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ABSTRACT 

Tuberculosis (TB) among children under the age of 15 is a significant public health 

problem, particularly in resource-constrained settings and is among top ten most 

dangerous causes of death worldwide, and ranks among the top five most lethal 

infectious agents in Kenya. However, the real burden of tuberculosis among children 

in Kenya is unclear. In modelling infectious diseases, Autoregressive Integrated 

Moving Average (ARIMA) and hybrid ARIMA models have been widely used. 

However, few studies in Kenya have utilized ARIMA or hybrid ARIMA models to 

model infectious diseases. This study sought to forecast TB infections in children 

under the age of 15 Homa Bay and Turkana Counties in Kenya using ARIMA and 

hybrid neural network models and specifically sought to compare the; performance of 

the models in predicting TB notification cases, accuracy produced by the models, and 

the forecasted temporal trends of TB notification cases among children below 15 

years. The study hypothesized that the hybrid ARIMA-ANN model yields more 

accurate predictions and forecasts. The study used monthly TB confirmed cases 

reported for Homa Bay and Turkana Counties between 2012 and 2021. The ARIMA 

model was chosen using the Akaike Information and Bayesian Information Criteria. 

The ANN model was developed using the Multi-Layer Perceptrons (MLPs) three-

layer feed-forward architecture. The hybrid ARIMA model was developed by 

combining the fitted cases using the ARIMA model and the residuals from the ANN. 

The hybrid ARIMA model (ARIMA-ANN) outperformed the single 

ARIMA(0,0,1,1,0,1,12) and ANN (1,1,2)[12] models in terms of predictive and 

forecast accuracy. The hybrid ARIMA model outperformed the ANN (1,1,2)[12] and 

ARIMA (0,0,1,1,0,1,12) models in terms of prediction accuracy, p<0.001. In Homa 

Bay and Turkana Counties, the 12-month predicted TB incidence of 175 to 198 

infections per 100,000 children in 2022. The hybrid ARIMA model provides superior 

prediction accuracy and forecast performance. The findings of this study suggest that 

TB cases in children are underreported, and that the incidence of TB in children may 

be greater than previously assumed. Tuberculosis monitoring data needs to be re-

evaluated in order to comprehend current inadequacies. To get the TB battle back on 

track, it is critical to reallocate critical resources to the National TB program. 

 

 

 

 

 

 



v 

 

 

TABLE OF CONTENTS 

DECLARATION......................................................................................................... ii 

DEDICATION............................................................................................................ iii 

ABSTRACT ................................................................................................................ iv 

TABLE OF CONTENTS ............................................................................................v 

LIST OF TABLES ..................................................................................................... ix 

LIST OF FIGURES .....................................................................................................x 

LIST OF ABBREVIATIONS ................................................................................... xi 

OPERATIONAL DEFINITION OF TERMS ....................................................... xiii 

ACKNOWLEDGEMENTS .................................................................................... xiv 

CHAPTER ONE ..........................................................................................................1 

INTRODUCTION........................................................................................................1 

1.1 Background to the study ..........................................................................................1 

1.2 Problem statement ....................................................................................................4 

1.3 Objectives of the study.............................................................................................6 

1.3.1 Main Objective ..................................................................................................6 

1.3.2 Specific Objectives ............................................................................................6 

1.3.3 Research Questions ...........................................................................................6 

1.3.4 Research Hypothesis .........................................................................................6 

1.4 Significance of the study ..........................................................................................6 

1.5 Limitations of the study ...........................................................................................8 

CHAPTER TWO .........................................................................................................9 

LITERATURE REVIEW ...........................................................................................9 

2.1 Modelling TB disease burden ..................................................................................9 

2.2 The concept of Time Series ...................................................................................15 



vi 

 

 

2.2.1 Autoregressive (AR) and Moving Average (MA) processes ..........................15 

2.2.2 Autoregressive Moving Average (ARMA) models ........................................17 

2.2.3 Autoregressive Integrated Moving Average models (ARIMA) models .........17 

2.2.4 Seasonal Autoregressive Integrated Moving Average (SARIMA) models ....18 

2.3 Artificial Neural Networks (ANNs).......................................................................19 

2.3.1 ANN models ....................................................................................................19 

2.3.2 Architecture of the ANNs ...............................................................................19 

2.3.3 Hybrid models and training .............................................................................22 

2.4 Stationarity .............................................................................................................23 

2.5 ARIMA Model identification and specification ....................................................25 

2.5.1 Model Identification ........................................................................................25 

2.5.2 Autocorrelation (ACF) and partial autocorrelation (PACF) functions ...........26 

2.6 Predictive and Forecasting accuracy measures ......................................................27 

CHAPTER THREE ...................................................................................................30 

RESEARCH METHODOLOGY .............................................................................30 

3.1 Study Area .............................................................................................................30 

3.2 Materials and methods ...........................................................................................31 

3.2.1 Study design ....................................................................................................31 

3.2.2 Sample size and population .............................................................................32 

3.2.3 The Data ..........................................................................................................32 

3.2.3 Methodology proposed ....................................................................................32 

3.3 Ethical Considerations ...........................................................................................36 

CHAPTER FOUR ......................................................................................................38 

RESULTS ...................................................................................................................38 

4.1 Overview ................................................................................................................38 



vii 

 

 

4.2 Exploratory data analysis .......................................................................................38 

4.2.1 Data transformation .........................................................................................39 

4.2.2 Splitting data into training and testing data .....................................................42 

4.3 Model comparison in predicting TB cases .............................................................43 

4.3.1 Model estimation .............................................................................................43 

4.3.1.1 Residual diagnostics .................................................................................45 

4.3.1.2 Performance of the ARIMA model ..........................................................46 

4.3.1.3 Accuracy assessment of the ARIMA model.............................................47 

4.3.2 Artificial Neural Network (ANN) Model Fitting ............................................49 

4.3.3 Hybrid Model Fitting ......................................................................................50 

4.4 Accuracy comparison based on different parameter specifications .......................53 

4.5 Performance comparison of temporal forecast of TB trends .................................55 

CHAPTER FIVE .......................................................................................................59 

DISCUSSION .............................................................................................................59 

5.1 Introduction ............................................................................................................59 

5.2 Performance comparison of predictive accuracy of models ..................................59 

5.3 Accuracy comparison produced by different parameter specifications .................60 

5.4 Model performance comparison in temporal forecast of TB trends ......................61 

CHAPTER SIX ..........................................................................................................64 

CONCLUSION AND RECOMMENDATIONS .....................................................64 

6.1 Conclusion .............................................................................................................64 

6.2 Recommendations ..................................................................................................64 

6.3 Limitations .............................................................................................................66 

REFERENCES ...........................................................................................................68 



viii 

 

 

APPENDICES ............................................................................................................81 

APPENDIX I: University Clearance to undertake research ........................................81 

APPENDIX II: NACOSTI Research permit................................................................82 

APPENDIX III: Approval from Elizabeth Glaser Pediatric AIDS Foundation ..........83 

APPENDIX IV: Similarity Report...............................................................................84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

 

LIST OF TABLES 

Table 2.1: Theoretical ACF and PACF of AR(p), MA(q)and ARMA(p, q) models ...27 

Table 4.1: Model comparison ......................................................................................44 

Table 4.2: Model parameters .......................................................................................45 

Table 4.3: Comparison of ARIMA (0,0,1,1,10,1,12) forecasts and actual test data ....47 

Table 4.4: ARIMA model accuracy .............................................................................49 

Table 4.5: Accuracy comparison of the NNAR model ................................................50 

Table 4.6: Hybrid model accuracy ...............................................................................52 

Table 4.7: Model accuracy comparison .......................................................................54 

Table 4.8: Predictive accuracy comparison .................................................................55 

Table 4.9: Comparison of TB case forecasts for the next 12 months ..........................57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 

LIST OF FIGURES 

Figure 2.1: A three-layer feed-forward ANN architecture (Zhang, 2003) ..................20 

Figure 3.1: Map of Kenya with Homa Bay and Turkana Counties marked out (Source: 

https://d-maps.com) .....................................................................................................31 

Figure 3.2: Proposed methodology ..............................................................................35 

Figure 4.1: Monthly trend of TB cases between 2012 and 2021 .................................38 

Figure 4.2: Decomposition of additive series ..............................................................39 

Figure 4.3: TB case monthly cycle plot .......................................................................40 

Figure 4.4: Monthly TB cases ACF plot ......................................................................41 

Figure 4.5: Monthly TB cases PACF plot ...................................................................41 

Figure 4.6: Training and testing set plot ......................................................................42 

Figure 4.7: Residual diagnostic plots ...........................................................................46 

Figure 4.8: Plot of ARIMA (0,0,1,1,0,1,12) forecasts compared to actual test data ...48 

Figure 4.9: Plot of ARIMA (0,0,1,1,0,1,12) model  fitted TB and actual TB cases ....48 

Figure 4.10: Plot of NNAR (1, 1, 2)[12] fitted values against training data ...............50 

Figure 4.11: NNAR model 24 month predicted TB cases ...........................................50 

Figure 4.12: Plot of Hybrid model forecasted TB cases against actual testing data ....52 

Figure 4.13: Plot of Hybrid model  fitted TB cases against actual training data .........53 

Figure 4.14: Plot of ARIMA, ANN, and ARIMA-ANN model fitted TB against actual 

TB cases .......................................................................................................................54 

Figure 4.15: ARIMA (0,0,1,1,0,1,12) 12 month forecast of TB cases ........................56 

Figure 4.16: The NNAR (1,1,2)[12] model 12-month TB case prediction .................56 

Figure 4.17: ARIMA-ANN 12 month forecast of TB cases ........................................57 

Figure 4.18: Point forecast comparison .......................................................................58 

 



xi 

 

 

LIST OF ABBREVIATIONS 

ACF    Autocorrelation Function 

ACVF    Autocovariance Function 

ADF    Augmented Dickey-Fuller 

AIC    Akaike Information Criterion 

AIDS    Acquired Immune-Deficiency Virus 

ANN    Artificial Neural Networks 

AR    Autoregressive 

ARMA   Autoregressive Moving Average 

ARIMA   Autoregressive Integrated Moving Average 

BIC    Bayesian Information Criterion 

COVID-19   Corona Virus Disease 2019 

DM    Diebold-Mariano 

FNN    Feedforward Neural Network 

HIV    Human Immunodeficiency Virus 

KNBS    Kenya National Bureau of Statistics 

MA    Moving Average 

MAE    Mean Absolute Error 

MAPE    Mean Absolute Percent Error 

MCAR    Missing Completely at Random 

MLE    Maximum Likelihood Estimation 

MLPs    Multi-Layer Perceptrons 

MoH    Ministry of Health 

NACOSTI National Commission of Science, Technology and 

Innovation 



xii 

 

 

NN    Neural Networks 

NNAR    Neural Network Auto-Regressive 

NNETAR   Neural Network Autoregression 

NTLLDP National Tuberculosis, Leprosy and Lung Disease 

Program 

NTP    National Tuberculosis Program 

PACF    Partial Autocorrelation Function 

PP    Phillip-Perron 

RMSE    Root Mean Square Error 

SARIMA   Seasonal Autoregressive Integrated Moving Average 

SSA    Sub-Saharan Africa 

TB    Tuberculosis 

TIBU    Treatment Information from Basic Unit 

WHO    World Health Organization 

MCAR                                     Missing Completely at Random 

UN    United Nations 

WN    White Noise 

 

 

 

 

 



xiii 

 

 

OPERATIONAL DEFINITION OF TERMS 

Hybrid A combination of fitted values from the ARIMA model and ANN 

residual fitted values in order to account for linear and non-linear 

properties existing in the data resulting in better model performance 

compared to single models 

Forecast Forecasting involves taking models fit on historical data and using 

them to predict future observations 

Noise A non-systematic component that is nor Trend/Seasonality within the 

data 

Package In the context of the R statistical software, packages are collections of 

functions and data sets developed by the community that improve 

existing base R functionalities, or by adding new ones 

Seasonality Also a component of a time series. Seasonality is a general systematic 

linear or (most often) non-linear component that changes over time and 

does repeat  

Signal Information contained in a series 

Stationarity A common assumption in many time series techniques is that the data 

are stationary. A stationary process has the property that the mean, 

variance and autocorrelation structure do not change over time. 

Time series A series of data points indexed in time order. 

Trend One of the four components of a time series. Trend shows the general 

tendency of the data to increase or decrease during a long period of 

time and can be linear or non-linear. A trend is a smooth, general, 

long-term, average tendency. 



xiv 

 

 

ACKNOWLEDGEMENTS 

I thank the almighty God for without him I could not have reached this far. My 

gratitude also goes to the School of Science and Department of Mathematics and 

Computer Science of University of Eldoret for granting me the opportunity to present 

this work at the University of Eldoret 2nd Postgraduate students conference. 

I also extent my heartfelt appreciation to the Elizabeth Pediatric AIDS Foundation for 

granting me the opportunity to utilize the TB data as contained within the approval of 

their Patient and Program Outcomes Protocol. 

 

 

 



1 

 

 

CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study 

Tuberculosis (TB) is a highly infectious infection caused by the bacillus 

Mycobacterium tuberculosis and is among the top 10 most dangerous infectious 

agent-related causes of death (above HIV/AIDS), claiming nearly 4,000 lives each 

day. According to Lin and Liao (2013), around 33% of the worldwide population has 

been infected with tuberculosis, mainly in underdeveloped nations wherein TB is a 

major source of illness and mortality. The most common type of TB is pulmonary TB 

and spreads from one infected person to another through the air when the infected 

person coughs, speaks, or sings and nearby persons can inhale the TB bacteria and get 

infected as well. 

The cause of TB was somewhat unknown until 1882 when the bacillus responsible for 

TB was discovered by Dr. Robert Koch and was eventually named Mycobacterium 

tuberculosis (Sakula, 1982). Generally, approximately 100 to 200 million people will 

develop active TB disease in their lifetime (WHO, 2018). People with risk factors 

such as malnutrition, diabetes, cigarette use, alcohol use, and HIV infection are more 

likely to acquire active TB illness (WHO, 2017, Shimeles et al., 2019). 

Globally, children accounted for about 7% of over 10 million new TB cases (WHO, 

2017) in 2017. However, WHO (2018), reported that 55% of 1 million new TB cases 

among children were unreported while this was 65% among children under 5 years. 

In 2019, about 1.4 million of people died from TB (WHO, 2020). Adolescent and 

pediatric TB is usually overlooked amid challenges faced regarding diagnosis (WHO, 
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2020). The challenge with sub-optimal treatment and under-reporting of TB cases 

among children stems from the fact that clinically and epidemiologically, and this 

makes care and prevention of TB a challenge (Cowger et al., 2019). Furthermore, TB 

diagnosis in children is difficult (Krauss et al., 2015) especially among younger 

children who are not able to expectorate sputum and most often TB symptoms present 

similar to flu symptoms. Developing countries account for the largest proportion of 

new TB. In 2015, Asian countries contributed 61% of global new TB cases while 

Africa contributed over a quarter of the new cases (WHO, 2018). Globally, about 7 

countries contributed about two-thirds of all new TB cases in 2016 (WHO, 2018) 

while in 2019, 87% of all new TB infections were accounted by 30 high TB burdened 

countries while 8 countries contributed 67% of new TB cases in 2019 (Floyd et al., 

2018, WHO, 2019). 

When compared to other regions throughout the world, Sub-Saharan Africa (SSA) has 

a substantially higher TB burden thus imposing a great burden a massive load on 

already overburdened health-care systems (Zumla et al., 2015). About 1.5 million 

people died of TB in 2013 with SSA accounting for over a quarter of the deaths 

(Zumla et al., 2015). Despite having just 12% of the world population, SSA 

accounted for roughly 29% of the global total 9 million TB infections in 2014, with 

254,000 deaths owing to TB (WHO, 2014).  

In 2016, African contributed a quarter of all global reported TB cases despite 

accounting for only 10% of the global population (WHO, 2020). Among children, TB 

is often an overlooked cause of mortality because it is only accurately diagnosed in 

about 45% of children (Dodd et al., 2017, WHO, 2018). In 2017, approximately 1.2 
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million TB cases among children and adolescents aged 14 years or younger and about 

205,000 deaths attributed to TB infection were reported (WHO, 2018). 

In Kenya, tuberculosis is among the five leading causes of death and has a significant 

impact on the lives of the people. In addition, Kenya is among the top 30 TB 

burdened countries (WHO, 2016) and is among 14 countries faced with a triple 

burden of TB, TB_HIV and Multi-Drug Resistant TB (Kimani et al., 2021, WHO, 

2019). In 2015, the TB incidence was 233 per 100,000 people, with a fatality rate of 

20 per 100,000 from all kinds of TB in Kenya. However, Kenya, identifies only 72% 

of bacteriologically confirmed TB infections and 80% of all cases (WHO, 2016). 

Between 1990 and 2007, the number of TB cases reported in Kenya grew from 11,000 

to 116,723 cases (Kipruto et al., 2015, WHO, 2016) majorly because of the HIV 

pandemic and increased case detection as a result of greater diagnostic capability in 

the health system, as well as improved access to care as a result of health facility 

decentralization. Furthermore, the country has made significant progress in 

tuberculosis diagnosis through provision of resources that enable diagnosis and 

management of TB (Kimani et al., 2021). 

Forecasting may be accomplished using a variety of methodologies, ARIMA, and 

Neural Network models (Hyndman, 2018). The ARIMA models have increasingly 

been used in public health globally because of its advantages to effectively model the 

behavior of health outcomes where random variation is common. In the context of 

seasonal time series modeling, a variant of ARIMA known as SARIMA is used 

(Hamzacebi, 2008). The ARIMA model and its several modifications are based on 

Box-Jenkins principle (Box and Jenkins, 1976. 
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Furthermore, ARIMA models are popular because of their flexibility to represent time 

series with simplicity. The most significant constraint of these models is the linear 

assumption which is not possible in many circumstances. In order to overcome this 

disadvantage, various non-linear stochastic models have been proposed (Zhang, 2003, 

2007). However, implementation of these non-linear stochastic models is not always 

straight-forward compared to linear models. However, many methods have been used 

in forecasting of infectious diseases (Ren et al., 2013). 

Although the ARIMA model has been popular among these models in its application 

to modelling infectious and non-infectious diseases, it has been limited by its inability 

to detect non-linear patterns in the data. Generally, rarely does data present as solely 

linear or non-linear and in most cases. As a result, there is a need to investigate robust 

ARIMA-based models, such as hybrid models, that can evaluate and represent both 

linear and non-linear patterns in the data. Because real-world applications mostly 

contain non-linear patterns, ANN models have been proposed resulting in significant 

improvements in prediction accuracy. However, ANN models cannot address both 

linear and non-linear patterns; hence, hybrid models have been used more recently to 

address this gap (Yolcu et al., 2013; Khashei and Bijari, 2012). 

1.2 Problem statement 

Since 2000, the yearly TB incidence rate has decreased by 1.5% on average 

worldwide (Aryee et al., 2018). However, to achieve the End TB first milestones, this 

rate needs to decrease by 4-5% on average annually. The Ministry of Health in Kenya 

has put in measures and interventions aimed at curtailing the spread of TB including 

integration of TB services in health care facilities. As a result, Kenya is among the 6 
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out of 15 high burden countries that were identified to be on target (Cha et al., 2020, 

WHO, 2015) to achieve the End TB first milestones. 

Despite significant gains and global interventions to eradicate TB, the disease is still 

responsible for significant global morbidity and mortality with children most at risk 

(Marais et al., 2004). Marais (2011), noted that accurate identification of TB cases in 

children and the lack of good surveillance data make it difficult to accurately quantify 

TB burden among children. Furthermore, TB disease symptoms such as cough, fever, 

night sweats, weight loss and other symptoms can be mild for many months when a 

person develops active TB disease and this is even complicated among children 

(WHO, 2018). 

Insufficient assumptions utilized in the modeling of health surveillance data can 

negatively impact the results, consequently having adverse effects when such results 

are used to inform decision making. More often, real world disease surveillance data 

rarely depict a purely linear association. On the other hand, nonlinear models have the 

disadvantage of lacking good theoretical underpinnings to explain its functioning 

although they are able to forecast with great accuracy when compared to established 

linear ARIMA models. To attain higher forecasting accuracy, use of hybrid models 

can lead to better predictive performance (Khashei and Bijari, 2012, Taskaya and 

Ahmad, 2005). This study proposes application of a real-world data-driven hybrid 

model to comprehend the dynamics of TB infection data among children below 

15 years. 
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1.3 Objectives of the study 

1.3.1 Main Objective 

To forecast tuberculosis infections using ARIMA and hybrid neural network models 

among children below 15 years in Homa Bay and Turkana Counties in Kenya. 

1.3.2 Specific Objectives 

The specific objectives were to compare: 

i. The performance of hybrid ARIMA-ANN model and ARIMA model in 

predicting TB notification cases  

ii. The accuracy produced by different parameter specifications of the models 

used in modelling TB notification cases  

iii. The forecasted temporal trends of TB notification cases 

1.3.3 Research Questions 

i. How does the models compare in forecasting TB notification cases? 

ii. What is the degree of accuracy provided by various parameter specifications 

of the models used in modeling TB notification cases? 

iii. How do the models compare in terms of forecasting temporal trends of TB 

notification cases? 

1.3.4 Research Hypothesis 

H0: The hybrid ARIMA model outperforms the single ARIMA and ANN models in 

terms of predictive and forecast accuracy. 

1.4 Significance of the study 

Tuberculosis identification of children aged 0-14 years had improved with the number 

of children diagnosed and initiated on TB treatment increasing from 4,483 in 2015 to 

7,714 in 2017 translating to an increase of up to 72% (National Tuberculosis, 



7 

 

 

Leprosy, and Lung Disease, 2019)). Furthermore, children identified bacteriologically 

with TB increased from 10% to 18% in the same period. However, identification of 

TB cases among children has continually been proven to be a challenge as about 66% 

of cases in SSA remain undiagnosed or un-reported (Jenkins, 2016). 

According to Brent (2012), one of the major issues impeding worldwide efforts to 

eliminate tuberculosis is the inability to reliably detect and diagnose TB patients, 

which has remained sub-optimal and this affects the availability of high-quality 

surveillance data. In addition, while the seasonality of TB case notification has been 

extensively explored in the general population, this has not been the case among 

children in Kenya. 

Brent (2012), further mentioned that the clinical presentation of tuberculosis in 

children differs from adults due to a combination of immunological, morphological, 

and epidemiological characteristics that make diagnosis challenging (Newton et al., 

2008). Furthermore, due to extended interaction with TB infected adults, the risk of 

children developing active TB is higher (Marais et al., 2004, Schaaf et al., 2003). As a 

result, reducing TB associated mortality among children requires a thorough 

understanding of the challenges posed by TB case notification to treatment and their 

outcomes (Mwangwa et al., 2017). It is also important to provide answers to whether 

the temporal trend from time series data of TB cases can be used in gaining clear 

information about future trends of TB cases among children especially in TB endemic 

counties in Kenya. 
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1.5 Limitations of the study 

The research had no control on the accuracy of the data reported in the TIBU system. 

Regardless, because TB data recorded in the TIBU system is used at the nationally to 

report TB detection and management, the researcher assumed the data had been 

submitted to stringent data quality standards prior to reporting. 

The study utilized data aggregated by month between 2012 and 2021 and the data 

obtained did not contain any missing data. However, in the event that the data could 

have contained missing values, this would have been treated as missing completely at 

random (MCAR) and data imputation techniques would have been employed to fill in 

the missing data. 

In the year 2019 through to 2021, health care seeking behavior, transmission of TB, 

diagnosis, treatment and prevention and control efforts were greatly impacted by the 

COVID-19 pandemic (Alene et al., 2020, Cilloni et al., 2020). 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Modelling TB disease burden 

Mathematical models have been used in simulation of epidemic dynamics. While 

acknowledging that existing TB control interventions have been partially successful, 

Houben et al. (2014), asserted that, in the context of limited resources, these models 

can result in better practices that would amplify better health and economic benefits. 

Garnet et al. (2011), noted that mathematical models are useful in projection of the 

potential public health and economic effect of interventions. Suyama et al. (2003), 

noted that epidemiologists have used applied mathematics to analyze data in public 

health and disease surveillance areas. However, owing to the diagnostic challenges of 

TB in children, not much is known about TB infection trends among children and 

from other potential associated factors hence the greater need for utilization of 

mathematical models to determine the temporal TB trend. In addition, since TB 

infections among children presents as a unique challenge that is compounded by 

paucity of data, it presents an area that is rarely explored. 

Wang et al. (2018), employed time-series analysis, specifically, seasonal ARIMA and 

hybrid models to characterize the monthly TB notification rate in China between 2005 

and 2017. The seasonal trend of tuberculosis incidence was investigated in these 

models.  

Cao et al. (2013), conducted a study predict TB epidemics and analyzed its 

seasonality in China using the SARIMA, hybrid seasonal ARIMA, and Generalized 

Neural Networks (GNN) models to fit the data from 2005 to 2010, and noted better 
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performance of the hybrid modes. The study's seasonal tendency projected a lower 

monthly incidence in January and February and a greater incidence from March 

through June.  

Wah et al. (2014), used ARIMA model to assess the relationship between population 

characteristics and yearly TB cases and found out that TB risk among non-residents 

was significantly linearly decreasing compared to Singapore residents, but with no 

clear seasonal trend in TB cases. 

Xiao et al. (2018), investigated the impact of climatic conditions on tuberculosis 

incidence in Southwest China from 2006 to 2015. (DLNM). After adjusting for 

autocorrelation, they discovered that variations in climatic parameters such as 

temperature, humidity, wind, and sunlight were strongly correlated with TB 

incidence. The co-dynamics of tuberculosis with climatic conditions were investigated 

in this study. 

Zeming and Yanning (2020), conducted a study to predict HIV-AIDS incidences in 

China in 2017 using monthly HIV-AIDS data using ARIMA, back propagation and a 

hybrid model. They found that the hybrid model offered better predictive power. 

Zhou et al. (2016) conducted a study to forecast the prevalence of schistosomiasis in 

Qianjiang, China using an ARIMA-NARNN (Non-linear Autoregressive Neural 

Network) model on yearly schistosomiasis data from 1956 to 2012 and found that the 

hybrid model produced high quality prediction accuracy. They recommended using 

the hybrid model to identify schistosomiasis prevalence in other schistosomiasis 

endemic areas, including other infectious illnesses. 
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Yu et al. (2014) conducted a study to forecast occurrence of hand, foot, and mouth 

disease using monthly incidence case data from 2008 to 2012 in Shenzhen, China. 

They used a hybrid seasonal ARIMA and NARNN model and found out that the best-

fitting model was the hybrid seasonal ARIMA-NARNN model with forecasts 

indicating a clear increase in hand, foot, and mouth disease occurrences in Shenzhen. 

Li et al. (2019), conducted a research to predict TB cases in China using ARIMA and 

ARIMA-generalized regression neural network (GRNN) hybrid models on monthly 

TB incidence data in Lianyungang from January 2007 to December 2016 and found 

that the hybrid model offered better performance compared to the single ARIMA 

model. 

The use of innovative machine learning algorithms in modeling illness incidence is 

widely established in Africa. In various variations, these models have been used to 

simulate and anticipate the short- and long-term patterns of non-infectious diseases 

including cancer and malaria (Anokye et al., 2018, Ebhuoma et al., 2018).In these 

studies; as much as the ARIMA model offered a way of predicting cases, it did not 

guarantee perfect forecasts especially over a longer forecast horizon, can best be 

applied on data that is stable over time with minimum outliers (Anokye et al., 2018) 

and would not be suitable if there is no clear strategy of dealing with outliers and 

suffer from lack of enough data which can result in either under-fitting or over-fitting 

of the model (Ebhuoma et al., 2018). 

ARIMA and seasonal ARIMA models have recently been used to predict and forecast 

COVID-19 cases in Sub-Saharan Africa. While recognizing that time series models 

have been widely used to estimate the prevalence or spread of infectious diseases, 
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Takele (2020), utilized the ARIMA model to predict Covid-19 prevalence Ethiopia, 

Djibouti, Sudan, and Somalia in East Africa. They emphasized that the nature of 

COVID-19 distribution may alter future predictions of COVID-19 cases, notably in 

the context of the four nations studied. Furthermore, the study may have considered 

the influence of seasonality, such as the days of the week when COVID-19 infections 

were highest or lowest. 

Furthermore, Umunna and Olanrewaju (2020), modelled HIV prevalence in Minna in 

Niger state in Nigeria using ARIMA and SARIMA models using monthly HIV data 

from 2007 to 2018 and found out that the SARIMA model was the best for 

forecasting monthly HIV prevalence. Of interest in their findings was that the average 

fitted value from January 2007 was half of the actual value reported which in essence 

would indicate under-fitting and might have been better addressed by considering a 

more robust approach for model evaluation during model development. In addition, 

outliers which might have accounted for extraneous variation might have been present 

within the data basing on the 95% prediction intervals including negative values. 

Furthermore, the optimal SARIMA model might have been impacted by the existing 

non-linearities within the data which were not effectively accounted for by the model. 

Ade et al. (2016), conducted a study to model TB incidences using data between 2000 

and 2014 in Benin using ARIMA model and found out that the TB cases exhibited 

seasonal changes. In addition, Aryee et al. (2018), carried out a study to forecast TB 

incidences at Korle-Bu Teaching Hospital's chest clinic using data between 2008 and 

2017 and applied the ARIMA model. Though they found no indication of a growing 

or decreasing trend in the incidence of tuberculosis, they did observe that the best 
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model does not necessarily yield the best results. As a result, the study might have 

used a more accurate model and technique for better accuracy. 

In Africa, Azeez et al. (2016), carried out a study to model TB incidence in South 

Africa using SARIMA and hybrid SARIMA-NNAR models and found out that the 

SARIMA-NNAR had a better goodness-of-fit compared to the SARIMA model and 

recommended that strong action is required to minimize infectious disease spread. 

Hybrid ARIMA models have been utilized to model short-term and long-term 

infectious disease incidence in other parts of the world but with little application of 

the same in Africa with majority of the applications confined to single ARIMA 

models (Anokye et al., 2018; Azeez et al., 2016; Manikandan et al., 2016, Achieng et 

al., 2020). Application of hybrid ARIMA models have been applied majorly in other 

health sectors such as agriculture and commerce with very little application in public 

health. 

Gashu et al. (2018), conducted a study on TB cases in Ethiopia by fitting a time series 

model on TB case data between 2010 and 2016 and discovered that the TB cases 

exhibited a seasonal pattern and differences between the Amhara and Oromia regions. 

The findings of this study, in terms of seasonality of TB cases were similar to those 

by Azeez et al. (2016), Cao et al. (2013), and Wah et al. (2018).  

Frah and Alkhalifa (2016), were able to fit a Box-Jenkins model in time series 

analysis of TB cases in Sudan and showed a fairly downward trend pattern. However, 

the study did not explore the seasonality of TB cases and at granular level such as age 

in order to establish presence of any trends. In Ghana, Aryee et al. (2018), estimated 

the incidence of TB cases reported at a tertiary hospital in Ghana using a Box-Jenkins 
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approach by utilizing monthly data reported between 2008 and 2017 and found no 

evidence of obvious fluctuation in the trend of TB cases. The study concluded that the 

best model does not necessarily result in the best accuracy due to the lack of clear 

evidence of trend, implying the necessity to investigate improved models.  

In Uganda, Jaganath et al. (2019), carried out a study aimed at establishing the 

seasonality of childhood TB cases in Kampala between the periods 2010 to 2015 

respectively. In their study, they explored the role of meteorological factors and 

influenza cases on TB diagnoses. Monthly mean plots were compared in their 

analysis, and Poisson regression was used to analyze the connection between TB 

diagnoses and meteorological parameters. They discovered a clear association with 

TB diagnoses, notably an overlap with pulmonary TB cases. 

While the Box-Jenkins time series models and hybrid models based on the Box-

Jenkins model have been used in exploring seasonality of TB cases with 

meteorological and population-based factors particularly in other SSA countries, not 

much has been done in Kenya. In Kenya, very little work in relation to comparison of 

effective models to assess TB case trend particularly among the most vulnerable 

population of children has been done. One of the main reasons of the increased risk of 

pediatric TB infection is due to seasonality (Tedijanto et al., 2018, Padberg et al., 

2015, Wubuli et al., 2017). Children aged 4 years or younger had about 4 times the 

seasonality of TB risk compared to older children (Willis et al., 2012) while in China, 

children aged 0-14 years exhibited the highest seasonal variation (Wubuli et al., 

2017). 
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Pediatric TB in equatorial regions, especially in the context of seasonality, have not 

been explored by studies in the past covering the entire four distinct seasons but rather 

variations between wet and dry seasons. Furthermore, very few studies have focused 

on pediatric TB cases and its seasonality while exploring the different generic models 

based on the Box-Jenkins model. As a result, it is critical to conduct research aimed at 

evaluating and identifying TB cases among children under the age of 15 years in order 

to give recommendations on targeted resource mobilization and allocation, 

particularly in tropical countries such as Kenya. 

2.2 The concept of Time Series 

A time series is a sequence of data points measured over time, and it is technically 

described as a collection of vectors Y(t) where t=0, 1, 2, ... and indicates the elapsed 

time. The vector Y(t) is often a random variable with values recorded and ordered 

chronologically. A time series is often made up of four components: trend, cyclical, 

seasonal, and irregular. As a result, the goal of time series analysis is to separate time 

series variance into trend, periodic, and stochastic components (Sarpong, 2013). 

2.2.1 Autoregressive (AR) and Moving Average (MA) processes 

An AR model is a representation of a type of random process and is used to describe 

certain time-varying processes within the time series data (Bakar and Rosbi, 2017). 

The fundamental principle behind these models is that the current value of a series Yt 

is a function of p previous values, that is, . As a result, an AR 

process of order p is expressed as follows; 

                  (1) 

Where  and  is uncorrelated with Ys for each s < t 

For simplicity, equation 1 assumes that the mean of Yt is zero. 
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On the other hand, when the mean,   is written as , to obtain; 

 

Which can be written as; 

                      (2) 

Where;  

Furthermore, equation 1 may be written as; 

  

Using the backshift operator, however,  we write;  

 

Alternatively, we may use simple notation and write; 

           (3) 

Where the autoregressive (AR) operator is denoted by ; 

       (4) 

Generally,  can be defined as the characteristic polynomial of the process and its 

roots determine whether the process is stationary or non-stationary. 

Therefore, the AR (p) can be viewed as a solution to the equation; 

                      (5) 

A MA model is one that makes use of the association between actual or observed 

values and the error term from a MA model applied to lagged values and this implies 

that the output variable is linearly related to the present and previous values of an 

error term (Bakar and Rosbi, 2017). 

As a result, { }  is a MA process of order q if; 
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       (6) 

Where; , and the constants are  

A MA(q) process, on the other hand, may be stated as follows: 

                      (7) 

Where the MA operator; 

                (8) 

is a linear combination of values in the shift operator; 

 

2.2.2 Autoregressive Moving Average (ARMA) models 

An ARMA (p, q) model is a combination of AR(p) and MA(q) models and is a type of 

stochastic process where the auto-covariance functions are determined by a finite 

number of unknown parameters. In general, an ARMA process of orders p and q may 

be expressed as (Lee, lecture 4); 

                 (9) 

The ARMA (p, q) process is written in lag operator notation as; 

                  (10) 

2.2.3 Autoregressive Integrated Moving Average models (ARIMA) models 

The ARIMA model was developed by Box and Jenkins in 1960 and like other 

forecasting methods, it requires historical data on the variable under consideration. 

They are represented in the forecast equation as ARIMA (p, d, q), where p is the 
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number of AR terms, d is the number of non-seasonal variations, and q is the number 

of lagged errors (Shrivastav and Ekata, 2012; Pfaff, 2008). 

The ARIMA model assumes that the time series is stationary with the following 

assumptions; 

i. Residuals are normally distributed and independent, having a zero mean and 

homogenous variance: this is expressed mathematically as . This 

implies that for model adequacy, the correlation in the observations has been 

eliminated. 

ii. Variance homogeneity and residual zero mean: plots of standardized residuals 

vs predicted values are used to examine variance homogeneity over time; 

nevertheless, if the variance is heterogeneous, logarithmic processing can be 

applied to achieve homogeneity. 

iii. Residuals are independent: ACFs and PACFs should demonstrate that the 

residuals are a white noise process.. Mathematically, this assumption can be 

presented as . 

2.2.4 Seasonal Autoregressive Integrated Moving Average (SARIMA) models 

The Seasonal ARIMA model is a multiplicative model composed of non-seasonal and 

seasonal components. ARIMA (p, d, q) (P, D, Q)S is the representation for a SARIMA 

model.  

A backshift operator is defined as BYt = Yt-1. 

Thus, a non-seasonal AR process can be written as; 

                     (11) 

A non-seasonal MA process can be written as; 

                 (12) 
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A seasonal AR process can be written as; 

                (13) 

A seasonal MA process can be written as; 

                (14) 

A SARIMA model may be expressed explicitly without differencing as; 

               (15) 

The left of equation 15 comprises the seasonal and non-seasonal AR process and on 

the right of the equation we have the seasonal and non-seasonal MA processes. Also, 

because monthly TB case data are used in this study, S=12. 

2.3 Artificial Neural Networks (ANNs) 

2.3.1 ANN models 

These models have been proposed as alternative and superior modeling tools for 

forecasting (Khashei and Bijari, 2010). The goal of ANNs is to develop a model for 

duplicating human brain cognition into a computer (Kihoro et al., 2006). As a result, 

ANNs are biologically driven (Larie and Cockrell, 2021), and are also data driven and 

self-adaptive (Zhang et al., 1998). Consequently, there is no need to define a 

particular model or make any assumptions about the data distribution. 

2.3.2 Architecture of the ANNs 

The most widely used ANNs in forecasting are Multi-Layer Perceptrons (MLPs), 

which use a single hidden layer feed-forward network (FNN) (Cinar, 2020). The 

model is composed of three layers: the input layer, the hidden layer, and the output 

layer, that are connected by acyclic linkages. According to Darji et al. (2015), a neural 

network can be composed of a single or multi-layered network of neurons produced 
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when one neuron interacts with another. Figure 2.1 depicts a three-layer feed-forward 

design of ANNs. 

 

Figure 2.1: A three-layer feed-forward ANN architecture (Zhang, 2003) 

According to Zhang (2007), the model output can be computed as: 

               (16) 

Where Yt-i (i=1, 2, …, p) are the p inputs and Yt is the output; p and q are the number 

of input and hidden nodes respectively,  (j=0, 1, 2, …, q) and  (i=0, 1, 2, …, p; 

j=0, 1, 2, …, q) are the connection weights and  is the random shock; bias terms are 

 and . There is no scientific rule for deciding on q. The logistic function h(.) is 

commonly used as the non-linear activation function, where: 

                   (17) 
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In reality, the model in equation 16 conducts a non-linear functional mapping from 

past time series data to future value. That is to say: 

                 (18) 

In this case, v is a vector comprising all parameters and f(.) is a function. According to 

Zhang (2003), ANNs have the capacity to represent non-linearity between input 

variables and output variables, and universal approximators that can estimate a huge 

class of functions with an exceptional degree of precision. 

Generally, for any input layer of a neural network, there is always a single layer. The 

number of neurons in the input layer is determined by the shape of the data. The 

number of neurons is equal to the number of features of the data. In this case, the 

number of neurons in the input layer is the number of optimal lags (p) from the time 

series based on the lag selection of the neural network function. However, in general, 

some neural network configurations add one additional node to account for the bias 

term. 

With regard to the output layer, every neural network has exactly one output layer. 

However, determining the number of neurons in the output layer is completely 

determined by the selected  model configuration. In the case of this study, the output 

layer is Yt. 

As a result, if the number of hidden layers is set to 1, the number of neurons/nodes in 

the hidden layer is the mean of the neurons in the input and output layers, that is, in 

this example, the mean of the number of neurons in the input layer, p, and the number 

of neurons in the output layer, 1. 
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As a result, the input layer's number of neurons is; 

                     (19) 

Where p is the number of optimal lags and can be determined from the optimal 

ARIMA model. 

In general, to prevent over-fitting, the number of neurons should be kept below; 

                  (20) 

The number of input neurons is ,  is the number of output neurons (1 in the case 

of this study),  is the number of samples in the training set (96 months of TB cases 

in the case of this study) and  is an arbitrary scaling factor between 2 and 10. In this 

study, the automated selection was be able to prevent potential overfitting. 

2.3.3 Hybrid models and training 

In addition to selecting the suitable number of hidden nodes, selecting the appropriate 

number of lagged observations p is vital since this is the most critical parameter in an 

ANN model because it plays a significant influence in shaping the series' non-linear 

autocorrelation structure (Stokes et al., 2020). 

On the contrary, because there is no formal theory to aid in the determination of the 

optimal value of p, experiments are conducted to determine the suitable or optimal p 

as well as q. This is one of the most significant gaps that limit the application of 

ANNs. 
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As indicated in equation 21, a time series can be presented as having linear and 

nonlinear components in an additive model. 

                    (21) 

Where lt and nt are the linear and non-linear components respectively estimated 

separately where the linear component is developed first followed by the nonlinear 

component (fitted using the ANN structure). The residual term, et is obtained by 

subtracting the predicted value  from the actual value  at time t as shown below; 

                    (22) 

In the event that there are linear correlations in the residuals, the linear (ARIMA) 

model is not sufficient in predicting the data. Existence of significant non-linear 

patterns in the residuals would imply the limitation of the ARIMA models and by 

modelling residuals using ANNs, the non-linear relationships are discovered. The 

MAPE, MAE and RMSE are used in evaluating the forecasting accuracy. The best 

model was used to predict short-term tuberculosis cases in 2022. 

2.4 Stationarity 

An AR process is considered to be stable or stationary if the parameters exist within a 

specified range, for instance, if there is only one AR parameter, then it must fall in the 

 range. Conversely, past effects would accumulate and successive  

would move towards infinity rendering the series non-stationary. There exists duality 

between the MA and AR process (Box and Jenkins, 1976). Regardless of the MA 

parameters, an MA(q) process is always stationary (Adhikari and Agrawal, 2013). 

In order to assess time series stationarity, the Augmented Dickey-Fuller (ADF) and 

Phillips-Perron (PP) unit root tests can be used on the non-differenced and differenced 
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time series. Furthermore, the ACF and PACF plots can be examined to assess 

stationarity (Arltová and Fedorová, 2016). The ADF test is an improved version of the 

Dickey-Fuller (DF) test (Dickey and Fuller, 1981). The null hypothesis of the ADF 

test is that there is a unit-root and the alternative hypothesis is that there is no unit-

root where the test statistic  is calculated and compared with the critical 

value of the Dickey-Fuller test. 

Furthermore, this study used the Phillips-Perron (PP) unit root test (Phillips and 

Perron, 1988). The PP test is more complicated than the ADF unit root test, although 

it has the same null hypothesis and employs the same critical values. The PP test is a 

non-parametric adjustment to the t-statistic that uses the Dickey-Fuller equation; 

                   (23) 

Since   and can be heteroscedastic, the test estimates the equation; 

                  (24) 

The PP test estimates the non-augmented DF test equation and adjusts the 

coefficient's t-ratio so that serial correlation has no effect on the test statistic's 

asymptotic distribution. The PP test is statistically written as; 

                  (25) 

Where  and  are estimates of  and   

In incidences where the time series is non-stationary, differencing would be employed 

and testing for stationarity with each differencing until stationarity is achieved. 
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2.5 ARIMA Model identification and specification 

2.5.1 Model Identification 

This study used the correlogram and partial correlogram (autocorrelation and partial 

autocorrelation plots). The mechanical technique was also used in the study to 

estimate model parameters by testing each model at different values of p, d, and q. 

Furthermore, table 2.1 displays theoretical models but does not provide the ultimate 

ideal model to be examined. As a result, numerous potential models may be 

constructed, and the penalty function statistics such as Akaike Information Criterion 

(AIC) or Bayesian Information Criterion (BIC) can be used to pick the optimal model 

(Chakrabarti and Ghosh, 2011). The AIC and BIC are measures of an estimated 

statistical model's quality of fit. The AIC and BIC measurements are: 

                  (26) 

                            (27) 

Where n is the number of observations used to fit the model, p is the number of lag 

parameters and the sum of sample square residuals are presented as . The optimal 

model is selected by the number of model parameters that minimizes the AIC or BIC. 

In this study, the aim was to select the model parameters that minimize both the AIC 

and BIC. 

In order to determine if an observable series is linearly independent, the Ljung-Box 

statistic (Ljung and Box, 1978) is utilized and is defined as follows: 

                  (28) 
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The sample autocorrelation at lag k is , the sample size is T and the number of lags 

accounted for in the test is h. When the null hypothesis is satisfied, the statistic is 

asymptotically  distributed with h degrees of freedom. 

2.5.2 Autocorrelation (ACF) and partial autocorrelation (PACF) functions 

It is critical to analyze the ACF and PACF as part of univariate analysis to establish 

the appropriate model for a particular time series since these approaches indicate how 

the observed observations in a time series are associated. Plotting the ACF and PACF 

versus sequential time delays is critical for modeling and forecasting, and these plots 

assist establish the order of AR and MA components, respectively. Their 

mathematical definitions are; 

For a timeseries , the autocovariance at lag k can be defined as: 

               (29) 

The autocorrelation coefficient (Cochrane, 1997) at lag k can be defined as: 

                    (30) 

Where is the time series mean, the autocovariance at lag zero, , is the 

time series variance while  (autocorrelation coefficient) is dimensionless and 

independent of the scale of measurement and . In essence, the 

autocovariance  is the theoretical autocovariance function (ACVF) and  is the 

theoretical autocovariance function (ACF) at lag k (Box and Jenkins, 1976). 

The PACF, on the other hand, is employed after correcting for data at intermediate 

lags to evaluate the correlation between an observation k lags ago and the present 

observation., that is, at lags <k. 

Generally, the theoretical framework for AR, MA and ARMA is stated in table 2.1. 



27 

 

 

Table 2.1: Theoretical ACF and PACF of AR(p), MA(q)and ARMA(p, q) models 

Model ACF PACF 

AR(p) Dies down (exponential decay) Cuts off after lag p after spikes 

between lags 1 to p 

MA(q) Cuts off after lag q after spikes 

at lags 1 to q 

Dies down (exponential decay) 

ARMA(p ,q) Dies down (exponential decay) Dies down (exponential decay) 

 

2.6 Predictive and Forecasting accuracy measures 

Because time series forecasting is crucial, especially in the trend and forecast of 

infectious illnesses such as tuberculosis, adequate attention should be made while 

picking a given model. As a result, multiple performance metrics (Hamzacebi, 2008; 

Zhang, 2007) have been developed to quantify forecast accuracy and compare 

different models. 

The forecast accuracy for the ARIMA and ARIMA-ANN suggested models was 

measured using the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

and Mean Absolute Percent Error (MAPE) in this study. The RMSE is the square root 

of the calculated Mean Square Error (MSE) with each property of MSE holding for 

RMSE. The MAPE represents the percentage of average absolute error and is 

independent of the scale of measurement but affect by data transformation. The MAE 

measures the average absolute deviation of predicted values from actual values. 

These 3 measures can be defined as; 

                    (31) 

                  (32) 
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                    (33) 

Where , e is the forecast error in the period t,  is the real value of the 

time period t, n is the observations in the period;  where  is the 

predicted value. 

Furthermore, according to Lewis (1982), the MAPE values for model selection as 

 for high forecast accuracy,  for good forecasting 

accuracy,  for reasonable forecasting accuracy. 

The Diebold-Mariano (DM) test is used to test the predictive accuracy of any two 

models under comparison (Diebold and Mariano, 1995) and test the hypothesis that 

the two forecasts are equally accurate, whereas the alternative hypothesis states that 

the two forecasts are not equally accurate. The DM test takes into consideration a 

sample path of loss differentials . In case of a squared loss function, then we 

have,  where  and  are the losses or forecast errors from two forecast 

models. Assuming that the loss differential is a stationary covariance series, the 

sample average, , will asymptotically converge to a normal distribution. 

                        (34) 

Diebold and Mariano proposed testing the null hypothesis, which states that forecast 

errors from two different forecasts would result in roughly the same loss, 

, when compared to a two-sided alternative. If the null hypothesis is 

true, in a new experiment, the generated p-values show the likelihood of attaining the 

realized forecast error differential or a more severe one. The DM test statistic is as 

follows; 
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                      (35) 

Where,  is a consistent estimate equal to  where; 

                (36) 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1 Study Area 

Homa Bay County is one of the former districts of Nyanza province in Kenya (Figure 

3.1). This county is situated on the shores of Lake Victoria, which provides a 

significant source of income. Homa Bay County is approximately 3,155 square 

kilometers and lies approximately 0.6221° S, 34.3310° E and has a population of 

about 1,131,950 (Kenya National Bureau of Statistics, 2019). Homa Bay town is the 

largest town as well as the headquarters of the Homa Bay county which is made up of 

8 Sub-Counties. Homa Bay county has a HIV prevalence that is 4.5 times higher than 

the national prevalence (Otieno and Okuku, 2017). Rono and Migwambo (2018), 

identified TB/HIV co-infection as a  potential risk factor for the highest numbers of 

TB-related deaths in Homa Bay county. 

Turkana County is located 3.3122° N, 35.5658° E within the former Rift Valley 

province of Kenya (Figure 3.1). It is by far the largest county in Kenya by land area 

and occupies approximately 68,680 km2. It is bordered by Uganda, South Sudan and 

Ethiopia and is largely an arid area with approximately 926,976 population (Kenya 

National Bureau of Statistics, 2019). Lodwar is the largest town and is the capital of 

Turkana County. The population in Turkana is majorly nomadic and is considered a 

hardship area prone to drought (Ojakaa et al., 2014). 



31 

 

 

 

Figure 3.1: Map of Kenya with Homa Bay and Turkana Counties marked out 

(Source: https://d-maps.com) 

3.2 Materials and methods 

3.2.1  Study design 

This was a retrospective cohort study that used secondary routinely collected data on 

children under the age of 15 in Homa Bay and Turkana Counties who had a 

confirmed TB diagnosis. 

https://d-maps.com/
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3.2.2 Sample size and population 

The population of this study included all children under the age of 15 years who were 

screened and tested for TB in health institutions in Kenya's Homa Bay and Turkana 

Counties. Within this population, the study examined all the TB data reported in the 

TIBU system between 2012 and 2021 by health facilities in Homa Bay and Turkana 

Counties for children under the age of 15 years. 

3.2.3 The Data 

This study analyzed monthly tuberculosis (TB) case notification data from the 

Treatment Information from Basic Unit (TIBU) system. The data covered the period 

from January 2012 to December 2021. The Division of Leprosy, Tuberculosis and 

Lung Disease and Kenya's Ministry of Health (MoH) implemented the transition from 

a paper-based recording and reporting system to TIBU, an electronic system, in 2012 

(MoH, 2010). 

The TIBU system is a national case-based surveillance system that stores individual 

tuberculosis cases reported to the national TB program and has had nationwide 

coverage since then (MoH, 2012). The National Commission for Science, 

Technology, and Innovation (NACOSTI) granted permission to carry out the research 

through a research permit and a letter of authorization was received from the 

Elizabeth Glaser Pediatric AIDS Foundation to use the data within the Patient and 

Program Outcomes Protocol. 

3.2.3 Methodology proposed 

The proposed methodology for this study is depicted in Figure 3.2, which is based on 

the Box-Jenkins methodology for the ARIMA and incorporates the ANN and hybrid 
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ARIMA models. The TIBU system data was transformed to time series data, which 

includes TB notification instances recorded between 2012 and 2021. The time series 

data was then divided in an 80:20 ratio, with 80% used as training data for model 

construction and 20% used for model validation. The PP and ADF tests were used to 

determine stationarity in the training data. The ACF and PACF plots were also 

examined to determine the order of the ARIMA model with the best p and q 

parameters. To test the hypothesis of residual independence, constant variance, and 

zero mean, the Ljung-Box Q statistic was utilized. 

After ensuring constant variance and zero mean residuals, several ARIMA models 

were created using the training data, and the most parsimonious model with the lowest 

AIC and BIC was chosen. The predicted TB cases from 2012 to 2019 were fitted 

using the ARIMA model and analyzed for accuracy using the RMSE, MAE, and 

MAPE accuracy metrics. The best model was also subjected to a sliding window 

cross-validation procedure to ensure that the best of the best ARIMA model is 

selected with the best accuracy parameters. In this case, 11-month training data was 

modelled using the best model and the 12-month TB cases were forecasted. This 

procedure was repeated for proceeding months until data for December 2019 had been 

forecasted. In each case, the RMSE, MAE, and MAPE parameters were obtained and 

averaged across within the cross-validation process. This ensured that the best model 

produced had the best accuracy. The cross-validation procedure was also used to 

select the best forecast horizon without compromising the accuracy of the model. The 

best model was then used to forecast data for 24 months. Following that, the best 

ARIMA model was utilized to anticipate TB notification instances for 2022. 
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In the instance of the ANN model, the NNETAR function was used to fit the training 

data to the ANN model. The NNETAR function used a MLP with a single hidden 

layer neural network to build a multilayer perceptron. In general, the NNETAR 

function fits a NNAR(p, P, k)m model, with p and P values chosen automatically 

when not supplied. This model considered seasonality in the time series. As a 

consequence, P=1 was chosen as the default value, and p was picked from the best 

ARIMA (linear) model structure that suited the seasonally adjusted data. If k is not 

supplied, it defaults to k=(p+P+1)/2, rounded to the nearest integer. The ANN model 

was pre-set with a decay parameter of 0.001 and a maximum iteration of 200. Setting 

the decay parameter to 0.001 prevented the weights from becoming too large, Setting 

the maximum iteration to 200 guaranteed that the model could test many models until 

the ideal model with the lowest RMSE was developed. Setting this value to 200 is 

neither large, 1000 or above, nor small, below 100, to cause overfitting or 

underfitting. The fitted values were assessed for accuracy by compared with the actual 

values from the training data and once the best ANN model was obtained, TB cases 

for the next 24 months were forecasted and accuracy measures obtained by comparing 

with the test data. Thereafter, the TB cases for 2022 were forecasted. 

The residuals from the best ARIMA model were retrieved and fitted using the ANN 

model using the NNETAR function in the ARIMA-ANN model. This was to ensure 

that any remaining signal, which is the non-linear data not adequately modelled by the 

ARIMA model, was accounted for. The ARIMA point prediction from the best model 

and the residual point forecast from the residual ANN model were merged to generate 

the ARIMA-ANN, hybrid, model. Over a 24-month period, the hybrid model was 

utilized to estimate TB notification instances, and the projected values were compared 
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to actual test results. Measures of accuracy were obtained. Following that, the hybrid 

model was used to forecast TB cases for 2022. 

The forecast and predictive accuracy of the three models were compared using 

RMSE, MAE, and MAPE for the former and the Diebold-Mariano test for the latter, 

and the best model was chosen and proposed. In addition, the forecasts from the 3 

models were compared and the incidence calculated. 

 

Figure 3.2: Proposed methodology 
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3.3 Ethical Considerations 

Human subject protection and human rights principles must be observed/applied in all 

research activities involving human subjects, whether experimental or descriptive. 

This also includes any relevant information or data. The following aspects of research 

ethics were considered in this study: 

a) Permission to conduct the research: Permission was sought from NACOSTI 

who issued a research permit for license number: NACOSTI/P/22/19567 

(Appendix II), the Elizabeth Glaser Pediatric AIDS Foundation on data use 

within the approved Patient and Program Outcomes Protocol (Appendix III) and 

research authorization and introduction letter from the Board of Post-Graduate 

Studies of University of Eldoret (Appendix I). 

b) Informed consent: This study used retrospective source of data which was 

accessed from an existing health system database on TB. Aggregated data 

(devoid of patient identifying information) was collected from the TIBU system, 

thus, there was no need for informed consent or assent or waiver of the same. In 

addition, within the confines of the Patient and Program Outcomes Protocol, 

through which this study utilized the TB data, waiver of consent was granted 

c) Confidentiality and Anonymity: Patient data whether patient level data or 

aggregate level data is sensitive information with potential to identify patients or 

groups of patients. The  researcher has the responsibility of ensuring that that 

patient data is handled, stored and shared in a confidential manner and with 

authorities given permission to access or handle such information. In this study, 

patient confidentiality was not compromised as patient names of other 

identifiers were not collected. The study only collected aggregate data from the 
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TIBU system. Passwords were only shared by authorized County health 

personnel to facilitate access to the TIBU system  to carry out the study and 

were kept secret.  

d) Publication in journal(s): As a requirement, the findings, recommendations 

and conclusions of the study were published within an academic journal. 

However, a disclaimer about the findings, conclusions and recommendations of 

the publication was stated. 
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CHAPTER FOUR 

RESULTS 

4.1 Overview 

This section outlines the statistical output obtained based on the time series 

methodologies used so as to achieve each of the study objectives. 

4.2 Exploratory data analysis  

This study used monthly TB notification case data aggregated from the TIBU system 

from 2012 to 2021, respectively. There were 120 data points in total. Figure 4.1 

depicts the trend of tuberculosis cases reported among children under the age of 15 in 

Homa Bay and Turkana Counties. The figure shows a slight increase in between 2018 

and 2021. (Figure 4.1). 

 

Figure 4.1: Monthly trend of TB cases between 2012 and 2021 
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4.2.1 Data transformation 

In the development of the hybrid model, the ARIMA model is first developed and this 

requires that the data is stationary. The plot in figure 4.2 shows an unclear trend in the 

series and this would require inspection to determine if the stationary or not and the 

ADF and PP tests were used in this case. In the event of non-stationarity, the series 

would then be differenced and tests applied with each cycle of differencing until 

stationarity is achieved. 

Figure 4.2 presents the decomposed time series of TB cases composed of the trend, 

seasonal and random components respectively. The decomposed series clearly shows 

an increasing trend from mid-2018 to late-2019 and a slight decrease thereafter. The 

seasonal component shows quarterly seasonality with the random component having a 

mean of approximately 0. Because reported TB cases vary seasonally, the results 

above suggest that the ARIMA model should account for seasonality. 

 

Figure 4.2: Decomposition of additive series 
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Figure 4.3 demonstrates a distinct seasonality in TB cases, with TB cases on average 

being greater in March, June, September, and December throughout the different 

years. This suggests that seasonality must be accounted for in the ARIMA model. 

 

Figure 4.3: TB case monthly cycle plot 

Figures 4.4 and 4.5 depict the ACF and PACF plots that were used to determine 

optimal p and q values. The ACF plot in figure 4.4 exhibits non-decay sequence 

showing stationarity of the series. However, there are possible significant 

autocorrelations at lag 1. This implies that the series potentially exhibits a MA(0) or 

MA (1) process. Furthermore, the p-values for the ADF and PP tests p-values 

were <0.001, providing strong evidence against failing to reject the null hypothesis 

and the conclusion is that the series is stationary, thus no difference is required, 

implying that the value of d is 0 at a 95% confidence interval, which is greater than 

0.05. 
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Figure 4.4: Monthly TB cases ACF plot 

Figure 4.5 shows and confirms a non-decaying series, hence stationarity. The PACF 

plot also shows a potential decay and a significant spike at lag 4 which shows 

seasonality, quarterly, confirming the need to account for it in the possible ARIMA 

models. The models to be experimented on would be potentially at the first lag. This 

means that the series is most likely a AR(0) or AR(1) process. 

 

Figure 4.5: Monthly TB cases PACF plot 
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4.2.2 Splitting data into training and testing data 

The goal of separating data into a training and testing set is to prevent the model from 

overfitting. The training set was used to develop the model and the test set for 

validation. The survey data ranged from January 2012 to December 2019, with 80% 

from January 2020 to December 2021. Based on the available chronological data 

points, the 80:20 strategy of partitioning the data into a training and testing set has 

been proved to yield test error rate estimates with minimal bias and variance (James et 

al., 2013). When the RMSE, MAE, and MAPE are at their ideal minimum values, the 

model learns successfully and can predict values that are significantly closer to the 

true values (Medar, Rajpurohit, & Rashmi, 2017). Figure 4.6 is a plot of the training 

set (‘train’) and the testing set (‘test’) comprising 96 and 24 records respectively. 

 

Figure 4.6: Training and testing set plot 
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4.3 Model comparison in predicting TB cases 

4.3.1 Model estimation 

To choose the best parsimonious model with the lowest estimated AIC or BIC values, 

AIC and the BIC were utilized. In order to select the best model, 14 ARIMA models 

were considered and tested, each with seasonality accounted for. The Ljung-Box Q 

statistic was used to assess model residual independence. The null hypothesis of the 

Ljung-Box Q test is that the residuals are independently distributed. Table 4.1 

displays the best comparative potential ARIMA models based on the ACF and PACF 

plot findings. 

ARIMA (0,0,1,1,0,1,12) is the best model with lowest AIC and BIC values of 858.9 

and 871.7 respectively and the estimated model parameters were p=0, d=0, and q=1 

and P=1, D=0, and Q=1. Accounting for seasonality in the model improved accuracy 

of the model. The best model's Ljung-Box Q test yielded a p-value of 0.971, 

indicating that the ARIMA (0,0,1,1,0,1,12) model residuals were not serially linked. 

Exploring the model residual diagnostics showed significant auto-correlations and 

partial auto-correlations at lag 3 respectively. Though this does not significantly 

impact on the distribution of the residuals, it shows that there is potentially some 

signal remaining in the residuals that has not been captured by the ARIMA model. 

Furthermore, the best model selected presented with the least RMSE=18.74, 

MAE=14.39 and MAPE=39.00 when compared to other models under consideration. 
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Table 4.1: Model comparison 

Model AIC BIC 

ARIMA (0,0,0,0,0,1,12) 865.8 873.5 

ARIMA (0,0,0,1,0,0,12) 863.6 871.2 

ARIMA (0,0,0,1,0,1,12) 864.5 874.7 

ARIMA (0,0,1,0,0,1,12) 863.5 873.7 

ARIMA (0,0,1,1,0,0,12) 861.1 871.3 

ARIMA (0,0,1,1,0,1,12) 858.9 871.7 

ARIMA (1,0,0,0,0,0,12) 871.2 878.9 

ARIMA (1,0,0,1,0,0,12) 862.1 872.3 

ARIMA (1,0,0,0,0,1,12) 864.7 874.9 

ARIMA (1,0,0,1,0,1,12) 859.1 871.9 

ARIMA (1,0,1,0,0,0,12) 867.5 877.8 

ARIMA (1,0,1,0,0,1,12) 861.9 874.7 

ARIMA (1,0,1,1,0,0,12) 860.6 873.5 

ARIMA (1,0,1,1,0,1,12) 960.5 875.9 

The best  (see Table 4.1) ARIMA model comprised a non-seasonal AR(1), a seasonal 

MA(1) and non-seasonal MA(1) polynomials. These three polynomials are presented 

as: 

Let the backshift operator be presented as  

A non-seasonal AR(1) polynomial can be written as; 

                  (37) 

A Seasonal MA(1) polynomial can be written as; 

                   (38) 

A Non-seasonal MA(1) polynomial can be written as; 

                   (39) 

As a result, the model equation is; 

follows:             (40) 

Where  and  

However, when   is replaced by . 

The estimated coefficients as (see Table 4.2); 
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ma1 =   

sar1 =  , and  

sma1 =   

 

Inserting these estimated model parameters in the model, we have the model equation 

as; 

            (41) 

Table 4.2: Model parameters 

 Estimate Std. Error Z-value Pr(>|z|) 

ma1 0.291 0.108 2.701 0.007* 

sar1 0.997 0.015 68.167 <0.001** 

sma1 -0.953 0.127 -7.512 <0.001** 

Intercept 50.902 5.064 10.052 <0.001** 

4.3.1.1 Residual diagnostics 

Following model fitting, the model should be verified for fit using the usual model 

diagnostic checking method, namely residual analysis. Four charts were utilized in 

model diagnostic testing to examine the underlying assumptions. Figure 4.7 depicts 

four plots: an ACF plot, a PACF plot, a white noise probability plot at various lags, 

and a quantile-quantile (Q-Q) plot of the theoretical quintiles to test for residual 

normality. The Q-Q plot showed that the residuals were normally distributed. At lag 

3, inspection of the ACF and PACF plots to assess residual randomness and find 

patterns or extreme values found high auto-correlations, suggesting possible existing 

signal in the residuals that has been not adequately modelled. 
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Figure 4.7: Residual diagnostic plots 

4.3.1.2 Performance of the ARIMA model 

Evaluation of the forecast accuracy of the ARIMA model was carried out by 

comparing the forecasted values against the actual test data. Figure 4.8 presents the 

forecast/fitted plot for 24 months with 80% and 95% prediction intervals. 

Furthermore, figure 4.9 presents the rolling regression of the actual (observed) 

training data compared with the ARIMA (0,0,1,1,0,1,12) fitted data while Table 4.3 

compares the ARIMA (0,0,1,1,0,1,12) 24 month forecast data to the actual test data. 

The ARIMA model (0,0,1,1,0,1,12). 
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Table 4.3: Comparison of ARIMA (0,0,1,1,10,1,12) forecasts and actual test data 

Month Forecast data Actual test data 

Jan-20 41 51 

Feb-20 42 77 

Mar-20 63 87 

Apr-20 39 25 

May-20 51 35 

Jun-20 71 47 

Jul-20 50 49 

Aug-20 50 33 

Sep-20 62 59 

Oct-20 43 24 

Nov-20 48 39 

Dec-20 57 54 

Jan-21 38 86 

Feb-21 42 69 

Mar-21 63 63 

Apr-21 39 95 

May-21 51 43 

Jun-21 71 65 

Jul-21 50 102 

Aug-21 50 47 

Sep-21 62 50 

Oct-21 43 128 

Nov-21 48 47 

Dec-21 57 36 

4.3.1.3 Accuracy assessment of the ARIMA model 

The assessment of the ARIMA model accuracy is presented in Table 4.4 and shows 

the comparison of the accuracy measures between the training and testing data. 

Comparison of the 24-month forecasts from the ARIMA (0,0,1,1,0,1,12) model 

against the actual test data for 2020 to 2021 shows a mean of 54 cases forecasted 

against an actual mean of 59 cases. The rolling regression plot in figure 4.9 of the 

actual training data against the ARIMA (0,0,1,1,0,1,12) fitted values shows that data 

from the fitted values represent a mean of 51 TB cases compared to a mean of 51 TB 

cases from the actual training data. This implies that while the model under fits on the 

test data, it produces better results that are comparable to the actual training data. 
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Table 4.4 demonstrates that the model performs slightly worse on testing data, 

RMSE=18.74 against RMSE=29.17 on testing data. When a fitted model fails to 

effectively account for important information within the data and would need to be 

accounted for using a more robust method or model. 

 

Figure 4.8: Plot of ARIMA (0,0,1,1,0,1,12) forecasts compared to actual test data 

 

Figure 4.9: Plot of ARIMA (0,0,1,1,0,1,12) model  fitted TB and actual TB cases 
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Table 4.4: ARIMA model accuracy 

Data RMSE MAE MAPE 

Training 18.74 14.39 39.00 

Testing 29.17 20.47 33.15 

4.3.2 Artificial Neural Network (ANN) Model Fitting 

The Neural Network Auto-Regressive (NNAR) function of R's 'nnetar' package was 

used to fit the training data using within the ANN model structure. The 'nnetar' 

package was used to provide fully automated model definition, which allows for the 

automatic and optimal selection of the lag parameter (p) and the number of nodes (k) 

within the hidden layer. NNAR (1, 1, 2)[12] was the best NNAR model, producing an 

average of 20 networks each of them being a 2-2-1 network with 9 weights. Figure 

4.10 depicts comparison of the forecasted values from the NNAR model and the 

actual training data. The RMSE was 18.56 and 28.65 on the training and testing data 

respectively (Table 4.4). Furthermore, the NNAR (1, 1, 2)[12] mean number of TB 

cases was 50 from 2012 to 2019, compared to the actual mean number of 51 from the 

training data. Further, comparison between the 24 month forecasted TB cases showed 

a mean of 57 TB cases over the period 2020 to 2021 compared to 59 TB cases from 

the actual testing data over the same period. Generally, the NNAR (1, 1, 2)[12] model 

produces predictions and forecast values that are almost similar to the actual values. 
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Figure 4.10: Plot of NNAR (1, 1, 2)[12] fitted values against training data 

 

Figure 4.11: NNAR model 24 month predicted TB cases 

Table 4.5: Accuracy comparison of the NNAR model 

Data RMSE MAE MAPE 

Training 18.56 14.58 29.89 

Testing 28.65 21.95 38.86 

4.3.3 Hybrid Model Fitting 

The ARIMA model has been shown to fail to account for linearities in the data while 

the ANN model fails to adequately model linearities existing in the data in addition to 



51 

 

 

there not being a formal way of establishing model parameters. As such, most often, 

the residuals of ARIMA model contain remaining signal and white noise even when 

such a model fits well. In such a case, there is need to account for such signal from the 

residuals by modelling them separately in order to extract signal contained to an 

extent that the resulting residuals would be entirely white noise. In any case that the 

residuals of the ARIMA model contain both signal and white noise, there is need to 

model and extract the signal using the ANN model. The residuals were modelled 

independently in order to allow selection of an appropriate/optimal residual ANN 

model which again would capture the signal and retain the noise. This is the essence 

of ARIMA model hybridization, and the expectation is that the resulting hybrid model 

will improve the accuracy of the forecasts. 

The best ARIMA model residuals were fitted using an ANN model. As indicated in 

4.3.2, the ANN model on the ARIMA (0,0,1,1,0,1,12) was defined. The neural 

network autoregressive ('nnetar'()) function was applied to the residuals in this 

investigation. The residual diagnostics are shown in Figure 4.7, and while the residual 

mean is close to zero, there are worries regarding the auto-correlations at lag 3. 

The RMSE was 19.08 and 27.61 on the training and testing data respectively (Table 

4.6). Furthermore, the mean number of TB cases from the ARIMA-ANN model was 

51 cases compared to a mean of 51 TB cases from the actual training data. In addition, 

comparison of the testing data against the forecasted TB cases from the ARIMA-ANN 

model show a mean of 52 cases from the ARIMA-ANN model against 59 cases from 

the actual testing data. Figure 4.12 and figure 4.13 present these comparisons. 
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Table 4.6: Hybrid model accuracy 

Data RMSE MAE MAPE 

Training 19.08 15.32 42.42 

Testing 27.61 19.69 32.89 

 

 

Figure 4.12: Plot of Hybrid model forecasted TB cases against actual testing data 
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Figure 4.13: Plot of Hybrid model  fitted TB cases against actual training data 

4.4 Accuracy comparison based on different parameter specifications 

Table 4.7 presents the model accuracy measures compared across the different models 

on the training and testing data. This enables the identification of the best performing 

model among the three models. As a visual evaluation of model performance, Figure 

4.14 shows the comparison of the predicted and actual values. 

Table 4.7 shows that, while the three models perform nearly identically on training 

data, the ARIMA, NNAR and ARIMA-ANN models presented RMSE values of 

18.74, 18.56, and 19.08, respectively, the ARIMA-ANN model performs better than 

the other two models on the test data with the lowers RMSE of 27.61. Moreover, the 

ARIMA-ANN model presents the lowest MAPE of 32.89 and the lowest MAE of 

19.69 on the testing data. On the other hand, while the NNAR (1,1,2)[12] performs 

better on the training dataset compared to the other models, it performs worse than the 

ARIMA-ANN model on the testing. Because the neural network model is utilized to 
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simulate the ARIMA residuals in order to extract signal, the hybrid model performs 

better on the testing dataset. 

A visual inspection of model performance on actual training data, figure 4.14 

confirms the results in table 4.7 where the hybrid plot is close to the actual training 

data with an almost similar trend compared to the other two models. On the training 

dataset, the NNAR and hybrid models outperform the ARIMA model, but on the 

testing dataset, the hybrid model beats the other models. 

Table 4.7: Model accuracy comparison 

Data Accuracy measure ARIMA NNAR Hybrid 

Training RMSE 18.74 18.56 19.08 

MAE 14.39 14.58 15.32 

MAPE 39.00 29.89 42.42 

Testing RMSE 29.17 28.65 27.61 

MAE 20.47 21.95 19.69 

MAPE 33.15 38.86 32.89 

 

 

Figure 4.14: Plot of ARIMA, ANN, and ARIMA-ANN model fitted TB against 

actual TB cases 
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The models' predictive performance was also examined using the DM test. Table 4.8 

shows that the prediction accuracies between the NNAR and ARIMA models were 

not statistically different, p=0.466. On the other hand, the findings show that the 

NNAR and ARIMA models each present with significantly different prediction 

accuracies compared to the hybrid model, p<0.001 respectively. These findings 

confirm that the hybrid ARIMA model is superior in terms of producing better 

prediction and forecast accuracies compared to the single ARIMA and NNAR models 

respectively. 

Table 4.8: Predictive accuracy comparison 

Model DM 

statistic 

Loss Function 

Power 

P-

value 

ARIMA Vs NNAR  0.732 2 0.466 

NNAR Vs Hybrid 6.260 2 <0.001 

ARIMA Vs Hybrid 8.732 2 <0.001 

4.5 Performance comparison of temporal forecast of TB trends 

ARIMA (0,0,1,1,0,1,12), NNAR (1,1,2)[12], and ARIMA-ANN models were 

developed and utilized to predict TB cases for the following 12 months. The predicted 

TB cases are shown in figures 4.15, 4.16, and 4.17, as well as table 4.9. For the year 

2022, the ARIMA (0,0,1,1,0,1,12), ANN (1,1,2)[12], and ARIMA-ANN models 

predicted 55, 59, and 52 TB cases per month in Turkana and Homa Bay Counties, 

respectively. The overall number of TB cases anticipated for Turkana and Homa Bay 

Counties is 657, 706 and 629 based on the ARIMA (0,0,1,1,0,1,12), ANN (1,1,2)[12], 

and ARIMA-ANN models, respectively. The monthly forecasts compare with actual 

12-month TB cases reported for 2021 which total 664 with an approximate mean of 

56 TB cases reported per month. Figure 4.18 shows the comparison of the 12-month 

forecasts from the 3 models. 
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Figure 4.15: ARIMA (0,0,1,1,0,1,12) 12 month forecast of TB cases 

 

Figure 4.16: The NNAR (1,1,2)[12] model 12-month TB case prediction 
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Figure 4.17: ARIMA-ANN 12 month forecast of TB cases 

Table 4.9: Comparison of TB case forecasts for the next 12 months 

Month ARIMA (0,0,1,1,0,1,12) NNAR (1,1,2)[12] ARIMA-ANN 

Jan-22 57 53 44 

Feb-22 61 53 45 

Mar-22 62 52 60 

Apr-22 56 58 43 

May-22 46 52 44 

Jun-22 54 52 71 

Jul-22 63 72 54 

Aug-22 46 52 52 

Sep-22 53 56 62 

Oct-22 63 103 49 

Nov-22 48 57 46 

Dec-22 48 46 59 

Mean 55 59 52 

Total 657 706 629 
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Figure 4.18: Point forecast comparison 
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CHAPTER FIVE 

DISCUSSION 

5.1 Introduction 

The findings of the study are outline in the section. The findings of this study are 

compared against other findings in published literature especially in the tuberculosis 

as well as infectious disease domain. Each of the findings are discussed based on the 

stated specific objectives. 

5.2 Performance comparison of predictive accuracy of models 

There are very few studies in Sub-Saharan Africa that have explored or applied ANN 

or ARIMA-ANN models in predicting and forecasting TB cases in the general 

populations or sub-populations. As such, the findings from this study would aid in 

enforcing the need to explore these models towards understanding TB infections and 

other infectious diseases in general. 

The results of this study show that, while all three models were capable of predicting 

TB cases among children under the age of 15, the hybrid model outperformed the 

single ARIMA and ANN models in terms of predictive and forecast accuracy. These 

findings are consistent with those of Azeez et al. (2016), who examined the prediction 

capacities of pure SARIMA and hybrid SARIMA models of TB incidence and 

discovered that the hybrid model performed better. More recently, Nyoni and Nyoni 

(2021) used a multilayer perceptron neural network to model and forecast tuberculosis 

occurrences in Bolivia, concluding that the model was trustworthy in projecting 

tuberculosis incidences in Bolivia with a predicted decreasing trend. 
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The results of this work on the prediction capability of hybrid ARIMA-ANN models 

are consistent with those by Zhou et al. (2016), who employed a hybrid ARIMA-

ANN model to estimate schistosomiasis prevalence in people. When compared to the 

ARIMA and ANN models, they achieved fewer modeling and testing errors from the 

ARIMA-ANN model and proposed that the hybrid model can be used to surveillance 

data for early warning systems aimed at controlling and eliminating schistosomiasis 

illness. 

Within other contexts outside infectious diseases, the hybrid model has been shown to 

produce better forecast accuracies when compared with single models. Zhou et al. 

(2018), who utilized the hybrid ARIMA-ANN model to examine the trends of new 

admission inpatients in order to provide a methodological foundation for minimizing 

congestion in health institutions. They concluded that although the hybrid model did 

not necessarily outperform the single ARIMA and ANN model performances, it was 

worth exploring using different set of data. 

5.3 Accuracy comparison produced by different parameter specifications  

Model accuracy measures were compared across the different models on the training 

and testing data to establish the model with the best predictive accuracy. The findings 

in this study revealed that although the three models provided almost the same 

predictive accuracy on the training data, the ARIMA-ANN model performed better on 

the testing data compared to the other two models. When the RMSE from the 

ARIMA-ANN was compared against the single ARIMA and NNAR models on the 

testing data, accuracy improved by 5.34% and 3.6% respectively. 
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The results of this study demonstrate that, while the three models perform nearly 

identically on training data, the hybrid model performs better on the test data. These 

findings are in line with those by Khashei and Bijari (2012), who indicated that the 

hybrid model yield better forecasts of infectious disease data. 

Infectious disease data most often presents with both linear and nonlinear 

characteristics and single models would not adequately suffice in modelling such data. 

In line with the findings of this study, the use of hybrid models would be more 

effective in modelling such complex autocorrelation structures (Chakraborty et al., 

2021). 

5.4 Model performance comparison in temporal forecast of TB trends 

According to the conclusions of this study, for the year 2022, the study forecasts a 

mean of 52 to 59 TB cases per month among children under the age of 15 in Homa 

Bay and Turkana Counties compared to the mean of 49 cases per month in 2020 and 

70 cases per month in 2021. This ideally confirms that TB cases among children 

below 15 years is under-reported. According to this analysis, there would be 624 to 

708 TB cases recorded in 2022. 

In 2019, the estimated population in Kenya was 52 million (KNBS, 2019) of whom 

about 43% (~22,360,000) (UN, 2017) were children below 15 years. Approximately 

140,000 people were TB infected with TB of whom about 85,000 (61%) were 

reported to the NTP in 2019 (WHO, 2020). Consequently, basing on the estimated TB 

infections in 2019, the estimated TB incidence was about 269 TB cases per 100,000. 

Of the TB cases diagnosed and notified to the NTP, about 10-20% are children under 

15 years (Dangisso, Datiko and Lindtjørn, 2015) and this represents about 14,000 to 
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28,000 children infected with TB in 2019. This translates to a TB case incidence of 63 

to 125 cases per 100,000 children. 

In Kenya, the forecasted TB incidence for 2020 was 259 cases per 100,000 population 

(WHO, 2020), translating to roughly 134,680 TB cases in 2020 of whom 

approximately 20% (26,936) are children (Okwara et al., 2017), equating to around 

121 TB cases per 100,000 children in 2020. The findings of this study show a 

forecasted mean of 624 to 708 TB cases in 2022, and given that up to two-thirds of 

TB cases among children are not reported annually, (WHO, 2018), this translates to 

1,782 to 2,023 forecasted TB cases in 2022 from this study. 

In 2022, the estimated population of children under the age of 15 in Homa Bay and 

Turkana Counties is 1,020,795 people (U.S. Census Bureau, 2019 release). As a 

result, this study predicts 175 to 198 TB infections per 100,000 population among 

children in the two counties. These findings show and confirm that TB cases among 

children below 15 years are grossly under-reported. 

This study's findings indicate that TB case notifications will most likely be greater in 

2022 than in 2021. These are bleak findings that are consistent with the WHO (2021) 

newsletter, especially because of the COVID-19 pandemic. According to the 

newsletter, the COVID-19 pandemic has resulted in disruption in access and provision 

of TB services. Kenya recorded a 28% drop in TB diagnosis in 2020 (Mbithi et al., 

2021), despite reporting that programmatic interventions during the COVID-19 period 

resulted in better case detection in the second six-months of the COVID-19 pandemic. 

The negative impact of the COVID-19 pandemic in terms of health care seeking 

behavior, and resource availability on TB detection and diagnosis has been 
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documented in other Sub-Saharan Countries as well (Thekkur et al., 2021) and this 

majorly attributed to the measures put in place by the country governments to curtail 

the spread of the COVID-19 disease including movement restrictions, conversion of 

health facilities to COVID-19 management units, re-allocation of resources from most 

in need public health areas, and even closure or restriction of key government 

services. In line with the findings of this study, Omondi et al. (2017), conducted a 

study in Kisii county among children under the age of 15 years and found that 

notification rates had decreased but it was unclear whether this was due to a decrease 

in TB cases or improved diagnostics. 

While the global annual TB incidence rate reduced by 1.5% on average since 2000, 

the achievement of the End TB strategy demands a reduction by an average of 5% 

annually. The findings in this study show that there is a significant dent in the 

achievement of the End TB strategy owing partly to the COVID-19 pandemic and 

under-diagnosis of children in Kenya. 

In addition, this study showed seasonal variations of reported cases among children 

with highest cases reported in the months of March, June, September and December 

on average. These findings support those of Azeez et al. (2016), Cao et al. (2013), 

Wah et al. (2014), and Gashu et al. (2018), who were able to demonstrate seasonal 

fluctuations in TB case notification but with regional variances owing to differences 

in weather patterns. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

Based on the results in chapter four and the discussion in chapter five, this study 

concludes that; 

i. The hybrid model outperforms the standalone ARIMA and ANN models in 

terms of predictive and forecasting accuracy. 

ii. More precise forecasts are produced by the hybrid model as measured by the 

RMSE on short-term 12 months forecasts. 

iii. The forecasts from the hybrid model over a short-term 12-month period shows 

no increase or drop in the TB cases recorded and averaging between 52 and 59 

TB cases notified per month in 2022. 

6.2 Recommendations 

This study recommends that; 

The hybrid ARIMA models can be used in prediction and short-term forecast of TB 

cases reported among children below 15 years since it produces better predictive and 

forecast accuracy. 

To develop more accurate models and forecasts, a substantial amount of data should 

be used to allow better learning of the neural network, particularly when ANN 

structure is used to model the data.  

The findings in this study show that existing challenges in TB case notification among 

children below 15 years due to the mentioned potential factors. However, from the 
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findings, if the forecasted trend is sustained, reaching the 50% TB infection reduction 

within the End TB strategy by 2025 will be challenging. This will be exacerbated 

more by the current COVID-19 pandemic. Eventually reaching the 2035 milestone of 

End TB strategy will face headwinds and achieving an annual 5% reduction in TB 

infections is bound to be challenging. Consequently, there is need to re-examine TB 

monitoring data in order to comprehend current gaps. In order to get the TB battle 

back on track, critical financial and non-financial resources must be reallocated to the 

TB program.  

This study also offers interesting and promising recommendations for future 

researchers. There is need to explore the proposed hybrid model using sufficiently 

large amount of data to allow better learning and offer higher order autocorrelations in 

order to produce more accurate forecasts. In addition, while this study only explored 

models on a univariate dataset of TB case notification, there is need to explore 

inclusion of exogenous variables such as HIV infection numbers in order to further 

incorporate the relationship between TB and HIV infections which more often go 

hand-in-hand. 

This study also showed and confirmed the presence of seasonal variations in pediatric 

TB cases reported. As such, interventions can be placed in to optimize TB screening 

and identification within the high and low seasons in order to increase diagnosis. 

Finally, this study utilized the NNETAR structure of ANN. With a larger dataset, 

future research can utilize other structures of ANN such as multi-layer perceptron and 

recurrent neural networks utilizing either feed-forward mechanism or back-

propagation mechanism in modelling while exploring inclusion of exogenous 

variables as well. 
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6.3 Limitations 

Since the TIBU system was used to gather and report the data for this study, the study 

had no control over the data's correctness and quality. 

Data from 2012 to 2021, divided into training and testing data, were used in this 

study. In order for deep learning algorithms like ANNs to effectively learn, a lot of 

data is typically required. In this study, 96 records out of the total 120 records were 

used as training data. Even though this accounted for 80% of the records, it could not 

have been enough. To partly overcome this, the study allowed the algorithm to 

automatically pick the lag order, set a defined decay parameter and a maximum 

iteration value. However, these actions would not have addressed all of the learning 

gaps. Furthermore, the testing data consisted of just 24 records, which was evidently 

insufficient to allow the algorithm to learn better. As such, use of more data as it 

becomes available can improve the model further as well as including data from more 

Counties that are TB endemic. 

The data for Turkana and Homa Bay County were merged for this study. However, 

when it comes to pediatric TB and diagnosis processes, these two counties are quite 

distinct. As such, the number of TB cases reported might present differently when 

each county is considered separately. 

In addition, the year 2019 to 2021 was compounded by the COVID-19 pandemic and 

this could have had an impact on TB diagnosis as well as management. However, this 

study could not quantify the COVID-19 impact on TB cases reported in the TIBU 

system among children below 15 years as this was beyond the scope of this study. A 

possible recommendation to such a scenario is to utilize models such as interrupted 
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time series to measure possible impact of COVID-19 on TB detection, diagnosis and 

management. 
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