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ABSTRACT 

Overall traffic delay model for estimating the mean and variance at a signalized 

intersection is discussed. The model was developed under basis of two delay 

components, namely deterministic and stochastic components. The latter component 

was put under D/D/1 framework and therein mean and its variance derived. While the 

stochastic component was put under the M/G/1 framework, mean and variance derived. 

Extension on stochastic component and M/G/1 framework was discussed with the usage 

of compressed queueing processes. Harmonization of the moments of deterministic and 

stochastic components to obtain the overall central moments of traffic delay has been 

discussed. Illustration of the model on real traffic data has been carried out. Simulation 

was performed using statistical software for traffic intensities ranging from 0.1 to 1.9. 

The simulated results indicate that both deterministic and stochastic components are 

incompatible as the traffic intensity approaches capacity. Also, the simulation shows 

that variance of overall traffic delay drops linearly when the traffic intensity is less than 

3 because of increasing rate of random arrivals. This variance decreases slowly as the 

traffic intensity approaches capacity and slowly increases as the traffic intensity goes 

beyond capacity. This confirms the results that exist in literature that oversaturated 

conditions and random delay renders the stochastic component in traffic delay models 

unrealistic. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background Information 

Traffic delays and queues are principal measures of performance that determine the level 

of service (LoS) at signalized intersections. They also evaluate the adequacy of the lane 

lengths and the estimation of fuel consumption and emissions. Quantifying these delays 

accurately at an intersection is critical for planning, design and analysis of traffic lights. 

Signalized intersection referred herein, is a road junction controlled by a traffic light. 

Traffic lights were implemented for the purpose of reducing or eliminating congestions 

at intersections. These congestions exist because an intersection is an area shared among 

multiple traffic streams, and the role of the traffic light is to manage the shared usage of 

the area. Traffic models in an intersection are always subjected to both uniform and 

random properties of traffic flows. As a result of these properties, vehicle travel times in 

an urban traffic environment are highly time dependant.  

Models that incorporate both deterministic and stochastic components of traffic 

performance are very appealing in the signalized intersection since they are applied in a 

wide range of traffic intensities as well as to various types of traffic lights. They simplify 

theoretical models with delay terms that are numerically inconsequential. Due to their 

simplicity, the models have been incorporated in many intersection traffic lights and as 

tools for analysis of intersections on roads throughout the world. The theory behind the 

uniform and random properties of traffic flows is based on the works of Webster (1958). 

For instance, the problems of estimating delays at signalized intersections have been 

extensively studied in the literature; however, majority of the works have focused on 

developing models for estimating mean delay only.  
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At an intersection where certain approaches are denied movement, queueing will 

inherently occur resulting to traffic delay models based on the queueing theory being 

developed. Of the various queueing models, D/D/1 and M+Δ/G+Δ /1 were used in this 

study. D implies a degenerate distribution (constant time) of inter-arrival and service 

times, M implies exponential distribution of inter-arrival times, G implies general 

distribution (any arbitrary distribution), Δ implies the time distance between vehicles at 

the queue and 1 implies one server (traffic light). The D/D/1 model assumed that the 

arrivals and departures were uniform and one service channel (traffic light) existed. This 

model is quite intuitive and easily solvable. Using this form of queueing with an arrival 

rate, denoted by  and a service rate, denoted by , certain useful values regarding the 

consequences of queues were computed. The M+Δ/G+Δ /1 model used implied that the 

vehicles arrived at an intersection in a Poisson process with rate  and were treated in 

the order of arrival with inter arrival times following exponential distribution with 

parameter . The service times were treated as independent identically distributed with 

an arbitrary distribution. Similarly, one service channel (traffic light) was considered in 

this model. This thesis is structured as follows: In Chapter two, we provide the literature 

review of the study. In Chapter three, we introduce the methods applied in this study. 

The core of this work is described in Chapter four, where we show how we apply the 

methods to develop the overall traffic delay model. Chapter five presents simulation 

results and discussions. Chapter six summarizes the work presented and gives possible 

future work in this area. 

 

1.2 Statement of the Problem 

Traffic delays at signalized intersections are becoming a nuisance on the Kenyan roads. 

For instance, one of the things that leaves a mark on visitors who tour Kenya's capital 
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city Nairobi, is its chronic traffic delays which could last for several hours. The worst 

nightmare is that these delays are experienced during peak times and heavy downpour. 

During working days, in the morning and evening, 70% of Nairobi's work force is held 

up at an intersection due to traffic delays. As a result, the economy of the country is 

estimated to be about 1.5 billion shillings in lost man-hours and fuel, Wilfred (2011). 

The losses incurred are not only confined to fuel consumption but also to environmental 

pollution and stress. The contributor in most cases is as a result of fixed-time traffic 

lights with uniform arrival and service times. This study develops the overall traffic 

delay model using D/D/1 and compressed M+Δ/G+Δ /1 queueing systems. D/D/1 implies 

inter-arrival and service times are deterministic while M+Δ/G+Δ /1 implies Markovian 

arrivals and iid service times following a general distribution. 1 in these systems 

represents a single service channel (traffic light). 

 

1.3 Main Objective  

The main objective of this study was to develop overall traffic delay model for 

estimating the mean of the time delay and its variance at a signalized intersection.  

 

1.3.1 Specific Objectives  

The specific objectives of the study are 

i. To develop models estimating mean and variance of both deterministic and 

stochastic delay components; 

ii. To develop the mean and variance of the overall traffic delay model; 

iii. To apply the model on real traffic data. 
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1.4 Significance of the Study   

This model when implemented can help in easing up the traffic delay at a signalized 

intersection. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction  

This chapter provides the discussion of the literature behind the traffic delay models and 

its surveys. The literature is split into deterministic delay models, steady-state delay 

models, time dependent models and application of compressed queueing processes. 

Some mathematical models are also presented as they existed in the literature.  The 

chapter is summarized as follows: Section 2.2 provides literature on deterministic delay 

models while steady-state and time dependent models are discussed in Section 2.3 and 

2.4, respectively. Section 2.5 discusses the application of compressed queueing 

processes. 

 

2.2 Deterministic Delay Models 

Zukerman (2012) considered a case where the inter-arrival and service times are 

deterministic. To avoid ambiguity, he assumed that if an arrival and a departure occur at 

the same time, the departure occurs first. According to him, such an assumption is not 

required for Markovian queues where the queue size process follows a continuous-time 

Markov-chain because the probability of two events occurring at the same time is zero, 

but it is needed for deterministic queues. Unlike many of the Markovian queues, steady-

state queue size distribution for the deterministic queues does not exist because the queue 

size deterministically fluctuates according to a certain pattern. According to him, the 

mean queue size, denoted by E Q , is given by 

0

Pr
n

E Q n Q n ,                                                (2.1) 
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where Pr Q n  is the probability of having n vehicles in the queue at a randomly 

chosen point in time. As all the vehicles that enter the system are served before the next 

one arrives, the mean queue-size of D/D/1 must be equal to the mean queue-size at the 

traffic light, and therefore, it is also equal to the traffic intensity. In other words, the 

queue-size alternates between the values 1 and 0, spending a time-period of 1  at state 1, 

then a time-period of 1 1  at state 0, then again 1  time at state 1, etc. If we pick a 

random point in time, the probability that there is one in the queue is given by 

1 11P Q , and the probability that there are no vehicles in the queue is given 

by 1 10 1P Q . Therefore, (2.1) becomes, 

1 10. 0 1. 1E Q P Q P Q .     (2.2) 

 

2.4 Steady-State Models 

These models characterize traffic delays based on statistical distributions of the arrival 

and departure processes. Because of the purely theoretical foundation of the models, they 

require very strong assumptions to be considered valid. The following section describes 

the exact expressions on how steady-state delays are estimated.  

 

2.4.1 Exact Expressions 

Beckman (1956) derived the expected delay at fixed-time signals with the assumption of 

the binomial arrival process and deterministic service given by 

1

2
1

y e y eo

y

c g c gQ
d

c

 ,                                       (2.3) 
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where d , yc , eg , ,  and 0Q  are provided in the list of symbols. The expected 

overflow queue used in the formula and the restrictive assumption of the binomial arrival 

process reduce the practical usefulness of (2.3). Little (1961) analyzed the expected 

delay at or near traffic signals to a vehicle crossing a Poisson traffic lane. McNeil (1968) 

derived a formula for the expected signal delay with the assumption of a general arrival 

process, and constant departure time. From this work, Tarko at al. (1993) expressed the 

total vehicle delay during one signal cycle as a sum of two delay components 

1 2W W W ,                                                                         (2.4) 

where 1W  and 2W  are provided in the list of symbols. With departure process being 

deterministic, Darroch (1964) took the expectations of  1W
 
and 2W  and obtained the 

expected vehicle delay as 

1
2 1

2 1 1

y e o
y e

y

c g Q I
d c g

c
,               (2.5) 

where I  is provided in the list of symbols. Equation (2.5) becomes identical to that 

obtained by Beckmann (1956) when arrival process follows a binomial distribution. 

Gazis (1974) considered the case of the compound Poisson arrival process and general 

departure process obtaining the following model 

2 21 1 1
2 1 1

2 1 2 1

y e o
y e

y

Bc g Q I B
d c g

c
,  (2.6) 

where 
2B  is provided in the list of symbols. Equation (2.6) indicates that in the case of 

no overflow queue 0oQ , and no randomness in the traffic process (I = 0), the 

resultant delay becomes the deterministic delay component. Section 2.4.2 discusses the 

approximate expressions on how steady-state delays are estimated.  
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2.4.2 Approximate Expressions 

The numerical inconsequentiality in obtaining exact expressions for delay which are 

reasonably simple and can cover a variety of real world conditions, gave impetus to a 

broad effort for traffic delay estimation using approximate models and bounds. The first, 

widely used approximate delay formula which was developed by Webster (1958) from a 

combination of theoretical and numerical simulation approaches is 

2

1
2 2 53

2

1

0.65
2 1

2 1

e

y

e
gy

cy y

e

y

g
c

c c
d

g

c

.           (2.7) 

The first term in (2.7) represents delay when traffic can be considered arriving at a 

uniform rate, while the second term makes some allowance for the random nature of the 

arrivals. The latter assumption does not reflect actual traffic performance, since vehicles 

are served only during the effective green time, obviously at a higher rate than the 

capacity rate.  The third term in (2.7) which was calibrated basing on simulation 

experiments is a corrective term to the estimate.  

Newell (1965) developed a delay formula for general arrival and departure distributions. 

He concluded from a heuristic graphical argument that for most reasonable arrival and 

departure processes, the total delay per cycle differs from that calculated with the 

assumption of uniform arrivals and fixed service times (Clayton,1941) by a negligible 

amount if the traffic intensity is sufficiently small. Then, by assuming LIFO (Last In 

First Out) queue discipline which does not affect the average delay estimate, he 

concluded that the expected delay when the traffic is sufficiently heavy can be 

approximated as 
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2

1

2 1

e
y

y o

g
c

c Q
d .                                                         (2.8) 

To estimate 0Q , Newell (1965) defines QF
 
as the cumulative distribution of the overflow 

queue length, A DF
 
as the cumulative distribution of the overflow in the cycle, where the 

indices A and D represent cumulative arrivals and departures, respectively. He showed 

under equilibrium conditions that: 

0
Q QF x F z

A DdF x z .                                          (2.9) 

The integral in (2.9) can be solved only under the restrictive assumption that the 

overflow queue in a cycle is normally distributed. Therefore, the expected overflow 

queue in (2.8) is given by 

2

2

2

2

0 1

2cos

1 tan

1

e

y

o
g

c
Q d

e

.           (2.10) 

He further compared the results given by the expressions in (2.8) and (2.10) with 

Webster's formula (2.7) and added additional correction terms to improve the results for 

medium traffic intensity conditions. Thus his final formula became 

2

2

1 1

2 1 2 1

e e
y

y yo

g g
c I

c cQ
d .                                  (2.11) 

 

2.5 Time Dependent Models 

The stochastic equilibrium assumed in steady-state models requires an infinite time 

period of stable traffic conditions to be achieved. Traffic flows during peak hours are 

seldom stationary, thus violating an important assumption of steady-state models. Liping 
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and Bruce (1999) developed a model for estimating arrival time dependent delay that is 

subject to large variation because of the randomness of traffic arrivals and interruption 

caused by traffic lights. The model was constructed on the basis of the delay evolution 

patterns under two extreme traffic conditions: highly undersaturated and highly 

oversaturated conditions. The model for estimating this delay was established through 

coordinate transformation based on the steady-state model and the deterministic model 

for arrival time dependent overflow delay (Kimber and Hollis, 1979). Liping and Bruce 

(1999) used the traditional uniform delay model and Canadian Capacity Guide (Teply et 

al., 1995) to estimate the mean arrival time dependent delay as 

2

2

1

1
2

0.5 1 1

2 1

e
y

y

t t

ae

y

g
c

c
E D t

c tg

c

,              (2.12) 

where t  is the traffic intensity at time t, 1  is the minimum of 1.0, t
 and t   

represents the point in time (in seconds) for which arrival time dependent overflow delay 

is to be computed.  For the case of variance, the variance of uniform delay was obtained 

theoretically on the basis of a deterministic queueing model (Rouphail 1995) while the 

variance of overflow queue was achieved by examining the relationship between the 

variances of the models obtained from the well-known Pollaczek-Khintchine formula for 

a M/G/1 system and the deterministic queueing theory. M/G/1 system assumed that the 

service times are independent identically distributed with mean 
1

and standard deviation 

s  while the arrival process is assumed to be Poisson with rate . Finally, Liping and 

Bruce (1999) described the variance of arrival time dependent delay as 
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3

2

1

2

1

1 1 3 4 .

12 1 .

o

e e e
y

y y y

a
e

y

g g g
c

c c c t
Var D e

cg

c

,             (2.13) 

where 0  and  are the calibrated parameters determining the shape of the delay curve. 

 

2.6 Compressed Queueing Processes 

Grzegorz and Janusz (2007) derived a delay model comprising of deterministic model 

described by Clayton (1941) and expected waiting time from M+Δ/G+Δ /1 queueing 

model with usage of the compressed queueing processes theory described by Woch 

(1998). The model is used to estimate mean delays in the case of large variations of the 

service time and has a form as follows  

2
2

2 11

1
2 1

2 1

e
y s

y

e

y

g
c

c
d

g

c

,                                       (2.14) 

where  is provided in the list of symbols. Equation (2.14) makes a generalization of the 

Webster’s model (1958). Webster used the steady-state M/D/1 queueing model to come 

up with (2.7). To reflect the real traffic situation, the methods employed are described in 

the next chapter. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction  

This chapter presents the methods that were used in this study. Section 3.2 provides the 

use of D/D/1 queueing system while the use of M/G/1 queueing system is described in 

Section 3.3. Section 3.4 provides the use of compressed M+Δ/G+Δ/1 queueing system 

while statistical software for simulation is mentioned in Section 3.5. Section 3.6 

describes the sampling method used to collect the traffic data at Kenyatta Avenue-

Kimathi Street signalized intersection.   

 

3.2 D/D/1 Queueing System  

 Overall traffic delay model can be split into two categories, that is, deterministic and 

stochastic delay components. To analyze the deterministic delay component, we 

employed the use of D/D/1 queueing system. This system is founded on the uniform 

property of traffic flows in which the inter-arrival and service times are deterministic, 

that is, the first D represents uniform arrivals with parameter λ, the second D 

representing constant departures with parameter μ and 1 representing one service channel 

(traffic light).  

 

3.3 M/G/1 Queueing System  

The stochastic delay component of the overall traffic delay can appropriately be analyzed 

using the framework of M/G/1 queueing system. This system is founded on the steady-

state queueing theory which defines the arrival and service time distributions. Here, 

arrivals assume Poisson process with parameter λ, service times are iid variables 

following an arbitrary distribution and one service channel (traffic light) exists.  
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3.4 Compressed M+Δ/G+Δ/1 Queueing System 

The service times in the stochastic delay component can be analyzed effectively using 

the compressed M+Δ/G+Δ/1 queueing system because of its distribution. The system is 

drawn from compressed queueing processes theory so as to estimate statistical measures 

of traffic delay in case of large variations of service times. In this model, M+Δ represents 

the exponential shifted distribution for the inter arrival times, G+Δ represents the general 

shifted distribution of service times and 1 implies a single service channel (traffic light). 

The level of service in this model is basically described by the mean and variance of the 

service time spent by a vehicle in the queue. The compressed queueing processes used in 

this study are based on two assumptions: 

(i). The service time rate for a compressed model, denoted by 

 

and given by 

1
.                                                                          (3.1) 

(ii).  The arrival rate for the compressed model, denoted by  and given by 

1
.                                                                           (3.2) 

 

3.5 Statistical Software 

In this study, we employed the use of MATLAB (matrix laboratory) software for 

simulation as evident in chapter 5. MATLAB is a numerical computing environment and 

fourth-generation programming language developed by MathWorks. In the next chapter, 

we describe the development of overall traffic delay model.  
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3.6 Sampling Method 

The traffic data was collected from a randomly selected three days of the week in the 

month of February, 2013, that is, on 20
th
, 21

st
 and 22

nd
 February, 2013 from 5:13 PM to 

6:10 PM daily at Kenyatta Avenue-Kimathi Street signalized intersection. These data 

represented the traffic data on general weekdays. The traffic data (in seconds) collected 

at the intersection were: G , Y , AR , R , 1l , 2l , t  and  representing green time, amber 

(yellow) time, all red time, red time, start-up lost time, clearance lost time, evaluation 

period and minimal time distance between vehicles respectively. The traffic periods and 

distance between vehicles were measured by a clock-timer and tape-measure 

respectively.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

 

 

 

CHAPTER FOUR 

OVERALL TRAFFIC DELAY MODEL 

4.1 Introduction  

This chapter presents the development of a model for estimating the mean and variance 

of overall traffic delay at a signalized intersection. Section 4.2 discusses the formulation 

of the problem and assumptions of the queueing models. Section 4.3 provides the mean 

and variance of a deterministic delay component while that of stochastic delay 

component are provided in Section 4.4. Finally, Section 4.5 discusses the moments of 

overall traffic delay.  

 

4.2 Problem Formulation 

Consider a cumulative arrival and departure of vehicles in a signalized intersection for 

the time interval 0,T . The time taken by a vehicle in the queue herein referred to as 

overall traffic delay is denoted by tD . Here, tD
 

comprises of deterministic and 

stochastic delay components and can be broken as follows: 

1 2t t tD D D ,                                                                       (4.1) 

where 
1t

D
 
is the deterministic delay component representing a delay that is incurred by a 

vehicle with uniform arrival times and departures within the time interval , yt t c  

while 
2t

D is the stochastic delay component representing the delay that is caused by 

random queues resulting from the random nature of arrivals. The idea here is to solve the 

stochastic Equation (4.1). And, before we solve it, we make the following assumptions:   

a) The intersection consists of only a single lane controlled by a fixed-time signal 

and unlimited space for queueing; 
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n 

b) The vehicles’ arrival at the intersection is either uniform or random variable 

following a Poisson process and no initial queue is present at the time when a 

prediction is performed; 

c) The vehicle time prediction horizon is assumed to be equal to the signal cycle 

time.  

 

4.3 Deterministic Delay Component   

Deterministic delay component as described in (4.1) is denoted by 
1t

D . In this section, 

we shall be interested in the computation of the mean and variance of 
1t

D . The mean and 

variance of the deterministic delay component is estimated by deterministic queueing 

model D/D/1, where the first D represents uniform arrivals with parameter λ, the second 

D representing constant departures with parameter μ and 1 representing one service 

channel (traffic light) existing. In Figure 4.1 below, we present a diagrammatic 

description of deterministic delay process.  

                               

 

                                                                                

                                                                                                   

                                                                            

                                                                                    eg  

                                                                                 yc  

 

Figure 4.1: Deterministic component of overall traffic delay. 

The Figure displays the deterministic delay component of overall traffic delay at a 

signalized intersection. From the Figure, D(t) and A(t) represents the cumulative 

departures and arrivals, respectively. The area under cross-sectional area covered by 
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triangle ABC represents the total deterministic delay at the intersection. From the figure 

(4.1), we can determine the statistical measures: mean and variance. 

 

4.3.1 The Mean  

To compute the mean, we assume that vehicle arrivals and departures are uniformly 

distributed with rates λ and µ, respectively.  The mean delay to vehicles for this case can 

then be easily determined from the figure shown in Figure (4.1). The figure shows a 

typical cumulative arrival/departure graph against time for uniform arrival rate approach 

to an intersection. The slope of the cumulative arrival line is the uniform arrival rate in 

vehicles per unit time, denoted by λ. The slope of the cumulative departure line is 

sometimes zero (when the light is red) and sometimes ρ (when the light is green); 

where ρ is the traffic intensity obtained as ρ=λ/µ. 

Upon utilizing D/D/1 queueing system and the theory behind it, we compute the mean. 

Notice that the duration of yc  at the signalized intersection is given by 

y ec r g ,                                                                            (4.2) 

where yc , r  and eg  are provided in the list of symbols. From Figure (4.1), we note that 

og
 
denotes the time necessary for the queue to dissipate. Here, the queue must dissipate 

before the end of eg . But if the queue doesn’t dissipate before the end of eg , the queue 

would escalate indefinitely. From this statement, we deduce that 

o eg g .                                                                                 (4.3) 

Condition (4.3) is satisfied if the total number of vehicle arrivals during yc
 
is less than or 

equal to the total number of vehicle departures during eg . That is, 
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e

y

g

c
.                                                                                (4.4) 

Derivation of (4.4) is provided in Appendix A. Also from Figure (4.1), we can deduce 

that vehicles arrive during time period 
0r g

 
and depart during the time period .

y

o

e

c
g

g
. 

Since the total number of vehicle arrivals equals the total number of vehicle departures, 

we have that 

.
y

o o

e

c
r g g

g     

y

o

e

c
g r

g
.                                                              (4.5)                                                                                                         

The time period og
 
required for queue to dissipate is 

o

y

e

r
g

c

g

.                                                                  (4.6)                                                                                                              

Equation (4.6) simplifies to 

o

y

e

r

g
c

g

.                                                                    (4.7)                                                                                                                  

Upon writing (4.7) in terms of traffic intensity defined by ρ=λ/µ, we have 

.
o

y

e

r
g

c

g

.                                                                    (4.8) 

From the figure, it can be seen that 
1t

D is given by 

1

1

n

t

i

D d i , 
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where d(i) is the shaded cross-sectional area in Figure (4.1). Assuming that n is large 

enough so that the discrete sum of d(i) is equal to the area of the cross-sectional area 

covered by triangle ABC in the figure the following can be written:  

1

1

2
yt eh cD g  .                                                                                                                  

And here, h  can be easily determined by noting that  

oh r g .  

Therefore,  

1 2
t o

r
D r g .                                                                  (4.9) 

Upon utilizing (4.8), we have 

1

2

2 1

t

e

y

r
D

g

c

.                                                              (4.10) 

To obtain the expected deterministic delay, we divide 
1t

D by the total number of vehicles 

in a cycle, that is, yc  to give 

1

2

1

2 1

e
y

y

t

e

y

g
c

c
E D

g

c
                                                        (4.11) 

as the mean of the deterministic component, 
1t

D . Next, we compute the variance of 
1t

D .  

 

4.3.2 The Variance  

The conventional way of computing the 
1t

Var D  is  

1 1 1

2
2

t t tVar D E D E D .                                       (4.12) 
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Since (4.11) provides us with 
1t

E D , we compute for 
1

2

tE D . To begin with, we 

compute 
1

2

tD . Again, we assume n large enough so that the discrete sum of d(i)
2
 is equal 

to the volume of the cross-sectional area covered by triangle ABC in the figure, that is 

1

22

1

n

t

i

D d i      

1

2
2 1

3
t y eD h c g .                                                                                

Upon substituting for h , we get  

1

2
2

3
t o

r
D r g .                                                            (4.13)  

By (4.2) and (4.8), (4.13) simplifies to 

1

3

2

1

3 1

e
y

y

t

e

y

g
c

c
D

g

c

.  

To obtain 
1

2

tE D we divide the above result by the total number of vehicles, yc    

1

3

2

2

1

3 1

e
y

y

t

e

y

g
c

c
E D

g

c  .                                                    (4.14) 

Equation (4.14) is the second moment of the deterministic delay component. Thus, 

utilizing (4.11) and (4.14), we have  

1

3

2

2

1 1 3 4

12 1

e e e
y

y y y

t

e

y

g g g
c

c c c
Var D

g

c

,                     (4.15) 
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as the variance of the deterministic component, 
1t

D . Similarly, we compute the mean and 

variance of the stochastic component, 
2t

D .  

 

4.4 Stochastic Delay Component  

In this section, we computed the statistical measures of the stochastic delay component, 

that is, mean and variance of 
2t

D . The component is established through a coordinate 

transformation technique based on the queueing system M+∆/G+∆/1 with the usage of 

compressed queueing processes. Under this system, the vehicles arrive at the intersection 

in a Poisson process. The inter-arrival times follow a shifted exponential distribution 

given by 

tetA 1 .                                                                  (4.16) 

The service times are iid random variables following a general distribution characterized 

by its Probability density function determined by
Xf x or

XF x .  Suppose Nt vehicles 

are on the queue at time t and, Rt being the residual service time of vehicle j. Residual 

service time herein, is the time until the vehicle found by vehicle j being served by the 

traffic light completes the service. Then for us to describe the state of the queueing 

system at time t, we need to compute the value of Nt, the probability that j vehicles are on 

the queue by 

r t jP N j .                                                                  (4.17) 

We shall use the generating function technique to compute (4.17) as follows 

0

j

r t

j

s s P N j ,                                                     (4.18) 

where s
 
is the transform of the system size distribution. Equation (4.18) simplifies to

                                                                 

0

j

j

j

P s s ,                                                                   
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with 
0

j ij i

i

 for 0j , where ijP  is a transition probability, (4.18) further becomes 

 
0 0

j

i ij

i j

s P s

.                                                          (4.19)

 

Note that the transition 0 j  occurs if and only if j  arrivals occur in the service time 

following an idle period, whereas the transition i j  (with i > 0) occurs if and only if 

1j i  arrivals occur during a service time. If jq
 
is the probability of j  arrivals in a 

service time and Q s
 
is the generating function of 

jq , we have 

0

1Q s s
P s

Q s s
.                                                       (4.20) 

The derivation of (4.20) is provided in Appendix B. The matrix of (4.20) takes the form 

0 1 2

0 1

0

...

0 ...

0 0 ...

q q q

q q
s

q
 .                                                 (4.21)                                                                                          

To compute jq , first note that tN  follow a Poisson distribution with parameter t  at 

time t . Thus,  

0 !

j

t

j X
t

t
q e f t dt

j
,                                                 (4.22) 

where 
Xf t  is the service time distribution. The generating function of jq  herein 

denoted by Q s
 
is given by 

0

j

j

i

Q s q s .                                                                  (4.23) 

And by using (4.22), Equation (4.23) simplifies to   

1

0
0

t s

X
t

j

Q s e f t dt .                                            (4.24) 

Notice that in (4.24), the Laplace transform of the service time distribution is  
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1Q s X s ,                                                            (4.25) 

by definition, X
 
in (4.25) is referred to as the service time transform. Equation (4.25) is 

also referred to as the Laplace-Stieltjes transform (LST) or Pollaczek-Khintchine (P-K) 

transform of the service time distribution with first and second moments denoted by 

E X  and 2E X , respectively.  

Next, we compute 0  in (4.20) by employing L’Hospital’s rule with the assumption 

that 1 1 1P Q   

'
d

P s
ds

  

0

1
'

1

Q s s Q s
P s

Q s
. 

Upon taking the limit 1s , we get 

1s
Lim  

1s
P s Lim  

0

1 ' 1 1s
Lim P s

Q
.                                                        (4.26) 

Applying Little’s theorem, defined by ρ=λE[X] to (4.26), we have 

0 1 .                                                                           (4.27) 

Thus, (4.20) can be written as 

1 1 1

1

X s s
s

X s s
.                                        (4.28) 

Equation (4.28) will be vital in the derivation of 
2t

Var D . Next is the computation of 

the mean of 
2t

D . 
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4.4.1 The Mean 

First, we break 
2t

D  of (4.1) into tW  and tX , where tW  is the waiting time for vehicle j  

and tX  is the service time for vehicle j . Therefore, 
2t

D  is given by  

2t t tD W X . 

Thus expectation of 
2t

D  is 

2t t tE D E W E X .                                                   (4.29) 

To obtain 
2t

E D , first we compute 
tE W . Assuming First Come First Served (FCFS) 

discipline, we have 

 1 2 .....
tt t t t t QW R X X X  

1

tQ

t t t i

i

W R X                                                               (4.30) 

where tW , , tR , tX  and tQ  are as provided in the list of symbols. Therefore 
tE W  is 

1

tQ

t t t i

i

E W E R E X .  

The tQ  as defined in the list of symbols is a random variable hence, 

t t t tE W E R EE X Q . 

Since tX  is independent of tQ , we have 

t t t tE W E R E X E Q . 

Upon taking the limit t , we get 

t t t t
t t

Limit E W Limit E R E X E Q . 

Hence,  

E W E R E X E Q .                                           (4.31) 
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The expectations E R  and E Q  in (4.31) are those observed by arriving vehicle at the 

intersection. From Poisson Arrivals See Time Averages (PASTA) property, the statistical 

measures (mean, variance and distribution) of the number of vehicles in the queueing 

system observed by an arrival is the same as those observed by an independent Poisson 

inspector. If we assume that vehicles arrive at the intersection in a Poisson process, then 

the expected number of vehicles in the queue excluding the one being served is given by 

E Q E W ,  

utilizing this relation in (4.31), we get  

 
1

E R
E W ,                                                                (4.32) 

where, ρ is the traffic intensity defined by ρ=λE[X] (Little’s law). 

To compute E R  in (4.32), consider Figure (4.2) below.  

Figure 4.2: Diagram representing long-term residual service time. 

 

In Figure 4.2, we present a diagrammatic description of a long-term expected residual 

time.  

To compute the (unconditional) mean residual service time E R , consider the process 

, 0R t t  where R t  is the residual service time of the vehicle in service at time t . 

And consider a very long time interval 0,T . Then 

T0

XT 
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0

1 T

E R R t
T

d t .                                                      (4.33) 

Let X T  be the number of service completions by time T  and iX  the thi  service time. 

Notice that the function R t  takes the value zero when there is no vehicle in service 

and jumps to the value of iX  at the time the thi  service time commences. During a 

service time it linearly decreases with rate of one and reaches zero at the end of a service 

time. Therefore, E R t  is equal to the sum of the areas of X T  isosceles right 

triangles where the side of the thi  triangle is iX . For large T , we can ignore the last 

possibly incomplete triangle to obtain 

2

1

1 1

2

X T

i

i

E R X
T

 

2

1

1 1

2

X T

i

i

X T
E R X

T X T
. 

Letting T  approach infinity and employing the law of large numbers, the latter gives 

21

2
E R E X ,                                                            (4.34) 

where 
2E X  is the second moment of the service time. 

By (4.32) and (4.34), we obtain 

2

2 1
E W E X .                                                (4.35) 

And utilizing (4.35) in (4.29) we establish the expected time a vehicle spends in the 

queue, 
2t

E D  as 

2

2

2 1
tE D E X E X .                                 (4.36) 
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Upon employing the compressed queueing processes as described in (3.5) and (3.6), 

Equation (4.36) reduces to 

2

2

2 1 1
t

E X
E D E X .                                   (4.37) 

Finally, we compute the variance of 
2t

D . 

 

4.4.2 The Variance  

In this section, we are interested in the computation of 
2t

Var D . First note that  

2t t tD W X .  

Therefore, 

2
2t t t t tVar D Var W Var X Cov W X , 

but we know that tW  and tX  are independent random variables, thus 

2t t tVar D Var W Var X .                                         (4.38) 

Equation (4.38) is vital in the derivation in this section. Note that 
2t

D  is a sum of two 

independent random variables, that is, tW  and tX . If the generating function of tX  is 

tX s  and that of tW  is 
tW s , the joint transformed probability generating function of 

2t
D  is 

t t tP s W s X s , 

where P s  and X s  are P-K transforms of the queueing system size and service 

time distributions respectively. Taking limits as t , we have 

  t t t
t t
Lim P s Lim W s X s . 

Thus, 
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P s W s X s .                                                    (4.39) 

Since the transform of the sum of two independent random variables is equivalent to the 

product of their transforms for instance see Ivo and Jacques, 2002, Section 2.3, then 

P s W s X s .   

Upon utilizing (4.25) and (4.28), W s  is given by 

1 s
W s

X s s
 .                                                  (4.40) 

By Little’s law, E X , Equation (4.40) simplifies to 

1

1
W s

R s
.                                                          (4.41) 

Derivation of (4.41) is given in Appendix C. Equation (4.41) is the P-K transform of 

waiting time distribution, hence to get the first and second moments of waiting time, we 

differentiate with respect to s  and set 0s  to get  

0s

d
W s

ds
. 

Hence, 

1

E R
E W ,                                                                 (4.42) 

a result similar to (4.32). Again, differentiating (4.41) twice with respect to s  and set 

0s , we get 

2

2

0s

d
W s

ds . 

Hence,  

2
22 2

1

E R
E W E W .                                       (4.43) 
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To compute 2E R  again, we consider Figure (4.2) and deduce that 

 2

2 0

1 T

E R R t
T

dt ,  

which simplifies to 

3

2

3

E X
E R .                                                            (4.44) 

Utilizing (4.34) and (4.44) in Equations (4.42) and (4.43), respectively, we get  

2

2 1

E X
E W                                                             (4.45) 

and  

2
2 3

2

1 3 1

E X E X
E W .                        (4.46) 

Then, to compute 
2t

Var D , we use (4.29) and (4.46) to obtain 
2

2

tE D  and 
2

2

tE D  

as 

2

2
2 3

2 2

1 3 1
t

E X E X
E D E X         (4.47) 

and 

2

2
2

2

2 1
t

E X
E D E X ,                                  (4.48) 

respectively. Having obtained (4.47) and (4.48), Equation (4.39) simplifies to  

2

2
2 3

223
1

4 1 3 1 1
t

E X E X E X
Var D E X E X .        (4.49) 

Employing the use of compressed queueing processes, (4.49) becomes 
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2

2
2 3

223
1

4 1 1 3 1 1 1 1
t

E X E X E X
Var D E X E X .       (4.50) 

 The next section considers the combined 
1t

D  and 
2t

D . 

 

4.5 The Moments of Overall Traffic Delay   

Notice from (4.1) that tD  can be split into two independent components, that is, 
1t

D  and 

2t
D . In the previous sections, we have confined ourselves in the computation of mean 

and variance of 
1t

D and
2t

D . In this section, we amalgamate the two sections to obtain 

tE D  and 
tVar D . To obtain 

tE D , we have 

1 2t t tE D E D E D .                                                 (4.51) 

Utilizing (4.11) and (4.37), Equation (4.51) becomes 

2

2
1

2 1 1
2 1

e
y

y

t

e

y

g
c

E Xc
E D E X

g

c

.            (4.52) 

Similarly, 
tVar D  is given by 

1 2 1 2
2 .t t t t tVar D Var D Var D Cov D D ,              (4.53) 

and since 
1t

D and 
2t

D are independent components, we utilize (4.15) and (4.50) in (4.53) 

to give 
tVar D  as 
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3

2
2 3

2

1 1 3 4
3

4 1 1 3 1 1
12 1

e e e
y

y y y

t

e

y

g g g
c

E X E Xc c c
Var D

g

c

    

   
221

1 1

E X
E X E X .                                         (4.54)                         

In the next chapter, we apply our developed model on the real traffic data. 
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

5.1 Introduction  

In this chapter, we apply the developed overall traffic delay model on real traffic data 

collected at Kenyatta Avenue-Kimathi Street signalized intersection between 20
th

 and 

22
nd

 February, 2013. The intermediate results from the data are given and simulation on 

the developed models using MATLAB software is performed for traffic intensities 

ranging from 0.1 to 1.9. This chapter is summarized as follows: Section 5.2 provides 

computation of parameters necessary for simulating the developed models. The 

simulation of 
tE D  and 

tVar D  are provided in Sections 5.3 and 5.4 of this chapter, 

respectively. The application of 
tVar D , that is, the variability of level of service (LOS) 

is provided in Section 5.5.   

 

5.2 Computation of Parameters  

For the simplicity of sampling and measurement, we assumed that the data collected on 

20
th
, 21

st
 and 22

nd
 February, 2013 from 5:13 PM to 6:10 PM daily represented the traffic 

data on general weekdays. The traffic measurements (in seconds) recorded were: G , Y , 

AR , R , 1l , 2l , t  and  representing green time, amber (yellow) time, all red time, red 

time, start-up lost time, clearance lost time, evaluation period and minimal time distance 

between vehicles, respectively. Figure (5.1) below describes a typical sequence of lights 

at the signalized intersection.  
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Figure 5.1: Diagram showing a typical sequence of lights at the signalized 

intersection.  

 

Considering a single lane controlled by a fixed-time traffic signal, we recorded the 

duration of the green lights that allow the vehicles to go through Kenyatta Avenue-

Kimathi Street intersection and the number of vehicles passing during the effective green 

lights after every cycle time of 180 seconds. The data collected is provided in Tables 5.1 

- 5.3 (Appendix D). 

To compute , we also recorded the speed of vehicles on the queue and the distance 

between them on Friday, 22
nd

 February, 2013, from 5:13 PM – 6:10 PM. The data is 

given in Table 5.4 (see Appendix D). Assuming this data to be a representative for all 

weekdays, we compute the average weekday speed of vehicles in the queue and distance 

in between them.  From the data on Table 5.1 – 5.3, the average effective green time is  

1 1396 1356 1342

3 20 20 20
eg    

68.23 sec.                                                                     (5.1) 

Average service time during the green light is  

1 1396 1356 1342

3 1405 1383 1302egx   



34 

 

 

 

1.002  sec.                                                                    (5.2) 

Average effective red time is  

1 2204 2240 2256

3 20 20 20egx   

111.67  sec.                                                                  (5.3) 

In our model, we assume that the traffic light is always running. Thus, service time of the 

first vehicle passing through the intersection when a green light turns on is considered to 

be equal to the red light duration. We denote the average service time for that vehicle as 

rx  given by 

111.67r rx t  sec. 

For each green light during 5:13 PM – 6:10 PM, there is only one vehicle which has the 

service time 
rx . All the other vehicles have the service time 

egx  . The green lights turn 

on 20 times, so the number of vehicles with service time 
rx  is equal to 20. The 

probability that a vehicle has a service time 
rx  is given by 

1 20 20 20
Pr

3 1405 1383 1302
rX x   

0.015 .                                                            (5.4) 

And the probability that a vehicle has service time 
egx  is 

Pr 1 Pr
eg rX x X x   

0.985 .                                                           (5.5) 

Thus, the average service time becomes 

Pr . Pr .
e eg g r rx X x x X x x   

2.66  sec. 

The average service rate is 
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1
0.38

2.66  
sec.                                                             (5.6) 

Based on the data (Table 5.4), we can get the average speed of a vehicle in the queue 

during the time period (5:13 PM - 6:10 PM) as 

256
12.8

20
 Km/h.                                                        

Converting the above result to M/s, we have 

1000
12.8 3.56

3600  
M/s.                                                        (5.7)

 

The average distance between the vehicles in the queue is  

25.7
1.285

20
d M.                                                              (5.8) 

Using (5.8),  is obtained as 

1.285

3.56  

0.36 sec.                                                                        (5.9) 

5.3 Simulation of 
tE D   

Using Equation (4.52) and the collected data, we obtained Figure 5.2 by MATLAB 

software when we assumed that service times follow Exponential distribution with 

parameter 1 . 
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Figure 5.2: Diagram describing relationship between 
tE D  and . 

 

To be able to explain this figure, we split 
tE D  into 

1t
E D  and 

2t
E D  that yields 

Figure 5.3 below. 
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Figure 5.3: 
1 2t t tE D , E D  and E D  versus  using Exponential distribution of 

service times. 

 

From Figure 5.3, it is clear to note that the stochastic delay model is only applicable to 

undersaturated conditions ( 1) and estimate infinite delay when arrival flow 

approaches capacity. However, when arrival flow exceeds capacity oversaturated queues 

exist and continuous delay occurs. It is also evident that the deterministic delay model 

estimates continuous delay, but it does not completely deals with the effect of 

randomness when the arrival flows are close to capacity, and also fail when the traffic 

intensity is between 1.0 and 1.1. The figure shows that both components of our overall 

traffic delay model are incompatible when the traffic intensity is equal to 1.0. Therefore, 

our overall traffic delay model is used to fill the gap between the two models and also 

give more realistic results in the estimation of delay at signalized intersections. It 
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predicts the delay for both undersaturated and oversaturated traffic conditions without 

having any discontinuity at the traffic intensity of 1.0. Harmonizing 
1t

E D  and 

2t
E D  components result into 

tE D  described in Figure 5.2 above.  

Similarly, with the assumption of service times following Gamma distribution, we 

obtained Figure 5.4 below by MATLAB. 
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Figure 5.4: 
1 2t t tE D , E D  and E D  versus  using Gamma distribution of service 

times. 

 

We depict that under this assumption, 
tE D  increases rapidly with  than in the 

Exponential assumption under oversaturated traffic conditions ( 1.15 ), although the 

general behaviour is similar to the Exponential assumption. From the figure, 
1t

E D  

remains the same as that of exponential distribution of service times. Comparing Figure 
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5.3 and Figure 5.4, Figure 5.3 estimates a lower value of 
tE D  than Figure 5.4, that is, 

Figure 5.4 estimates 
tE D  to be 43.12 seconds while Figure 5.3 estimates 

tE D  to be 

30.93 seconds. Also, Figure 5.4 estimates higher values of 
tE D  as 1.5 . This is 

contrary to what 
tE D  with exponential distribution of service times estimates. 

Therefore, exponential distribution of service times is far much preferred since we are 

interested in a reduced mean of overall traffic delay at the intersection. 

 

5.4 Simulation of 
tVar D     

Simulating 
tVar D  by Equation (4.55), we obtained the harmonized variance as shown 

in Figure 5.5 below. 
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Figure 5.5: 
tVar D  versus  using Exponential distribution of service times. 
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When the traffic intensity is between 0 and 0.3, the traffic flows are independent of each 

other since the service rate of the traffic light is higher than the vehicle arrival rate. This 

results in a rapid decrease of  
tVar D . But as  approaches 1.0, the vehicle transition 

begin to depend on the traffic flows resulting to a slower decrease in 
tVar D . However, 

as  goes beyond 1.0, 
tVar D  slowly increases. To investigate the major contributor to 

tVar D  by 
1t

D  and 
2t

D , we plot the graphs of 
tVar D , 

1t
Var D  and 

2t
Var D  

versus  as shown in Figure 5.6 below. 
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Figure 5.6: 
1 2t t tVar D , Var D  and Var D  versus  using Exponential 

distribution of service times. 

 

From Figure (5.6), the deterministic model shows no variation because of its constant 

service times while stochastic model provides a reasonable estimate of variance only 



41 

 

 

 

under light traffic conditions ( 1.0 ), that is, the variance is time-independent and 

infinite variance is estimated as  approaches 1.0. Therefore, the contributing factor in 

the estimation of 
tVar D  is 

2t
D  since 

1t
Var D  is zero. A similar scenario is depicted 

when we assume Gamma distribution for service times as shown in Figure 5.7 below.   
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Figure 5.7: 
1 2t t tVar D , Var D  and Var D  versus  using Gamma distribution of 

service times. 

 

Again, 
2t

D  remains constant as that of exponential distribution of service times due to its 

deterministic nature of arrivals and service. The stochastic delay component estimates 

infinite variance when 0.7 0.9  contrary to its assumption of steady-state (Hurdle, 

1984). This disregards our assumption that 
2t

D is a steady-state model. Also, Figure 5.7 

estimates higher values of 
tVar D as compared to Figure (5.6), that is, Figure 5.7 
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estimates 36.74 seconds while Figure 5.6 estimates 7.731 seconds as the lowest values of 

tVar D . Therefore, exponential distribution of service times is far much preferred since 

a lower variance results to a reduced overall traffic delay at the intersection. 

 

5.5 Application of 
tVar D  

5.5.1 Variability of Level of Service 

The possible use of delay variability in quantifying level of service for a signalized 

intersection is illustrated in this section. In this study, the level of service at the 

intersection was defined in terms of expected overall traffic delay. With the ability to 

estimate the variance of overall traffic delay, it is feasible to integrate the concept of 

reliability into design and analysis of a signalized intersection. For example, delay of a 

certain percentile, instead of expected value, can be used to define the level of service. A 

95th-percentile delay means that 95 percent of the vehicles would encounter a traffic 

delay less than or equal to this delay. The percentile value can be approximately 

estimated using t tE D z Var D  where, z  is a statistic for the normal distribution 

and can be determined on the basis of the pre-specified reliability level. Figure 5.8 below 

shows expected overall traffic delay and 90
th

-percentile delay (with 1.3z ) under 

different traffic intensities. It is assumed that the ranges of traffic delay values used in 

defining each level of service in the HCM are also applicable to vehicles, as shown in 

Figure (5.8). It can be observed that for the given case with a traffic intensity of 0.9, the 

expected overall traffic delay is 85.6 seconds, which would yield LoS C (point a). 

However, if the 90
th
 percentile delay is used, the LoS would be D (point b). On the other 

hand, in order to guarantee that 90 percent of the vehicles going through the intersection 
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encounter LoS C or higher, the traffic intensity needs to be reduced to 0.7 (point c) by 

either increasing the capacity or reducing the number of arrivals per unit time. 
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Figure 5.8: 
tE D and 90

th
 – percentile delay (with αz 1.3 ) versus . 

 

The MATLAB iteration codes for simulating 
1t

E D , 
2t

E D , 
tE D , 

1t
Var D , 

2t
Var D  and 

tVar D  versus ρ using either Exponential or Gamma distribution of 

service times are given in Appendix E. These codes were used to plot Figure 5.2 – Figure 

5.8. The next chapter provides the conclusion and recommendations of the study. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATION 

6.1 Introduction 

In this chapter, we present the conclusion and recommendations of our study. The 

conclusion of the study is provided in Section 6.2 while recommendation is provided in 

Section 6.3.    

 

6.2 Conclusion 

Considering the uniform and random properties of traffic flows, the models for 

estimating deterministic and stochastic delay components of traffic delay were 

successfully developed in this study. With the application of compressed queueing 

processes in order to better describe the variation in traffic flows, the developed models 

indeed estimate the mean and variance of traffic delay at the signalized intersection. 

From the developed moments of the deterministic and stochastic delay components of 

traffic delay, the central moments of the overall traffic delay model were developed. 

These moments estimate the mean and variance of the overall traffic delay at the 

signalized intersection. 

To validate the developed model, the model was applied to real traffic data collected at 

Kenyatta Avenue - Kimathi Street intersection and a simulation was performed for traffic 

intensities ranging from 0.1 to 1.9 using MATLAB software. The simulation results 

confirmed the result that exists in literature that oversaturated conditions and random 

delay renders the stochastic model unrealistic. Furthermore, the results preferred 

exponential distribution of service times to gamma distribution since it resulted to a 

lower variance hence led to a reduced overall traffic delay.  



45 

 

 

 

 

6.3 Recommendation 

In the study presented herein, the overall traffic delay model was developed for a fixed-

time traffic light, and further studies should be conducted for vehicle-actuated type of 

traffic lights.  
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APPENDICES 

Appendix A:  Derivation of (4.4) 

0 0

0 0. .
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Appendix B: Derivation of (4.20) 
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Appendix C: Derivation of (4.41) 

Letting 1s s , (4.29) can be re-written as 

1 X s s
P s

X s s
     

Thus,

 

1 1X s s
W s

X sX s s
  

1 s

X s s
   

Dividing by s and using the Little’s law
E X

 

1

1

W s
X s

s E X s E X

  

1

1
1

X s

s E X

 

The term between the brackets is the transform of R  which is obtained using partial 

integration method as 

sRR s E e   
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Hence,                                      

1
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W s

R s
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Appendix D: Tables  

Table 5.1: Traffic data collected on Wednesday, 20
th

 February, 2013 

 

Time 

(PM) 

t  

(sec) 

R  

(sec) 

AR  

(sec) 

G  

(sec) 

Y  

(sec) 

1l  

(sec) 

2l  

(sec) 

eg
 

(sec) 

r  

(sec) 

No. of 

vehicles 

passed 

5:13 3600 103 10 52 15 3 4 70 110 73 

5:16 3600 104 10 51 15 3 3 70 110 71 

5:19 3600 102 10 53 15 4 2 72 108 72 

5:22 3600 103 10 52 15 3 4 70 110 75 

5:25 3600 101 10 54 15 2 3 74 106 76 

5:28 3600 104 10 51 15 3 3 70 110 70 

5:31 3600 106 10 49 15 3 4 67 113 70 

5:34 3600 107 10 48 15 3 3 67 113 69 

5:37 3600 102 10 53 15 4 3 71 109 73 

5:40 3600 104 10 51 15 3 4 69 111 71 

5:43 3600 97 10 52 15 3 3 77 103 73 

5:46 3600 103 10 52 15 3 3 71 109 73 

5:49 3600 104 10 51 15 3 3 70 110 70 

5:52 3600 103 10 52 15 4 3 70 110 68 

5:55 3600 105 10 50 15 3 4 68 112 67 

5:58 3600 106 10 49 15 3 2 69 111 69 

6:01 3600 106 10 49 15 3 3 68 112 65 

6:04 3600 108 10 47 15 2 3 67 113 69 

6:07 3600 105 10 50 15 3 4 68 112 66 

6:10 3600 107 10 48 15 2 3 68 112 65 

 Total 1396 2204 1405 
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Table 5.2: Traffic data collected on Thursday, 21
st
 February, 2013 

 

Time 

(PM) 

t  

(sec) 

R  

(sec) 

AR  

(sec) 

G  

(sec) 

Y  

(sec) 

1l  

(sec) 

2l  

(sec) 

eg
 

(sec) 

r  

(sec) 

No. of 

vehicles 

passed 

5:13 3600 105 10 50 15 3 4 68 112 71 

5:16 3600 106 10 49 15 3 3 68 112 69 

5:19 3600 104 10 51 15 4 2 70 110 70 

5:22 3600 105 10 49 15 3 4 68 112 73 

5:25 3600 101 10 52 15 2 3 72 106 74 

5:28 3600 104 10 49 15 3 3 68 110 68 

5:31 3600 108 10 47 15 3 4 65 115 68 

5:34 3600 109 10 46 15 3 3 65 115 67 

5:37 3600 104 10 51 15 4 3 69 111 72 

5:40 3600 106 10 49 15 3 4 67 113 69 

5:43 3600 106 10 49 15 3 3 68 112 71 

5:46 3600 105 10 50 15 3 3 69 111 71 

5:49 3600 106 10 49 15 3 3 68 112 69 

5:52 3600 105 10 50 15 4 3 68 112 71 

5:55 3600 107 10 48 15 3 4 66 114 70 

5:58 3600 108 10 47 15 3 2 67 113 67 

6:01 3600 106 10 47 15 3 3 66 114 68 

6:04 3600 110 10 45 15 2 3 65 115 65 

6:07 3600 107 10 48 15 3 4 66 114 66 

6:10 3600 109 10 46 15 2 3 66 114 64 

 Total 1356 2240 1383 
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Table 5.3: Traffic data collected on Friday, 22
nd

 February, 2013 

 

Time 

(PM) 

t  

(sec) 

R  

(sec) 

AR  

(sec) 

G  

(sec) 

Y  

(sec) 

1l  

(sec) 

2l  

(sec) 

eg
 

(sec) 

r  

(sec) 

No. of 

vehicles 

passed 

5:13 3600 106 10 49 15 3 4 67 113 65 

5:16 3600 105 10 50 15 3 3 69 111 67 

5:19 3600 104 10 51 15 4 2 70 110 67 

5:22 3600 107 10 48 15 3 4 66 114 64 

5:25 3600 104 10 51 15 2 3 71 109 68 

5:28 3600 104 10 49 15 3 3 68 110 67 

5:31 3600 106 10 48 15 3 4 67 113 65 

5:34 3600 109 10 46 15 3 3 65 115 64 

5:37 3600 105 10 50 15 4 3 68 112 64 

5:40 3600 107 10 48 15 3 4 66 114 64 

5:43 3600 107 10 48 15 3 3 67 113 65 

5:46 3600 104 10 51 15 3 3 70 110 67 

5:49 3600 107 10 48 15 3 3 67 113 65 

5:52 3600 106 10 49 15 4 3 67 113 65 

5:55 3600 107 10 47 15 3 4 66 114 64 

5:58 3600 108 10 47 15 3 2 67 113 65 

6:01 3600 109 10 46 15 3 3 65 115 64 

6:04 3600 110 10 45 15 2 3 65 115 64 

6:07 3600 109 10 46 15 3 4 64 116 63 

6:10 3600 108 10 47 15 2 3 67 113 65 

 Total 1342 2256 1302 
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Table 5.4: Average speed per vehicle and distance between the vehicles on the 

queue 

Time 

(PM) 

No. of vehicles 

passed 

Average speed per 

vehicle (Km/h) 

Distance between the 

vehicles on the queue 

(Meters) 

5:13 65 13 1.2 

5:16 67 14 1.4 

5:19 67 14 1.3 

5:22 64 12 1.3 

5:25 68 15 1.2 

5:28 67 14 1.4 

5:31 65 13 1.3 

5:34 64 12 1.4 

5:37 64 12 1.4 

5:40 64 12 1.3 

5:43 65 13 1.2 

5:46 67 14 1.2 

5:49 65 13 1.1 

5:52 65 13 1.3 

5:55 64 12 1.3 

5:58 65 13 1.3 

6:01 64 12 1.4 

6:04 64 12 1.4 

6:07 63 10 1.1 

6:10 65 13 1.2 

Total 1302 256 25.7 
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Appendix E 

MATLAB iteration code for simulating 
tE D  versus ρ  using Exponential 

distribution of service times    

   
c_y = 180; 
g_e = 68.23; 
delta = 0.36; 
rho = 0.1:0.2:2.0; 
mu = 0.38; 
lamda = rho.*mu; 
E_1 = 1./lamda; 
E_2 = 2./(lamda.^2); 
%% Mean of the Overall Traffic Delay 
%% 
ED_t = c_y*((1-g_e/c_y).^2)./(2.*(1-(g_e/c_y).*rho))+... 
    (rho.*lamda.*E_2)./(2.*((1-rho).*(1-(lamda.*delta))))+E_1; 
figure(5.2) 
plot(rho,ED_t,'r'); 
xlabel('Traffic intensity'); 
ylabel('Mean of the overall traffic delay'); 

  

  

MATLAB iteration code for simulating 
tE D , 

1t
E D and 

2tE D   versus ρ  using 

Exponential distribution of service times    
 

c_y = 180; 
g_e = 68.23; 
delta = 0.36; 
rho = 0.1:0.2:2.0; 
mu = 0.38; 
lamda = rho.*mu; 
E_1 = 1./lamda; 
E_2 = 2./(lamda.^2); 
%%Mean Deterministic Delay Component 
%% 
ED_t_1 = c_y*((1-g_e/c_y).^2)./(2.*(1-(g_e/c_y).*rho)); 
%% Mean Stochastic Delay Component 
%% 
ED_t_2=(rho.*lamda.*E_2)./(2.*((1-rho).*(1-(lamda.*delta))))+E_1; 
%% Mean of Overall Traffic Delay 
%% 
ED_t = c_y*((1-g_e/c_y).^2)./(2.*(1-(g_e/c_y).*rho))+... 
    (rho.*lamda.*E_2)./(2.*((1-rho).*(1-(lamda.*delta))))+E_1; 
figure(5.3) 
plot(rho,ED_t_1,'g'); 
hold on 
plot(rho,ED_t_2,'b'); 
hold on 
plot(rho,ED_t,'r'); 
xlabel('Traffic intensity'); 
ylabel('Mean'); 
legend('E[D_t_1]','E[D_t_2]','E[D_t]'); 
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MATLAB iteration code for simulating 
tE D , 

1t
E D and 

2tE D   versus ρ  using 

Gamma distribution of service times    
 

c_y = 180; 
g_e = 68.23; 
delta = 0.36; 
rho = 0.1:0.2:2.0; 
mu = 0.38; 
lamda = rho.*mu; 
E_1 = mu./lamda; 
E_2 = (mu.*(1+mu))./(lamda.^2); 
%%Mean Deterministic Delay Component 
%% 
ED_t_1 = c_y*((1-g_e/c_y).^2)./(2.*(1-(g_e/c_y).*rho)); 
%% Mean Stochastic Delay Component 
%% 
ED_t_2=(rho.*lamda.*E_2)./(2.*((1-rho).*(1-(lamda.*delta))))+E_1; 
%% Mean of Overall Traffic Delay 
%% 
ED_t = c_y*((1-g_e/c_y).^2)./(2.*(1-(g_e/c_y).*rho))+... 
    (rho.*lamda.*E_2)./(2.*((1-rho).*(1-(lamda.*delta))))+E_1; 
figure(5.4) 
plot(rho,ED_t_1,'g'); 
hold on 
plot(rho,ED_t_2,'b'); 
hold on 
plot(rho,ED_t,'r'); 
xlabel('Traffic intensity'); 
ylabel('Mean'); 
legend('E[D_t_1]','E[D_t_2]','E[D_t]'); 

 

 

MATLAB iteration code for simulating 
tVar D  versus ρ  using Exponential 

distribution of service times    
 

c_y = 180; 
g_e = 68.23; 
delta = 0.36; 
rho = 0.1:0.2:2.0; 
mu = 0.38; 
lamda = rho.*mu; 
E_1 = 1./lamda; 
E_2 = 2./(lamda.^2); 
E_3 = 6./(lamda.^3); 
%%Variance of Overall Traffic Delay 
%% 
VarD_t = c_y*((1-g_e/c_y).^3)+(1+3.*(g_e/c_y)-4.*(rho.*(g_e/c_y)))... 
    ./12.*(1-(g_e/c_y).*rho).^2+3.*((rho.*lamda.*E_2).^2)./4.*((1-

rho).*(1-(lamda.*delta))).^2+... 
    ((rho.*lamda.*E_3)./(3.*((1-rho).*(1-(lamda.*delta)))))+... 
    (1-(rho.*lamda.*E_1)./(1-rho).*(1-(lamda.*delta))).*E_2-E_1.^2; 
figure(5.5) 
plot(rho,VarD_t,'r'); 
xlabel('Traffic intensity'); 
ylabel('Variance of overall traffic delay'); 
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MATLAB iteration code for simulating 
tVar D , 

1t
Var D and 

2tVar D   versus 

ρ  using Exponential distribution of service times 

 

c_y = 180; 
g_e = 68.23; 
delta = 0.36; 
rho = 0.1:0.2:2.0; 
mu = 0.38; 
lamda = rho.*mu; 
E_1 = 1./lamda; 
E_2 = 2./(lamda.^2); 
E_3 = 6./(lamda.^3); 
%%Variance of Deterministic Delay Component 
%% 
VarD_t_1 = c_y*((1-g_e/c_y).^3)+(1+3.*(g_e/c_y)-4.*(rho.*(g_e/c_y)))... 
    ./12.*(1-(g_e/c_y).*rho).^2; 
%%Variance of Stochastic Delay Component 
%% 
VarD_t_2 = 3.*((rho.*lamda.*E_2).^2)./4.*((1-rho).*(1-

(lamda.*delta))).^2+... 
    ((rho.*lamda.*E_3)./(3.*((1-rho).*(1-(lamda.*delta)))))+... 
    (1-(rho.*lamda.*E_1)./(1-rho).*(1-(lamda.*delta))).*E_2-E_1.^2; 
%%Variance of Overall Traffic Delay 
%% 
VarD_t = c_y*((1-g_e/c_y).^3)+(1+3.*(g_e/c_y)-4.*(rho.*(g_e/c_y)))... 
    ./12.*(1-(g_e/c_y).*rho).^2+3.*((rho.*lamda.*E_2).^2)./4.*((1-

rho).*(1-(lamda.*delta))).^2+... 
    ((rho.*lamda.*E_3)./(3.*((1-rho).*(1-(lamda.*delta)))))+... 
    (1-(rho.*lamda.*E_1)./(1-rho).*(1-(lamda.*delta))).*E_2-E_1.^2; 
figure(5.6) 
plot(rho,VarD_t_1,'g'); 
hold on 
plot(rho,VarD_t_2,'b'); 
hold on 
plot(rho,VarD_t,'r'); 
xlabel('Traffic intensity'); 
ylabel('Variance'); 
legend('Var[D_t_1]','Var[D_t_2]','Var[D_t]'); 

 

 

MATLAB iteration code for simulating 
tVar D , 

1t
Var D and 

2tVar D   versus 

ρ  using Gamma distribution of service times 

 

c_y = 180; 
g_e = 68.23; 
delta = 0.36; 
rho = 0.1:0.2:2.0; 
mu = 0.38; 
lamda = rho.*mu; 
E_1 = mu./lamda; 
E_2 = (mu.*(1+mu))./(lamda.^2); 
E_3 = mu./lamda.^2; 
%%Variance of Deterministic Delay Component 
%% 
VarD_t_1 = c_y*((1-g_e/c_y).^3)+(1+3.*(g_e/c_y)-4.*(rho.*(g_e/c_y)))... 
    ./12.*(1-(g_e/c_y).*rho).^2; 
%%Variance of Stochastic Delay Component 
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%% 
VarD_t_2 = 3.*((rho.*lamda.*E_2).^2)./4.*((1-rho).*(1-

(lamda.*delta))).^2+... 
    ((rho.*lamda.*E_3)./(3.*((1-rho).*(1-(lamda.*delta)))))+... 
    (1-(rho.*lamda.*E_1)./(1-rho).*(1-(lamda.*delta))).*E_2-E_1.^2; 
%%Variance of Overall Traffic Delay 
%% 
VarD_t = c_y*((1-g_e/c_y).^3)+(1+3.*(g_e/c_y)-4.*(rho.*(g_e/c_y)))... 
    ./12.*(1-(g_e/c_y).*rho).^2+3.*((rho.*lamda.*E_2).^2)./4.*((1-

rho).*(1-(lamda.*delta))).^2+... 
    ((rho.*lamda.*E_3)./(3.*((1-rho).*(1-(lamda.*delta)))))+... 
    (1-(rho.*lamda.*E_1)./(1-rho).*(1-(lamda.*delta))).*E_2-E_1.^2; 
figure(5.7) 
plot(rho,VarD_t_1,'g'); 
hold on 
plot(rho,VarD_t_2,'b'); 
hold on 
plot(rho,VarD_t,'r'); 
xlabel('Traffic intensity'); 
ylabel('Variance'); 
legend('Var[D_t_1]','Var[D_t_2]','Var[D_t]'); 

 
 

MATLAB iteration code for simulating 
tE D and 90

th
 – percentile delay (with 

αz 1.3 ) versus  

 

c_y = 180; 
g_e = 68.23; 
delta = 0.36; 
rho = 0.1:0.2:2.0; 
mu = 0.38; 
lamda = rho.*mu; 
E_1 = 1./lamda; 
E_2 = 2./(lamda.^2); 
E_3 = 6./(lamda.^3); 
%% Mean of Overall Traffic Delay 
%% 
ED_t = c_y*((1-g_e/c_y).^2)./(2.*(1-(g_e/c_y).*rho))+... 
    (rho.*lamda.*E_2)./(2.*((1-rho).*(1-(lamda.*delta))))+E_1; 
%%Variance of Overall Traffic Delay 
%% 
VarD_t = c_y*((1-g_e/c_y).^3)+(1+3.*(g_e/c_y)-4.*(rho.*(g_e/c_y)))... 
    ./12.*(1-(g_e/c_y).*rho).^2+3.*((rho.*lamda.*E_2).^2)./4.*((1-

rho).*(1-(lamda.*delta))).^2+... 
    ((rho.*lamda.*E_3)./(3.*((1-rho).*(1-(lamda.*delta)))))+... 
    (1-(rho.*lamda.*E_1)./(1-rho).*(1-(lamda.*delta))).*E_2-E_1.^2; 
P=ED_t+1.3.*sqrt(VarD_t); 
figure(5.8) 
plot(rho,ED_t,'g'); 
hold on 
plot(rho,P,'r'); 
xlabel('Traffic intensity'); 
ylabel('Mean of overall traffic delay'); 
legend('E[D_t]','90th Percentile'); 

 

 


