created design different form the one proposed by Cho [10] and Njoroge et al. [25].

howing the proposed design A1 obtained using JMP version 15 at different combination 
mixture component at �� factorial arrangement of process variable with CCD
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be generated by genetic algorithms in 
plot experiment as described in Cho [10]. 

obtained using JMP at different combination mixture components at 
factorial arrangement of process variable with CCD. We created the design using the D-optimal criteria 

esign was used in this design runs at both low and high levels 
of the remaining process variables since it allows for identifying component factors that are deemed 

= 0, �� = �� =  �� =

that can be used to compute pure error estimates. This design also includes replicates at the axial 

= 0}, �� = �� =  �� =

makes the created design different form the one proposed by Cho [10] and Njoroge et al. [25]. 

howing the proposed design A1 obtained using JMP version 15 at different combination 
factorial arrangement of process variable with CCD 

 



Table 2 shows the proposed design 
2�  factorial arrangement of process variable with CCD. We formulated the design using the D
criteria. In this design ��, a SCD also runs at both low and high level of the remaining process variable as in 
the case of design ��   in Table 1. Further, 

replicates of centroid point ���

inclusion of four pure mixture components at the center point of the design is what distinguishes design
from design ��. 

Table 2. Showing the proposed design A2 obtained using JMP version 15 at different combination 
mixture component at 
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Table 2 shows the proposed design �� obtained using JMP at different combination mixture components at 
factorial arrangement of process variable with CCD. We formulated the design using the D

, a SCD also runs at both low and high level of the remaining process variable as in 
in Table 1. Further, this design includes the pure mixture blend and only two 

� = �� =  �� = �� =
�

�
�  at center point (�� = 0, �� =

inclusion of four pure mixture components at the center point of the design is what distinguishes design

 
howing the proposed design A2 obtained using JMP version 15 at different combination 
mixture component at �� factorial arrangement of process variable with CCD
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obtained using JMP at different combination mixture components at 
factorial arrangement of process variable with CCD. We formulated the design using the D-optimal 

, a SCD also runs at both low and high level of the remaining process variable as in 
this design includes the pure mixture blend and only two 

= 0 )  of design. The 

inclusion of four pure mixture components at the center point of the design is what distinguishes design ��  

howing the proposed design A2 obtained using JMP version 15 at different combination 
factorial arrangement of process variable with CCD 

 



Table 3 shows the proposed design 
2� factorial arrangement of process variable with CCD. We also created the design using the D
criteria discussed in section 3.3. In this design 
level of the remaining process variable as in the case of design 
combination of the eleven point of the SCD plus the four simplex
On the other hand, they are 2
((1,0), (0, 1), (−1, 0)) for the two process variables that makes it different from design A1 and A2.

Table 3. Showing the proposed design A3 obtained using JMP version 15 at different combination 
mixture component at 
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Table 3 shows the proposed design �� obtained using JMP, at different combination mixture components at 
factorial arrangement of process variable with CCD. We also created the design using the D

. In this design ��, a simplex centroid design also runs at both low and high 
level of the remaining process variable as in the case of design �� and ��. This design consists of all set of 
combination of the eleven point of the SCD plus the four simplex checkpoints for the four mixture blends. 

2�  factorial design with CCD plus center point (0, 0), axial point 
for the two process variables that makes it different from design A1 and A2.

 
the proposed design A3 obtained using JMP version 15 at different combination 

mixture component at �� factorial arrangement of process variable with CCD
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obtained using JMP, at different combination mixture components at 
factorial arrangement of process variable with CCD. We also created the design using the D-optimal 

, a simplex centroid design also runs at both low and high 
. This design consists of all set of 

checkpoints for the four mixture blends. 
factorial design with CCD plus center point (0, 0), axial point 

for the two process variables that makes it different from design A1 and A2. 

the proposed design A3 obtained using JMP version 15 at different combination 
factorial arrangement of process variable with CCD 

 



Table 4 shows the proposed design 
components at 2� factorial arrangement of process variable with CCD. We developed created the design 
using the D-optimal criteria discussed in section 2. 
both low and high level of the remaining process as in the case of design

includes four pure mixture blends plus two replicates of 

0, �� = 0 ) of design, permutation of binary mixture 
the two process variables and additional runs of overall SCD 
((−1.414,0), (1.414, 0)) for one of the process variable 
and ��. 

Table 4. Showing the proposed design A4 obtained using JMP version 15 at different combination 
mixture component at 
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Table 4 shows the proposed design ��  obtained using JMP version at different combination mixture 
factorial arrangement of process variable with CCD. We developed created the design 

optimal criteria discussed in section 2. In this design �� , a simplex centroid d
both low and high level of the remaining process as in the case of design �� , �� , and 

includes four pure mixture blends plus two replicates of ��� = �� =  �� = �� =
�

�
� at center point 

of design, permutation of binary mixture (0.5, 0.5, 0, 0) at axial point ((1,0
the two process variables and additional runs of overall SCD (0.25, 0.25, 0.25, 0

for one of the process variable (��) and this makes it different from design 

 
the proposed design A4 obtained using JMP version 15 at different combination 

mixture component at �� factorial arrangement of process variable with CCD
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obtained using JMP version at different combination mixture 
factorial arrangement of process variable with CCD. We developed created the design 

, a simplex centroid design also runs at 
, and �� . This design 

� at center point (�� =

( 0), (0, 1), (0, −1)) for 
0.25)  at axial point 

and this makes it different from design  ��, ��, 

the proposed design A4 obtained using JMP version 15 at different combination 
factorial arrangement of process variable with CCD 

 



Table 5 shows the proposed design 
components at 2� factorial arrangement of process variable with CCD. We developed created the design 
using the D-optimal criteria discussed in chapter two. 
at both low and high level of the remaining process as in th
includes four pure mixture blends plus eight replicates of 
(�� = 0, �� = 0 ) of design, permutation of binary mixture 
process variables and additional runs of overall SCD 
((−1.414,0), (1.414, 0)) for one of the process variable 
design  ��, ��, �� and ��. 
 

Table 5. Showing the proposed design A5 obtained using JMP version 15 at different combination 
mixture component at 

Table 6 shows the proposed design 
2�  factorial arrangement of process variable with CCD. We developed created the design using the D
optimal criteria. In this design ��

remaining process as in the case of design 
(�� = �� =  �� = �� = 0.25) at center point 
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Table 5 shows the proposed design ��  obtained using JMP version 15 at different combination mixture 
factorial arrangement of process variable with CCD. We developed created the design 

optimal criteria discussed in chapter two. In this design ��, a simplex centroid design also runs 
at both low and high level of the remaining process as in the case of design  ��, ��, ��

includes four pure mixture blends plus eight replicates of (�� = �� =  �� = �� = 0
of design, permutation of binary mixture (0.5, 0.5, 0, 0) at axial point 

process variables and additional runs of overall SCD (0.25, 0.25, 0.25, 0.25
for one of the process variable (��)  which makes also different from the case of 

howing the proposed design A5 obtained using JMP version 15 at different combination 
mixture component at �� factorial arrangement of process variable with CCD

 

 
Table 6 shows the proposed design �� obtained using JMP at different combination mixture components at 

factorial arrangement of process variable with CCD. We developed created the design using the D

�, a simplex centroid design also runs at both low and 
remaining process as in the case of design  ��, ��, ��, �� and ��.  This design includes twelve replicates of 

) at center point (�� = 0, �� = 0 ) of design, permutation of binary mixture 
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obtained using JMP version 15 at different combination mixture 
factorial arrangement of process variable with CCD. We developed created the design 

, a simplex centroid design also runs 

� and ��.  This design 
0.25)  at center point 

at axial point (0, 1) for the two 
25)  at axial point 

which makes also different from the case of 

howing the proposed design A5 obtained using JMP version 15 at different combination 
factorial arrangement of process variable with CCD 

 

obtained using JMP at different combination mixture components at 
factorial arrangement of process variable with CCD. We developed created the design using the D-

, a simplex centroid design also runs at both low and high level of the 
.  This design includes twelve replicates of 
of design, permutation of binary mixture 



(0.5, 0.5, 0, 0)  at star point (0, −
(0.25, 0.25, 0.25, 0.25) at axial point 
case of design  ��, ��, ��, �� and 

Table 6. Showing the proposed design A6 obtained using JMP version 15 at different combination 
mixture component at 

 

 
3.5 Evaluation of MPV design with split plot structure
 
The analysis of the MPV design experiment within SPD is addressed in this section. When selecting the 
appropriate design, FDS plots for an MVP design within an SPD are developed and demonstrated for visual 
examination and evaluation. Besides, sliced fraction d
process variables on prediction variance over the experimental area.
 
3.5.1 Prediction variance for MPVD with a split plot structure
 
The predicted expected response at any location 
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( −1)  for the two process variables and additional runs of overall SCD 
at axial point ((−1.414,0), (1.414, 0)) for one of the process variable 

and ��.   
 

howing the proposed design A6 obtained using JMP version 15 at different combination 
mixture component at �� factorial arrangement of process variable with CCD

design with split plot structure 

analysis of the MPV design experiment within SPD is addressed in this section. When selecting the 
appropriate design, FDS plots for an MVP design within an SPD are developed and demonstrated for visual 
examination and evaluation. Besides, sliced fraction design space plots demonstrate the effect of mixture and 
process variables on prediction variance over the experimental area. 

Prediction variance for MPVD with a split plot structure 

The predicted expected response at any location �� as described by Goldfarb et al. [3,13

�(��) = ��
′ ��∗ 
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for the two process variables and additional runs of overall SCD 
for one of the process variable (��) as in the 

howing the proposed design A6 obtained using JMP version 15 at different combination 
factorial arrangement of process variable with CCD 

 

analysis of the MPV design experiment within SPD is addressed in this section. When selecting the 
appropriate design, FDS plots for an MVP design within an SPD are developed and demonstrated for visual 

esign space plots demonstrate the effect of mixture and 

13] is given by  

(24) 
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where �� is the point of interest in the experimental region, ��∗ denotes the vector of fixed effects resulting 
from mixture process variable settings and �(��) = ��(��). Therefore, prediction variance at �� now given as 
 
 �����(��)� = ��

′  (�′����)���� (25) 

 
Furthermore, Cho [10] pointed out that when the design is completely randomized, the covariance matrix 
� = ���  is used because the best design for predicting variance is determined solely by the design space. 
Furthermore, because of the different sources of error in the SPD, the covariance matrix becomes more 
complex than the general form of V described by Cornell [1,9]. SPD prediction variance is a function of the 
variance component ratio given by whole plot space error variance and split plot space error variance, as 
well as the experimental region x. 
 
We take prediction variance as an objective to examine and evaluate the design. The prediction variance is 
scaled by the variance observation error to make the quantity scale-free and, by design, size to penalize 
larger design. According to Liange et al. [15], the scaled predicted variance (SPV) for the split-plot structure 
is calculated by multiplying the prediction variance by the total number of runs, N, and then dividing by the 
observational error variance. As a result, the scaled prediction variance for SPDs is 
 
 

��� =
���

′  (�′����)����

��
� + ��

�
= ��

′  (�′����)���� 
(26) 

 
Where � = diagonal {��, … , ��}. ��  represents the correlation matrix of observations within plot I as a 
whole. 
 
The size of the design in split-plot designs is not nearly related to the cost because the number of 
observations in SPDs is not the number of setups required to collect the data described by Cho [10]. The 
variance of the approximated means response divided by the variance of observational error (��

� + ��
�)  is 

modeled as given by  
 
 

Predicted Variance =
��

′  (�′����)����

��
� + ��

�
= ��

′  (�′����)����, 
(27) 

 
Furthermore, in a split-plot design, unscaled variance is a valid alternative to scaled prediction variance, as 
reported by Cornell [1]. 
 
3.5.2 Evaluation of a desirable design for MPV within SPD 
 
Using design criteria in this research is to find an appropriate experimental design that allows for efficient 
parameter vector estimation in the model (11). We use the D- optimality criterion to find such a desirable 
design to fit the model, which seeks a design that minimizes the parameter estimates' generalized variance. 

Normally, the D- optimal criterion relies on ratio, � =
��

�

��
�� , of the two observational variance components 

(whole plot error variance denoted by ��
� and split plot error variance represented by ��

�) through covariance 
matrix  � . To find the best appropriate design, we compare the alternative different design option 
( ��, ��, ��, ��, ��  and  �� ) in this research and report relative D-, A-, G-, I- or V- efficiency where 
��, ��, ��, ��, ��  and ��  denotes the model matrices of six different designs option. We evaluate and 
compare SPD options based on D−, A−, G−, I −  or V −  optimality criterion performance. In this case, 
however, the A-optimal criterion seeks to reduce the mean-variance of the parameter estimates. On the other 
hand, as mentioned above, G-optimal design seeks to reduce forecast variability, 
 
 ���

(�, �) ∈ �
 ℎ′(�, �)(� ′����) ��ℎ(�, �), 

(28) 
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Over the region of interest �  where �,  and �  represents the two process variables, and four mixture 
components (��, ��, ��, ��), respectively. However, I- or V- optimal in this case minimizes the average 
forecast variance of that test region: 
 

��� 
���

(�, �) ∈ �
 ℎ′(�, �)(� ′����)�� ℎ(�, �). 

(29) 

 
Therefore, we report A, G and V relative efficiency of six designs with model matrices ��, ��, ��, ��, �� and 
�� are then computed as 
 
 �����(��

′ �����)��

�����(����
′ �������)��

, 

 

(30) 

 ���
(�, �) ∈ �

 ℎ�(�, �)(��
� �����) ��ℎ(�, �)

���
(�, �) ∈ �

 ℎ�(�, �)(����
� �������) ��ℎ(�, �)

, 

 

(31) 

and  
 
 

���
���

(�, �) ∈ �
 ℎ�(�, �)(��

� �����) ��ℎ(�, �)

��� 
���

(�, �) ∈ �
 ℎ�(�, �)(����

� �������) ��ℎ(�, �)
, 

(32) 

 
respectively, where � = 1,2, … ,6.  Furthermore, G- and I- efficiency are calculated by exploring and 
evaluating the predictive variance at the design space's point. However, for an accurate evaluation of the 
different options competing for test designs, the grid must often cover the boundaries of the test area and its 
interior, as described by Goose and Donev [2].  
 
Furthermore, the reported relative D-, A-, G-, V- or I-performance multiple values are defined to indicate 
progress in design with the sample matrix ��. This is because the relative efficiency depends on the value of 

� =
��

�

��
�� . We, therefore, employ three � values, � = 0.5, � = 1.0 and � = 1.5 to evaluate the different 

design options in this thesis where design �1 and �2 used � = 0.5, design �3 and �4 applied � = 1.0, and 
finally design �5 and �6 � = 1.5, but with modification of runs at axial point and center point of each 
design in order to make them unique and have clear distinction from each design created though all the six 
designs have some combination of mixture components that both runs at both low and high level of the 
remaining process variables. 
 
Therefore, with these facts we report the relative efficiencies using � value 0.5, 1 and 1.5 in order to evaluate 
design option (�1, �2, �3, �4, �5, �6). The relative efficiencies of D-, A-, G-, I- optimality criteria were 
computed using the formula described in Iwundu MP [35] which also implemented in JMP software. We 
believe that SPDs often cause such small or large variance component ratings with few whole plot structure, 
and as a result, the worst estimate of the whole plot error variance. Therefore, for this reason, we have 
increased the number of total number of whole plot to nine compared to the seven whole plot used by Goose 
and Donev [2], and Cho [5,10] when evaluating the different design options for the vinyl-thickness tests 
proposed by Kowalski et al. [11]. 
 

4 Results and Discussion 
 
In this Fig. 6, Sliced FDS plots shows that Design A4 is better than the rest of designs as it has smaller 
prediction variation less than 0.5. The D-, A-, I-, and G- efficiency of design A4 relative to design A1, A2, 
A3, A4, A5, and A6 in Table 7 is above 1.0, which shows again that design A4 in this case is good as 
compared to others. 
 



 
Fig. 4. Showing sliced FDS plot 
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. Showing sliced FDS plot of design A4 relative to design A1, A2, A3, A5 and A6
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of design A4 relative to design A1, A2, A3, A5 and A6 



 

Fig. 5. Showing sliced FDS plot 
 
 

Wanyonyi et al.; AJPAS, 

 
. Showing sliced FDS plot of design A6 relative to design A1, A2, A3, A4 and A5
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relative to design A1, A2, A3, A4 and A5 

 



 
Fig. 6. Showing sliced FDS plot 
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. Showing sliced FDS plot of design A5 relative to design A1, A2, A3, A4 and A6
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of design A5 relative to design A1, A2, A3, A4 and A6 



 

Fig. 7. Showing sliced FDS plot 
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. Showing sliced FDS plot of design A3 relative to design A1, A2, A4, A5 and A6
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design A1, A2, A4, A5 and A6 



 
Fig. 8. Showing sliced FDS plot 
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. Showing sliced FDS plot of design A2 relative to design A1, A3, A4, A5 and A6
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of design A2 relative to design A1, A3, A4, A5 and A6 



 
Fig. 9. Showing sliced FDS plot 
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. Showing sliced FDS plot of design A1 relative to design A2, A3, A4, A5 and A6
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A4, A5 and A6 



Table 7. Shows optimality criterion efficiency 
 

 

Table 8. Shows optimality criterion efficiency 
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. Shows optimality criterion efficiency of design A4 relative to design A1, A2, A3, A5 and A6

 

 
. Shows optimality criterion efficiency of design A6 relative to design A1, A2, A3, A4 and A5

 

 
 
 
 

; AJPAS, 12(3): 1-36, 2021; Article no.AJPAS.67747 
 
 

 
28 

 

of design A4 relative to design A1, A2, A3, A5 and A6 

 

A2, A3, A4 and A5 

 



 
Table 9. Shows optimality criterion efficiency 
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. Shows optimality criterion efficiency of design A5 relative to design A1, A2, A3, A4 and A6
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of design A5 relative to design A1, A2, A3, A4 and A6 

 



Table 10. Shows optimality criterion efficiency 
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. Shows optimality criterion efficiency of design A3 relative to design A1, A2, A4, A5 and A6
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to design A1, A2, A4, A5 and A6 

 



Table 11. Shows optimality criterion efficiency 
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. Shows optimality criterion efficiency of design A2 relative to design A1, A3, A4, A5 and A6
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of design A2 relative to design A1, A3, A4, A5 and A6 

 



Table 12. Shows optimality criterion efficiency 
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. Shows optimality criterion efficiency of design A1 relative to design A2, A3, A4, A5 and A6
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design A1 relative to design A2, A3, A4, A5 and A6 
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Table 13. Shows the D-efficiency and average variance prediction 
 
Design D-efficiency Average Variance prediction 
A1 0.850732 0.154656 
A2 0.985671 0.146223 
A3 1.17388 0.146866 
A4 1.391721 0.089642 
A5 1.212415 0.107664 
A6 1.049311 0.113173 

 
Design A6 relative to design A1, A2, A3, A4 and A5 in Fig. 7 shows that it has prediction above 0.5. Again, 
in Table 8 shows that not all the D-, A-, I-, and G- efficiency of design A6 relative to design A1, A2, A3, 
A4, and A5 is above 1.0. Therefore, design A6 is not good comparative the other design. 
 
In this Fig. 8 shows that design A5 relative to design A1, A2, A3, A4 and A6 has scaled prediction variance 
above 0.5. Further, Table 8 shows that not all the D-, A-, I-, and G- efficiency of this design relative to 
design A1, A2, A3, A4 and A6 is above 1.0. Therefore, design A5 is not good comparative the other design. 
 
In this Fig. 9 shows that design A3 relative to design A1, A2, A4, A5 and A6 has scaled prediction variance 
above 0.5. Further, Table 9 shows that not all the D-, A-, I-, and G- efficiency of this design relative to 
design A1, A2, A4, A5, and A6 is above 1.0. Therefore, design A3 is not good comparative the other design. 
 
In this Fig. 10 shows that design A2 relative to design A1, A3, A4, A5 and A6 has scaled prediction variance 
above 0.5. Further, Table 10 shows that not all the D-, A-, I-, and G- efficiency of this design relative to 
design A1, A3, A4, A5, and A6 is above 1.0. Therefore, design A3 is not good comparative the other design. 
 
In this Fig. 11 shows that design A1 relative to design A2, A3, A4, A5 and A6 has scaled prediction variance 
above 0.5. Further, Table 11 shows none of the D-, A-, I-, and G- efficiency of this design relative to design 
A2, A3, A4, A5, and A6 is above 1.0. Therefore, design A3 is not good comparative the other design. 
 
However, we also report the D-efficiency and average variance prediction obtained using JMP software 
division of SAS for each of the six design as shown in Table 12. 
 
According to scale similar to Table 13 provided by Jones and Sall (2011), then design A4 with D-efficiency 
1.391721 is best design since it has average variance prediction 0.089642 which is the smallest amongst all 
the other designs. Basing on relative efficiency shown in Table 7, 8, 9, 10, 11, and 12 together with sliced 
FDS plots in Figs 6-11, we conclude that design A4 is the optimal and best desirable design that support and 
fit combined second order mixture process variable model within the split plot layout structure shown in Fig. 
5 and new model (10) developed.    
 

5 Conclusion, Recommendation and Suggestions for Further Research 

 
We developed a new model for analyzing mixture process variable tests with control and hard changeable 
factor within a split-plot structure by expanding Model 1 produced by Njoroge et al. [28] which considered 
only three mixture components in the presences of two process variable. The new model was developed to 
consider restricted randomization for the mixture process variable (MPV) in the context of Scheffe model. 
The MPV was extended by introducing simplex centroid design (SCD) practically four mixture components 
in the presence of two process variables. The SPD, therefore, constituted a simplex centroid design (SCD) of 

4 mixture blends and a 22 factorial design with a central composite design (CCD) of the process variable. 
We compared six alternative arrangements of design points in a split-plot structure arrangement. JMP 
software version 15 was used to construct D-optimal split-plot designs. This study employed A-, D-, I, and 
G- optimality criteria to compare the constructed designs' relative efficiency. Also, the graphical technique 
(fraction of design space plot) was used to display, elucidate, and evaluate experimental designs' 
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performance in terms of precision of variance prediction properties of the six designs. The design �4 
arrangement, where the subplots composed of more SCD points than pure mixture design points or binary 
mixture design points within a whole plot with presences of two processes both being high, was found to be 
more efficient and give more precise parameter estimates and optimal SPD. We formulated the proposed 
design for a split-plot layout structure for the combined second-order mixture process variable model with 
CCD.  We explored ML and REML as method of estimating of parameters models within the SPD.  
 
We recommend using SPDs in experiments involving mixture settings formulations to measure the 
interaction effects of both the mixture components and the processing conditions in industry settings and 
Agriculture sector especially for small scale farmers to optimize the of cereal crops. Further, the researcher 
should also set up the mixture experiment at each of the factorial design points. 
 
In this research, we considered hard-to-change process variables as complete Whole-plot factors. The 
researcher can extend the split-plot structure arrangement to a situation where the mixture's components are 
considered noise variables (hard-change factor). 
 

Acknowledgement 
 
I’m very grateful to my supervisors Dr. Ayub Anapapa, Dr. Julius K. Koech and Dr. Korir Betty for their 
valuable piece of advice, support and guidance throughout writing this research article. Their consistent 
dedication and encouragement ensured success for this thesis.  Further, I give my deepest gratefulness to 
almighty God for giving good health, his grace in each and everything I have done during this entire period 
of study and research. 
 

Competing Interests 

 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Cornell JA. Experiments with mixtures: designs, models, and the analysis of mixture data. John Wiley 

& Sons. 2011;403. 
 

[2] Goos P, Donev AN. Tailor-made split-plot designs for mixture and process variables. Journal of 
Quality Technology. 2007;39(4):326-339. 
 

[3] Goldfarb HB, Anderson-Cook CM, Borror CM, Montgomery DC. Fraction of design space plots for 
assessing mixture and mixture-process designs. Journal of Quality Technology. 2004a;36(2):169-179.  
 

[4] Chung PJ, Goldfarb HB, Montgomery DC, Borror CM. Optimal designs for mixture-process 
experiments involving continuous and categorical noise variables. Quality Technology & Quantitative 
Management. 2009;6(4):451-470.  

 
[5] Cho TY, Borror CM, Montgomery DC. Graphical evaluation of mixture-process variable designs 

within a split-plot structure. International Journal of Quality Engineering and Technology. 
2009;1(1):2-26.  

 
[6] Scheffe H. Experiments with mixtures. Journal of the Royal Statistical Society: Series B 

(Methodological). 1958;20(2):344-360.  
 



 
 
 
 

Wanyonyi et al.; AJPAS, 12(3): 1-36, 2021; Article no.AJPAS.67747 
 
 

 
35 

 

[7] Kowalski S, Cornell JA, Geoffrey Vining G. A new model and class of designs for mixture 
experiments with process variables. Communications in Statistics-Theory and Methods. 2000;29(9-
10):2255-2280.  

 
[8] Lawson J, Willden C. Mixture experiments in R using mixexp. Journal of Statistical Software. 

2016;72 (Code Snippet, 2):1-20.  
 
[9] Cornell JA. Analyzing data from mixture experiments containing process variables: A split-plot 

approach. Journal of Quality Technology. 1988;20(1), 2-23.  
 
[10] Cho TY. Mixture-process variable design experiments with control and noise variables within a split-

plot structure. Arizona State University; 2010. 
 
[11] Kowalski SM, Cornell JA, Vining GG. Split-plot designs and estimation methods for mixture 

experiments with process variables. Technometrics. 2002;44(1):72-79.  
 

[12] Yeddes W, Djebali K, Wannes WA, Horchani-Naifer K, Hammami M, Younes I, Tounsi MS, et al. 
Gelatin-chitosan-pectin films incorporated with rosemary essential oil: Optimized formulation using 
mixture design and response surface methodology. International journal of biological 
macromolecules. 2020;154:92-103. 

 
[13] Goldfarb HB, Montgomery DC. Graphical methods for comparing response surface designs for 

experiments with mixture components. In Response Surface Methodology and Related Topics. 
2006;329-348.  

 
[14] Khuri AI, Harrison JM., Cornell JA. Using quantile plots of the prediction variance for comparing 

designs for a constrained mixture region: an application involving a fertilizer experiment. Journal of 
the Royal Statistical Society: Series C (Applied Statistics). 1999;48(4):521-532.  

 
[15] Liang L, Anderson Cook CM., Robinson TJ. Fraction of design space plots for split plot designs. 

Quality and Reliability Engineering International. 2006;22(3):275-289.  
 
[16] Ozol-Godfrey A, Anderson-Cook CM, Montgomery DC. Fraction of design space plots for examining 

model robustness. Journal of Quality Technology. 2005;37(3):223-235.  
 
[17] Vining GG, Cornell JA, Myers RH. A graphical approach for evaluating mixture designs. Journal of 

the Royal Statistical Society: Series C (Applied Statistics). 1993;42(1):127-138.  
 

[18] Wangui P. Selection of second order models design using D-, A-, E-, T-Optimality Criteria; 2019. 
 

[19] Goldfarb HB, Borror CM, Montgomery DC. Mixture-process variable experiments with noise 
variables. Journal of Quality Technology. 2003;35(4):393-405.  
 

[20] Giovannitti-Jensen A, Myers RH. Graphical assessment of the prediction capability of response 
surface designs. Techno Metrics. 19893;1(2):159-171.  

 
[21] Box GE, Hunter JS. Multi-factor experimental designs for exploring response surfaces. The Annals of 

Mathematical Statistics. 1957;28(1):195-241. 
 

[22] Rozum MA, Myers RH. Adaptation of variance dispersion graphs to cuboidal regions of interest. In 
joint statistical meetings, American Statistical Association, Atlanta, GA; 1991. 
 

[23] Piepel G, Anderson C, Redgate PE. Variance dispersion graphs for designs on polyhedral regions-
revisited. In Proceedings of the Section on Physical and Engineering Sciences. Alexandria, Virginia: 
American Statistical Association. 1993;102-107. 



 
 
 
 

Wanyonyi et al.; AJPAS, 12(3): 1-36, 2021; Article no.AJPAS.67747 
 
 

 
36 

 

 
[24] Zahran A, Anderson-Cook CM, Myers RH.  Fraction of design space to assess prediction capability of 

response surface designs. Journal of Quality Technology. 2003;35(4):377-386.  
 
[25] Njoroge GG, Simbauni JA, Koske JA. An optimal split-plot design for performing a mixture-process 

experiment. Science Journal of Applied Mathematics and Statistics. 2017;5(1):15. 
 

[26] Sitinjak MA, Syafitri UD. A split plot design for an optimal mixture process variable design of a 
baking experiment. In Journal of Physics: Conference Series IOP Publishing. 2019;141701:2018. 
 

[27] Scheffe H. The simplex‐centroid design for experiments with mixtures. Journal of the Royal 
Statistical Society: Series B (Methodological). 1963;25(2):235-251.  
 

[28] Smith WF. Experimental Design for Formulation, vol. 15 of ASA-SIAM Series on Statistics and 
Applied Probability. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA; 
2005. 
 

[29] Goos P, Jones B, Syafitri U. I-optimal design of mixture experiments. Journal of the American 
Statistical Association, 2016;111(514):899-911. 
 

[30] Liakos KG, Busato P, Moshou D, Pearson S, Bochtis D. Machine learning in agriculture: A review. 
Sensors. 2018;18:2674.  
 

[31] Wanyonyi SW, Mbete DA, Chimusa ER. Computational generalization of mixed models on large-
scale data with applications to genetic studies. Asian Journal of Probability and Statistics. 2018;1-31.  
 

[32] Goos P,  Vanderbroek M. D-optimal split-plot designs with given numbers and sizes of whole plots. 
Technometrics. 2003;45(3), 235-245. 
 

[33] Snee RD. Computer-aided design of experiments—some practical experiences. Journal of Quality 
Technology. 1985;17(4):222-236. 

 
[34] Goos P, Jones B.  Optimal design of experiments: A case study approach. John Wiley & Sons; 2011. 

 
[35] Iwundu MP. Missing observations: The loss in relative A-, D-and G-efficiency; 2017. 
_______________________________________________________________________________________ 
© 2021 Wanyonyi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

 
 
 

 Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sdiarticle4.com/review-history/67747 


