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ABSTRACT

Carbon Boron Nitride (BC2N) has attracted a lot of attention in research and
industry since it was first synthesized and continues to maintain this interest due to
the fascinating mechanical and electronic properties that it is proposed to possess.
Using First-principles pseudo-potential method and plane-wave methods in Den-
sity Functional Theory as well as Quantum Monte Carlo techniques, the mechan-
ical stability and lattice constants of BC2N have been studied. Cubic BN (c-BN)
which is a compound that closely resembles BC2N in structure, has also been stud-
ied comparatively. The lattice parameter for c-BN was found to be 3.6136 Å using
Quantum Monte Carlo (QMC) techniques while Density Functional theory (DFT)
gave a value of 3.6316 Å. The bulk modulus of c-BN was found to be 365 GPa
(DFT) and 393 GPa using QMC, while, the bulk modulus for BC2N was found
to be 365 GPa (DFT) and 395 GPa (QMC), and the calculated lattice parameter
3.63 Å (DFT) and 3.61 Å (QMC). The stability of BC2N was also investigated
using phonon density of states, the phonon dispersion curves, the specific heat,
vibrational frequency and internal energy. The same was also done for c-BN for
comparison purposes. These thermodynamic properties were investigated so as to
establish the lattice dynamics of the materials, and this study found no obvious
instabilities in the structure of BC2N or c-BN, up to temperatures of 2500 K. This
confirms that BC2N is a suitable candidate for use in the hard materials industry
just like c-BN, and owing to the reduced energy band gap of 2.5 eV, compared to
that of c-BN of 4.4 eV, it can also be used as a semiconductor material.
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1
CHAPTER ONE

INTRODUCTION

1.1 Overview

The term hardness was first coined by the [1], back in 1772, and this physical property has

been used as one of the fundamental mechanical aspects of materials since that time. It

is conventionally defined at a macroscopic level as the ability of a material to resist being

scratched or indented by another. While superhard materials are those that have a hardness

that exceeds 40 Giga Pascal (GPa) on the Vickers hardness test [2], well-known examples are

Diamond (115 GPa) and cubic Boron Nitride (c-BN) (62 GPa). Hardness in a material can

range from one-tenths of a Giga Pascal for some ionic substances like 0.2 GPa for NaCl [3],

to tens of Giga Pascals for covalently bonded crystals such as SiC with a hardness of 31 GPa

[4] and transition metals with metallic bonding like Tungsten Carbide (24 GPa).

There are two classes of hard materials [5], classified based on the cause of the hardness in

the material. The first category are intrinsic superhard materials. The hardness in this category

is caused by the strong directional and covalent bonds in the crystal structure, and since the

bonding is a three-dimensional configuration, it resists compression as well as bending of the

bonds. This category includes materials such as diamond, c-BN, Silicon Carbide and others.

The second category are known as extrinsic superhard materials. These materials have

a high value of hardness that is caused by the micro-structure that it possesses, rather than

the bonding of the atoms. These materials have a micro-structure that hinders creation and

movement of dislocations, and as a result the material achieves high hardness. Examples of

this would include aggregated carbon nanorods[6] and rhenium diboride [7].

As of the present, all known superhard materials bond in either covalent or polar covalent

fashion [2]. Over the last few decades, a lot of work has been done in an effort to characterise

the known superhard materials, and novel superhard materials for both practical and scientific

purposes. Some of the studies have aimed at designing materials with desirable technological

properties while others aimed at understanding the factors that determine hardness at a micro-

scopic level. Super-hard materials play an important role in technological applications as well

as in research. These compounds are used for instance in cutting tool-tips in industry [8], as
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abrasive coatings [8], and also as protective coatings [9, 10]. In research, these materials are

used as tips in high pressure experiment apparatus, among other uses. A significant amount

of superhard materials in use currently are based on the two main materials, namely synthetic

diamond and cubic boron Nitride (c-BN). These materials are the top two hardest materials in

the list of superhard materials, with diamond being the hardest, and c-BN following as noted

before.

Diamond is made up of carbon atoms bonded in a tetrahedral structure, with strong, short

covalent bonds, which explain the observed hardness and structural integrity of the material

(see fig 1.1). Cubic boron Nitride, has a zinc-blende structure just like diamond, with alternat-

ing boron and nitrogen atoms, as seen in fig 1.2. Being group III and V elements, the boron

and nitrogen atoms create a lattice that is isoelectronic to diamond, and with their crystal ionic

radii being close to that of carbon (Table 1.1), the high hardness associated with c-BN is eas-

ily explained. The ionic radii was given by [11], separated out according to the coordination

number and spin states. In [11] two values of rion(O−1) were used, one being 140 pm and the

other being 126 pm. The data was labeled from 140 pm as the ”Effective” ionic radii, and the

latter as the ”Crystal” ionic radii.

Figure 1.1: Diamond’s atomic structure.
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Figure 1.2: Cubic boron Nitride in the Zinc blende structure.

Table 1.1: Ionic radii in Å of B, C and N as a function of
ionic charge.

BN Crystal (Å) BN Effective (Å)

Element
Ionic Charge

3+ 4+ 3+ 4+

B 0.41 0.27
C 0.30 0.16
N 0.30 0.16

[11]
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These two compounds, diamond and c-BN, unfortunately suffer from various setbacks

that makes finding their alternatives a worthwhile undertaking. Synthetic diamond, being

completely composed of carbon, is not useful in machining ferrous alloys at extreme temper-

atures and conditions found in industry. This is because carbon dissolves in hot iron, and the

machining tool with diamond tips is easily rendered ineffective. This setback has been partly

solved by using c-BN in place of diamond, since c-BN does not dissolve in hot iron, and the

quality of the tool is thus not adversely affected by hot iron to the same extent.

Though a viable alternative to diamond, c-BN has its own setbacks too , one of which

being its low hardness compared to diamond. Cubic BN’s hardness is only about half as hard

as diamond on the Vickers hardness scale, a fact that makes it disadvantageous to use. This

low hardness compared to that of diamond means that in many applications where it is used

in place of diamond, the tool life is limited to a significant extent, especially if the materials

being worked on by the tool are also hard. Significantly, cost is an important consideration

too, since synthetic diamond is actually cheaper to produce than c-BN [12], making the use

of c-BN limited by its monetary cost. Thus, the invention and synthesis of novel superhard

materials comparable to diamond, is still greatly anticipated.

Currently this impasse is still yet to be satisfactorily dealt with, and researchers are ac-

tively looking for solutions. The search for the new superhard material will be guided by these

criteria [2]: a three dimensional network structure, strong chemical bonds, short bonds and

high charge density. High hardness occurs in the lighter elements of the periodic table, where

very short but strong bonds are formed. Diamond satisfies this criteria quite well, and so does

boron-based compounds such as c-BN, and other boron rich compounds. These boron rich

compounds show desirable properties such as resistance to oxidation, low mass density, high

hardness as well as mechanical strength and high wear resistance.

At the moment, a ternary compound named carbon boron Nitride (Carbon Boron Nitride

(BC2N)) is touted as a very likely candidate that can solve the disadvantages associated with

diamond and c-BN and is the subject of this study. This compound is expected to demonstrate

properties intermediate between those of diamond and those of c-BN. This means the hardness

of BC2N is expected to be higher than that of c-BN while its chemical inertness in the presence

of hot ferrous alloys is expected to be better than that of diamond, a situation which indicates
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that its an ideal compound with the qualities necessary to fill the gaps left by the disadvantages

of c-BN and diamond.

The hardness of BC2N may be due to the expected short three dimensional covalent bonds,

that characterise any superhard material. All the properties of materials are governed by their

electronic structure, and it is possible to design materials with certain expected properties,

though this is a very demanding task, since the quantitative link between electronic structures

and practical macroscopic properties remains a key challenge. Along the same lines is also

the theoretical problems that hinder advancement of designer materials. One of this is the lack

of a reliable model for the quantification of hardness based on the atomic arrangement. The

other challenge is a rigorous definition of hardness at the microscopic level. Both of these

challenges will need to be resolved before a clear understanding of hardness and its cause

emerges.

Currently two classes of materials show promise in producing materials that can be clas-

sified as superhard, these are B-C-N systems (with oxygen in some cases) and the other is

formed by light elements like B,C and N bonded to transition metals. This second class

is possible only for metals that can induce a high valence electron density onto the corre-

sponding compound, which enables resistance to plastic and elastic deformation. Hardness

is physically quantified as the crystal resistance to deformation, and is related to the types of

chemical bonds in crystals. For covalent and polar covalent crystals, the bonding is localized

in electron pairs, and the hardness is characteristically intrinsic, and is completely dependent

on the resistance of the chemical bonds in the crystal within the indentation area, a method

used to determine the hardness of materials.

1.2 Binary and Ternary Compounds

1.2.1 Cubic boron Nitride (c-BN)

c-BN was first synthesized in 1957 by [13], and since then it has found numerous applications,

as well as being studied by various researchers over the intervening years. Among some of the

properties that have intrigued researchers includes its high bulk modulus, large energy band

gap and the chemical inertness relative to diamond. The compound does not exist naturally

and is synthesized artificially, from hexagonal boron Nitride precursors. The zinc-blende
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structure of c-BN was shown previously in the figure 1.2.

1.2.2 Carbon Boron Nitride (BC2N)

The BC2N structure selected for this study, is struc 1 after [14]. This is a zinc blende structure

with the ratio of boron to carbon to nitrogen being 1:2:1. The presence of carbon in the

structure is expected to play a strengthening role in the crystal. The stronger the bonding in

the crystal, the higher the bulk modulus, and consequently the hardness of the material. The

expected zinc blende structure is as shown in figure 1.3.

Figure 1.3: The structure of BC2N.

1.3 Statement of the Problem

The need for advanced materials that serve the requirements of industry and research for su-

perhard compounds is presently high, and work is being done to meet this need. One of the

possible candidate materials (BC2N) has been studied both experimentally [15, 16] and theo-

retically [17, 18], with these studies indicating that it has high hardness from the values of the

bulk modulus (380-400 GPa) and Vickers hardness (76 GPa). However, not all findings about

this material are consistent, and some theoretical results have been reported suggesting BC2N

has a lower bulk modulus and hardness than c-BN [19] thereby compounding the problem

further.

The present uncertainty in the value of the bulk modulus of BC2N is a key gap in the

industrial applications of the material as well as in scientific research. Determining the true

value of the bulk modulus of BC2N, relative to other superhard materials like c-BN and dia-
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mond will not only help in identifying its appropriate applications, but will also aid greatly

in the search for superhard materials. The electronic properties of carbon boron nitride have

not been investigated systematically, and to better understand the material and its range of

potential applications, it is crucial that these properties are studied. Therefore this study is an

attempt to accurately predict the value of the bulk modulus, the electronic properties as well

as the vibrational and thermodynamic properties of BC2N and c-BN, using Density Functional

Theory and the highly accurate Quantum Monte Carlo technique.

1.4 Significance

Since the situation currently in the search for new superhard materials indicates that the syn-

thesis of new materials with hardness exceeding that of diamond is unlikely, it is more ap-

propriate to search for materials more useful than diamond, as it relates to the total number

of applications it can be used for. Owing to the fact that a ternary B-C-N structure may po-

tentially solve the problem of diamond’s solubility in iron at high temperatures and also the

problem of c-BN’s relatively lower hardness compared to diamond, an investigation into such

a material is extremely vital at this point in time. In this case, the study of the BC2N super-

hard phase is an important step towards ascertaining whether this ternary structure is indeed

superhard, and whether it can substitute for c-BN and diamond in the hard materials industry.

1.5 Objectives

1. To obtain the bulk properties of cubic boron Nitride and BC2N using both Density

Functional theory and Quantum Monte Carlo methods.

2. To determine the elastic properties of c-BN and BC2N.

3. To determine the band structures of the two compounds, c-BN and BC2N.

4. To investigate the vibrational and thermodynamic properties of c-BN and BC2N.
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CHAPTER TWO

LITERATURE REVIEW

The BC2N superhard material was synthesised by [15], and it is the publication of this work

that attracted a large amount of attention to the compound. However, it is worth noting that

there had been a suggestion on its synthesis by [20]. The work of [15] indicated that the

compound had a Vickers hardness of 76 GPa, a value that was higher than that of any other

known compound apart from diamond. This gave it a greater promise for applications in

industry. The bulk modulus reported was a value of 412±9 GPa, a figure that was larger than

that of cubic BN, given as 377 GPa in the same work. This high value was noted to be higher

than that expected from an ideal mixing of diamond and c-BN.

In a review, [21] reported that full X-ray emission spectra indicated that the stoichiometry

of the ternary material B-C-N was BC2N, while selected area electron diffraction patterns

exhibited rings corresponding to the (111),(220) and (311) reflections of the cubic phase.

Also noted was the statistically uniform distribution of B,C and N atoms within the crystal

lattice, due to the absence of superstructure lines. Electron Energy Loss Spectroscopy (EELS)

of the sample also revealed characteristic peaks for sp3 type bonds, leading to the conclusion

of the presence of a diamond like B-C-N phase. However, [15] found that the measured

elastic moduli of BC2N was lower than that of c-BN, but its hardness measured independently

by micro and nano-indentation was higher than that of single crystal c-BN.

It study of the ideal strength of the proposed structure was reported in [19], which showed

that BC2N was lower in strength than c-BN. These results were in disagreement with the ex-

perimental results of [22] and others [16]. In another work, [17] reported theoretical results

that were largely in agreement with [15] work, reporting a bulk modulus for BC2N of 384

GPa, which was slightly higher than that of c-BN (369 GPa). These recent results supported

the earlier theoretical results in [23], which reported a value of 404 GPa for the bulk modulus

of BC2N while placing c-BN at 373 GPa. In [18] the reported theoretical results were quali-

tatively in agreement with those of [15], noting that the six alloy configurations of BC2N that

they studied demonstrated bulk moduli of 402 GPa, 405 GPa and 383 GPa all of which were

higher than that of c-BN, given as 373 GPa in the same work.



9

It was concluded in [18] that the stability of an alloy configuration was correlated to its

density and hardness. Moreover, the higher density configurations coupled with higher bulk

moduli as well as higher isotropic shear modulus were more stable. [14] analysed all the

feasible 8-atom unit cells of BC2N. In [14], of the 420 possible configurations, they found

that only seven were topologically distinct, and of the seven structures, two demonstrated

very high bulk modulus, given as 399 GPa for struc-1 and 400.1 GPa for struc-2 from their

designation. At the same time, they found a value of 393 GPa for the bulk modulus of c-BN.

Thus, it was concluded that the material synthesized by [16] could be one of these structures.

From the available literature, it is clear that there is still some uncertainty as far as the value

of the bulk modulus of BC2N is concerned, as well as the corresponding hardness of c-BN

vis a vis BC2N. This uncertainty goes as far as the structure that should be attributed to the

experimental results that demonstrate a high value of BC2N’s hardness and bulk modulus,

thus requiring their further investigation.

There is, however, a difference between the bulk modulus of a material, its shear modulus

and the hardness (Vickers or otherwise) of a material. However, it has been reported that for

materials with a zinc blende (diamond-like) structure, the bulk modulus is one of the best

indicators of hardness according to [24]. This is due to the fact that at the microscopic level,

it is not just the surface that interacts with the indenter, but the bulk plays a part in the way

the material responds to the indenter. Hence, it is for this reason that the bulk properties are

critical in studying the hardness of both BC2N and c-BN. The upper limit of the bulk modulus

of a material also serves to indicate the intrinsic compressive hardness of the crystal structure.

[24] also found that the bulk modulus increased with decreasing inter atomic distance, average

periodic number of constituents, as well as the degree of bond covalence. This phenomena

has also been observed in other hard materials made from 4d transition metal Carbides and

Nitrides [25]. Moreover, for a compound to satisfy these conditions, it should contain ele-

ments located at the top and centre portion of the periodic table. The first period elements

do not contain enough electrons to form covalent bonds in three dimensions, therefore, com-

pounds with the highest bulk moduli must be made of elements in the second period i.e. B,

C, N.

An illustrative diagram (Fig 2.1) is shown that gives a clear picture of the relationship
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between bulk modulus and Vickers hardness, for group IV and group III-V compounds in

their cubic form. ( Data for Fig. 2.1 after [2, 26, 27, 28]).

Figure 2.1: Relationship between hardness and Bulk Modulus for specific groups of
materials.
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CHAPTER THREE

THEORY

3.1 Hardness of Materials

As mentioned earlier, hardness is conventionally defined as the resistance of a material to

scratching, or alternatively, could be thought as resistance to plastic deformation such as

indention [29, 30]. This physical property is dependent on factors such as the nature of the

chemical bond, inter-atomic distances, valence, atomic density and the co-ordination. At

present there are several methods in common use to estimate the hardness of materials, among

these being the Mohs, Vickers and Knoop tests. Mohs [31] scale, ranks materials in the

order of their ability to scratch one another, and numerical values are assigned from 1-10 for

certain index-materials. The Vickers [32] test involves measuring the size of an indentation

produced by a diamond stylus under a set load. There are other tests used, but they are not

as widespread as the ones already mentioned. Those others include are Shore hardness test,

polishing hardness, and Brinnell [33] hardness tests.

Figure 3.1: An illustration of Hardness testing using a stylus under load.

3.1.1 Compressibility and Bulk Modulus

Compressibility is the isothermal change in volume of a compound with pressure,

β =− 1
V

dV
dPT

, (3.1)
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where the terms in equation 3.1 are the compressibility β , volume V , pressure P and temper-

ature T . The bulk modulus is dependent on the same factors that determine the hardness of a

material. This property can be measured directly via change in volume with confining pres-

sure or can be computed from elastic constants. The bulk modulus on the other hand is the

reciprocal of the compressibility, B = 1
β

, and is more useful in developing predictive models.

There are different mathematical models that try to predict hardness of materials using differ-

ent characteristics of those materials, but from Oganov [34], these models have the following

criteria in common:

1. the average bond strength is high,

2. the number of bonds per unit volume is high,

3. the average number of valence electrons per atom is high,

4. bonds are strongly directional.

3.1.2 Relationship Between Hardness and Compressibility

There is an empirical correlation between hardness and compressibility, demonstrated by

Beckmann [35], and again by Scott [36] for different minerals. As noted by Goble and Scott

[30], the relation between the compressibility and the hardness can be expressed as:

Hm =
9
4
(Vm

1/3)(
1

24
Zc)

1/12B. (3.2)

where Vm is the molar volume, B is the bulk modulus, Zc is the cationic valence and Hm is

Mohs hardness. These results from Goble and Scott, show that empirical relationships exist

between the bulk modulus (B) and hardness (Hm) for certain groups of minerals. The Mohs

hardness is also proportional to the second derivative of lattice energy (U) with change in

inter atomic distance r0, and the absolute hardness can be given by :

H =

(
d2U
dr2

)
r0

. (3.3)

The dependence of the hardness on the atomic separation r0 rather than on the molar volume

V0 is a reflection of the directional nature of hardness. Thus,
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1
β
=

(
U
V

)(
Zm

q

)
=

H
Zm
q

. (3.4)

In equation 3.4, β is the compressibility and U/V is the volumetric cohesive energy, V is the

volume, H is the hardness and Zm is the maximum valence, m is the number of component

atoms, while q is the number of atoms per formula unit. It is worth noting that, in an ideal

crystal (without extrinsic impurities), the resistance that a material offers to deformations will

be determined by the strength of the local inter-atomic interactions, and for covalent solids,

chemical bonds are localized, so that it is not entirely unlikely that compressibility, may be

connected to the hardness [37].

3.1.3 Chemical Principles of Hardness

It is known that the strength of a two-centre dual electron chemical bond is largely determined

by the overlap of the atomic orbitals of the species involved in the bond. From this we can

conclude that the better the overlap between the orbitals, the larger the bond energy as well as

the energy gap. Energetically breaking an electron-pair bond inside a crystal means that two

electrons become excited from the valence band to the conduction band according to Gilmans

assumption [38]. As a result, the resistance force of a bond can be characterized by an energy

gap Eg [39]. For covalent crystals the dual-centre, two-electron chemical bonds collectively

determine the stabilization factor for the structure and effectively determines the mechanical

strength. Strong chemical bonds in a crystal structure will resist isotropic compression as well

as shear deformation [2].

3.2 The Many Body Problem and Approximations

The properties of any material may be obtained by solving the wave equation governing the

system’s dynamics, and for non-relativistic systems, this equation is the Schrödinger equation

[40]. This is true in principle, but in practice, the task of solving the equation is an immensely

difficult one. The equations that have been solved are for a few simple systems, hence the mo-

tivation to use approximations that make the practical calculations possible without sacrificing

too much accuracy.
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3.2.1 Born-Oppenheimer Approximation

The electric charge on both nuclei and electrons leads to forces of the same order of mag-

nitude, and any change in the momenta of the particles as a result of these forces will also

be the same. Assuming the momenta of the electrons and nuclei to be of similar magnitude,

and considering the fact that nuclei are so much more massive than the electrons, the nuclei’s

velocity must therefore be much smaller than that of the electrons [41]. This means that on

the time-scale of nuclear-motion, the electrons relax to the instantaneous ground-state config-

uration, and thus when solving the time-independent Schrödinger equation, Hamiltonian for

electrons and nuclei becomes (in atomic units),

H = −1
2 ∑i ∇2

i −∑i ∑α
1

2mα
∇2

α −∑i ∑α
Zα

|~ri−~rα | +

1
2 ∑i ∑ j 6=i

1
|~ri−~r j| +

1
2 ∑α ∑β 6=α

Zα Zβ

|~ri−~r j| , (3.5)

where the first term on the right gives the electron kinetic energy, the second term gives

the nuclei kinetic energy, the third term gives the electron-nuclear interaction energy, the

fourth term the electron-electron interaction energy and the last term is the nuclear-nuclear

interaction term. Within the Born-Oppenheimer approximation, we can assume that each

nucleus is stationary, and then solve for the ground state of the electronic system. From this,

the energy of the system can be obtained and finally one can solve for the nuclear motion.

3.2.2 Hartree Approximation

Here, the wave function is a product ansatz of the form :

Ψ(~r1,~r2, . . . , ~rN) = ψ1(~r1)ψ2(~r2) . . .ψN(~rN), (3.6)

where this is known as the independent-particle or Hartree approximation [42]. The wave

function of the system is made up of a product of orthonormal molecular orbitals. In this case,

the electrons only interact with a mean field created by all the other electrons, and instantanous

electron-electron interaction is ignored. This approximation is computationally feasible, at
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least using self-consistent numerical methods. However, it is a crude approximation that

fails to satisfy the Pauli exclusion principle for the many body wave function. Since the Pauli

exclusion principle requires the wave function to be antisymmetric with respect to interchange

of any two electron coordinates. This condition can not be satisfied by a non-trivial wave-

function of the form given by equation 3.6.

3.2.3 Hartree-Fock Approximation

The Hartre-Fock [43] method attempts to correct the failings of the Hartree approximations.

It does this by writing the wave function as an anti-symmetrised product of orbitals as in

equation 3.7.

Ψ(~r1,~r2, . . . , ~rN) =
1√
N

A |ψ(~r1),ψ(~r2)...,ψ(~rN)|. (3.7)

Slater later realized that the Hartree-Fock wave-function can be efficiently represented by a

N×N determinant, now known as the Slater determinant[44], which is given in equation 3.8,

i.e,

Ψ(~r1,~r2, . . . , ~rN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(~r1) ψ2(~r1) · · · ψN(~r1)

ψ1(~r2) ψ2(~r2) · · · ψN(~r2)

...
...

...

ψ1(~rN) ψ2(~rN) · · · ψN(~rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (3.8)

The Hartree-Fock energy can be evaluated by taking the expectation value of the Hamiltonian

with the Slater determinant in equation 3.8.

EHF =〈Ψ|H|Ψ〉 ,

=
N

∑
i

∫
ψ
∗(~r)

(
−1

2
∇

2 + vext(~r)
)

ψi(~r)d~r

+
1
2

N

∑
i

N

∑
j

∫ ∫ |ψi(~r)|2|ψ j(~r)|2

|~r−~r′|
d~rd~r′

− 1
2

N

∑
i

N

∑
j

∫ ∫
ψ∗i (~r)ψi(~r′)ψ∗j (~r′)ψ j(~r)

|~r−~r′|
δsis jd~rd~r′,

(3.9)

where vext is the electron-ion potential. The first term in brackets is the kinetic energy summed

up with the electron-ion potential, the second term is the Hartree term, which represents the
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electrostatic potential. The last term in equation 3.9 is of significant interest since it arises

from the antisymmetric nature of the Hartree-Fock wave-function, and it is known as the

exchange energy EX . However, the single-determinant form of the wave-function neglects

correlation between electrons, leading to a poor description of the electronic structure of ma-

terials since electrons are subjected to an average field created by other electrons that is also

non-local.

3.2.4 Post Hartree-Fock Techniques

There are two broad categories of techniques that attempt to solve the limitations of Hartree-

Fock; those based on the variational principle and those based on the perturbation technique.

Among these are the Configuration interaction [45] and Coupled cluster [46] methods.

3.3 Density Functional Theory (DFT)

This theory was developed by Kohn and Sham in 1965 [47], and it has been extended and

used to describe the fundamental properties of materials over the years with a good level of

accuracy and computational efficiency. The theory rests on two theorems published in the

mid 1960’s. The first theorem stated in simple terms that the ground state electron density

determines, and uniquely so, all properties of an interacting system of particles from the

energy to the wave function. This is significant since the problem of describing systems of

particles moves from being a problem of 3N dimensions, with N being the number of particles

to a problem of only three spatial variables.

The second theorem states that the electron density that makes the overall functional of

the electron density minimum is the true electron density of the system corresponding to a

true solution of Schrödinger’s equation. The functional described by the Hohenberg-Kohn

theorem [48] can be written in terms of single particle wave functions, which collectively

define the electron density n(~r). The energy functional (function of a function) can be written

as,

E[{ψi}] =
h2

m ∑
i

∫
ψ
∗
i ∇

2
ψidr3 +

∫
V (~r)n(~r)dr3 +

e2

2

∫ ∫ n(~r)n(~r′)
|~r−~r′|

+Eion +EXC[{ψi}].

(3.10)
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The terms on the right hand side of equation 3.10 are: the electron kinetic energy, the electron-

nuclei interactions, then the electron-electron interactions and the nuclei-nuclei coulomb in-

teractions (Eion) . The final term lumps together the quantum mechanical effects, and the

exact form of this term is still not known for all but the simplest systems, but its existence is

however guaranteed by the Hohenberg-Kohn theorem [49].

3.3.1 Kohn-Sham Equations

Assuming that the undefined exchange correlation functional can be expressed in a useful

form, the minimum energy solutions of the total energy functional has to be found; a task

that is made considerably easier than solving the Schrödinger equation for the wave function.

This is due to the formulation of the Kohn-Sham equations, that expresses the problem to be

solved in single particle form [49]:

(
h2

2m
∇

2 +V (~r)+VH(~r)+VXC(~r)
)

ψi(~r) = εiψi(~r). (3.11)

The solutions that are obtained are single-electron wave functions that depend only on

three spatial coordinates as mentioned before, which is a large reduction from the 3N variables

involved in the full solution to the Schrödinger equation. The three potentials that appear in

equation 3.11 are the electron-nuclei interaction potential V (~r), then the Hartree potential

VH(~r), that describes the electron-electron interaction and the exchange-correlation potential

VXC. The Hartree potential includes a self-interaction contribution, because the electron that

is described by the Kohn-Sham equation is also a part of the effective total electron density.

The final term in equation 3.11, VXC, describes the exchange and correlation contributions to

the single-electron equations, and the correction to the self-interaction problem is lumped in

this term.

3.3.2 Local Density Approximation (LDA)

In material science, it is the nature of the electron density that characterizes chemical bonds.

As such, we need to solve the Kohn-Sham equations, but to do this we need the unknown

exchange-correlation term. Here, an approximation is made, making use of one of the few

simple cases where the exact form of the exchange correlation is known, i.e the uniform
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electron gas. Though this approximation fails to capture the variations in the electron density,

it is, however, still very useful, and is used in practice, with satisfactory results for many

systems [40, 49]. The exchange energy for a uniform electron gas is given by the Dirac

formula [50],

ELDA
X [ρ] = −Cx

∫
n4/3(~r)dr, (3.12)

where: Cx =
3
4

( 3
π

)1/3
, (3.13)

where n is the electron density and the definition Cx is after [50]. Therefore, Local Density

Approximation (LDA) assumes that the local density can be treated as a uniform or slowly

varying function. This method has been superseded by the Local Spin Density Approxima-

tion, that expresses the density separately for electrons with spin up and those with spin down.

ELSDA
x (n(~r)) = −εx

∫ (
n4/3
↑ (~r)+n4/3

↓ (~r)
)

dr, (3.14)

where: εx = 21/3Cx. (3.15)

It is understood that Local Spin Density Approximation (LSDA) is implied whenever modern

calculations refer to the LDA approximation scheme [50]. This method has been used by

physicists and chemists to study periodic (extended) systems such as metals where the ap-

proximation of a slowly varying electron density is valid, with accuracy similar to that found

in the Hartree-Fock methods. For molecular systems, however, this is not very accurate, and

LSDA underestimates the exchange energy quite severely and can create errors that are larger

than the whole correlation energy.

3.3.3 Generalized Gradient Approximation (GGA)

The LSDA method is improved upon by considering the non-uniform electron gas [51]. This

approach includes information about the density of electrons, as well as the local gradient of

this density. There are numerous ways to include the gradient of the density, and this has led to

a number of different functionals, the most common of which are the Perdew-Wang (PW91)

[52] and Perdew Burke and Ernzhoff (PBE) [53] functionals. For the PBE functional, the
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exchange factor is written as an enhancement factor multiplied onto the LSDA functional i.e,

ε
PBE
x = εLDA

x F(x), (3.16)

F(x) = 1+a− a
1+bx2 , (3.17)

where: x = |∇n(~r)|
n(~r)4/3 , (3.18)

where the constants a,b are non-empirical parameters. The correlation part is written as an

enhancement factor added to the LSDA functional [50].

ε
PBE
c = εLDA

c + c f 3
3 ln
[
1+dt2

(
1+At2

1+At2+A2t4

)]
, (3.19)

where: A = d
[
exp
(
− εLDA

c
c f 3

3

)
−1
]−1

, (3.20)

f3(ζ ) =
1
2

[
(1+ζ )2/3 +(1−ζ )2/3

]
, (3.21)

t =
[
2(3π3)1/3 f3

]−1
x, (3.22)

here, ζ is the spin polarization, and c,d are non empirical parameters different from a,b in

equation 3.18. The PBE functional has been slightly modified to improve performance for

periodic systems, using Revised PBE [54] (revPBE), but at the cost of violating the exchange

hole condition (the exchange hole does not sum to -1 as required).

3.3.4 The Quasi Harmonic Approximation

The Debye model of heat capacity in solids is a well established theory in solid state physics.

This model explains the low temperature specific heat of solids in terms of the statistical me-

chanics of an ensemble of harmonic oscillators, or non-interacting particle that are governed

by Bose-Einstein statistics. The internal energy of a single oscillator of frequency ω , that is

in thermal equilibrium at a temperature T is given by,

Ē =
h̄ω

2
+

h̄ω

e
h̄ω

kBT −1
, (3.23)

where kB is the Boltzmann constant. After taking the derivative of the sum over the entire

set of possible phonon momenta in the Brillouin zone of equation 3.23 with respect to T, we



20

arrive at the specific heat at constant volume for a crystal:

Cv(T ) =
1
V ∑

qv
h̄ω(~q,ν)n′(~q,ν), (3.24)

where ω(~q,ν) is the frequency of the ν-th phonons mode at a point~q in the first Brillouin

zone. If we then assume that there are three degenerate phonon modes at each point in the

Brillouin zone, with each having the frequency ω(~q,ν) = c|~q|, where c is the velocity of

sound, and then converting the sum in equation 3.24 into an integral, we obtain an expression

for the heat capacity. This expression holds in the low temperature limit.

Cv(T ) =
1
Ω

12π4

5
kB

(
T

ΘD

)3

, (3.25)

where Ω is the volume of the crystal unit cell and ΘD = 2π h̄
c ( 2

4πΩ
)1/3 is the Debye tem-

perature.

In the Born-Oppenheimer approximation, the vibrational properties of molecules and

solids are determined by their electronic structure since the ground state energy depends on

the coordinates of the atomic nuclei. At low temperatures the amplitudes of the atomic vibra-

tions are much smaller than inter-atomic distances, thus we can assume that the relationship

between the ground state energy and the displacement from equilibrium atomic positions is

quadratic. This is the Harmonic Approximation (HA), but it suffers from some setbacks such

as predicting infinite thermal conductivity, infinite phonon lifetimes, and the independence of

vibrational spectra from temperature. The simplest generalization of the HA that corrects to

a great extent the mentioned deficiencies is the Quasi Harmonic Approximation (QHA). In

QHA, the crystal free energy is assumed to be determined by the vibrational spectrum via the

standard harmonic expression,

F(X ,T ) =U0(X)+
1
2 ∑
~rν

h̄ω(~q,ν |X)+ kBT log
(

1− e−
h̄ω(~q,ν |X)

kBT

)
, (3.26)

where X indicates any global static constraint upon which vibrational frequencies may

depend, and U0(X) is the zero temperature energy of the crystal. When X = V (i.e the vi-

brational frequencies are only constrained by the volume V), differentiation of equation 3.26
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with respect to volume lead to the expression for the equation of state,

P =−∂U0

∂V
+

1
V ∑

~q,ν
h̄ω(~q,ν)γ(~q,ν)

(
1
2
+

1

e
h̄ω(~q,ν |X)

kBT −1

)
, (3.27)

where,

γ(~q,ν) =− V
ω(~q,ν)

∂ω(~q,ν)
∂V

, (3.28)

are the Grüneisen mode parameters. In a perfectly harmonic crystal, phonon frequencies

do not depend on the inter-atomic distances, and in such a crystal, equation 3.27 implies that

the temperature derivative of pressure at fixed volume vanishes. It follows that the thermal

expansivity would also vanish for perfectly harmonic crystals. Following equation 3.24, we

can define

Cv(~q,ν) =
h̄ω(~q,ν)n′(~q,ν)

V
, (3.29)

as the contribution of the v-th normal mode at the ~q point of the Brillouin zone to the total

specific heat Cv, and γ as the weighted average of the various Grüneisen parameters:

γ =
∑~qν γ(~q,ν)Cv(~q,ν)

Cv(~q,ν)
. (3.30)

The thermal expansivity in terms of γ is then:

β =
γCv

BT
. (3.31)

where BT is the crystal bulk modulus.

3.3.5 Predictive Computation of Ab Initio Phonons

Predictive calculations require a proper quantum-mechanical description of the chemical bonds

that hold matter together. This is possible to achieve within electronic structure theory by

starting from the Born-Oppenheimer approximation (BO) and using modern developments

from Density Functional Theory and perturbation theory [55]. Within the Born-Oppenheimer

(BO) approximation, the lattice dynamical properties of a system are determined by the eigen-
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values E and eigenfunctions Φ of the schrödinger equation,

(
−∑

l

h̄2

2Ml

∂ 2

∂~R2
+EBO(~R)

)
Φ({~Rl}) = EΦ({~Rl}), (3.32)

where ~Rl is the coordinate of the l-th nucleus, Ml its mass and {~R} indicates the set of all the

nuclear coordinates while EBO is the ground state energy of a system of interacting electrons

moving in the field of fixed nuclei. The Hamiltonian of this system is,

HBO({~R}) =−
h̄2

2m ∑
i

∂ 2

∂~rl
2 +

e2

2 ∑
i6= j

1
|~ri−~r j|

+∑
i

V{~R}(~ri)+EN({~R}), (3.33)

where we have e being the electron charge, V{~R} is the electron-nucleus interaction, and

EN({~R} is the inter-nuclear interaction energy. The equilibrium geometry is determined by

the condition that the forces acting on individual nuclei vanish,

~FI ≡−
∂EBO

∂ ({~R})
= 0, (3.34)

whereas the vibrational frequencies, ω , are determined by the eigenvalues of the Hessian

matrix of the BO energy, scaled by the nuclear masses, i.e,

det

∣∣∣∣∣ 1√
MIMJ

∂ 2EBO({~RI})
∂ ~RI∂ ~RJ

−ω
2

∣∣∣∣∣= 0. (3.35)

The calculation of the equilibrium geometry and vibrational properties of a system can

thus amount to computing the first and second order derivatives of its BO energy surface.

3.4 Quantum Monte Carlo (QMC)

DFT methods are often fast and accurate on many systems. However, DFT has some short

comings, one of them being the aforementioned exchange-correlation functional which has

to be approximated. This leads to qualitatively wrong answers to some important classes

of materials. An alternative is the Quantum Monte Carlo method (QMC) [56] which has

some important advantages. It is an explicit many-body method and it also takes care of

electron correlation from the start, and is also applicable to finite and periodic systems. QMC
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is unbiased in its estimation of the wave-function, since it does not decompose the wave-

function into a set of basis functions. The QMC methods encompass three different techniques

for treating condensed matter problems; these are Variational Monte Carlo (VMC), Diffusion

Monte Carlo (DMC) and Path integral Monte Carlo. A description of VMC and DMC is given

in this study, while Path integral Monte Carlo which is used in finite temperature studies is

not described, since this work considered only the ground state of the material, with extension

to temperature effects being realized using quasi-harmonic approximation (QHA).

3.4.1 Variational Monte Carlo (V.M.C.)

This is a stochastic numerical integration method, capable of computing quantum-mechanical

expectation values for any many-body wave-function whose value can be evaluated at ar-

bitrary points in its configuration space. A trial wave function that satisfies some proper

boundary conditions, has its total energy calculated as an expectation value of the many-body

Hamiltonian operator,

< Ĥ >=

∫
EL(~R)|Ψ(~R)|2d~R∫
|Ψ(~R)|2d~R

, (3.36)

where we have defined the local energy as EL(~R) =
H̃(~R)Ψ(~R)

Ψ(~R)
. The quantity ~R is a 3N di-

mensional vector, which gives the configuration co-ordinates of the N particles in the system.

Subsequently the integration is done by sampling at random points in the configuration space

of the wave function [57]. From the variational theorem, we know that the energy so obtained

in the integration is guaranteed to be an upper limit on the exact ground state energy. There

is importance sampling used to sample at groups of points in regions where the integrand is

finite, in a way that minimizes the sample variance. This sampling methodology is achieved

through the Metropolis scheme, using a modification that employs two-level sampling [57]

defined as: First-level acceptance

p1(~R← ~R′) = min

{
1,
|D2
↑(
~R)D2

↓(
~R)|

|D2
↑(
~R′)D2

↓(
~R′)|

}
. (3.37)

where p1(~R← ~R′) is a probability density function, ~R is a random position where the walker

is started, D(~R) is the determinant of a Hartree-Fock orbital and ~R′ is a trial position. Second
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level acceptance probability:

p1(~R← ~R′) = min

{
1,

exp[2J(~R)]
2J(~R)]

}
. (3.38)

where J(~R) is a Jastrow function defined as,

J(~R) =
N

∑
i=1

χ(ri)−
1
2

N

∑
i=1

N

∑
j=1

u(~ri,~r j), (3.39)

where χ is a one body, and u a two body correlation term. This two level algorithm has

been shown to be more efficient [58] than the standard Metropolis acceptance probability

algorithm.

3.4.2 Diffusion Monte Carlo (DMC)

The DMC method is based on rewriting the Schrödinger equation in imaginary time, τ = it,

so that it becomes,
∂ |ψ〉

∂τ
= Ĥ |ψ〉 , (3.40)

with the state |ψ > being expanded in eigenstates |φi > of the Hamiltonian, i.e,

|ψ〉=
∞

∑
i=0

ci |φi〉 . (3.41)

A formal solution of the Schrödinger equation then becomes;

|ψ(τ1 +δτ)〉= e−H̃δτ |ψ(τ1)〉 . (3.42)

The state |ψ > evolves from imaginary time τ1 to a later time τ1 +δτ . Expanding the initial

state in terms of energy ordered eigenstates, one obtains,

|ψ(δτ)〉=
∞

∑
i=0

cie−εiδτ |φi〉 . (3.43)

Therefore from equation 3.43, any initial state that is not orthogonal to the ground state will
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evolve to the ground state φ0 in the long-time limit.

lim
τ→∞
|ψ(τ)〉= coeεeτ |φo〉 . (3.44)

The decay in the exited states in imaginary time evolution is exponentially fast, as opposed to

the decay in the VMC method where a contribution remains and adds to the VMC energy. In

position space, equation 3.44 becomes,

lim
τ→∞

ψ(~R,τ) = coeεeτ
φo(~R). (3.45)

The contribution to the VMC energy in equation 3.45 can be kept finite by introducing a

constant offset to the energy, E + T = εo. If we separate the Hamiltonian into the kinetic

energy and the potential energy terms, the imaginary time Schrödinger equation (eqn. 3.40)

takes a form similar to a diffusion equation:

− ∂ψ(~R,τ)
∂τ

=

[
N

∑
i=1
−1

2
∇

2
i ψ(~R,τ)

]
+(V (~R)−ET )ψ(~R,τ), (3.46)

where ψ( ~R,τ) may be understood as being analogous to the density of diffusing particles,

while (V (~R)−ET ) is a rate term describing a potential dependent increase or decrease in

the particle density. Equation 3.46 may be understood as a density of particles undergoing

diffusion. Figure 3.2 shows an illustration of particle diffusion in imaginary time τ .

As it is, equation 3.46 cannot be implemented efficiently in Monte Carlo Simulations, as

the potential V (~R) is unbounded in coulombic systems and hence the rate term (V (~R)−ET ),

can diverge. Large fluctuations in the particle density then result and give impractically large

statistical errors. Also, this is missing a key constraint, that is, for fermionic systems, the so-

lution should be antisymmetric with respect to the exchange of any two fermions. The issue

of large fluctuations in the particle density can be substantially reduced by the incorporation

of importance sampling which is discussed in section 3.4.3. To satisfy the antisymmetry con-

straint for fermions, a form for the nodal surface of the fermionic wave function is assumed,

a method that is referred to as fixed node approximation. Figure 3.3 shows the time evolution

of the particle distribution function.
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Figure 3.2: Particle diffusion in imaginary time.

Figure 3.3: The time evolution of the particle distribution function.
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3.4.3 Importance Sampling

This is an essential step for the DMC method, for the reason of efficiency. Here, a trial wave

function, ΨG(~R), closely approximating the ground state wave function is introduced. In this

case, we introduce a new distribution,

f (~R,τ) = φG(~R)φ(~R,τ), (3.47)

where the new term φG(~R) is a guiding wavefunction, and the right side of equation 3.47, hap-

pens to be a solution of the Schrödinger equation whenever φ(~R,τ) is a solution. Modifying

equation 3.46 gives,

− ∂ f (~R,τ)
∂τ

=

[
N

∑
i=1
−1

2
∇

2
i f (~R,τ)

]
−∇

[
∇ψ(~R)
ψ(~R)

f (~R,τ)

]
+(EL(~R−ET ) f (~R,τ). (3.48)

A trial energy ET has now been introduced into equation 3.48 to maintain normalization of the

projected solution at large τ . The right side of equation 3.48 consists of diffusion, drift and

rate terms, respectively. The potential dependent rate term of the non-importance sampled

method has been replaced by a term dependent on the difference between the local energy of

the guiding wave function and the trial energy. The trial energy is initially chosen to be the

VMC energy of the guiding wave function. Using an optimized trial function usually mini-

mizes the difference between the local and trial energies, and consequently the fluctuations

in the distribution f are minimized. A wave function optimized using VMC is ideal for this

purpose, and is usually the method used in practice to create trial functions.

3.4.4 Fixed Node Approximation

QMC will usually find the minimum energy state, but this state will be a bosonic state, there-

fore, in order to find the fermionic ground state, an approximation known as the fixed node

approximation is made. This makes use of a known trial function to determine the positive

and negative regions of the wave function. In this approximation walkers that are attempting

to cross the nodes are deleted. The accuracy of this method is therefore dependent on the

nodes of the reference wave function.
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3.4.5 Localized Basis sets in Quantum Monte Carlo (blip functions)

In QMC calculations, the trial many body wave function Ψ(~r1,~r2, . . . , ~rN) is represented in

general by a linear combination of slater determinants D of single electron orbitals ψn(~ri)

multiplied by a parametrised Jastrow correlation factor J(~r1,~r2, . . . , ~rN). Within the VMC

method J is optimized by varying its parameters so as to reduce the variance of local energy

HΨT
ΨT

, where H is the many body Hamiltonian. The optimised ΨT produced by VMC is then

passed as input to the DMC calculation, which achieves the exact ground state within the

fixed nodal structure required by the Slater determinant D.

At each step of a QMC calculation, it is required that Ψ(~r1,~r2, . . . , ~rN) is evaluated in each

walker, involving the evaluation of single electron orbitals, ψn(~ri). Consequently, the repre-

sentation of ψn(~ri) is a crucial issue in the efficiency of the calculations. One of the common

approaches is to use Plane-waves, since their accuracy can be systematically improved, they

are also unbiased, and most of the readily accessible and technologically developed DFT

codes are designed for Plane-wave calculations. However, these plane waves are not well

suited for QMC calculations since for the evaluation of each ψn(~ri), the sum over all the

plane-waves in the system has to be found, a process that will lead to very high computational

cost. Another option is to use localized basis sets such as gaussians, but these tend to be

biased and difficult to systematically improve.

The representation of wave functions in QMC calculations is done more efficiently by

using a scheme that is based on B-splines (blip functions) according to [59]. These B-spline

functions consist of localized cubic splines centred on the points of a regular grid. This

representation is localized, and the evaluation of each orbital ψn(~ri) has a computational cost

that is independent of the system size as well as the blip-grid spacing. B-splines can be

obtained from any standard plane-waves density functional theory code, and as such they

provide a convenient interface between the plane wave calculations and QMC calculations.

These blip functions consist of localized cubic splines centred on a regular grid with each

function being non zero inside a region extending two grid spacings in each direction from its

center. A blip function Θs(~r) centred on a cubic grid of spacing a, at position ~Rx = (Xs,Yc,Zs)

is given by:

Θs(~r) = φ

(
x−Xs

a

)(
y−Ys

a

)(
z−Zs

a

)
. (3.49)
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where φ(x) is:

φ(x) = 1− 3
2

x2 +
3
4
|x|3, 0≤ |x| ≤ 1,

=
1
4
(2−|x|)3, 1≤ |x| ≤ 2,

= 0, |x| ≥ 2 (3.50)

Each single particle is then represented as:

ψn(~r) = ∑
s

ansΘs(~r). (3.51)

Therefore, for any position~r, there will only be 64 non zero blip functions [59] regardless of

the size of the system, meaning that the number of operations required to determine ψn(~r) is

identical for all materials.
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CHAPTER FOUR

METHODOLOGY

4.1 Introduction

This research used two computational approaches in the study of materials, i.e. Quantum

Espresso [60] an implementation of Density Functional Theory, and the other is CASINO

[61] an implementation of Quantum Monte Carlo methods.

4.2 Electronic and structural Optimization

All calculations involving Density Functional Theory studies were done using the electronic

structure code known as Quantum Espresso. This stands for opEn Source Package for Re-

search in Electronic Structure, Simulation and Optimization (QE) and it is a suite of computer

codes for first principles materials modelling based on plane waves and pseudo-potentials as

well as Density Functional Theory. It is released under a research-friendly (GNU) General

Public License [62], and has been developed and tested by the authors [60] as well as many

leading research groups around the world for about twenty years. Some of its capabilities

include:

1. Calculation of Kohn-Sham orbitals and energies for isolated and periodic systems in

their ground-state.

2. Structural optimization of the atomic coordinates and unit cell degrees of freedom using

Hellmann-Feynman forces and stresses.

3. Ground state determination of magnetic or spin-polarized systems, including spin-orbit

coupling and non-collinear magnetism.

4. ab initio molecular dynamics (MD), using either the Car-Parinello Lagrangian, or the

Hellmann-Feynman forces.

5. Generation of maximally localized Wannier functions and related quantities.

6. Density-functional perturbation theory, to calculate the second and third derivatives of
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the total energy at any arbitrary wavelength, providing phonon dispersions, electron-

phonon and phonon-phonon interactions.

Quantum Espresso uses an iterative approach to reach self consistency, which is achieved

through the modified Broyden method [63], making use of iterative diagonalization. Norm

Conserving [64], Ultra-soft Pseudo Potentials [65, 66], as well as the Projector Augmented

wave [67] methods are implemented. There is also an implementation of both the Local den-

sity approximation as well as the Generalized gradient approximation exchange-correlation

functional. Structural aspects of crystals are treated via the Broyden-Fletcher-Goldfab-Shanno

(BFGS) algorithm [68, 69, 70] or the damped dynamics method. These two structural opti-

mizations can be used and they involve the internal microscopic degrees of freedom or the

macroscopic degrees of freedom. The second and third order derivatives of the energy with

respect to the atomic displacements as well as the electric fields can also be found, with an

emphasis on taking advantage of symmetry to reduce the computational cost of the calcula-

tions. Electron-phonon interactions can also be determined using this code via a response of

the self-consistent potential to a lattice distortion.

4.2.1 The Unit Cell Definition

The structure representing cubic boron Nitride was defined as having a boron atom at (0,0,0)

and a nitrogen atom at (0.25,0.25,0.25) with the lattice vectors defined as:

~a1 = a(0.5,0.5,0) ~a2 = a(0,0.5,0.5) ~a3 = a(0.5,0,0.5) (4.1)

These are simply the primitive vectors of a face centred cubic structure.

For BC2N the starting unit cell was defined with eight atoms. The ratio of carbon to boron

to nitrogen was 2:1:1, and tetrahedral bonding was assumed, with boron and nitrogen bonding

with carbon and with each other. The structure of BC2N used in this study separated the B−N

layers from the C−C layers, a configuration that lowers the overall energy of the system and

consequently makes the structure more stable [14].
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4.2.2 Convergence Testing

The Monkhorst-Pack [71] grid was tested thoroughly from 2× 2× 2 to 8× 8× 8, and after

careful optimization, a grid of 4× 4× 4 was used to ensure computational tractability in the

ensuing QMC calculations. The plane wave cut-off energy convergence led to a value of 70

Ry for BC2N and 120 Ry for BN. Convergence was considered to have been achieved when

the difference between successive self consistent steps was less than 10−6 Ry. The details of

the optimization are given in Appendix. A.

4.2.3 Elastic Constants

Elastic constants were calculated from the variation in energy found by applying a small

strain to the equilibrium lattice configuration [72, 73]. The energy of a solid under strain is

calculated from:

∆E =
V
2

6

∑
i=1

6

∑
j=1

Ci jeie j, (4.2)

where V is the volume of the original unstrained lattice, and ∆E is the change in energy caused

by a strain with vector e = (e1,e2,e3,e4,e5,e6). C is the matrix of the elastic constants. There

are only three independent elastic constants in cubic structures, and they are C11, C12 and C44.

The primitive lattice vectors for the simple cubic structure are given as:


a1

a2

a3

=


a 0 0

0 a 0

0 0 a

 .

The primitive vectors ai(i = 1, . . . ,3), were skewed to the strained vectors by the transfor-

mation: 
a′1

a′2

a′3

=


a1

a2

a3

 · (I+ ε), (4.3)
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where ε is the strain tensor, related to the strain vector e by:

ε =


e1

e6
2

e5
2

e6
2 e2

e4
2

e5
2

e4
2 e3

 . (4.4)

The elastic constants for the cubic structures were calculated by applying the tri-axial

shear strain e = (0,0,0,δ ,δ ,δ ) to the crystal, and in this case, C44 was obtained from:

∆E
V

=
3
2

C44δ
2, (4.5)

and the shear modulus, C′ = 1
2(C11−C12), was calculated from the orthorhombic strain (vol-

ume conserving) e = (δ ,δ ,(1+δ )−2−1,0,0,0) using the relation,

∆E
V

= 6C′δ 2 +O(δ 3). (4.6)

Using equations 4.5 and 4.6, 21 sets of ∆E
V vs δ values were obtained using DFT calcu-

lations by varying δ from −0.02 to 0.02. The data was then fitted to a quadratic polynomial

and the corresponding elastic constants were calculated from the coefficient of the quadratic

terms in equations 4.5 and 4.6.

4.3 QMC

The CASINO [61] program is an implementation of the Quantum Monte Carlo method, cre-

ated at Cambridge University Cavendish Laboratory. Its functionality includes the following

methods.

1. Variational Monte Carlo (VMC) and,

2. Diffusion Monte Carlo (DMC)

CASINO can also treat the following systems (though not an exhaustive list):

1. Atoms, molecules, polymers, slabs and solids.

2. 1-D, 2-D, and 3-D electron and electron-hole phases with fluid or crystal wave func-

tions, and arbitrary cell shape or spin or polarization density.
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Some of the wavefunction representations that it can handle include:

1. Multi-determinant Slater-Jastrow wavefunctions.

2. Orbitals expanded in Gaussian basis set.

3. Orbitals in blip [59] functions.

4. Localized orbitals and basis functions.

In this study the procedure followed in the QMC calculations was as follows:

1. DFT calculations using the optimized unit cell geometry were performed to produce

single particle orbital wavefunctions.

2. The obtained single particle wavefunctions were then used to construct the trial wave

functions (plane waves) to be used in QMC.

3. The trial wave function was then optimized using VMC, since it provides the upper

bound on the ground-state energy using the variational principle applied to the trial

form of the many-body wave function, as well as being relatively faster than DMC.

4. A VMC run was then carried out, whereby the total energy E for the ground state

was obtained for the various values of lattice constants as was the case in the DFT

computations. Energy and volume (E-V ) data was also collected, which was then fitted

to the Birch-Murnaghan and Vinet equations of state.

5. The optimized VMC wave function was then used as an input wave function for DMC

calculations. The DMC calculations were done in three stages,

(a) VMC Configuration generation;

(b) DMC equilibration; and

(c) DMC statistics accumulation.

6. The total energy E for the ground state was then obtained for the various values of

lattice constants as was the case in the DFT computations. E-V data was also collected,

and that was then fitted to the Birch-Murnaghan and Vinet equations of state, just like

in step 5 above.
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CHAPTER FIVE

RESULTS AND DISCUSSION

In this chapter, the results obtained in this work are presented. This includes results on the

mechanical properties followed by the elastic properties, then the electronic properties and

finally the thermal and vibrational properties for both c-BN and BC2N.

5.1 Mechanical properties for Boron Nitride (c-BN) and Carbon Boron Nitride (BC2N)

Figures 5.1 and 5.2 show the optimized crystal structures of c-BN and BC2N, respectively,

following a rigorous relaxation procedure. These structures were used as the basis for cal-

culation of the various mechanical, electronic, thermal and vibrational properties of the two

compounds. The bond lengths between the atoms in the two structures are shown in Table 5.1.

These show that the presence of carbon in the structure influences the bonding significantly,

and it is also clearly observed that the C-C bonds are significantly shorter than the C-B, or

even the C-N bonds. However the B-N bond in BC2N is slightly longer (1.58 Å) than that in

c-BN (1.55 Å). The length of the two bonds B-N and C-B in BC2N differ by only 3% from

the C-C bonds in diamond which are 1.53 Å. This similarity in bond lengths with those of

diamond coupled with similar crystal structures confirms their high hardness relative to that

of diamond. The bonding in the two materials is expected to be sp3 hybridization between

the 2p orbitals of B and the 2p orbitals of C in BC2N.

Table 5.1: Calculated DFT-GGA bond lengths in BC2N and BN.

BC2N
C-C 1.53 Å
B-N 1.58 Å
C-B 1.58 Å

BN B-N 1.55 Å
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Figure 5.1: Cubic boron Nitride Zinc blende structure.

Figure 5.2: BC2N Zinc blende structure.
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Other properties of the two materials which include the equilibrium lattice constant are

given in Table 5.2, the bulk modulus, unit cell volumes and the pressure derivative of the bulk

modulus using DFT in Table 5.3, as well as values from Ewald energy in Table 5.4 and also

from Model Periodic Coulomb (MPC) energy vs. volume data as shown in Table 5.5.

Table 5.2 shows the calculated lattice parameter for both c-BN and BC2N. The results

show that DFT tends to overestimate the lattice parameter compared to the experimental value,

giving a value of 3.628 Å from the Vinet Equation Of State (EOS), while from DMC, the

lattice parameter was obtained at 3.611 Å which was much closer to the experimental value

of 3.617 Å for c-BN. Results of the lattice parameter for BC2N showed that, DFT gave a value

of 3.633 Å, while DMC (MPC), gave a value of 3.6127 Å. The DMC (MPC) results are again

much closer to the experimental value of 3.602 Å, differing only by 0.53% for the Vinet EOS

and 0.55 for the Birch-Murnagan EOS. The observed lattice parameters for both BC2N and

c-BN together with the short bond lengths are the principle determining factors of the high

bulk modulus in diamond-like materials [74].

Table 5.2: Calculated Lattice Parameters for BN and BC2N, using the Vinet and Birch
-Murnagan (B-M) equation of state.

BN
Vinet EOS (in Å) B-M EOS (in Å) Expt. (in Å) % dev Vinet EOS %dev B-M EOS

DFT 3.6282 3.6316 3.617b 0.56 0.73
Ewald 3.6091 3.6117 0.395 -0.26
MPC 3.6111 3.6136 -0.295 -0.17

BC2N
Vinet EOS (in Å) B-M EOS (in Å) Expt (in Å) % dev Vinet EOS %dev B-M EOS

DFT 3.6335 3.6343 3.602b,3.602c 1.57 1.65
Ewald 3.6112 3.6116 0.46 0.48
MPC 3.6127 3.6131 0.53 0.55

b[16] c[75]

The values of the bulk moduli for both c-BN and BC2N are shown in Table 5.3, whereby

the values predicted by DFT indicates that the hardness of c-BN is lower than that of BC2N,

with their bulk moduli differing by 3.6 GPa. This difference in their bulk moduli is however

not very much pronounced, and given that DFT is known to underestimate some properties,

it is hard to conclusively pick which material is actually harder between the two, especially

basing the judgement on the DFT results alone. BC2N was found to have a bulk modulus of

369 GPa using the fit to the Birch-Murnagan equation of state while c-BN had a value of 365
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Table 5.3: Calculated bulk modulus B0, and its derivative B′0 and the unit cell volumes
for BN and BC2N from DFT.

BN
B-M EOS Vinet EOS Expt.

V0 (a.u.3) 80.8054 80.5757
B0 (GPa) 365.35 364.59 368b,369d , 400e

B′0p 3.64 3.86
BC2N

B-M EOS Vinet EOS Expt.
V0 ( a.u.3) 323.9292 323.7209
B0 GPa 369.02 372.03 355b,282c, 412 f

B′0p 3.61 3.66
b[16] d[76] e[77] f [78]

GPa, which was a small difference in the compressibility of the two materials.

A fit to the Vinet equation of state gave values of 365 GPa and 372 GPa for c-BN and

BC2N respectively. Overall, the two approaches i.e Vinet and Birch-Murnaghan, predicted a

higher value of bulk modulus for BC2N compared to that of c-BN.

Table 5.4: B′0 and the unit cell volumes for BN and BC2N from Ewald energy. The values
in brackets are the error bars, and B-M means Birch-Murnagan equation of state.

BN BC2N
B-M Vinet Exp B-M Vinet Exp

V0 79.48(3) 79.31(3) 317.9(3) 317.8(4)
B0 393(1) 391(1) 368b,369d , 400e 393(2) 396(2) 355b,282c, 412 f

B′0p 3.602(5) 3.79(1) 3.58(6) 3.60(7)
b[16] d[76] e[77] f [78]

The more accurate QMC method, gives a clearer picture of why it is not easy to judge

which material between c-BN and BC2N is actually harder from the calculations alone. So

far various experimental results have given inconclusive results on the hardness and bulk

modulus of c-BN and BC2N. From Table 5.4 the closely predicted values of bulk modulus,

and its pressure derivative shows that the hardness of BC2N could be higher than that of c-BN,

but the error bars leave a small margin for error on this result. In spite of this, BC2N is still

predicted to have a higher bulk modulus and hence harder than c-BN. The unit cell volume of

BC2N is for the 8 atom cell, and therefore the short inter-atomic distances implies a very high

electron density within the material, a situation that is expected for any material to achieve

high hardness.
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Table 5.5: Calculated B0, B′0 and the unit cell volumes for BN and BC2N from MPC.
Error bars are given in brackets.

BN
B-M EOS Vinet EOS Exp

V0 79.61(3) 79.44(3)
B0 393(1) 391(1) 368b,369d , 400e, 369-400g

B′0p 3.599(5) 3.79(1)
BC2N

B-M EOS Vinet EOS Exp
V0 318.3(3) 318.2(4)
B0 395(2) 395(2) 355b,282c, 412 f

B′0p 3.59(7) 3.62(8)
b[16] d[76] e[77] f [78] g[72]

In summary, the results from the Quantum Monte Carlo calculations (given in Tables

5.4 and 5.5) indicate that the bulk modulus of BC2N is higher than that of c-BN, though their

values are close. The fact that bulk modulus is inversely proportional to the compressibility of

the material, is an indication that a high bulk modulus suggests high hardness of the material.

From theory, the low compressibility is expected to occur whenever there is high valence

charge density and strong directional bonds, which ultimately contributes to the resistance to

deformation per unit area.

The results obtained in this study are compared with available experimental data, and

also other theoretical calculations are shown where available. It is important to note that the

bulk modulus, the lattice parameters and the bond lengths reported here are predictions of

the ground state and not at finite temperatures. The calculated values for the lattice param-

eter were found to be in good agreement with the experimental values and other published

theoretical works using different techniques. The DMC (MPC) results showed the lowest de-

viation from the quoted experimental values and hence more accurate. The LDA and GGA

results were also found to be close to experimental findings, and are therefore capable of

approximating the lattice parameter fairly accurately.

Figure 5.3 shows the Vickers hardness of different compounds plotted against the bulk

modulus (after [25, 26], values for c-BN and BC2N from this work). BC2N and c-BN occupy

the top right hand side of the figure, together with diamond, and all three have in common

three dimensional tetrahedral bonds. On the lower right hand side are compounds such as

RuB2 which also has a high bulk modulus (382 GPa) due to the high electronic density that is
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Figure 5.3: A summary and comparison of c-BN, BC2N and other compounds including
Transition metal Carbides and Nitrides.

created by the metal in the compound, but rather low Vickers hardness due to the bond metal-

licity, a phenomena that makes bending of bonds much easier. Overall, there is a relationship

between the Vickers hardness and the bulk modulus, whereby diamond, BC2N and c-BN are

the materials with the highest values of the two and hence hardest.
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5.2 Elastic Properties

The elastic properties of c-BN and BC2N are presented in this subsection. Figures 5.4-5.6

show the plots of ∆E
V vs distortion, for obtaining the required elastic constants according to

equations 4.5 and 4.6. All the plots show the expected quadratic nature as predicated by

the respective equations. Table 5.6 shows the calculated average shear moduli C44 and C′,

together with experimental data and other calculated data where available. As noted earlier a

high value of elastic constant indicates a harder material and vice versa.

Figure 5.4: Variation of ∆E
V vs strain δ for the calculation of the C44 constant for c−BN.

Table 5.6: Calculated Elastic Parameters of BN and BC2N.

BN BC2N
This work Expt % dev. Others This work Expt. Others

C44 (GPa) 431 480a 10% 471.7b, 483d , 493e 457 484.2 b

C′ 317 315a 0.63% 310.5b 360 352.4 b

a[79] b[14] d[80] e[81]

For c-BN, the value of C44 that was calculated had a 10% deviation from published ex-

perimental values, while that for C′ on the other hand had a deviation of 0.63%. For BC2N a

comparison with other different theoretical results is shown. From the computed results BC2N

was found to have a value of 360 GPa for the shear modulus C′, while c-BN had a value of 317

GPa. From the values of the shear modulus (C′), and the constant C44, the shear strength of
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Figure 5.5: Variation of ∆E
V vs strain δ for the calculation of the C′ constant for c−BN.

Figure 5.6: Variation of ∆E
V vs strain δ for the calculation of the C44 constant for BC2N.

BC2N was predicted to be higher than that of c-BN, results that corroborate the findings from

the bulk moduli and the lattice parameters already presented in this work. While the average

shear modulus which is given by the C44 elastic constant was underestimated by about 10%,

the C′ elastic constant showed very good agreement with the experimental data, differing by

only 0.63%. The underestimation in the shear modulus may be attributed to the limitations in
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Figure 5.7: Variation of ∆E
V vs strain δ for the calculation of the C′ constant for BC2N.

the treatment of electron correlation inherent in DFT, due to approximations that are made in

practice.

The elastic constants are indicative of the stress required to maintain distortion on a mate-

rial, and the higher the value of the constant, the more the compressive strength the material

possesses.
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5.3 Electronic Properties

5.3.1 Band Structure and Density of States

The electronic band structure and density of states for both c-BN and BC2N are shown in

figures 5.8-5.13, while a summary of the energy band gaps of two materials is shown in Table

5.7.

Table 5.7: Calculated Energy Band gaps of c-BN and BC2N.

BN Calc(eV) Exp.a % Err. BC2N Othersb

indirect Γ→ X 4.4 5.18 -15 %
Direct Γ→ Γ 8.68 8.0 8.04 % 2.5 2.0

K→K 11.2 11.8 -5.0 %

[82]a [83]b

Figure 5.8 shows the band structure of c-BN, while figure 5.9 shows the corresponding

density of states. An indirect wide band gap of 4.4 eV is clearly seen from Γ to X, since the

conduction band minima occurs at X while the valence band maxima is found at Γ. The states

located between -20 and -14 eV are mainly the N-2s and B-2s orbitals, while the valence band

is dominated by the B-2p and N-2p orbitals. This suggests a strong hybridization of the 2p

orbitals of the two elements which may be responsible for the strong bonding seen in c-BN,

and hence its reported high bulk modulus.

Figure 5.8: Band structure of cubic BN.
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Figure 5.9: Projected Density of states for cubic BN.

Figure 5.10: Band structure and the Density of states of cubic BN.
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Figure 5.11: Electronic band structure of BC2N.

Figure 5.12: Projected density of states for BC2N.

Figure 5.11 shows the band structure of BC2N, while Figure 5.12 shows the corresponding

density of states. The material has an easily recognizable direct band gap of 2.5 eV in its band

structure. Unlike c-BN, BC2N, has a direct band gap at Γ, with both the minima of the
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conduction band and the maxima of the valence band occurring at the same point Γ. The

reduction of the band gap in BC2N is attributed to the presence of 2p orbitals of nitrogen and

carbon, which contribute to the states at the valence and conduction band edges significantly

(see fig 5.12).

A comparison of the band structures of c-BN and BC2N shows that BC2N has more bands

than c-BN, and this is attributed to the added carbon atom within the matrix of BC2N, as well

as the higher number of atoms in the unit cell of BC2N i.e 2 atoms per unit cell for c-BN and

8 atoms for BC2N. The density of states for BC2N shows that there is a small gap (0.7 eV)

between the core states and those in the valence band, unlike the case of c-BN which has a gap

between the core and valence states of about 1.9 eV. It is quite clear that both conduction and

valence bands of BC2N are wider than those of c-BN. The valence band width of BC2N was

found to be 16.6 eV, while the conduction band had a width of about 15.3 eV. On the other

hand c-BN had a valence band width of about 11.34 eV, and a conduction band width of at

least 15 eV. Further more, the valence band was dominated by B-2p, N-2p orbitals while the

conduction band is dominated by the C-2p and B-2p orbitals. The wider valence band width

as well as the presence of the C-2p, B-2p and N-2p states suggests a strong hybridization,

leading to the observed high bulk modulus and hence hardness of BC2N.

The indirect band gap of 4.4 eV suggested that c-BN was an insulator while BC2N with its

narrower bandwidth of 2.5 eV was a semiconductor. Other than their applications in the hard

metal industry the small band gap of BC2N suggests that it can be used as a semiconductor

material in fast switching applications while c-BN can be used in insulating applications or in

high power applications due to its wide band gap more like diamond.
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Figure 5.13: Band structure and the Density of states of BC2N.
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5.4 Vibrational and Thermodynamic Properties

The vibrational properties of any material play a big part in understanding its stability and

crystal properties under different environments. As such, it was important to investigate these

properties for both c-BN and BC2N since the two materials are expected to be used in envi-

ronments where both pressure and temperature change to extreme values. Figure 5.14 shows

the phonon dispersion and density of states plots for c-BN, while figure 5.15 shows a similar

plot for BC2N.

Figure 5.14: Phonon Dispersion plots and density of states for c-BN.

The phonon dispersion curves of c-BN demonstrates a small separation between the op-

tical and the acoustic branches. There is also the splitting of the Longitudinal Optical and

Transverse optical branches as well. The phonon dispersion plot of BC2N has no separation

between the optical and the acoustic branches (Figure 5.15). Fig 5.14 and 5.15 further show

that the two structures demonstrated evidence of thermodynamic stability from the lack of

imaginary frequencies in the phonon dispersion plots.

Fig 5.16 shows the variation of both specific heat capacity at constant volume and entropy

with temperature. It is noted from the figure that it fits well to the Debye model [84].

The variation in the vibrational frequencies of c-BN with temperature as well as the inter-

nal energy is shown in figure 5.17. The same has been done for BC2N in figures 5.18 and 5.19
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Figure 5.15: The Phonon Dispersion plots and density of states for BC2N.

Figure 5.16: Variation in specific heat and entropy with temperature for c-BN.

for the variation of Cv and entropy with temperature, as well as internal energy and vibrational

frequency with temperature, respectively. For c-BN, the entropy was observed to increase

gradually with increasing temperature, while on the other hand the specific heat at constant

volume increased sharply between 0-1000 K, but any increase beyond that temperature was

much less pronounced, reaching a saturation value beyond 1500 K. The Internal energy on the

other hand was found to grow with increasing temperature, while the vibrational frequencies

decreased with increasing temperature (see figure 5.17). This behaviour was attributed to the

fact that the internal energy is a function of temperature only, i.e Eint=Eint(T ).
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Figure 5.17: Variation in vibrational frequencies and internal energy with Temperature
for c-BN.

Figure 5.18: Variation in specific heat and entropy with temperature for BC2N.

Figure 5.16 further shows that both Cv and entropy for c-BN become equal at around 1800

K, and beyond this point the entropy grew with temperature, and this growth continued well

beyond 2000 K. The specific heat at constant volume on the other hand grew between 0-1000

K, but the growth from that point was much less pronounced, as it is shown in figure 5.16. In

the case of BC2N, the entropy grows much faster than the specific heat, and in fact the two

never meet, unlike in the case of c-BN. Cv tends to level at about 1000 K while the entropy
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Figure 5.19: Variation in vibrational frequencies and internal energy of BC2N with Tem-
perature.

continues to grow with temperature, though not as fast as the range between 0-1000 K. The

internal energy of BC2N was found to start out quite low for temperatures close to 0 K but at

about 700 K an inversion occurred and the internal energy grew rapidly even beyond 2000 K.

In figure 5.19 the vibrational frequencies decreased from 0 K and this decrease continued as

the temperature increased, due to the same reason attributed for the same behaviour in c-BN.

Both Figs 5.16 and 5.18 show that the low temperature specific heat capacity Cv for c-BN and

BC2N obeyed the well known cubic law i.e. Cv = AT 3. The vibrational properties of both

c-BN and BC2N together with the computed elastic constants confirms that the two materials

remain stable up to high temperatures which are desirable properties for materials used in

harsh environments, like in drilling and machining applications, where both c-BN and BC2N

are expected to play a key role.



53
CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

This work has considered the lattice parameters, bulk moduli and elastic constants of BC2N

and c-BN, and it has been established that BC2N is a superhard material due to its high bulk

modulus, as well as giving evidence consistent with the material being harder than c-BN.

This is confirmed by the existence of short bond lengths in BC2N which are indicative of the

strength between atoms in BC2N compared to those in c-BN. The lattice parameter for BC2N

was found to be 3.634 Å (using DFT) and 3.613 Å (using QMC), compared to c-BN lattice

parameter of 3.631 Å (using DFT) and 3.613 Å (using QMC). The bulk modulus of BC2N

was found to be 369 GPa (using DFT) and 395 GPa (from QMC), while that of c-BN was

365 GPa (using DFT) and 393 GPa (using QMC). As noted earlier, these values show good

agreement with experiment, especially those from the more accurate Quantum Monte Carlo

calculations.

From the electronic properties of both c-BN and BC2N, it was found that while c-BN had

a discontinuous valence band, with a very narrow conduction band, BC2N had a continuous

valence band and a fairly wider conduction band. The wide band-gap of c-BN meant that it

had excellent insulating properties, while BC2N, with the small band-gap of about 2.5 eV, was

predicted to allow excitation of electrons to the conduction band at lower energies than c-BN

which had a wider band gap of about 4.4 eV. The wide valence band of BC2N showed a strong

hybridization of C-2p, N-2p and B-2p orbitals, leading to the increased strength of BC2N.

The computed elastic constants for c-BN were found to be 431 GPa (C44), and 317 GPa

(C′), while for BC2N, C44 was found to be 457 GPa, and 360 GPa for C′. These values are

consistent with the computed bulk moduli, as they are a measure of the materials response to

applied stress. This therefore agrees with and supports the values of the bulk modulus that

have been mentioned previously.

Also, from the results of the thermodynamic properties it was observed that the BC2N

structure was thermodynamically stable, while the calculated elastic parameters indicated

mechanical stability. The findings of this study therefore confirms the stability at elevated
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temperatures. The elastic parameters indicated mechanical stability of the material in relation

to c-BN while the internal energy was found to depend on temperature as expected, and the

computed specific heat capacity was in agreement with theory, especially the Debye law.

As the temperature increased, the entropy also increased as expected, thereby predicting the

correct properties of both c-BN and BC2N.

6.2 Recommendations

Since BC2N has demonstrated that its properties are consistent with those of a superhard

material, it is recommended that further experimental work be done to better understand its

properties and even synthesize it for mass production. There is also a gap in the published

experimental work treating the thermodynamic and vibrational properties of BC2N, and it is

thus recommended that this gap be filled by carrying out experimental work to look at optical

properties, that this study did not consider, as well as a study of the behavior of phonons in

the two materials as these can also give a bearing on the hardness of the material, all these

will help in validating the theoretical results that have been presented here. The commercial

synthesis and application of BC2N would be highly desirable in the future, especially in areas

such as mining and related sectors that require extremely robust tools.
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APPENDIX A

OPTIMIZATION

A.1 Structural Optimization

The structural representation of the unit cell of both c-BN and BC2N were optimized to be

able to get an accurate model of the ground state of the two materials. This procedure involved

optimizing the size of the Monkhorst-Pack grid, the plane wave cut-off energy as mentioned

before, and finally the lattice parameter of the crystal.

A.1.1 K-Point Optimization

An optimal size of the Monkhorst Pack scheme of k-points was selected, with the accuracy

and the computational tractability being the guiding factors in the choice. A mesh size of

4× 4× 4 was selected for c-BN and 3× 3× 3 for the BC2N system. This maintained the

accuracy of the ensuing calculations, as well as making sure that the calculations would be

feasible on a practical time scale.

Figure A.1: Results for k-point optimization for cubic boron Nitride.

Figure A.1 shows the behaviour of the energy of the system as a function of the size of the

the mesh, while figure A.2 shows the same for the BC2N structure. There is clear convergence

for the energy in the c-BN structure from the 4× 4× 4 size, for reasons of computational

tractability, the mesh size for BC2N was restricted to 3×3×3.
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Figure A.2: Results for k-point optimization for carbon boron Nitride.

A.1.2 Plane Wave Energy Cut-off

The plane wave cut-off energy (E-cut) was optimized after the k-point optimization. This led

to an optimized value of 70Ry being chosen for the BC2N system, and a value of 90Ry for

the c-BN system. The behaviour of plane wave cut-off energy with total energy is shown in

figure A.3 for c-BN, and in figure A.4 for BC2N.

Figure A.3: Plane wave cut-off optimization for boron Nitride.
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Figure A.4: Plane wave cut-off optimization for carbon boron Nitride.

These values of the plane wave cut-off energy were high since norm-conserving pseudo

potentials were used, and these generally lead to higher cut-off energies.

A.1.3 Lattice Parameter Optimization

The lattice parameter was also optimized to find the equilibrium value of the parameter in the

ground state for the two materials. The behaviour of the total energy of the structures with

lattice parameter is shown in figure A.5 for c-BN and figure A.6 for BC2N.

Figure A.5: Energy as a function of the lattice parameter for c-BN.
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Figure A.6: Energy as a function of the lattice parameter for BC2N.

A.1.4 Equilibration Characteristics of c-BN and BC2N

Figure A.7: Equilibration characteristics for c-BN. Upper panel represents the popu-
lation size against the iteration number, while the lower panel represents the energy
change as a function of the iteration number.

Presented in figures A.7 and A.8 is the equilibration of the energy with iterations during

the DMC step. These figures show the behaviour of the energy of the systems as the system

evolved in time. The convergence towards an average value after some initial equilibration is

demonstrated.
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Figure A.8: Equilibration characteristics for BC2N. Upper panel represents the pop-
ulation size against the iteration number, while the lower panel represents the energy
change as a function of the iteration number.
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APPENDIX B

CONFERENCE PRESENTATIONS, SCHOOLS AND WORKSHOPS ATTENDED

B.1 Conference Presentations

1. M.O. Atambo, G. O. Amolo, N. W. Makau, Mechanical and electronic properties of

cubic BN and BC2N, ”First national science, technology and innovation week”, KICC,

7th−11th May 2012. Awarded 2nd place in Best scientific Presentations.

2. M.O. Atambo, G. O. Amolo, N. W. Makau, First Principle Calculation of Mechanical

and Electronic Properties of BN and BC2N, Inaugural conference of nanotechnology

and material science development in Kenya, Kenyatta University, Juja, 18th−20th July

2012.

B.2 Schools and Workshops Attended

1. African School on Electronic Structure Methods and Applications (ASESMA -2012),

Chepkoilel University College, Eldoret, Kenya, 28th May to 8th June 2012.

2. 16th International Workshop on Computational Physics and Materials Science: Total

Energy and Force Methods, the I.C.T.P. Miramare -Trieste, Italy, 10− 12th January

2013.

3. Hands-on Tutorial on Electronic Structure computations, the I.C.T.P, Miramare-Trieste,

Italy, 14−18th January 2013.

4. JAIST International Winter school 2012: Quantum Monte Carlo Electronic Structure

Calculation, Japan Advance Inst. of Sci. and Tech, Ishikawa, Japan, 19−23rd February

2013.
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