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ABSTRACT 

Potentially toxic metals (PTMs), Arsenic (As), Cadmium (Cd), Chromium (Cr), 

Mercury (Hg), and Lead (Pb) naturally occur in soil within the environment, but 

human activities such as largescale farming have increased PTMs concentrations in 

agricultural soils resulting from the use of agrochemicals, sludge, and wastewater 

irrigation. This leads to PTM contamination of agrarian soil, making such soil a 

probable source of ecological and health risks. Hence, this study aimed to assess the 

concentrations and possibility of phytoremediation of PTMs in agricultural soils from 

selected farms in Kaprobu, Kosyin, Moiben, Naiberi, and Ziwa in Uasin Gishu 

County, Kenya. Brassica napus (canola) and Raphanus raphanistrum (wild radish) 

were used in this study. The selected PTM concentrations within the study areas, 

physicochemical parameters, and in vitro bioaccessibility in agricultural soils were 

determined using standard methods. In addition, wild Brassicaceae, Brassica napus, 

and Raphanus raphanistrum were identified and chemically treated for the possibility 

of phytoremediation of the polluted soils. Field surveys and completely randomized 

experimental designs were adopted to collect soil and seed samples. Standard lab 

procedures were applied to determine PTM concentrations in soil samples, 

physicochemical parameters of soil, in vitro bioaccessibility, seed germination rate, 

colchicine modification of seeds, and phytoremediation of PTMs in soils. Descriptive 

statistics, regression analysis, and analysis of variance (ANOVA) were used in 

analyzing the data, and the results are presented in tables and graphs. The mean 

concentrations of PTMs in agricultural soils ranged from 2.90 to 6.40 mg/Kg As, 0.06 

to 0.13 mg/Kg Cd, 14.31 to 48.19 mg/Kg Cr, and 16.46 to 35.89 mg/Kg Pb, while Hg 

was not detected (ND). Chromium and Lead had relatively high concentrations across 

the study areas as Moiben recorded the highest of the two, 48.19 mg/Kg Cr and 35.89 

mg/Kg Pb. Physicochemical parameters, pH, organic matter (%OC), Al+3 (Cmol+kg-

1), and H+ (Cmol+kg-1) in agricultural soils from Moiben were low. In vitro 

bioaccessibility measured was low, 0.77% Cr and 11.88% Pb. Raphanus 

raphanistrum (RR) and Brassica napus (BN) were selected among locally identified 

Brassicaceae species and their germination rates were tested using germination 

agents. Gibberellic acid (GA3) gave an efficiency of 80% and 90% for RR and BN, 

respectively. The seeds were further treated with different concentrations of 

colchicine to heighten growth and morphological development in possible enhanced 

phytoremediation of PTMs to agricultural soil. The PTMs assessment results showed 

that Cr and As were above the USEPA agricultural soil regulatory standards. The 

assessed ecological risk indices ranged from low to extremely high Geo-

Accumulation Factors for all PTMs, and low to moderate Ecological Risk Index. 

Health risks assessed via work-related exposures to agricultural soils posed no 

significant carcinogenic and non-carcinogenic risks. A negative correlation was 

recorded between the physicochemical parameters, soil pH, organic matter, and in 

vitro bioaccessibility of Pb and Cr. The putative mutant plants, B.napus and 

R.raphanistrum treated with a 0.50% dose of colchicine had hyperaccumulation 

potential at M1 and M2 generations for Cr and Pb decontamination. Both plants 

bioaccumulated high amounts of metals, Cr and Pb that could pose environmental and 

health risks. This study finding contributes greatly to enhanced phytoremediation 

techniques in environmental restoration that can be cascaded on different PTMs 

contaminated fields. 
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CHAPTER ONE  

INTRODUCTION 

1.1 Background  

Potentially toxic metals/metalloids (PTMs) refer to a group of elements particularly 

found in the environment according to Pourret et al. (2019), that have a high potential 

to cause toxicity to humans and other organisms in trace amounts. Some commonly 

found PTMs in the environment are Arsenic (As), Cadmium (Cd), Chromium (Cr), 

Mercury (Hg), and Lead (Pb). PTMs are naturally occurring elements in the soil in 

disproportionate amounts. However, anthropogenic activities resulting from an 

accelerated rate of population growth and demand for food production have been 

linked to increased extensive farming as reported by  Nazli et al. (2020). Increased 

agricultural activities and nutrient-leached soils have resulted in increased use of 

chemical amendments, recycled sewerage sludge, and surface runoff irrigation to 

replenish macro and micronutrients have led to an increase in the amounts of PTMs in 

agrarian soils. Further, atmospheric deposition from farm machinery exhaust 

emissions in mechanized farming has led to an increased distribution of PTMs in 

agricultural soil (Qin et al., 2021). PTMs-contaminated soils are likely sources of 

ecological and health risks in the environment (Munishi et al., 2021). Increased PTMs 

concentrations in agricultural soils subsequently lead to bioaccumulation of the metals 

into plants and crops and may result in phytotoxicity as described by Nazli et al., 

(2020). As in the case of agrochemicals (fertilizers and pesticides) use to improve 

farm soil consequently leads to phytoextraction of PTMs in plants, hence their 

ultimate bioaccumulation, bioconcentration, and bioavailability in the food chain 

(Saha et al., 2017). This may result in deleterious effects on human health, thus latest 

technology and electrochemical apt sensors are used with high sensitivity, specificity, 
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and accuracy to determine Hg, Pb, Cd, and As in food and other consumer products. 

This is a promising technology that rapidly determines PTM concentrations online 

with high confident levels according to Wang et al. (2020). 

Various states of potentially toxic metals exist within soils. The existing states of 

PTMs, the physicochemical properties, and the geochemistry of the surrounding 

environments have a substantial effect on the concentration levels in soils and the 

process by which PTMs are transferred into crops (Adamo et al., 2018). This 

biogeochemistry also exacerbates the probable ecological and health risks associated 

with PTMs. Several studies have reported that human exposure to PTMs including 

As, Cd, Cr, Hg, and Pb may cause mutagenic, carcinogenic, and genotoxic effects as 

reported by Mishra et al. (2019). Moreover, humans, both adults, and children are 

exposed to PTMs in agro-ecological zones through multiple routes of exposure, but 

most frequently through the dietary intake of contaminated foods, incidental 

absorption of polluted soil, bodily absorption of polluted soil, and inhalation of 

polluted dust. Depending on the duration and measurable doses of chemical species 

(As, Cd, Cr,  Hg, or Pb)  by an individual or organism, these metals may cause organ 

toxicity and public health issues in a population (Tchounwou et al., 2012). Albeit, 

among these multiple exposure routes aforementioned, dietary intake of vegetables, 

fruits, cereals, and other foodstuffs are the most common routes of PTMs into humans 

(Agrelli, Duri, et al., 2020; Nawab et al., 2018). PTMs generally are not 

biodegradable inorganic chemical species that remain in the environment for a longer 

time period during which time they mutate and potentially induce environmental and 

health issues (Khan and Sajad, 2013). Research reports from different parts of the 

World including Asia and Africa have shown that contamination of food as a result of 

PTMs is critical in human health exposure assessment (Liu et al., 2013). In Kenya, a 
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study on PTMs showed that there are high levels of trace elements-As, Cd, Cr, Cu, 

Pb, Hg, Ni, and Zn in agricultural soils above the World Health Organization (WHO) 

allowable limits as reported by Mungai et al. (2016). Also, a study of PTMs 

pollutions in reclaimed farmlands linked the increased levels of PTMs in soils to 

inorganic fertilizers amendments and atmospheric deposition from fossil fuel 

combustions as reported by Gu et al. (2014).  

To minimize the likely associated impacts of PTMs in agriculture soils and 

consequently in the food chain, several remediation techniques including physical soil 

replacement, chemical leaching, microbial digestion, and industrial methods are 

available (Gang et al., 2010). Unfortunately, a number of these methods are costly, 

labor-intensive, and time-consuming. Many of the challenges are largely managed by 

bioremediation, particularly the use of plant phytoremediation (Sidhu, 2016). 

Phytoremediation is an eco-friendly bioremediation technology used to decontaminate 

polluted soils using plants (Wuana et al., 2011). This environmental abatement 

technology is less expensive and sustainable. It involves the use of known plant 

species, for example, Brassicaceae that are grown onsite for hyperaccumulation 

(extract and store) of potentially toxic metals, absorb volatile compounds and stabilize 

PTMs in soils (Dowling & Doty, 2009). The phytoremediation mechanism involves 

extraction, filtration, and stabilization of potentially toxic metals from contaminated 

soils using macrophytes (Mani & Kumar, 2014; Nwoko, 2010). It can be achieved 

directly by planting the identified plants or indirectly by enhancing the identified 

plant’s PTM uptake capacity. Enhanced phytoremediation involves the use of 

physical and chemical agents to induce hyperaccumulation in selected plants through 

chromosomal or genetic modification to increase PTMs absorption by plants or the 

use of chemical reagents to rise the bioavailability of PTMs in soil (Rahman et al., 
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2016). It can also include the use of induced seed mutation that comprises of 

pretreatment of selected seeds by physical, chemical, or radial means to yield 

anticipated variants (Oladosu et al., 2016). An induced seed mutation technique is 

widely used in plant breeding to cultivate plant varieties that can adapt to different 

environmental stress conditions through gene modification or dormancy breaking 

(Ahloowalia et al., 2004). Physically induced mutation encompasses irradiation of 

seeds using gamma rays or neutrons, whereas chemical mutation involves the use of 

chemical compounds such as Ethyl methyl sulfonate (EMS) and N-Nitroso-N-Methyl 

urea (NMU) and colchicine to initiate variants in a plant species. The latter has proved 

effective and yielded comparative results with physical irradiation in mutagenicity 

(Kharkwal, 1998; Wani, 2017). Many plants and enhancement techniques have been 

tested in phytoremediation studies. Some techniques treat seeds, while others use 

roots and stems. Plants typically called hyperaccumulating agents have drawn more 

research attention due to their capacity to remove and store excess PTMs in their 

biomass (Vamerali et al., 2010). The family Brassicaceae is dominant among groups 

of plants classified as hyperaccumulators. Several species of Brassicaceae are known 

to efficiently phytoextract potentially toxic metals from soils. Hence, the 

transformation of these Brassicaceae plants through chemical enhancement will 

provide a promising future for the biological remediation of PTMs in an 

environmentally friendly manner (Agnihotri et al., 2019). The chemical reagent, 

colchicine is widely used in to improve growth characteristics, increase biomass, and 

support environmental stress resistance. In the process, colchicine interferes with 

mitosis and causes the doubling of chromosomes in plant cells. This process is 

influenced by numerous factors, mainly the concentration of colchicine dose, 

exposure duration, and explant materials (Eng et al., 2019).  
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Brassicaceae plants have been modified using colchicine and provided likely 

characteristic traits in the family. Colchicine, C22H25NO6 (Figure 1.1) is a mitotic 

poison and also use as a medication to treat gout (Nasr et al., 2020). 

 

Figure 1.1: Colchicine structural formula 

 

Several studies have reported that the colchicine enhancement technique improved 

plants' growth, and physical and biological resistance among the many advantages 

conferred by plants (Chen et al., 2022; Mwathi et al., 2020). B. napus and R. 

raphanistrum are members of this big family of Brassicaceae that are wildly 

distributed in the environment. The latter is an aggressive species as a result of its 

prolific seed production, is resistant to numerous herbicides, and reduces loss in crop 

yield (Kebaso et al., 2020). Though some studies have shown it contains beneficial 

compounds enhancement of Raphanus raphanistrum to decontaminate PTMs in 

polluted soil will provide an additional value, phytoremediation to what is called 

Harvest weed seed control (HWSC) (Sun et al., 2021).  
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1.2 Statement of the Problem   

PTMs Cr and Pb are essentially useful industrial elements found in the environment 

that support life. Notwithstanding, many PTMs are toxic that bioaccumulate in living 

organisms via physical interaction (UNEP/GPA, 2006). Common sources of PTMs in 

the environment are agricultural fields, mine tailing, pesticide application on farms, 

fertilizers production, and applications in farming. In Kenya, agriculture contributes 

about 33% to the GDP, it provides job opportunities for more than 40% percent of the 

entire population, and 70% of the rural population (USAID, 2022). Uasin Gishu 

County is among the central farming areas referred to as the breadbasket in the Rift 

Valley region of Kenya. Increased farming activities, especially large-scale farming 

uses more agrochemicals to maximize yields. Inorganic metals including Cd, Pb, Cr, 

and As are among the active constituent ingredients of synthetic fertilizers and 

pesticides used in agriculture. These metals cause ecological and health risks to the 

environment through soil and water pollution, used to grow food. Contaminated food 

consumption leads to numerous human health threats and risks to the viability of the 

ecosystem (Sarwar et al., 2017). The continuous application of agrochemicals in 

farming including recycled sludge results in PTMs buildup in agricultural soils that 

subsequently bioaccumulate into crops. Different PTMs are known to cause several 

health effects in humans such as teratogenicity, cancer, and retarded brain 

development, especially in children. As a result, remediation of PTMs contaminated 

soils is an essential pillar of sustainable ecological and environmental management 

practice. 

Hence, to curb the probable ecological and health risks that result from induced 

anthropogenic high concentrations of PTMs in the environment, the phytoremediation 

technique is essentially promising. Phytoremediation is an inexpensive, easily 
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achievable green technology that can certainly be workable almost in every setting. 

However, plants’ morphometries including low biomass and limited growth rate 

reduce extensive utilization of natural phytoremediation. Therefore, this study focuses 

on the possibility of enhanced phytoremediation, which involves chemical treatment 

of B. napus and R. raphanistrum to increase PTMs, Cr, and Pb phytoextraction from 

contaminated soils and subsequently reduce their likely associated adverse effects.  

1.3 Objectives 

1.3.1 General Objective 

This study aims to assess PTMs: As, Cd, Cr, Hg, and Pb concentrations and the 

possibility of enhanced phytoremediation using R. raphanistrum (wild radish) and B. 

napus (canola) plants to reduce the concentration of Cr and Pb in agricultural soils in 

Moiben Uasin Gishu County. 

1.3.2 Specific Objectives 

1. To assess concentrations of PTMs As, Cd, Cr, Hg, and Pb in agricultural soils 

from selected farms in Uasin Gishu County; 

2. To determine the levels of physicochemical parameters: pH, organic carbon, Al+3, 

and H+ in soil from the study areas;  

3. To determine in vitro bioaccessibility (IVB) of PTMs and evaluate their 

ecological and health risks in agricultural soils in the study area; 

4. To identify and determine the germination rate of R. raphanistrum and B. napus 

seeds from the study areas;  

5. To assess the possibility of phytoremediation of PTMs contaminated soil using 

modified B. napus and R. raphanistrum. 
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1.4 Research Questions  

1. What are the concentration levels of As, Cd, Cr, Hg, and Pb in agricultural 

soils in the selected study areas?  

2. What are the levels of physicochemical parameters of the soils in the study 

area?  

3. What are the in vitro bioaccessibility levels, ecological risk, and health risk 

levels of Cr and Pb in contaminated soil?  

4. What are the germination rates of wild B. napus and R. raphanistrum seeds? 

5. How effective are B. napus and R. raphanistrum in the phytoremediation of Cr 

and Pb in soil?  

1.5 Justification of the Study  

Uasin Gishu County is one of the areas called the national breadbasket of Kenya. This 

area relies on agriculture for socioeconomic and sustainable livelihood practices. It is 

a major supplier of foods including maize, wheat, and animal feeds to the local and 

national markets. High production and supply of agricultural produce heavily depend 

on amplified agrochemicals inputs that source and increase the flow of PTM 

concentrations along the food chain. High levels of PTMs in the food supply are the 

recipe for potential health risks to the consuming populace. Human exposure to PTMs 

causes a health burden to society. In many developing countries, most diseases and 

death are caused by soil, water, and air pollution (Murray et al., 2012).  

Environmental pollution is the primary cause of more than a quarter of global death 

(Xu et al., 2018). In this light, this study involves the use of wild Brassicaceae plants–

B. napus and R. raphanistrum to bioremediate selected potentially toxic metals in 

agricultural contaminated soils. The study adopts enhanced phytoremediation 

techniques to induce the plants’ hyperaccumulation capacity in PTMs 
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decontamination of polluted agricultural soils. This will improve agricultural soil 

health and reduce ecological and health risks in the study areas. This is in line with 

the framed environmentally sensitive development program, the United Nations 

Sustainable Development Goals (SDGs) that many countries follow to achieve 

(Farmer, 2017). The SDGs sets goals and targets, including goals 1, 6, and 11 to 15, 

aiming at the soil, water, and air pollution controls through research, innovation, and 

technology transfer for health generation (WHO, 2016). 

1.6 Scope of the study  

This research work centers on the assessment and enhanced phytoremediation of 

potentially toxic metals in agricultural soils using chemically modified Brassica 

napus and Raphanus raphanistrum to reduce concentrations of the PTMs in soils and 

lower the probable associated ecological and health risks impacts. This study also put 

direct emphasis on enhanced phytoremediation taking into account the determination 

of soil PTM concentrations, measurement of physicochemical characteristics of the 

soil and their influence on in vitro bioaccessibility, wild Brassicaceae plant 

identification, germination, and modification for application in PTMs 

phytoremediation. Furthermore, the study determined the ecological and health risks 

of PTMs, as well as probable cancer and non-cancer risks of exposed individuals 

through oral incidental absorption and bodily absorption. In addition, the research 

investigates the processes of chemical colchicine dosing on Brassicaceae plants and 

their potential efficiency to uptake PTMs Cr and PB from contaminated soil. It also 

recommends appropriately enhanced phytoremediation of PTMs polluted agricultural 

soils in the study areas.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Background Information  

The agricultural food production system feeds over seven million people globally, 

despite this fact, it is a major contributor to environmental deterioration (Clark et al., 

2017). Agriculture has been identified as one of the human activities that contribute to 

high levels PTMs in soils, according to several studies that have been conducted in 

different countries and regions across the globe. (Huang et al., 2019; Nouri et al., 

2008; Shifaw, 2018). The buildup of non-biodegradable potentially toxic metals in 

food chains causes ecological and health hazards, as well as a reduction in the 

ecosystem's capacity to support human life, plant life, and animal life. These risks are 

caused by an increase in PTMs in soils (Masindi et al., 2018). The manufacturing of 

industrialized food also adds to the contamination of the environment and the 

acceleration of climate change. The contribution of Africa's agricultural sector to 

global greenhouse gas emissions is significantly rising, with East Africa taking the top 

rank on the ladders in the continent (Tongwane et al., 2018). The effects of climate 

change are already being felt, particularly in the agricultural sector of Kenya, where a 

large number of farmers who rely on the rain-fed agriculture system are dealing with 

the unpredictable rainfall pattern and rising temperature caused by global warming 

(Kogo et al., 2021). PTMs in the environment are typically caused by pollutants from 

vehicles, agricultural inputs, and wastewater from industrial sources that have been 

absorbed into the soil aggregates (Proshad et al., 2021). Agricultural amendments, 

most commonly fertilizers are responsible for high levels of PTMs, most notably 

cadmium, in agricultural soils. 
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Micro-dosing helps to keep PTM pollution in agricultural soils to a minimum, 

especially when combined with sustainable farming practices (Aune et al., 2015). In 

addition, conservation agricultural methods such as organic farming and 

bioremediation techniques including phytoremediation, mycoremediation, and 

improved micro-bacterial remediation are promising possible solutions to the problem 

of PTM contamination in agricultural soils (Ali et al., 2015). It is possible to bind 

PTMs and render them inaccessible to plants and other organisms through a process 

known as the immobilization of potentially toxic metals using appropriate chemical 

reagents. It is vital to increase crop production while simultaneously reducing the 

quantity of PTMs that are found in agrarian soils. This can be accomplished by 

making use of one or more of the numerous inorganic and organic amendments which 

are already available on the market (Sharma et al., 2018).  

2.2 Sources of Potentially Toxic Metals in the Environment   

Environmental pollution is a worldwide issue that affects the ecosystem in full. 

Pollutants revolve from industrial wastes and are transferred to the environment 

including agricultural fields in crops, livestock, and consequently to man over the 

food chain. Discussions on the health and ecological impacts of potentially toxic 

metals and environmental pollution have been highlighted in many scientific 

symposiums and conferences in the recent past as reported by Okereafor et al. (2020). 

As reported by Fei et al. (2020), agricultural activities and industrial actions are 

among the key drivers of PTMs: Cd, As, Hg, and Pb pollution in soils in China. In 

Kenya, several studies have reported that potentially toxic elements pollution in 

water, soils, and sediments comes from diverse natural and anthropogenic sources 

including agriculture, industries, mining, and smelting as reported by Githaiga et al. 
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(2021); Mungai et al. (2019). Agricultural produce quality can be negatively impacted 

when there is an excessive amount of pollution in agricultural soils caused by 

potentially toxic metals. The continued use of metal-containing inorganic fertilizers 

and pesticides causes high amounts of pollutant compounds in agricultural soil, which 

can then be passed into the food produced therein (Kelepertzis, 2014). Also, waste 

disposal sites, municipal effluents, and industrial byproducts are often overloaded 

with high amounts PTMs that are dispersed to the environment through irrigation and 

flood (Opaluwa et al., 2012). Increased concentrations of PTMs including Cd, Cr, Pb, 

Hg, and As within an environment are commonly found in soil, air, and water samples 

including sediment. These elements are potential a threat to the human health and 

plants that are exposed to them. Children who are exposed to potentially toxic metals 

are more likely to acquire neurotoxic deficits and morphological deformities in their 

developing body parts (Rahman et al., 2019). Additionally, potentially toxic metal 

pollution has a major negative effect on the microbial ecology of the soil. Increased 

levels of harmful metal concentrations affect the number, variety, and bioactivity of 

soil microbes (Xie et al., 2016). 

The existence of PTMs in agricultural and urban soils has given rise to environmental 

concerns about the sensitive matter in many different areas (Zhang, Zhu, et al., 2018). 

Waterbody and sediments are impacted by land use activities in human settlements 

such as agriculture, road transportation, and industrial plants, these activities cause 

silting of surface runoff, which increases the concentration of PTMs in these 

environmental media. (Zeng et al., 2020). Other human activities, such as the 

requirement of extracting jewelry and valuable metals in mines close to agricultural 

land, are key contributors to the widespread distribution of PTMs in contaminated 

terrestrial and aquatic environments. These elements are not biodegradable, so they 
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build up in the soil and contaminate food. These locations present a health threat to 

human, particularly the children population's environmental health (Ali, Khan, et al., 

2013). Increasing levels of toxic metals in soil, plants, and the atmosphere come from 

industries, combustion of fossil fuels in transportation, chemical wastes, inorganic 

fertilizers, and pesticide use in agriculture (Falahi-Ardakani, 1984). 

The extraction of natural resources generates high concentrations of potentially toxic 

metals in the environment. High potential ecological risks assessment of metals in 

soils, crops, and human hair in China's Xiaoqinling gold mining region showed high 

exposure to potentially toxic metals-Hg, Cd, Pb, Cu, Cr, As, and Zn, respectively (Wu 

et al., 2010). Similarly, research on toxic elements in Africa showed a steady 

accumulation of toxic metals in vegetables, fish, water, soil, and animal feed above 

acceptable limits, especially Cd and Pb (Yabe et al., 2010). Potentially toxic metals 

pollution evaluation in the environment is made possible using several ecological and 

risk assessments including single and multiple elements indices. Different methods 

are used to evaluate different environmental matrices-water, air, sediment, and soil. 

Widely used indices include the contamination factor (Cf), Geo-accumulation 

Factor/index (Igeo), enrichment factor (CEF), risk index (RI), and contamination 

security index (CSI), which together they give provide detailed insight into potentially 

toxic metals contamination within the environment (Kowalska et al., 2018). The 

contamination factor (Cf) determines the contamination of PTMs by measuring the 

ratio of the concentration in sediment and/or soil to the background levels of sediment 

and soil. The geo-accumulation index measures the anthropogenic pollution of the 

soils and compares the contamination of individual potentially toxic metals in the 

selected study areas in different concentration ranges. It is used to check PTM 

pollution in soils and sediments (Hassaan et al., 2016). The ecological risk index is 
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also used to assess PTM contamination in sediment and/or soil. It was devised by 

Hakanson (Hakanson, 1980).  

Therefore, in-depth monitoring is required to reduce the excessive buildup of 

potentially toxic metals in the food chain through agricultural and industrial activities. 

Small-scale artisanal gold mining uses mercury to extract gold; this accounts for about 

10% of the universal anthropogenic emission and environmental pollution resulting 

from Hg (Lacerda, 1997; Veiga et al., 2006). Another focal source of potentially toxic 

metal contamination in developing countries is electronic waste. A study conducted at 

Lagos Alaba International e-waste Market showed that potentially toxic metal 

concentrations in soil and water around the site exceeded the accepted World Health 

Organization (WHO) levels (Olafisoye et al., 2013). Likewise, in Guiyu, the most 

prominent e-waste dismantling and processing center in China, environmental and 

human health assessments from dust sampled in the nearby environs showed that 

surrounding communities were adversely impacted, putting residents' health at high 

risk (Leung et al., 2008). In e-wastes from modern technology, equipment such as 

Liquid Crystal Displays (LCD) and Plasma televisions could present lesser potentially 

toxic metals toxicity to humans compared to the previous Cathode-Ray tubes (CRTs) 

televisions. Cathode-ray televisions are heavily built with high Hg content that makes 

hazardous waste during disposal (Lim et al., 2010).  In addition, in many developing 

countries landfills and open dumpsites receive unsorted wastes from construction 

work, manufacturing industries, municipalities, and households that contained PTMs 

and eventually end up in the soils at these sites. Through leaching and siltation, these 

metals spread into surrounding soils, groundwater, and nearby river that are used for 

gardening, irrigation, and other domestic activities (Gworek et al., 2016). 
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2.3 In vitro bioaccessibility  

The measurement of in vitro bioaccessibility of potentially toxic metals such as 

Arsenic, Cadmium, Chromium, and Lead in soils is a critical pollution assessment 

venture. As reported in many previous studies, in vitro bioaccessibility of PTMs 

greatly depends on the soil's physicochemical properties (Du et al., 2020; Zhu et al., 

2016). The physicochemical parameters of soils and sediment such as soil texture, 

particle size, pH, electric conductivity, cation exchange capacity, and organic matter 

are crucial to the bioaccessibility and bioavailability of potentially toxic metals in soil 

(Motsara, 2008; Yao et al., 2013). The bioavailability of toxic metals in soil is the 

amount of As, Cr, Cd, and Pb available for animals, plants, or organisms uptake that 

can physiologically enhance bioaccumulation or cause supplementary effects in plants 

from the sum of available As, Cd, Cr, and Pb present in the soil (Kim et al., 2015). 

Similarly, it measures the amount of PTMs that are available for absorption into the 

systemic organic from the bloodstream in the animal.  There are several methods of 

bioavailability analysis in soil samples including the Tessier Community Bureau of 

Reference (BCR) (Zimmerman et al., 2010). And in vitro methods, including relative 

bioaccessibility leaching procedure (RBALP), Bioaccessibility Research Group of 

Europe (BARGE), Unified BRGE Method (UBM), Solubility/Bioaccessibility 

Research Center (SBRC), Physiologically Based Extraction Test (PBET), the United 

States Environmental Protection Agency method 1340 (USEPA) and the National 

Institute for Public Health and Environment in the Netherlands (RIVM). Depending 

on the technique chosen, PTMs pollution level in soil, and extraction techniques, the 

results of these methods may vary to some extent (Mungai et al.,, 2016). In vitro 

bioaccessibility study relies heavily on the chemical speciation of potentially toxic 

metals and other trace elements. Additionally, the sequential extraction technique, 
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which was formerly known as the Community Bureau of reference (BCR) for soils 

and sediments, provides a reasonable basis, and its results are extremely comparable 

to those obtained by other procedures (Hlavay et al., 2004). The various methods of in 

vitro bioaccessibility and bioavailability of potentially toxic metals in soil and 

sediment are used to assess health and ecological risks and exposure in the 

environment. In vitro bioaccessibility particularly provides insightful information on 

the oral bioavailability of PTMs (Griggs et al., 2021). 

The bioavailability of PTMs measures the quota of metals or metalloids that are 

characteristically absorbable by the cellular membrane of an organism. At the same 

time, bioaccessibility is the fraction of a metal or metalloid that is readily available to 

the cellular membrane of an organism when exposed to PTMs (Ng et al., 2015; 

Semple et al., 2004). The bioavailability of potentially toxic metals is certainly tested 

through oral ingestion and gastrointestinal pathways (In vivo) in lower-class animals 

such as rats, rabbits, and worms. However, due to stringent ethical and legal issues 

associated with experimental animals worldwide, in vitro bioaccessibility methods 

have been developed and validated which give comparable results to in vivo 

bioavailability studies (Xia et al., 2016). The bioavailability of PTMs in the soil is 

further defined as the number of potentially toxic metals available for uptake that can 

physiologically enhance bioaccumulation or cause supplementary effects in plants 

from the sum of selected PTMS present in the soil (Kim et al.,, 2015). In vitro, the 

bioaccessibility of PTMs is a promising environmental pollution assessment tool. It 

estimates the amount in percent called bioavailable fractions of PTMs that are 

absorbed into the gastric and systemic circulation when PTMs contaminated foods are 

ingested (Griggs et al.,, 2021). The many in vitro treatments all have the same 

overarching objective, which is to evaluate the effects of PTMs and metalloids on 
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health and ecological risk in studies (Chen, Singh, et al., 2020). Oral bioavailability 

testing, even though it provides a more accurate representation of PTM toxicity in 

vivo studies, it is not commonly done in many developing countries because of the 

difficulties associated with it. These difficulties include issues of technology, ethics, 

cost, and time-intensity. Alternately, in vitro digestion methods are frequently utilized 

in research settings. These methods imitate the physiological extraction process in 

animals (oral bioavailability). (Darko et al., 2017). In this research, we selected to use 

the USEPA method 1340, which is quite comparable to the SBRC procedure and is 

one of the most common in vitro bioaccessibility procedures using single extraction 

techniques. (Gu et al., 2018; USEPA, 2012).  

2.4 Sources of potentially toxic metals in the environment 

2.4.1 Lead  

Lead (Pb) is a silvery metal. It gets into the environment from human and natural 

sources, including different land-use practices, abstraction of mineral resources, 

recycling, industrial waste, and geological activities. Lead is mainly used in batteries, 

cable wires, decorative paints, fossil fuels, solders, and metallurgy (Dignam et al., 

2019; WHO, 1995). Pb is found in the biota and top soils as a result of atmospheric 

deposition and sedimentation of leaded fuel combustion from automobiles, industrial, 

and manufacturing plants (Shigeta et al., 2020). Research on atmospheric deposition 

of Pb from vehicular emission was texted on roadside vegetable gardening in city 

areas showed high human health risks through the consumption of mushrooms 

exceeding WHO-acceptable weekly intake levels (Garcia et al., 1998; Onyari et al., 

1991). In a similar study, increased bioavailability of Pb was found in acidic and 

organic enriched soils was reported in tea from China above WHO allowable levels, 
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posing a probable health risk to the consumers (Jin et al., 2005). Pb is one of the toxic 

metals that naturally occurs in the earth's crust and causes harm to humans, especially 

children when exposed to it. Although Pb occurs in the environment, mechanized 

farming, uncontrolled industrial effluents, and atmospheric deposition from CO2 

emissions are primary anthropogenic sources that increase Pb concentration levels in 

environment: soil, waterbody, and the atmosphere (Chaney et al., 1996). In addition, 

exposure to Pb-based décor paints and fuels are weighty sources of Pb in the 

environment. Pb-based paint dust and soil Pb are common causes of increased Pb 

blood levels, lead poisoning in children, and lead environmental levels (Mielke et al., 

1998). Increased Pb levels in the environment pose health threats to humans and other 

organisms due to chronic bioaccumulation into bodily tissues and organs. There are 

concerted efforts to reduce human exposure to Pb through various remediation 

technologies to minimize future Pb in the global environment (Li et al., 2019). 

The manufacturing and processing industries are major Pb emitters in the universe. In 

the United States of America (USA), a child died reportedly from Pb poisoning upon 

swollen a low-cost jewelry toy that contained a high Pb level. The high amount of Pb 

in the toy was embedded during the manufacturing process (Weidenhamer et al., 

2007). In a similar case, Pb contamination of pipe-borne water across the USA was 

reported to have caused retarded growth in children; and hypertension, cancer, or 

kidney dysfunctions in adults (Renner, 2009). Pb battery recycling and smelting are 

among the primary anthropogenic sources of Pb environmental poisoning. Research 

conducted among kindergarten children near a lead battery and smelter recycling 

factory showed increased Pb levels in the blood of children exposed to contaminated 

air and soil (Wang et al., 1992). In a related study in Kenya, high concentrations of 

Lead (Pb) in environmental samples and blood lead levels were reported in children 
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residing in Owino Uhuru community, a settlement near a Pb smelting factory in 

Mombasa and the factory was subsequently closed (Etiang et al., 2018). A similar 

case has been reported in Nairobi near an acid battery manufacturing company. The 

study indicated that  Lead levels in the air, wastewater, and plant samples surpassed 

the WHO, Kenya National Environmental Management Authority (NEMA), and 

Kenya Bureau of Standards’ recommended standards (Otieno et al., 2022).  

The use of scalp hairs and nails is one of the several bioassay-sampling methods that 

have been developed in humans to test for potentially toxic metals. According to 

published research, the disulfide bonds in hair proteins are key locations for the 

possible deposition of harmful metals during the formation of hair as well as during 

its interaction with other foreign particles (Chittleborough, 1980; Martin et al., 2005). 

Although the results of a study that compared the lead levels in the blood of exposed 

children to the lead levels in their hair concluded that computing hair Pb 

concentration is not an effective method for screening children for lead poisoning, 

however, the study procedure is scientifically conducted in the Pb poisoning test. 

(Esteban et al., 1999). On the other hand, a different study found a more significant 

correlation between a doctor's diagnosis of attention deficit hyperactivity disorder 

(ADHD) and a higher concentration of lead in the scalp hair of youngsters. The 

researchers concluded that measuring children's chronic exposure to low levels of lead 

using scalp hair is an appropriate clinical and epidemiological method. (Bermejo-

Barrera et al., 1997; Tuthill, 1996).   
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2.4.2 Cadmium  

Cadmium is released into the environment from agrochemicals and later gets into the 

food chain through crops (Pan et al., 2010; Schroeder et al., 1963). Since the 

contamination of agricultural soils in Japan with Cd-rich effluent, there has been an 

increased interest in the study of cadmium poisoning in humans (Asami, 1984; 

McLaughlin et al., 1999). In a comparable study, Cd concentrations in various parts 

of crops watered with untreated wastewater proved to be high levels of Cd 

contamination. The concentrations were higher than the allowable amounts in edible 

plants (Bakhshayesh et al., 2014). Chronic cadmium toxicosis produced osteoporosis 

and nephrocalcinosis in foals living near a zinc smelter. The foals' swollen joints were 

the result of extensive osteochondrosis. (Gunson et al., 1982). In a human-related 

study, Cd was reported as the cause of Chronic Renal Failure in some parts of Sri 

Lanka due to the dietary intake of Cd buttressed by increasing fluoride levels in 

drinking water (Bandara et al., 2008).  

However, Cd is a naturally occurring potential toxic metal found in soils, rocks, and 

marine shales. It is carcinogenic and mostly less abundant compared to other 

potentially toxic metals in the environment. In many cases, it accumulates gradually 

into the environment, and agricultural soils from anthropogenic sources smelting, 

agrochemicals, and sewage slurry, from whence it subsequently gets into the food 

chain  (Thornton, 1992). Other sources of Cd pollution in the environment include 

waste disposal, volcano emissions, steel, and zinc production (Hutton, 1983). 

Elevating Cd levels in the environment can also affect groundwater sources for human 

consumption. Cd is quickly mobilized and can form complexes movable in aquatic 

environments (Kubier et al., 2019). 
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An experiment showed adenocarcinomas, mucoepidermoid, epidermoid carcinomas, 

and carcinomas in inbred rats after exposure to cadmium chloride aerosol. The 

induced lung cancers were dose-dependent among the experimental rats (Takenaka et 

al., 1983). Cd is a toxic metal that causes environmental and occupational hazards. It 

was declared a carcinogen in 1993 by the International Agency for Research on 

Cancer (IARC) after epidemiological studies showed a causal association with lung 

cancer in humans resulting from occupational exposure to the metal nickel-cadmium 

battery industry, including a series of evidence from experimental animals (IARC, 

1993; IPCS, 2005-2007; Waalkes, 2000; WHO, 2010). Cd has since been associated 

with breast, renal, pancreatic, and urinary bladder cancers. The carcinogenicity of Cd 

and its compounds seems multifactorial (Huff et al., 2007). The allowable monthly 

Cd intake is 25 µg/kg per body weight, 3µg/l in drinking water, and 5ng/m3 in the air 

per year (WHO, 2010).   

In recent times, Cd has been associated with prostate cancer. A study showed that 

dietary Cd exposure between 1998 and 2009 in Sweden proved that Cd exposure 

possibly has a role in prostate cancer development (Julin et al., 2012). In a similar 

study, Cd was found as a causative agent in the trans-differentiation of pancreatic 

cells and increased pancreatic DNA synthesis. It also increased oncogene initiation, 

making it a probable pancreatic carcinogen in humans (Schwartz et al., 2000). In 

addition, a study carried out in the state of Louisiana concluded that there is a 

statistically significant link between exposure to Cd and an increased risk of 

developing pancreatic cancer. This risk was found to be associated with occupational 

exposure to polyvinyl chloride (PVC) products and paints, as well as increased 

consumption of red meat and grains with high levels of Cadmium in urine. (Luckett et 

al., 2012). 
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2.4.3 Arsenic  

Arsenic (As) is a naturally occurring element found in soil, rock, and groundwater. 

Long-term exposure to arsenic may lead to cancer and other health problems. Its 

global profiled index increased above the geogenic level (10 micrograms) due to 

anthropogenic activities, including agrochemicals, wood preservatives, nonferrous 

alloys, petrochemicals, mining, etc., and coal combustion (Murcott, 2012). A global 

eco-geochemistry review showed an increasing trend in As poisoning on a large scale. 

Several areas in Europe, Australia, New Zealand, and Asia are hotspots due to 

anthropogenic activities, including mining, waste disposal, use of As-laden pesticides, 

wood preservatives, and herbicides.  In Africa, notably, less research indicated higher 

As levels in ground and surface water due to mining operations, agricultural wastes, 

and incineration of municipal wastes (Medunić et al., 2020). The non-renewable 

resource, that is, fertile farmland needs to be carefully maintained to maintain a level 

of food production that is both healthy and sustainable (Hou et al., 2020). In addition 

to its natural occurrence, increased arsenic concentration in agricultural has been 

reported in several locations globally. The major blame for this can be placed on 

farmers that utilize fertilizers that are phosphate-based (Jia et al., 2021; Zhou et al., 

2018).  

Arsenic has been reported in several studies to have carcinogenic effects. It has been 

related to several cancer types’ including lung and bladder. For instance, a recent 

study report has shown that early life exposure to As is linked to low birth weight, 

anemia, Kidney problem, pulmonary diseases in children; and also in adults breast 

and laryngeal cancers including type 2 diabetes (Khan et al., 2020). Arsenic pollution 

of groundwater, soil, food, and drinks including portable is a universal health 

problem. It is reported that more than 300 million people globally are affected by As 
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contamination (Quansah et al., 2015). Arsenic, like other PTMs, often gets into the 

food system from agricultural production in arsenic-contaminated soil and water. The 

WHO has set allowable standards of Arsenic for many food produce, for example, in 

polished rice, the allowable standard is 0.2mg/Kg. however, the European Union (EU) 

and the United States of America (USA) are to set regulatory standards for arsenic in 

rice products (Biswas et al., 2020).    

Increased agricultural field arsenic contamination is a growing concern to arsenic 

pollution in foods that needs a concerted effort to counter the present and future 

associated health and ecological risks. It accumulates over time in agricultural soil 

from As contaminated groundwater irrigation and gradually gets into the food chain 

through the transfer of organometallic compounds (Shrivastava et al., 2017). Arsenic-

contaminated soil and water pose high health hazards to humans and the ecosystem, 

thus minimizing its impacts, effective remediation techniques such as microbial, 

electro-kinetic processes, and phytoremediation are leading Arsenic removal 

techniques from soils and water with minimum drawbacks (Kumar et al., 2020; Singh 

et al., 2015). In a bioremediation study, organic matter and phosphorus used microbial 

transformation of extractable arsenic proved efficient and reduced arsenic pollution in 

soil significantly (Das et al., 2020). As is the case with other types of PTMs, 

phytoremediation of arsenic in polluted soil has been attempted using a variety of 

plant species. However, the difficulties associated with asphyxiation in plants bring 

down their potential for hyperaccumulation. As a result, improvement strategies are 

utilized to improve the phytoremediation of arsenic in plants. Like other PTMs, 

several different plants have been used in the phytoremediation of arsenic in 

contaminated soil. However, the difficulties associated with asphyxiation in plants 

bring down their potential for hyperaccumulation. As a result, improvement strategies 
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are utilized to improve the phytoremediation of arsenic in plants. (Sharma, Jha, et al., 

2021). Precipitation, electrocoagulation, film separation, bio char, adsorption, and 

nanotechnology are some of the additional approaches that can be utilized in the 

process of removing arsenic from the environment. Although a number of these 

choices come with a high cost and significant environmental repercussions that need 

to be taken into account before the implementation of the technology (Alka et al., 

2021).  

2.4.4 Chromium  

Chromium (Cr) is a naturally occurring element found in water, groundwater, and 

soil. It exists in different environmental forms from geogenic and anthropogenic 

sources (Tumolo et al., 2020). Although Cr is an essential micronutrient for many 

plants and animals; it is one of the toxic metals that pose a health hazard to the 

ecosystem. It causes cancer in the lung, liver, and kidney and injures the stomach, 

including epidermal sensitivity and irritation. Also, Cr is reported to have caused 

toxicity in other species of plants, animals, and bacteria (DesMarias et al., 2019; 

Kimbrough et al., 1999). However, Cr in low quantity is commonly used in modern 

medical practice and dental implants. It serves as resistance to corrosion; however, in 

high concentrations, Cr can be very toxic and carcinogenic (Achmad et al., 2017). Cr 

is one of the most widely distributed minerals in the earth's crust and occurs in various 

oxidation states that form compounds of halides, oxides, and sulfides (Shekhawat et 

al., 2015). Chromium levels in the environment depend not only on its use, mobility, 

and distribution but also on its chemical speciation. Cr mainly exists in three states 

that are Cr (0), Cr(III), and Cr(VI). The latter, the hexavalent form, is the most 

soluble, mobile, and toxic to humans, animals, and plants (Ertani et al., 2017). 
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Anthropogenic pollution in agricultural soil is induced by the use of synthetic 

fertilizers and other agrochemicals such as pesticides. Cr contamination in agricultural 

soil has deleterious effects on human health and plants including carcinogenicity. Cr 

causes morpho-phytotoxicity such as Chloris, root deformation, and constrains growth 

(Kayode et al., 2022). Chromium potentially affects the leaf area, the rate of 

photosynthesis, delays conduction and transpiration in the stomata, and CO2 

regulation in plants. These actions subsequently lead to the production of reactive 

oxides including hydrogen peroxide (H2O2) and superoxide radical (O2) that causes 

protein oxidation and reduced membrane stability index. It also reduces endogenous 

nitric oxide (NO) production in plants (Singh et al., 2019). Chromium, particularly 

hexavalent chromium, Cr(VI) is commonly found in aquatic and terrestrial 

ecosystems and has significantly increased as a result of human activities. The 

increased levels of Cr in the environment have affected the life in the ecosystems, 

especially soil, plants and human health. For instance, Cr inhibits chlorophyll 

biosynthesis by obstructing enzymatic activities and enhances oxidation stress that 

results into retarded plant growth, wilting of leaves, and chlorosis in the plants 

(Sharma et al., 2020). Chromium also impact plant from other anthropogenic sources 

of Cr such as industrial emission, smelting, mining and river sediments (Gan et al., 

2019). Chromium is reported to have serious impacts on the soil microbial organisms. 

Cr reduced the growth rate and the population of bacterial in soils as results of 

increasing Cr doses. It also affects the metabolic activities of soil microbes and lowers 

CO2 generation due to reduced microbial respiration (Eze et al., 2018). Although 

some microbes have shown potential Cr remediation capacity, it is lethal to other 

microbes in the environment. Chromium pollution in potentially toxic metals 
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contaminated river sediments showed that Cr increased concentration of in sediments 

led to significant changes in the microbial composition and function (Pei et al., 2018).  

In humans, bioaccumulation of Cr causes teratogenesis and mutagenicity; and 

environmental and work-related exposure to Cr(VI) can lead to toxicity in several 

bodily organs including respiratory cancer, renal diseases, reproductive disease, 

especially in the male, and stomach ulcers (Sharma, Sodhi, et al., 2021). In many 

instances, people are exposed to Cr through the soil, drinking water, and contaminated 

foods grown from Cr-polluted soils. The health risk and impacts of Cr on humans 

come as people are chronically exposed to minimum doses of Cr through various 

exposure routes (oral, dermal, and nostril). The health effects of Cr in the human 

range from dermal irritation to cancer, and DNA impairment (Poonia et al., 2021; 

Tumolo et al.,, 2020).  

A review of Cr in arable soil in China showed that anthropogenic activities 

significantly increased Cr concentrations in agricultural soils across China. Some 

areas were abandoned due to Cr pollution (Zhang et al., 2016). Because of its health 

and ecological risks, several techniques have been employed to remove Cr from 

portable water/rivers, industrial wastewater, and contaminated soils. Some recently 

used conventional methods include membrane technology, electrical coagulation, and 

ion exchange techniques (Mia et al., 2020). Nano-composite materials including Iron-

sulfide and humic acid yielded better results in Cr remediation from polluted soils. 

The nano-composite successfully reduced Cr concentration in soil samples and 

improved soil physical-chemical parameters, microbial activities, and micro 

ecological diversity (Tan et al., 2020). Plant microbial fuel cell technique has proved 

efficient in detoxifying Cr (VI) in contaminated soil. This system increased soil pH 

from acidity to neutral including the electrical conductivity making it a promising 
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remediation technique for Cr(VI) decontamination in soil (Guan et al., 2019). 

Furthermore, several environmentally friendly bioremediation approaches of Cr using 

microorganisms, plants, or combined plant-microbe techniques are lately being 

explored through various research (Guo et al., 2021). The use of plant, 

phytoremediation to remediate Cr from terrestrial and aquatic environments is widely 

practiced. Several plant species have shown the potential to reduce Cr concentration 

in wetlands, and aquatic macrophytes in hydroponic experiments in which they 

assimilate, absorb, and precipitate Cr from aquatic ecosystems (Malaviya et al., 

2020). Similarly, several terrestrial plants, over 60 species were tested in Cr 

phytoremediation studies. The experimental plants accumulated a high amount of Cr 

from soil roots and shoots; using bioconcentration and translocation factors, the plants 

showed different potentials for phytoremediation, that is, phytostabilization and 

phytoextraction with a few showing hyperaccumulation capacities (Sajad et al., 

2020). Phytoextraction is a potential eco-friendly technology that is deemed 

promising to remove toxic metals and lessen human exposure to Cr in the 

environment (Ranieri et al., 2020). Phytoremediation experiment with Malabar 

Spinach plant showed high efficacy of hyperaccumulation of Cr (VI) in polluted soil 

(Adiloğlu et al., 2021). 

2.5 Phytoremediation  

The mobilization of potentially toxic metals by humans has increased their 

accumulation in the environment, where they are passed to agricultural products. 

Food polluted with potentially toxic metals impairs human health. As a result, 

bioremediation involving plants (phytoremediation) and soil microorganisms to lower 

the concentration of potentially harmful metals and their effects on the environment 
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has gained increased attention to lessen the associated health implications (Ali et al.,, 

2013). Phytoremediation is an eco-friendly and cost-effective technique. It is used to 

extract, sequester, and mineralize pollutants. It involves four technological 

approaches: phytoextraction, Phytostabilization, Phytofiltration, and 

phytovolatilization, (Nwoko, 2010). This study involves phytoextraction, which 

enhances plants' capacity to uptake potential toxic metals from soil and transfer them 

to aboveground biomass. It aids in mitigating ecotoxicity associated with several toxic 

metals. However, getting suitable plants for phytoextraction that tolerate high 

concentrations of toxic metals in the environment is challenging, except through 

genetic breeding (Koźmińska et al., 2018).    

Literature showed that plants of the Brassicaceae genera, family, and species 

including Brassica napus, Brassica carinata, Brassica juncea, and Brassica oleracea 

have high prospective phytoremediation capacity (Roy et al., 2020). Other species 

identified include Thlaspi caerulescens, N. caerulescens, N. praecox, Noccaea, N. 

caerulescens, and N. goesingense are effective hyperaccumulators of toxic metals-

cadmium, nickel, copper, zinc, etc. (Chaney et al., 2005; Krämer, 2010; Pollard et al., 

2014). There are about 400 hyperaccumulating plants dominated by the families 

Asteraceae, Brassicaceae, Caryophyllaceae, etc. (Vara Prasad et al., 2003). 

Phytoextraction has the prospect of recycling macronutrients harvested in plants, and 

their biomass can be an easily manageable energy source (Vara Prasad et al.,, 2003). 

Many plants are capable of uptaking metals from soil. Still, hyperaccumulators are 

plants that uptake a minimum of 100 mg/g (0.01% dry weight) of Cd, As, and other 

trace metals, or 1000 mg/g (0.1% dry weight) of Cobalt (Co) Copper (Cu), Cr, Nickel 

(Ni), and Pb and 10, 000 mg/g (1% dry weight) of Manganese (Mn) and Nickel are 

rare (Reeves, 2000; Watanabe, 1997). Apart from the Brassica commonly cited, 
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studies on Helianthus annulus L, Zea mays L, and B. napus, are promising 

hyperaccumulators (Vamerali et al.,, 2010).  

Brassicaceae is an economically essential crop family that includes fodder crops, 

oilseed plants and vegetables, organic fertilizers, and biofuels. Many species of 

Brassicaceae are resistant to stressed environments, and agrochemicals use such that 

they are wildly used as model species (Warwick, 2011). There are over 3000 species 

from more than 300 genera of the mustard family; amongst them is the most used, 

Arabidopsis thaliana. This simple angiosperm has paved the way for understanding 

the growth and development of plants (Meinke et al., 1998). Numerous studies have 

been conducted to traceably establish the origin of the mustard family, with many 

indicating Eurasia as the family origin before it was spread to the Northern 

Hemisphere and other parts of the world. The ancestors of Brassicaceae are thought to 

have originated from the Northeastern Mediterranean and later spread to Asia and 

Europe, as evidenced by the biogeographic events in these areas (Arias et al., 2014). 

Brassica napus are deliberated to have formed around 5000-10,000 mya, most likely 

originating from the interspecific hybridization of the genotypes Brassica rapa and 

Brassica oleracea (Iniguez-Luy et al., 2011). It is one of the most cultivated 

medicinal crops in Eurasia and Saharan Africa; and also has attracted substantial 

commercial value from its enriched oilseed potential to produce cooking oil and 

renewable energy (Saeidnia et al., 2012).   

Raphanus raphanistrum (wild radish) is a widely known distributed weed, and it is 

understood to belong to the brassica plants, though with some disputes about any link 

(Yamagishi, 2017). It has been reported as a troublesome weed for cereals in some 

parts of Australia, growing sporadically from a multitude of seeds produced 

seasonally and interfering with production yields (Cheam et al., 1995; Piggin et al., 
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1978). It has herbicidal resistance to some agrochemicals used worldwide, including 

Acetolactate, chlorsulfuron, and metsulfuron-methyl (Costa et al., 2014; Smit et al., 

2001; Yu et al., 2012). Wild radish observed some dormancy in the soil seed bank by 

physical restrictions such as climatic conditions. The siliques provide additional 

adaptive mechanisms maximizing endurance during dormancy (Tricault et al., 2018). 

Wild radish also contains healthy and nutritious bioactive compounds comprising 

phenolic and hydroethanolic extracts with supplementary antioxidant potential that 

can be added to the human diet (Iyda et al., 2019; Turan et al., 2012). The bioactive 

compounds in Raphanus raphanistrum have long been used for their medicinal 

values. Several studies have reported different uses of wild radish in different areas 

around the world to treat different health conditions (Jbilou et al., 2006; Lim et al., 

2019).  

Some plants have shown effectively enhanced hyperaccumulation of potentially toxic 

metals phytoextraction potential from soils, sediment, and water in previous studies 

such as Brassica juncea (L.) Czern in soil ((Ebbs et al., 2008); Brassica juncea and 

Brassica napus copper uptake in hydroponic (Feigl et al., 2015); Helianthus 

annuus L. in soils (Favas et al., 2019); maize (Zea mays L), in soil (Almaroai et al., 

2012); and Pisum sativum L, in soil (Chaturvedi et al., 2021; Sumiahadi et al., 2018). 

Even though phytoremediation is greener, plant-based technology has some 

limitations. However, microflora and other rhizoid bacteria have the potential to 

enhance bioremediation, but recombinant DNA-transgenic biotechnology approaches 

have yielded promising results to address Phyto limitations (Dowling et al., 2009; 

Pilon-Smits et al., 2002). Genetic modification is vital to enhance phytoremediation. 

In eastern Spain, Nicotiana glauca R., following Agrobacterium-mediated 

transformation, increased its tolerance and double-fold accumulation to Cd and Pb 
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(Gisbert et al., 2003). Such potential hyperaccumulating plants can be further 

exploited to enhance the phytomining of essential elements for biological and 

environmental purposes (Rascio et al., 2011).    

Although not commonly used in phytoremediation, the induced mutation is the 

artificial irradiation of mutagenesis of organisms to form variants for intended 

purposes, including an increase in food production and resistance to pests and other 

environmental conditions (Micke et al., 1990; Oladosu et al.,, 2016; Sigurbjörnsson, 

1971). There are different methods of induced mutation, including physical irradiation 

and the use of chemicals. Transformation exposes specific dormant traits in plants to 

improve growth, yield, and tolerance (Mullainathan et al., 2013). The basis of 

mutagenesis is the creation of desired genotypes. However, it occurs naturally, 

induced chemical and physical mutation to enhance the targeted characteristics of 

cultivating materials (Oladosu et al.,, 2016). The former has advantages: low cost, 

high variation density, and suitably applicable to many crops  (FAO/IAEA., 2018).  

Since its wide acceptance, thousands of variants have been produced through induced 

mutagenicity primarily to breed plant varieties that can adapt to the stressed 

environment through gene modification or dormancy break (Ahloowalia et al.,, 2004). 

Mutation can be natural or induced; induced mutation can also be physical or 

chemical using gamma rays and neutron or Ethyl Methyl sulfonate (EMS) and N-

Nitroso-N-Methyl urea (NMU). The latter proved effective in a comparative induced 

mutagenic study of chickpeas (Kharkwal, 1998; Wani, 2017).  

2.5.1 Enhanced Phytoremediation  

On the other hand, phytoextraction is plants' ability to uptake and translocate toxic 

metals to aboveground parts. It helps to reduce and limit ecotoxicity in soil, 
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remediates contaminated environment, and increases potentially toxic metals 

tolerance (Koźmińska et al.,, 2018). Studies have shown that species of plant 

Brassicaceae are active hyperaccumulators (Chaney et al., 2005; Krämer, 2010; 

Pollard, Reeves, & Baker, 2014). In addition to toxic metal removal, phytoextraction 

improves phytomining and metal recycling (Vara Prasad & de Oliveira Freitas, 2003). 

The addition of chelators can further enhance phytoextraction. Chelating agents are 

chemical reagents that enhance the bioavailability of potentially toxic metal uptake in 

plants through a soluble complex formation that is quickly taken, washed out, or 

stabilized (Leštan et al., 2008). The use of a chelating agent is among several 

abatement technologies, including soil washing, excavation, toxic metals stabilization, 

and the use of plants, which have been employed to cleanse toxic metals contaminated 

soils and waters. Nonetheless, due to the high financial cost and resources associated 

with the above remediation techniques, more efforts and research are being devoted to 

alternative technologies, including bioremediation (phytoremediation), that are less 

costly and environmentally sustainable according to Ali et al., (2013). This 

technology can improve via many approaches, including genetic engineering and 

plant breeding which increases the bioavailability of potentially toxic metals in soil 

(de Mello-Farias et al., 2011). Nevertheless, the remediation of potentially toxic 

metals in contaminated soil is a challenge to all. The challenges continue to increase 

due to amplified geological transformation and anthropogenic activities that constrain 

plant growth, performance, and yield (Chibuike et al., 2014).  Phytoremediation is 

promising, but it is yet to be practiced on a large scale in places mostly faced with 

potentially toxic metals pollution either resulting from intensive agricultural, 

industrial processing, and mining activities (Dyer, 2018; Mwegoha, 2008). Many 

studies are devoted to finding a lasting solution to PTMs decontamination from the 
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environment using enhanced phytoremediation techniques that will be cascaded from 

the lab to the field to bioremediate contaminated soils, ensuring food production in 

cleanup soils  (Patra et al., 2020).  

Enhanced phytoremediation involves improving selected plants’ growth and their 

capacity to withstand metals/metalloids toxicity, as well as increasing their strength to 

absorb and store the metals in their biomass. It is geared to overcome challenges such 

as retarded growth in phytoremediation  

trials. There are several methods of enhancement including chemicals or chelators in 

addition to contaminated soils and modification of plants (Gavrilescu, 2022; Hasan et 

al., 2019). However, many studies have focused on chemical amendments such as 

biochar, organic acid, and other empirical factors to select hyperaccumulating plants, 

but the use of molecular technology to increase plant resistance, growth, and 

remediation provides a better alternative, especially amid the global climate crisis. 

This involves modification of the plant's genome using artificial nucleases to enhance 

phytoremediation (Sarma et al., 2021). This process can also be improved through 

genetic engineering, where plant genes are modified by editing the DNA through the 

addition/removal of precise genes for plant development to enhance the 

phytoremediation of the organic compounds, metals, and metalloids in polluted soils 

(Gao et al., 2021). Phytoremediation can also be enhanced through the simulated 

construction of plants’ communities. A Community of plants with different 

physiological activities induces synergy to complement the growth and is resistant to 

different environmental conditions. This approach can as well enhance the 

phytoremediation of plants in polluted soils (Sha et al., 2019).  Meanwhile, 

Brassicaceae plants have generally shown high potential for phytoremediation of 

potentially toxic metals in soils. Some plants referred to as hyperaccumulators are 
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predominantly of the Brassicaceae family. These plant's potential can be further 

enhanced through transgenic approaches that will develop suitable traits such as 

tolerance, resilient, and effective adaption in transgenic Brassicaceae compared to 

their wild ancestors which will make way for efficient phytoremediation  (Agnihotri 

et al.,, 2019). Several transcription factors have been used to improve plants' 

resistance to biotic and abiotic stresses that undermine plant growth, yield, and 

productivity. Transgenic plant development involves vector construction, transgenes 

integration, and transformation (Low et al., 2018). Transformation approaches 

involve biological, chemical, and physical bombardment procedures in plant breeding. 

Chemical priming is a promising technique to increase plants' tolerance to various 

environmental stresses (Nguyen et al., 2018). 

2.6 Knowledge Gap  

This research investigates the possibility of enhanced phytoremediation of Cr and Pb-

contaminated agricultural soils from Uasin Gishu County, Kenya using chemically 

treated wild B. napus and R. raphanistrum. From the literature, several studies have 

been done, and others are ongoing on phytoremediation of industrial polluted soil 

using different plant species. These studies target a wide range of potentially toxic 

metals within the environment spread due to human activities, but very few have 

focused on agricultural soils. Moreover, where agriculture is concerned, little has been 

done to enhance plants for phytoremediation of PTMs in contaminated soil using 

colchicine. Therefore, this work focuses on the possibility of enhancing the selected 

Brassicaceae plants to be used on a viable scale to phytoremediation polluted 

agricultural soils in one of the active extensive farming areas in Moiben, Uasin Gishu 

County, Kenya. The study results will positively aid to decontaminate Cr, Pb, and 

other PTMs with similar chemical properties from the environment.     
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CHAPTER THREE 

MATERIALS AND METHODS 

3.1 Introduction 

This chapter describes the study's location, as well as the methods and procedures that 

were utilized to carry out the research following the specified research objectives. 

These include the areas for sampling, the soil sampling methods, the preparation and 

treatment of the soil samples, the experimental design, the process for treating the 

plants, the data collection method, the laboratory analysis procedure and techniques, 

reagents used, apparatuses, analytical instruments, and the statistical analysis of the 

results. 

3.2 Materials  

3.2.1 Study location  

The research was carried out in Kosyin, Kaprobu, Moiben, Naiberi, and Ziwa in the 

county of Uasin Gishu in Kenya (Figure 3.1). The equator runs through the middle of 

this East African nation, which also features a variety of landforms, the majority of 

which are dry and semi-arid lands, and a coastal strip that runs along the Indian 

Ocean. There is not much precipitation experienced in the country (Ingham, 2020). 

Uasin Gishu is located at Longitude 4° 50´ east, 35° 37´ west; and Latitudes 0° 

03´South and 0° 55´ north. It is bordered by Trans Nzoia, Elgeyo-Marakwet, Baringo, 

Kericho, Nandi, and Kakamega counties in the North, East, South, West, South-West, 

and North-West, respectively. The total land area covers about 3,345.2 square 

kilometers on a high plateau. It is about 1500 to 2700 meters above sea level; it is 

relatively calm with an annual mean temperature below 210C. The area receives about 

1000 to 1250 millimeters of rainfall per annum (MoALF, 2017). It is located in the 

rich highlands of western Kenya, which are primarily inhabited by farmers (Lomurut, 
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2014). Uasin Gishu County experiences two seasons, predominantly wet and dry 

seasons: the months of March through October, which are considered to be the rainy 

seasons, are followed by November through February, which are considered to be the 

dry seasons (Daniel et al., 2018). Additionally, this region is a significant contributor 

to the production of dairy goods, most notably milk, in Kenya. Approximately, 70 %, 

20 %, and 10 % of the total production are devoted, respectively, to farmers whose 

primary focus is on subsistence, semi-marketable, and marketable agriculture. 

(Kembe et al., 2016). Uasin Gishu is one of the counties in Kenya that is included in 

the group of places that are generally known as the "breadbasket" of Kenya due to its 

high agricultural output and contributions to the country's overall food security. 

(MoALF, 2017). 

 

 

Figure 23.1: 1Study Area Map (Source: Author, 2022) 
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3.2.2 Geology and Geochemistry of Uasin Gishu County 

Uasin Gishu County consists of different landforms. The lands comprise different 

types of soil, such as Ferralsols, Nitisols, and Regosols (Ngunjiri et al., 2019). The 

county is separated into three physiographic regions: upper highlands, upper 

midlands, and lower highlands. These regions affect the climatic condition of the 

county and play a key role in land-use patterns and socio-economic activities of the 

regions. The areas are predominantly made of volcanic rocks with no identified 

industrially exploitable minerals. The soils generally consist of loam and clay soils of 

different colorations suitable for growing varieties of crops such as maize, wheat, and 

potatoes. There are six main rivers in the area, these include Sosiani, Kipkaren, 

Kerita, Nderugut, Daragwa, and Sambu all of which drain into Lake Victoria (GoK, 

2019). Assessment of PTMs around Uasin Gishu County agroecological zones 

showed a high variation of the metals above their natural levels. For example, Cd 

notably exceeded the WHO standard of PTMs in soil; hence these increased variations 

are attributed to intensive agricultural practices in the area (Akenga et al., 2016). 

3.2.3 Population and socioeconomics activities  

Uasin Gishu County is one of the forty-seven counties of Kenya. It is divided into six 

major administrative districts called sub-counties that are further subdivided into 

wards, locations, and sub-locations. The sub-counties are Ainabkoi, Kapseret, 

Kessess, Moiben, Soy, and Turbo. The soils of Uasin Gishu contain a good amount of 

land capital and different agroecological resources (Kitonga et al., 2018). The present 

population of the county stands at 1.2 million people according to GoK (2019). The 

county has about 2995 square kilometers of arable lands with an average of 5-hectare 

rural landholding per person. Many residents of the county practice farming 
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consisting of 2-10 acres for both crops and livestock. The primary means of 

subsistence in the county of Uasin Gishu are a diverse mix of farming, commerce, and 

employment activities (formal and casual). The agricultural industry is made up of 

both small and large-scale businesses that specialize in the cultivation of a variety of 

crops including maize, wheat, and sorghum; and the raising of livestock. The farmers 

have a major reliance on agriculture that is fed by rain, and the expenses of 

agrochemical amendments represent a significant portion of the total cost of 

production. Farmers get together to form memberships in cooperative organizations 

that are officially registered, and these societies are involved in the production and 

distribution of agricultural commodities (County, 2013). 

 

3.2.4 Laboratory reagents, apparatus, and equipment 

During the field survey, soil samples were gathered with the assistance of a hook, 

spade, shovels, a tape measure, various-sized paper, polyethylene bags, and GPS. 

Mortar and pestle, 2mm sieve, beakers, volumetric flasks, graduated cylinders, 

micropipettes, hotplates, Sartorius analytical balance (A200s), pH meter (Milwaukee), 

microwave-assisted digestion (MAD) system (MAR6), microscope, Atomic 

Absorption Spectrophotometry (SOLAAR S series’ AAS), and Inductively Coupled 

Plasma Mass spectrometry (Agilent 79000s). The laboratory reagents used include 

distilled water, colchicine, Potassium dichromate, and Lead nitric. Other reagents 

include Hydrochloric acid, Nitric acid, Perchlorate acid, Sulfuric acid, gibberellic acid 

(GA3), and potassium nitric. All lab reagents were procured and purchased from 

Kobian (Kenya) Ltd.  
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3.3 Methods  

3.3.1 Research design 

The study adopted a “Land Use/Cover Area frame statistical soil Survey-Lucas” field 

survey technique to collect soil samples from the selected farms in the study areas 

within Uasin Gishu County, Kenya. The soil samples per farm were collected, 

packaged, and transported to the biotechnology lab for further preparation and 

processing before analysis (Orgiazzi et al., 2018). A similar procedure was followed 

to collect the wild seeds of the experimental plants. In addition, a completely 

randomized design (CRD) was used in the glasshouse for the phytoremediation trials 

of the selected plants with different treatments. The pots were well labeled and filled 

with soil before randomly assigning treated seeds of B. napus and R. raphanistrum 

(Chen, Yang, et al., 2020).  

3.3.2 Field survey 

3.3.2.1 Soil Sampling  

Soil samples were randomly collected before and after the harvesting seasons from 

the selected farms in Kosyin, Kapropbu, Moiben, Naiberi, and Ziwa in Uasin Gishu 

County, Kenya. Two farms in each area were selected for the soil sampling survey. 

Ten soil samples were taken from randomly apportioned areas in each farm, which is 

two samples per area at a depth of 30 cm below the surface unpolluted with organic 

matter. This study utilized a variety of research designs, including multiple surveys 

and experimental techniques (Kirk, 2012; Kothari, 2004). At the selected site, a 20x20 

square meter (m2) quadrant was delineated and soil samples were picked from each 

corner. The samples were mixed to make a composite sample. From the composite, 

duplicate samples were subsampled by quartering as proposed by Tarafdar et al. 

(2019). The sampled farms within the sampling locations grow different crops, 



40 

 

 

comprising maize, wheat, and vegetable farms (Munjeb et al., 2018; Pennock et al., 

2007). The canopy of the topsoil was not sampled, hence it did not make parts of the 

composite soil samples (Chaoua et al., 2019; Ebong et al., 2020; Yang et al., 2018). 

Before subsampling, the sample quartering guaranteed the homogeneity of the soil 

samples to ensure that they were thoroughly mixed and truly representative of the 

selected sites (Schumacher et al., 1991; Vandenhove et al., 2009; Zhang et al., 2013). 

About 2Kg of homogenized soil sample were collected at each point per farm for the 

survey. The samples were transported to the lab and subjected to other pretreatment 

before analysis for the parameters of interest (Mirzaei et al., 2020). After the survey, 

Cr and Pb recorded relatively higher concentrations in the soil and this was found in 

Moiben. Hence, the study focused on these two PTMs and chose Moiben for sampling 

soil for possibility of enhanced phytoremediation. A similar procedure as in the 

survey was followed to sample about 250Kg of soil from Moiben for the 

phytoremediation trial of PTMs in the glasshouse. In Moiben, soil samples were also 

collected from non-agricultural land to evaluate the source of increased Cr and Pb 

concentrations in the soil.   

3.3.2.2 Identification of Brassica napus and Raphanus raphanistrum 

Following the literature survey, it was ascertained that Brassicaceae plants comprised 

significant numbers of prospective phytoremediation species for the decontamination 

of potentially toxic metals. A botanist consulted from the Department of Wildlife, 

School of Natural Resource Management at the University of Eldoret to identify 

locally available Brassicaceae species. A field survey on selected farms around 

Eldoret, including those within the study areas was conducted to identify and collect 

seeds of the available Brassicaceae species. Four different Brassicaceae species were 
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identified, these include R. raphanistrum (wild radish), B. napus (canola), B. oleracea 

(kale), and wild Georgia Southern collards (Sukuma wiki) were collected from wheat 

and maize farms where they have grown as postharvest weeds. The plants were taken 

to the herbarium and sorted; with consideration mainly on the basics of consumption 

and biomass level of the plant organs including roots, stems, and leaves. These criteria 

were used to select the suitability of the plant for phytoremediation purposes. R. 

raphanistrum (wild radish) and B. napus (canola) were selected, as they are less 

consumable by the local communities and contained sizeable biomass. 

Thousands of matured seeds of each plant species were randomly garnered while still 

green and fully raped within the siliques. They were taken to the biotechnology 

laboratory, stratified, labeled, and spread on trays for sun drying in the glasshouse at a 

temperature ranging from 250C to 450C. The seeds were constantly weighed at regular 

intervals until consistent weights were recorded. The seeds were then transferred to 

the lab and kept at room temperature. A portion of each seed was randomly taken to 

measure the morphometries through a microscope. The parameters measured included 

the longitudinal length (length), transverse length (width), perimeter, and area in 

millimeters. This was followed by a germination test for each species to break 

temporary dormancy in these wild plants.   

3.4. Lab experiment design 

All soil samples were transported to the lab from the field in sealed polyethylene bags 

and air-dried in a glasshouse until constant weights were observed. The samples were 

crushed, filtered, sieved using a 2mm mesh wire, and transferred into polyethylene 

vessels for physicochemical parameters and PTM analysis (Vandenhove et al.,, 2009). 

The total PTMs: As, Cd, Cr, Hg, and Pb concentrations in soil samples were 
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determined. About 0.5g of each sieved soil sample were digested by gradually adding 

9mL, 1mL, and 4mL of concentrated analytical grades HNO3, HCl, and HClO4, (if 

suspicious of Hg presence) respectively to the soil sample and transferred into ultra-

clean and dry inert polymeric reaction vessels under the fume hood according to 

Kamunda et al. (2016) method. The mixture was left under the fume hood for 5-10 

minutes to allow a complete reaction of the acid solution before sealing the vessels. 

The sealed vessels were placed on the rotor into a microwave-assisted digester 

(MAD). Upon complete digestion, the digests were cooled and filtered. The filtrates 

were transferred into 250mL volumetric flasks and filled to the mark using deionized 

water. The samples were ready and injected into the Inductively Coupled Plasma 

Mass Spectrometry (ICP-MS) (Agilent 7900) to analyze for As, Cd, Cr, Hg, and Pb 

according to the method proposed by Helaluddin (2016). Quality control and 

assurance (QC/QA) of the validated analytical procedures and methods were routinely 

practiced to ensure the repeatability and reproducibility of the results (Magnusson et 

al., 2014).  Approved laid-down steps, and standard operating procedures (SOP) were 

practiced to minimize errors in analytical results. The study adopted Bureau 

Internationale des Poids et Mesures (BIPM) uncertainty criteria to calibrate the 

instrument ICP-MS (Andersen et al., 2013; Andersen, 2018); and method validation 

of the instrument (ICP-MS) was carried out on quantitative tests for the impurity of 

the selected metals considering selectivity, specificity, the limit of quantification, 

linearity, accuracy, and precision (Magnusson et al.,, 2014). After every tenth sample 

run, certified reference material and a blank were run to safeguard the validated 

calibration and ensure contaminant-free samples (Kamunda et al.,, 2016). These 

procedures provided quality data that were reproducible to ensure that the findings 

reported are truly representative of the levels of PTMs in soils and plant biomass and 
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can be reproduced  (Gholizadeh et al., 2015). The validation method of the ICP-MS 

for trace metals analysis in the potting soil and plant biomass was conducted, keeping 

in mind acceptance levels of environmental pollutants (van Zonen et al., 1998; Voica 

et al., 2012). 

The instrument was calibrated using prepared standard solutions and certified 

reference materials (CRM). Stock solutions of multiple elements comprising 10 µg/L 

(10ppm or 10mg/L) were prepared. From the stocks, 0.00ppb, 10ppb, 20ppb, 30ppb to 

100ppb were prepared each in a 100ml flask for calibration before running sample 

analysis. The standard solutions were analyzed with CRM for the elements and values 

plotted in the control chart for devising the standard operating procedures (SOP). 

During analysis, CRM was included and run before every batch of samples. The 

results were presented in micrograms per kilogram (µg/Kg) or part per billion (ppb). 

To determine the actual concentrations of the PTMs in the soil in mg/Kg, equation 

one (Eqn. 1) was used as proposed by Kingston et al. (1998): 

𝑆𝑎𝑚𝑝𝑙𝑒 𝑚𝑔𝐾𝑔−1 =
(𝑟𝑒𝑎𝑑𝑖𝑛𝑔𝑠 µ𝑔𝐾𝑔−1 𝑥 𝑑𝑓)

𝑤𝑡.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑚𝑔)
𝑥

1𝑚𝑔𝐾𝑔−1

1000µ𝑔
 ……………………Equation1 

From Eqn. 1, df is the dilution factor and readings are the results from the ICP-MS.  

 3.4.1 PTMs assessment in soils   

3.4.1.1 Ecological risk characterization  

To evaluate the likely ecological risks related to potentially toxic metal levels in the 

soil samples from the study areas, Hakanson’s ecological risk index was adopted 

(Hakanson, 1980). The pollution index, Eqn. (1) was originally used to evaluate 

potentially toxic metals physiognomies and environmental patterns in sediments. This 

quantitative method assesses possible contamination effects of toxic metals in the 
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ecosystem based on preindustrial background levels of PTMs in soil. It catalogs and 

isolates single and multiple contaminants' effects on a given environment different 

from probable hazards (Wang et al., 2013). To date, various indexes are used to 

characterize ecological risk because of anthropogenic-induced environmental 

degradation. The following equations, Eqn. (2) to Eqn. (4) were used to estimate 

ecological risk in the selected areas emanating from agricultural activities; Geo-

accumulation Factor and Ecological Risk index were adopted to compute the risk 

levels (Ali, Malik, et al., 2013; Odukoya, 2015).    

𝑰𝒈𝒆𝒐=𝒍𝒐𝒈𝟐 
(
𝑪𝒏

𝟏. 𝟓𝒙𝑩𝒏  
⁄ )……………………………………………Equation 2 

E𝑹𝑰 = ∑ 𝑬(𝒊) = ∑ 𝑻𝒊  𝒙 𝑪𝒇  ……………………………………………….……Equation 3 

𝐄𝐫𝐢 = ∑ 𝐄(𝐢) = ∑ 𝐓𝐢 𝐱
𝐂𝐢

𝐂𝐨𝐢
 , where 

𝐂𝐢

𝐂𝐨𝐢
 is Cf, hence 𝐄𝐑𝐈 = ∑ 𝐓𝐢 𝐱 𝐂𝐟 Equation 4 

From Equations  2, 3, and 4, 𝐶𝑓 =Contaminator Factor of the individual element; Igeo 

is the Geo-accumulation factor; ERI is the Ecological Risk Index, Cn is the metal 

concentration in soil at the sampling sites; Bn is metal concentration in the 

background (preindustrial) soil; and Ti is the toxic response factor in soil (Hakanson, 

1980; Turekian et al., 1961; Weissmannová et al., 2017).  

3.4.1.2 Health risk characterization    

Human health risks, that is, carcinogenic and non-carcinogenic were evaluated using 

the USEPA algorithm of risk assessment (USEPA, 2011). The main indirect exposure 

routes to a pollutant (PTMs) in agricultural soils are incidental ingestion, inhalation, 

dermal, and food. For each potentially toxic metal, chronic average daily intake (ADI) 

is often calculated. In this study, incidental ingestion, ADIing, Eqn. (5) and dermal 

contact, ADIdermal, Eqn. (6) exposure levels of the PTMs (As, Cd, Cr, & Pb), 
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carcinogenicity risk, Eqn. (8) and non-carcinogenicity risk, Eqn. (10) were calculated 

(Johnbull et al., 2019; USEPA, 2011; Zhang et al., 2020). The respective exposure 

factors are enlisted in Appendix II as adapted from the USEPA screening and risk 

assessment guides (Agency, 2011; USEPA, 2011).   

 

𝑨𝑫𝑰𝒊𝒏𝒈 =
𝑪𝒔𝒐𝒊𝒍 𝒙 𝑰𝒏𝑹 𝒙 𝑬𝑭 𝒙 𝑬𝑫

𝑩𝒘 𝒙 𝑨𝑻
 𝒙 𝟏𝟎−𝟔 ………………………………….. Equation 5 

      

𝐀𝐃𝐈𝐝𝐞𝐫𝐦𝐚𝐥
𝑪𝒔𝒐𝒊𝒍𝒙𝑺𝑨𝒙𝑭𝑬𝒙𝑨𝑭𝒔𝒐𝒊𝒍𝒙𝑨𝑩𝑺𝒙𝑬𝑭𝒙𝑬𝑫

𝑩𝑾 𝒙 𝑨𝑻 
 𝒙 𝟏𝟎−𝟔 ………………………… Equation 6 

    

From equation 7 and equation 8, Coil is the concentration of the contaminant (PTMs) 

in the soil and plant (mg/kg) and is the PTMs ingestion rate from soil (mg/day). 

ADIing and ADIdermal, are the chronic average daily intake for incidental soil 

ingestion, and dermal contact measured in mg/day. EF is the exposure frequency 

(day/year), ED is the exposure duration (year), and BW is the average body weight 

(kg). AT is the average time (day), SA is the skin surface area (cm2), AFsoil is the soil 

adherence factor (mg/cm2), ABS is the dermal absorption factor (unitless), FE is the 

dermal exposure ratio (unitless), and CF (10-6) is the conversion factor.  

The carcinogenic risk was computed based on an incremental chance of cancer 

occurrence over the lifespan of an exposed individual to potentially toxic metals. The 

likelihood for such an individual to acquire generic cancer was estimated as in Eqn. 

(8). The integrated cancer effect occurs from exposure to more than one carcinogen 

computed according to Eqn. (9). An acceptable target carcinogenic risk (CTR) value 

lies between 1.0E-04 and 1.0E-06; hence, CTR above 1.0E-04 require further 
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chemical analysis, whereas CTR value below this requires no further action (Johnbull 

et al.,, 2019). 

The non-carcinogenic risk potential for each PTM was computed using the Hazard 

Quotient as in Eqn. (9). The HQ is the estimate of the adverse effects of each PTM on 

human organs. Therefore, the hazard index (HI) is estimated in Eqn. (10) is the 

cumulative sum of the HQ through the exposure pathways (incidental ingestion and 

dermal contact). In general, HI or HQ ≤ 1 is considered within an acceptable limit, 

that is, no significant risk of non-carcinogenicity. On the other hand, HI or HQ > 1 

means that there is a significant risk of non-carcinogenicity (USEPA, 2011; Zhang et 

al.,, 2020).    

𝐂𝐑 = 𝐀𝐃𝐈𝒙𝐒𝐅 …………………………………………………… Equation 7 

𝐂𝐓𝐑 = ∑𝐂𝐑 ………………………………………….……………. Equation 8 

𝑯𝑸 =
𝑨𝑫𝑰𝒄𝒉𝒓𝒐𝒏𝒊𝒄

𝑹𝒇𝑫
 …………………………………………………… Equation 9 

𝐇𝐈 = ∑𝑯𝑸  ………………………………..……………………….. Equation 10 

From equations, 7, 8, 9, and 10, CR is the cancer risk (CR) and HQ is the hazard 

quotient of each PTM through various exposure routes (Appendix I), and SF is the 

cancer slope factor as indicated in Appendix II. ADI is the average daily intake, RfD 

is the reference dose as indicated in Appendix II, CTR is the cumulative target risk, 

and HI is the hazard index (DoE, 2011; USEPA, 2009). 

 

3.4.1.3 Determination of soil physicochemical properties  

Physicochemical parameters, including soil color, texture soil pH, organic carbon 

(OC), available nitrogen, available phosphorus (P), Exchangeable Aluminum (A+3), 
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and exchangeable acidity (H+) (Table 3.1) were determined using conventional 

methods (Motsara, 2008; Yao et al.,, 2013). The soil pH and organic carbon play a 

pivotal role in potentially toxic metals and nutrient availability, distribution, and 

uptake by plants in soils (Solis et al., 2005). These soil physicochemical parameters 

often indicate anthropogenic interference with the soil's natural parameters (Okalebo 

et al., 2002). To determine the physical and chemical parameters of the soil, duplicate 

soil samples were air-dried, ground in a mortar and a pestle, and sieved through a 

2mm mesh wire. The replicate samples were accurately weighed in an appropriate 

amount and analyzed. 

Table 3.1:1Physicochemical parameters of soil 

 

s/n parameter Analytical method 

1 Soil color By inspection 

2 Texture  Bulky density  

3 pH Potentiometer 

4 Organic carbon Walkley-black 

5 Exchangeable Al+3 Atomic Absorption spectrometry 

6 Exchangeable H+ Atomic Absorption spectrometry 

 

In soil pH determination (1:5 soil: 0.1MCaCl2), 1.00g of each soil sample was 

measured in replicates and added 5 mL of 0.1M CaCl2 solution was in test tubes. The 

mixture was stirred for about 10 minutes and allowed to settle for 30 minutes. Then 

the mixture was shaken for 30 minutes and allowed to soak and pH was measured 

using a Desk pH meter (PHS-3D) potentiometer. The pH meter was calibrated using 

pH 4.0, pH 7.0, and pH 9.0 buffer solutions before measuring the pH of the soil 
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samples according to Kome et al. (2018). The soil organic matter was determined 

using Walkley-black (W-B) method. The oxidizable amount of the organic matter was 

quantified with a standard amount of chromate in the presence of sulfuric acid. The 

residual chromate was determined at 600mm wavelength using atomic absorption 

spectrophotometer. The soil organic matter was calculated based on organic matter 

containing 58% carbon (Nelson et al., 1983). The soil exchangeable acidity, Al+3, and 

H+ were determined. A 10g sample of soil was weighed into a 50ml glass beaker and 

25mL of 1M KCl was added. The suspension was stirred with a glass rod and allowed 

to stay for 30 minutes before filtering clearly. 1-2ml Phenolphthalein indicator was 

added dropwise, titrated with 0.1M NaOH to the first constant pink color of the 

endpoint, and calculated using equation 11 as described by Okalebo et al., (2002)  

𝑬𝒙. 𝒂𝒄𝒊𝒅𝒊𝒕𝒚 (𝒄𝒎𝒐𝒍 (+)) = (𝒎𝒍𝑵𝒂𝑶𝑯 𝒔𝒂𝒎𝒑𝒍𝒆 − 𝒎𝑵𝒂𝒐𝑯 𝒃𝒍𝒂𝒏𝒌)𝒙 𝟏𝟎--Equation 11 

This measures the soil's exchangeable acidity (Al+3) in centimole per kilogram of the 

soil sample.  

 

3.4.1.4 In Vitro Bioaccessibility of potentially toxic metals  

Human exposure to PTMs in the environment is a major public health concern 

because of their associated adversity. High concentrations of PTMs in agricultural 

soils are a recipe for health exposure through dermal and incidental ingestion; hence, 

PTMs assessment in soil has gained more attention in research. In recent times, in 

vitro bioaccessibility (IVB) methods are applied to estimate the relative 

bioavailability of PTMs in contaminated soils (Li et al., 2015). IVB was tested using 

the United States Environmental Protection Agent’s (USEPA) method (USEPA, 

2017). Potential toxic metals bioaccessibility measurements were conducted as 



49 

 

 

outlined by USEPA methods 1340 (Paltseva et al., 2018); 1.0g of each soil sample 

was weighed in duplicates and transferred to high-density polyethylene (HDPE) 

bottles containing 100 mL extraction fluid: 0.4 mol/L glycine (reagent-prepared in 

deionized water). The pH was adjusted to 1.50 ± 0.05 by adding 0.5% HCl; the 

samples were heated at 37°C before extraction (Obrycki et al., 2016). The extraction 

was completed by centrifuging the samples at 30 rpm for one hour. About 40 mL 

aliquot of the supernatant was filtered using a 0.45μm cellulose filter before PTM 

analysis using ICP-MS. The Bioaccessibility (BioAC%) of the metals: As, Cd, Cr, 

and Pb in soils was determined using Eqn. 12 (Li et al.,, 2015). 

𝑩𝒊𝒐𝑨𝑪 =
𝑪𝒆𝒙𝒕𝒓𝒂𝒄𝒕𝒂𝒃𝒍𝒆

𝒕𝑪𝒐𝒏
𝒙𝟏𝟎𝟎% ……………………………………………. Equation 12 

From Equation 12, Cextractable is the concentration of the extractable PTMs and tCon is 

the total concentration of the PTMs in the soil samples.  

The measurement of bioavailability and bioaccessibility of potentially toxic metals: 

As, Cd, Cr, and Pb in soils is a crucial pollution assessment tool. They are analyzed 

following the physicochemical parameters (Motsara, 2008; Yao et al.,, 2013). The 

bioavailability of toxic metals in soil is the amount of As, Cr, Cd, and Pb available for 

uptake that can physiologically enhance bioaccumulation or cause supplementary 

effects in the organisms from the sum of available As, Cd, Cr, and Pb present in the 

soil (Kim et al.,, 2015). 

3.4.1.5 Determination of germination rates of Brassica napus and Raphanus 

raphanistrum  

The seeds were sorted and pretreated including drying and stratifying. A few of the 

seeds were arbitrarily selected to study the morphometries using a digital microscope 
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to measure: longitudinal length, transverse length, perimeter, and area in millimeters. 

The Brassicaceae seeds with their pods were measured every 24hrs for fourteen (14) 

days until a consistent dry weight was achieved; then, they were mechanically 

removed from the siliques and kept in paper bags at 20-250C before the experiment. 

The individual seed of each species was measured in five replications (Tables 4.5 and 

4.6). It was subdivided into experimental groups comprising 100 seeds/species and 

treated with different priming techniques, and chemical germination agents (CGA) to 

induce laboratory germination. The laboratory test materials and reagents included 

100 by 15 mm Petri dishes, doubled-layer tissue papers, wash bottles, 70% ethanol, 

0.25 mg/L of gibberellic acid (GA3), 0.1% potassium nitrate (KNO3), concentrated 

hydrochloric (HCl) and sulfuric (H2SO4) acids.  

The priming techniques' efficiency to break dormancy in the selected Brassicaceae 

seeds was measured using equations 13, 14, and 15 to calculate the Germination 

Index (GI), Time for 50% germination of seedlings, and Mean Germination Time, 

respectively (Ali et al., 2012). The germination index (GI) was used to compute daily 

germination counts for the 14-day trial, adopting the Association of Official Seed 

Analyst method as indicated in Eqn. 13 (Isely, 1965).  

𝐆𝐈 =
𝐍𝐨.  𝐠𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞𝐝 𝐬𝐞𝐞𝐝𝐬 (𝐆𝐦𝐒)

𝐃𝐚𝐲𝐬 𝐨𝐟 𝐟𝐢𝐫𝐭𝐬 𝐜𝐨𝐮𝐧𝐭(𝐓𝐬𝐃)
+ − − − +

𝐍𝐨.𝐨𝐟 𝐠𝐞𝐫𝐦𝐢𝐧𝐚𝐭𝐞𝐝 (𝐆𝐦𝐒)

𝐃𝐚𝐲𝐬 𝐨𝐟 𝐟𝐢𝐧𝐚𝐥 𝐜𝐨𝐮𝐧𝐭
  Equation 13 

The time required for 50% germination of the seedlings (T50) was calculated using 

Eqn. 14 (Coolbear et al., 1984). However, the percent of the seedling germinated at 

half of the experimental time, that is, in 7 days, was calculated.  

(𝑻𝟓𝟎) = 𝒕𝒊 +
(

𝑵

𝟐−𝒏𝒊
) (𝒕𝒋−𝒕𝒊)

𝟏!
        Equation 14 
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From equation 14, N is the final number of germinated seeds, ti is the start time, ni is 

the number of seeds that have germinated at ti, and nj is the final number of seeds 

germinated at ti (final time of MGT, respectively when ni <N/2 <nj.  

Similarly, the mean germination time (MGT) was computed according to Eqn. 15, 

where n is the number of germinated seeds or emerging seedlings on day D, where D 

is the sum of days counted from the start of germination (Ellis et al., 1981):  

𝐌𝐆𝐓 = ∑(𝐃𝐧) /∑𝐧       Equation 15 

As indicated in Table 4.7, twenty (20) seeds of each crop were placed in 50 mL 

beakers and presoaked in distilled water H2O for 24 hrs before treatment with 

chemical germination agents. The seeds were removed from the water and desiccated 

for 2-3 hours (hrs.) before treatment. The seeds were then transferred to Petri dishes 

disinfected with 70% ethanol and filled with double-layer soft tissues. The seeds were 

unselectively divided into five (5) groups, that is, 20 seeds per petri dish (5 

replicates), and treated with 10 mL of GA3, KNO3, HCl, H2SO4, and H20 in separate 

setups. Hydro priming using distilled H2O was the control treatment for all induced 

germination in these trials. 

3.4.1.6 Phytoremediation Brassica napus and Raphanus raphanistrum 

3.4.1.6.1 Enhanced phytoremediation putative mutants of Brassica napus and 

Raphanus raphanistrum 

Abiotic factors, such as salt stress, suppress plant growth and productivity. However, 

research mostly in plant breeding and biotechnology has shown that some species of 

Brassicaceae, through genetic modification, have become stress-tolerant over time as 

discussed by Salah (2018). Some Brassicaceae have shown extra-economic and 

medicinal values with enriching genetic diversity and distribution around the globe. 
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These characteristic traits have enhanced the conservation, breeding, and management 

of Brassicaceae species according to El-Esawi (2017).  

This objective was achieved through the enhancement of selected wild Brassicaceae 

species, B. napus and R raphanistrum using colchicine. The plants were enhanced 

through chemical treatment of the seeds in different doses of prepared colchicine 

solutions as described by Nura et al. (2017). Colchicine is a commonly used 

mutagenic agent that boosts plant growth, and development increases biomass and 

reinforces its resistance to different stress factors in the environmental (Le et al., 

2020; Viana et al., 2019). Chemical modification in plants enhances genetic 

variations, plant growth, and morphological improvements as stated by Viana et al., 

(2019). 

In this procedure, a stock solution of 1.00% colchicine was prepared, from which the 

desired working concentrations (percentage) were prepared as indicated in Eqn. 16. 

The working solutions’ concentrations of colchicine prepared were 0.00%, 0.25%, 

0.50%, and 1.00% colchicine as in Eqn. 16.  

𝐂𝐨𝐧𝐜𝐞𝐧𝐭𝐫𝐚𝐭𝐢𝐨𝐧% (𝐰/𝐯) =
𝐖𝐞𝐢𝐠𝐡𝐭 𝐬𝐨𝐥𝐮𝐭𝐞𝐠𝐫𝐚𝐦

𝐕𝐨𝐥𝐮𝐦𝐞 𝐨𝐟 𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧𝐦𝐋
𝐱𝟏𝟎𝟎% Equation 16 

From the 1000s of harvested and dried seeds of B. napus and R. raphanistrum seeds, 

about 500 seeds each were presoaked for 8-10 hours in distilled water and drained for 

about 30 minutes to 1 hour at room temperature. The soaked seeds were divided into 

four groups including the control (0.00%), minimum dose (0.25 %), medium dose 

(0.50%), and maximum dose (1.00%). 

In the colchicine chemical modification experimental setup, each group of 500s (M0) 

seeds per plant was apportioned into four batches, 100 seeds per treatment per 
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species, and the remaining seeds were kept in the glasshouse. The apportioned seeds 

were transferred into separate 250ml bottles before adding 200 ml of each varying 

concentration, 0.00%, 0.25%. 0.50%, and 1.00% for six (6) hours with alternating 

shaking according to Mullainathan et al., (2013) procedural steps. The seeds were 

rinsed with deionized water to remove excess reagent before planting. The treated M1 

seeds and the controls, which were treated with 0.00% concentrations of colchicine, 

were sown in thirty-two (32) experimental pots, two (2) seeds per pot comprising 

Brassica napus and Raphanus raphanistrum accordingly. The experiment was setup 

in a complete randomized design and each treatment dose was replicated four times. 

The M2 seeds harvested from M1 and the seeds from the wild plants from untreated 

seed pots (Mo) were allowed to dry in the glasshouse. The dried seeds were then 

planted in sampled soil from Moiben in the pots experiment.  

The pots were regularly moistened with rain water and monitored in a controlled 

environment as they grew, and weekly measured data was recorded as done in 

previous studies (Vandenhove et al.,, 2009; Xu et al., 2016). The soils and plant 

biomass were analyzed using ICP-MS. Each plant's morphometries, including height 

and leave’s broadness, were evaluated through analysis of variance (ANOVA) to test 

the treatment significance. All experimental analyses of enhanced Brassicaceae in 

phytoremediation of the selected potentially toxic metals: Cr and Pb were conducted 

using ICP-MS according to Yang et al., (2018), and Helaluddin (2016). 

3.4.1.6.2 Phytoremediation: Soil treatments and setup 

Evaluation of phytoremediation to decontaminate potentially toxic metals, Cr, and Pb 

in agricultural soils collected from Moiben was conducted at the glasshouse, 

University of Eldoret. The 4 x 8 pot experiment was carried out in a completely 
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randomized design (CRD) as described by Sale (2015). There were two sets, one set 

consisting of M0 planted seeds and the other set consisting of M1 planted seeds.  There 

were 32 pots, 16 per species, with four treatments and four replicates. The 

experimental pots were an equal size, filled with 3kg of agricultural soil from Moiben, 

and spiked with the PTMs. The soil in each pot was spiked with one hundred 

milliliters of 3000 parts per million (mg/Kg) concentration of Lead from lead nitrate 

Pb(NO3)2,  according to the techniques proposed by Arshad et al. (2016). Lead nitrate 

stock solution was prepared by weighing 7.992g of Pb (NO3)2 analytical grade reagent 

in a 1000-mL volumetric flask. 50mL of Nitric acid was added before diluting to the 

1000mL mark with deionized water. A similar preparation procedure was carried out 

to make the stock solution for Cr. About 1g of potassium dichromate (K2Cr2O7) 

analytic grade was dissolved into 1000 ml of deionized water to prepare 1000 mg/L 

(mg/Kg) of Cr. To get the desired working solutions, Eqn. 17 was used. 

𝐂𝟏𝐕𝟏 = 𝐂𝟐𝐕𝟐       Equation 17 

C1= the initial concentration of the stock solution, V1= the volume of the stock 

solution, C2=the concentration of the desired solution, and V2=the volume of the 

desired solution.  

The solution was diluted to the desired concentrations of PTMs after spiking the soil 

at 274.56 mg/Kg and 3985.64 mg/Kg for Cr and Pb respectively. The spiked soils 

were allowed to stay for 72 hours before planting B. napus and R. raphanistrum 

treated with varying doses of colchicine, 0.00%, 0.25%, 0.50%, and 1.00% to enhance 

their phytoremediation potential to uptake PTMs as explained in section (3.3.1.6.1).  

The PTMs concentrations in the soil were measured before and after each trial. 

Similarly, the plant biomass including roots, stems, leaves, and seeds was measured to 
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evaluate the potential of colchicine-enhanced phytoremediation of the treated B. 

napus and R. raphanistrum. One-way Analysis of variance (ANOVA) was used to 

compare the means. The means were separated using Fisher’s Least Significant 

Difference (LSD) at p=0.05 as proposed by Glaz et al. (2020). This process was 

repeated for every consecutive planting season, from M2 and M3 in the glasshouse. 

Each trial lasted for about three months for R. raphanistrum and four months for B. 

napus. The same procedure was followed from M2 to get the M3 without further 

treatment also as in M2 according to the method proposed by Al-Naggar et al. (2015). 

The procedures followed are also proposed by Khursheed et al. (2017). The modified 

populations of every generation (M1, M2, and M3) of each Brassicaceae species and its 

control were assessed through growth rate, height, and leave broadness as suggested 

by CHEN et al. (2018). The surviving Brassicaceae of Raphanus raphanistrum and 

Brassica napus in every generation were planted in contaminated soils, harvested, and 

tested for their hyperaccumulating capacities of Cr and Pb as in similar studies by Das 

et al. (2015). 

3.5 Statistical analysis   

The collected data were analyzed using descriptive statistics; the results are presented 

in tables, graphs, and charts from Microsoft Excel and SPSS version 23.0 (Diana, 

2013; George et al., 2016). Potentially toxic metal concentrations in soil and uptake in 

mutated plants were determined using analysis of variance (ANOVA), single factor, 

and students t-test (Assaad et al., 2015).  

Generally, statistical significance was tested at p<0.05, except otherwise specified as 

proposed by Benjamin et al. (2018). Experimental pots containing the two plant 

species, Brassica napus, and Raphanus raphanistrum, and four replicates of each 
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plant were studied in a controlled environment using a complete randomized block 

design (Rady et al., 2019; Serek et al., 1994). 
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CHAPTER FOUR 

RESULTS 

4.1 Introduction  

This chapter presents analytical results from the potentially toxic metals 

concentrations in soils within the study area and the associated health and ecological 

risks, selected physicochemical parameters measures, in vitro bioaccessibility, and the 

enhanced phytoremediation efficiency experimental study of R. raphanistrum and B. 

napus to decontaminate PTMs polluted soils.   

4.2 Potentially toxic metals concentrations in agricultural soils  

Potentially toxic metals assessed in this study are As, Cd, Cr, Hg, and Pb. The mean 

concentration of each PTM analyzed in the soil is provided in Table 4.1. The 

maximum mean concentrations of the elements in agricultural soil samples in the 

study areas, 6.39±0.10 mgkg-1 As, 0.13±0.02 mg/kg-1 Cd, 48.19±0.06 mg/kg-1 Cr, and 

35.89±0.01 mgkg-1 Pb as presented in Table 4.1. At all sites, As and Cr were above 

the USEPA’s agricultural soil regulatory standards (USEPA, 2002).  

 

Table 24.1: Potentially toxic metals concentrations in soil (Cs, mg/kg) collected 

from surface soils, Uasin Gishu, Kenya 

Site As Cd Cr Pb 
Hg 

Kaprobu 5.68±0.04 0.12±0.02 26.76±0.08 24.84±0.05 
ND 

Moiben 5.63±0.00 0.12±0.01 48.19±0.06 35.89±0.01 
ND 

Ziwa 6.39±0.10 0.13±0.02 27.65±0.01 33.29±0.02 
ND 

Kosyin 2.99±0.02 0.06±0.06 14.31±0.02 16.46±0.03 
ND 

Naiberi  5.04±0.05 0.08±0.01 25.46±0.01 29.55±0.02 
ND 
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Relatively, Cr and Pb recorded higher concentrations compared to As and Cd, 

particularly in Moiben; whereas the concentrations of Hg were not detected (ND) by 

the Inductively Coupled Plasma Mass Spectrometry using the adopted method as 

indicated in Table 4.1. 

However, Pb concentration levels in the soil samples were within the recommended 

values of USEPA standards in agricultural soils. The concentration of Pb in non-

agricultural soil from the same location showed no significant difference. In addition, 

Cd and Pb concentration levels in soil samples from Moiben compared to other 

international standards including Tanzania, Canada, and China showed that the two 

PTMs were within allowable limits. Furthermore, the concentrations of As and Cr 

were more than the regulatory standards of the World Health Organization (WHO) as 

indicated in Table 4.2 (Cepa, 2007; Kinuthia et al., 2020; Mee, 2018). 

Table 3  4.2: Potentially toxic metals regulatory standards for agricultural soils, 

adopted from He et al. (2015) and (Kinuthia et al., 2020a)  

Regulator/Country As Cd Cr Hg Pb 

Australia  20 3 50 1 300 

Canada 20 3 250 0.8 100 

China 20-40 0.3-0.6 150-300 0.3-1.0 80 

Kenya  NG NG NG NG NG 

Tanzania  1 1 100 2 200 

USEPA 0.11 0.48 11 1 200 

WHO - 0.003 0.10 0.08 0.10 

 

4.2.2 Ecological Risk Index of PTMs in Moiben 

The ecological risks assessed focused on the geo-accumulation factor (Igeo) and 

ecological risk index (ERI). The calculated results in the study areas are summarized 
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and presented in Table 4.3. The Igeo showed extreme contamination of As, Cr, and 

Pb in the study area (5< Igeo, extremely high) (Appendix III); but Cd was low (0< 

Igeo≤1, moderate) according to Muller (1969). Hakanson’s indexing method as in 

equations 2 and 3 was used to assess the ecological contamination. Given that, the 

cumulative effects of Igeo, ERI was low in the study area, that is, ERI < 40=low as 

proposed by Hakanson (1980). 

Table 4.3: Ecological risks, Igeo and ERI computed results of the study areas 

 

 Igeo ERI 

Site As Cd Cr Pb As Cd Cr Pb 

Kaprobu 8.52 0.17 40.14 37.26 3.79 3.47 0.59 17.75 

Moiben 8.44 0.19 72.28 53.84 3.75 3.72 1.07 25.64 

Ziwa 9.59 0.19 41.47 49.93 4.26 3.88 0.61 23.78 

Kosyin 4.49 0.09 21.46 24.69 1.99 1.80 0.32 11.76 

Naiberi 7.55 0.12 38.18 44.32 3.36 2.44 0.57 21.10 

 

The results are interpreted based on ecological risk standards as indicated in Appendix 

III. Though the selection of reference soil values differs significantly, with some 

studies considering means of PTMs contained in sediments and shale; while other 

studies adopt recognized national soil standards and environmental screening levels 

(Wang et al.,, 2013; Weissmannová et al.,, 2017). However, the Hakanson procedure 

followed preindustrial levels of potentially toxic metals in soil and was considered in 

this study.  

The single factor contamination estimates, that is, the geo-accumulation factor of the 

metals were all above threshold values (Appendix III) for all elements (As, Cr, and 

Pb) in the study area; ranging from low to extremely high contamination. The 
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ecological index was with the highest value, 25.64 (low) in Moiben as indicated in 

Table 4.3. These values present a very high geo-accumulation factor. 

4.2.3 Health risk characterization  

The health risk focused primarily focused on the target cancer risk (CTR) and non-

cancer risk (HI) levels in soil samples collected from the selected farm in Moiben, 

Uasin Gishu County. The results are summarized and presented in Table 4.4. The 

human health risk was assessed according to the United States Environmental 

Protection Agency (USEPA) guidelines for potentially toxic metals monitoring and 

assessment protocols (USEPA, 2011). The Target Cancer Risk (CTRs) and Hazard 

Index (HI) were computed for the PTMs via incidental ingestion, and dermal 

exposure (Johnbull et al.,, 2019). 

 

Table 54.4: Target Carcinogenic Risk (CTR) Non-carcinogenic (HI) risks of 

selected PTMs in the study area 

 

4.2.4 Cancer risk assessment 

The CTR ranged from 1.354E-05 to 1.865E-05 and 1.584E-05 to 1.167E-05 for 

children and adults, respectively. On the general basics, the USEPA method assumes 

the carcinogenic risk, that is, the occurrence of less than one cancer possibility in 

about 1000,000 people (1.0 E-06) is negligible and possibilities above 1.0E-04 is 

significantly high and require environmental remediation (Gu et al., 2016; USEPA, 

2011; Zhang et al.,, 2020).  

Sample Area Total Cancer Risk Total Non-Cancer Risk 

Children Adult Children Adult 

MOIBEN 1.865E-05 1.584E-05 0.184 0.039 
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4.2.5 Non-carcinogenic risk characterization 

Similarly, the HI measured were all below unity, indicating non-carcinogenic risk to 

exposed humans in the study areas at present. However, these results are not 

warranties that the present low health risk levels will not ever change as the PTM 

concentrations are slightly above the geogenic levels (Hakanson, 1980). Continuous 

unfriendly environmental human activities affect the concentration levels of PTMs in 

soils and subsequently will affect the health risk index.  

4.3 Physicochemical parameters   

4.3.1 Physicochemical parameters of agricultural and non-agricultural soils in 

Moiben 

Total concentrations for selected PTMs, Cr, and Pb in agricultural and non-

agricultural soils from the farm in Moiben were relatively high. A student t-test 

computed for Cr levels in the area between agricultural and non-agricultural soils 

showed that there was no significant difference, (t = -0.13, p-value = 0.9014), it was 

found that non-agricultural soil contained 48.23 mg/kg compared to 48.19 mg/kg in 

agricultural soil. For Pb, the concentrations were high but not significant, (t = -0.75, 

p-value = 0.4961). The PTMs recorded in non-agricultural soil was 36.63 mg/kg 

while agricultural soil recorded the lowest, 35.96 mg/kg as shown in Figure 4.1. The 

high concentrations in the sampled soils are possibly due to human activities and the 

geochemistry of the study areas (Mbene et al., 2017). 
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Figure 34.1: Mean total concentrations of potentially toxic metals in Moiben 

agricultural soil 

 

The mean levels of potential hydrogen (pH) were high (5.39±0.01) in non-agricultural 

soil as compared with agricultural soil (5.20±0.10) with a significant difference (t=-

3.27, p=0.0307). Similarly, organic matter in percentage (OC %) was significantly 

high (t=55.11, p<0.0001) in non-agricultural land (1.38±0.01) compared with 

agricultural land (1.83±0.01). Levels of Al (Cmol+kg-1) and H+ (Cmol+kg-1) did not 

differ between agricultural and non-agricultural soils as illustrated in Table 4.5. 

 

Table 6 4.5: Physicochemical parameters of agricultural and non-agricultural soil 

in Moiben 

Parameters Agricultural Non-agricultural t-test p-value 

pH 5.20±0.10 5.39±0.01 -3.27 0.0307* 

OC (%) 1.83±0.01 1.38±0.01 55.11 0.0000* 

AL (Cmol+kg-1) 4.33±2.08 6.00±1.00 -1.25 0.2794 

H (Cmol+kg-1) 3.00±1.00 2.33±0.58 1.00 0.3739 

* Represent a significant difference  
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4.4 Bioaccessibility of potential toxic in soils  

In vitro bioaccessibility of the potentially toxic metals, Pb and Cr in agricultural soil 

samples collected from Moiben was assessed. The percent in vitro bioaccessibility in 

the soil sample of the PTMs was determined using the USEPA (USEPA, 2008). The 

results in percentage (%) of the in vitro bioaccessibility computed are summarized 

and presented in Table 4.6.  

Table7 4.6: In vitro bioaccessibility (%) of Cr and Pb in Moiben. 

 

In vitro Bioaccessibility (IVB) of PTMs (%) 

Site Cr Pb 

Moiben 0.77% 11.88% 

 

Soil physicochemical properties affect in vitro bioaccessibility of selected PTMs in 

agricultural soil as reported by Lake et al. (2021). The results were correlated to the 

physical-chemical parameters in soil samples from the study area. In the correlation 

study, the in vitro bioaccessibility of Pb (%) and Cr (%) were compared to the soil 

pH, percent organic matter (OC), available aluminum (AL+3) (Cmol+kg-1), and 

available hydrogen (H+) (Cmol+kg-1) in Moiben. The physicochemical parameters of 

soil that were significantly correlated  (Appendix IX) with the in vitro bioaccessibility 

include, Pb (%) and pH (r=-1, p=<0.0001) with a linear equation of y=-0.1x +12.39  

and R² = 0.75,  Pb (%) and OC (%) (r=-1, p=<0.0001) with a linear equation of y = -

1x + 13.70 and R² = 0.75. Equally, the following physicochemical parameters were 

significant with Chromium: Cr (%) and pH (r=-1, p=<0.0001) with a linear equation 

of y = -0.1x + 1.28 and R² = 1, Cr (%) and OC (%) (r=-1, p=<0.0001) with a linear 

equation of y = -1x + 2.59 and R² = 1. 
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Table8 4.7: Pearson correlation coefficients for physicochemical parameters and 

in Vitro bioaccessibility of potentially toxic metals 

 

 

From Table 4.7, there was no correlation between both the available aluminum (Al+3) 

(Cmol+kg-1) and hydrogen (H+) (Cmol+kg-1) and the PTMs concentration, percentage 

of Pb and percentage of Cr in the study area. That is, a change in either AL+3 or H+ 

does not affect the in vitro bioaccessibility of the Pb and Cr. However, there were 

strong negative correlations between in vitro bioaccessibility (Pb and Cr) and 

physicochemical parameters (pH and OC) in the study area. This means an increase in 

one or all of these parameters, soil pH and OC reduces the bioaccessibility of the 

PTMs, Pb, and Cr. The low in vitro bioaccessibility of the PTMs is due to a slightly 

increasing pH and OC in the soil. That is, other physical-chemical parameters such as 

soil texture and aggregates including other anthropogenic activities have interfered 

with in vitro bioaccessibility of the PTMs in the study area (Fernández-Landero et al., 

2021; Guo et al., 2022). 

Physicochemical 

parameters 
Cr (%) Pb (%) pH 

OC 

(%) 
AL 

(Cmol+kg-1) 
H  

(Cmol+kg-1) 

Pb (%) 1.00 
     

pH -1.00* -1.00* 
    

OC (%) -1.00* -1.00* 1.00 
   

AL (Cmol+kg-1) 0.96 0.96 -0.96 -0.96 
  

H (Cmol+kg-1) 0.50 0.50 -0.50 -0.50 0.24 1.00 
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4.5 Chemical priming of seeds 

Seeds of R. raphanistrum (wild radish) and B. napus (canola) were collected from 

farms within the study areas around Uasin Gishu County during postharvest seasons 

(Appendix VIII). The B. napus seeds appeared more spherical, rounded, and narrowly 

curved at the apexes. They have light brown skins that easily peel off when they are 

outside of the siliques. They weighed, about 0.03g compared to the R. raphanistrum. 

The B. napus seeds are easily removed from the siliques when they are matured and 

dried. Unlike the Brassica napus, the Raphanus raphanistrum seeds weighed heavier, 

they are dark brown, and more oval in shape. The Raphanus raphanistrum seeds were 

tightly held within the siliques and required aid to be removed. The seeds of both 

species are displayed in Figure 3.2. 

 

Figure 44.2: Images of Brassicaceae seeds (Source: Author, 2022) 

 

The morphometric characteristics of the Raphanus raphanistrum seed, including its 

length, width, perimeter, and area were measured and the results are summarized and 

presented in Table 4.8. The mean seed weight, length, width, perimeter, and area for 

Raphanus raphanistrum, were 0.06 ±0.02gram, 1.51±0.01millimeter, 1.18±0.01 

millimeter, 4.25±0.04 square millimeters, and 1501.81±33.11 square millimeters, 

respectively.      

Raphanus raphanistrum 

 

Brassica napus 

 
 



66 

 

 

Table 9  4.8: Morphological characteristics of Raphanus raphanistrum (RR) 

 

Species Morphological Characteristics 

Radish 

(RR) 

Weight 

(gram) 

Length 

(mm*) 

Width (mm) 

Perimeter 

(Sq.mm) 

Area  

(Sq.mm) 

RR1 0.06 ±0.00 1.51±0.01 1.28±0.02 4.36 ± 0.04 1614.51 ± 32.16 

RR2 0.06 ±0.01 1.50±0.01 1.17±0.03 4.28 ± 0.04 1512.45 ± 33.19 

RR3 0.05 ±0.02 1.50±0.01 1.17±0.02 4.22 ± 0.04 1472.29 ± 34.18 

RR4 0.05 ±0.00 1.57±0.01 1.16±0.01 4.31 ± 0.04 1523.47 ± 31.16 

RR5 0.05 ±0.01 1.48±0.01 1.13±0.01 4.11 ± 0.04 1386.36 ± 35.17 

Means 0.06 ±0.02 1.51±0.01 1.18±0.01 4.25 ± 0.04 1501.81 ± 33.11 

*mm= millimeter 

 

Similarly, the measured physical parameters of Brassica napus are summarized and 

presented in Table 4.9. The results include 0.03±0.02 gram, 0.94±0.02 millimeter, 

0.88±0.04 millimeter, 2.88±0.07 square millimeter, and 701.68±36.77 square 

millimeters for the weight, length, width, perimeter, and area, respectively.  
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Table 104.9: Morphological characteristics of Brassica napus 

 

When the seeds are compared side by side (Figure 4.3), morphometries of the species 

showed a wider difference in perimeters, lengths, and weights, with Raphanus 

raphanistrum showing dominance in all physical characteristics measured compared 

to Brassica napus.  

 

 

Figure 54.3: Comparative morphometric characteristics in canola (BN) and wild 

radish (RR)  
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Species Morphological Characteristics 

Canola 

(BN) 

Weight 

(gram) 

Length 

(mm) 

Width 

(mm) 

Perimeter 

(sq. mm) 

Area  

(sq.mm) 

BN1 0.03 ± 0.01 0.88 ± 0.02 0.72 ± 0.04 2.56 ± 0.05 559.72 ± 32.78 

BN2 0.03 ± 0.02 0.99 ± 0.01 0.93 ± 0.03 2.94 ± 0.07 729.95 ± 37.76 

BN3 0.03 ± 0.00 0.98 ± 0.02 0.90 ± 0.05 2.99 ± 0.08 768.39 ± 37.77 

BN4 0.03 ± 0.01 0.93 ± 0.01 0.94 ± 0.02 2.94 ± 0.07 741.62 ± 36.76 

BN5 0.03 ± 0.00 0.91 ± 0.02 0.90 ± 0.06 2.88 ± 0.08 708.71 ± 38.77 

Mean 0.03 ± 0.02 0.94 ± 0.02 0.88 ± 0.04 2.88 ± 0.07 701.68 ± 36.77 
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From the experiment, treatments of Brassica napus seeds with chemical agents 

performed well with germination rates 90, 80, 30, 0, and 0 for KNO3, GA3, chilling, 

HCl: H2SO4, and H2O, respectively (Table 4.10). Similarly, treatment of Raphanus 

raphanistrum with the same chemical agents gave the following results: 70, 45, 10, 0, 

and 0 for GA3, chilling, KNO3, HCl: H2SO4, and H2O, respectively.  

 

 

The germination rates were determined using the germination index (GI) and the 

mean germination time (MGT). The results showed that GA3 and KNO3 are the most 

effective germination agents for the selected plants, B. napus and R. raphanistrum 

(Yang et al., 2020).  

1 

Plate 4.1: 1Images of KNO3, GA3, HCl/H2SO4, and H2O: 1, 2, 3, & 4 respectively 

in germination trial. 
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 Table 114.10: Results of priming of Brassica napus and Raphanus raphanistrum 

using various induced germination agents 

  

D=numbers of days 

Tg=total seeds germinated, Day=numbers of days of trial, GP=germination percent, 

T5o= percent germination at half of the trial day, GI=germination index, MGT=mean 

germination time.

 Brassica Napus Raphanus Raphanistrum 

Treatment Time D Tg GP T50 GI MGT Tg GP T50 GI MGT 

H2O 24hrs 10 0 0 0 0 0 0 0 0 0 0 

HCl:H2SO4 0.5Hrs 10 0 0 0 0 0 0 0 0 0 0 

Chilling 72Hrs 10 6 30 20 6.55 1.67 9 45 25 10.94 1.11 

GA3 24hrs 10 16 80 50 19.43 0.63 14 70 60 23.02 0.71 

KNO3 24hrs 10 18 90 55 19.26 0.56 2 10 10 2.77 5 
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4.6 Phytoremediation  

4.6.1 Enhanced phytoremediation of Brassica napus and Raphanus raphanistrum  

Concentrations of potentially toxic metals were assessed for B. napus and R. 

raphanistrum in the plant materials and soils. The metals, Cr and Pb had initial soil 

concentrations of 274.55 mg/Kg, and 3985.64 mg/Kg, respectively. The highest 

concentrations of PTMs were recorded in the plant roots for all except Cr in the B. 

napus leaf and seeds of M1 and Pb in the leaf of R. raphanistrum followed by leaves, 

stems, and seeds. Equally, the concentrations of PTMs in the plants’ organs were 

significantly different within generations apart from Chromium concentrations in 

Raphanus raphanistrum stem in the second and third generations (Table 4.11).  

Table 124.11: Potentially toxic metals concentrations (mg/Kg) in plants (BN and 

RR) organs 

PTM 
Plant 

species 
Trial Root (mg/Kg) 

Stem 

(mg/Kg)  
Leaf (mg/Kg) Seed (mg/Kg) 

Cr 

BN 

M1 67.12±0.15a** 11.65±0.13b* 150.25±0.13c* 12.32±0.10d* 

M2 67.86±0.54a** 28.90±0.65b* 59.60±0.33c* 36.91±0.45d* 

M3 136.23±1.66a* 5.20±0.26b** 9.41±0.20c** 14.52±0.49d** 

RR 

M1 108.05±56.58a* 5.20±0.26b** 9.41±0.20c** 14.52±0.49d** 

M2 139.49±0.39a* 36.66±0.46b* 49.52±0.37c* 11.27±0.19d* 

M3 38.28±0.80a* 8.82±0.44b* 5.96±0.62c* 48.29±0.26d* 

Pb 

BN 

M1 1024.16±1.57a* 546.42±0.77b* 47.35±0.17c* 1.75±0.06* 

M2 674.13±0.37a* 30.73±0.49b* 23.46±0.14c* 1.15±0.07* 

M3 709.41±0.58a* 15.96±0.50b* 21.93±0.89c* 2.90±0.45* 

RR 

M1 812.06±0.65a* 12.31±0.15b* 51.74±0.74c* 4.39±0.36* 

M2 240.81±0.87a* 14.37±0.23b* 261.83±0.72c* 1.80±0.21* 

M3 476.37±14.72a* 6.68±0.41b* 13.49±0.53c* 2.42±0.58* 

*a,b, c means showed significant differences within rows, and means followed by a 

single asterisk (*) and double asterisks (**) showed significant and not significant 

differences within plants’ parts at p=0.05 in columns.  
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At 0.50% colchicine dose treatment, the roots of both plants absorbed more PTMs, 

that is, the uptake of PTMs per plant compared to other organs. The different 

treatment doses affected the plants’ organs varying in the different generations, M1, 

M2, and M3.  

4.6.2 Bioconcentration of PTMs in Plant biomass  

The bioaccumulation Factor (BCF) of the PTMs in the plant was computed to 

evaluate the phytoremediation potentials of B. napus and R. raphanistrum against the 

uptake of Cr and Pb in the enhanced phytoremediation study. BCF is used to assess 

plant capacity to concentrate PTMs in its different biomass including roots, stems, 

leaves, and seeds (Raskin et al., 1994). It measures the phytoremediation potential of 

PTMs of the plants entirely including phytostabilization and plant biochemical 

activities that bind PTMs in soils (Takarina et al., 2017).  The PTMs bioconcentration 

factors in B. napus and R. raphanistrum were computed using the equation, Eqn 21:  

𝑩𝑪𝑭 =
𝑪𝒔𝒉𝒐𝒐𝒕 

𝐂𝐬𝐨𝐢𝐥
 -----------------------------------------Equation 21 

From Eqn. 21, BCF is the measure of bioconcentration factor, and Cshoot and Csoil, are 

the PTM concentrations (mg/Kg) in the plant shoot and soil, respectively.  

The bioconcentration factor results were computed and tabulated in Table 4.12 where 

the BCF showed that the plants are promising hyperaccumulators that can be used in 

the phytoremediation of potentially toxic metals in polluted soils. The results showed 

that both species, B. napus and R. raphanistrum have more affinity for Cr and Pb 

decontamination from the polluted soil, hence hyperaccumulation potential according 

to Madanan et al. (2021). However, the plants are more likely to remove high among 
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of Cr compared to Pb as presented by the cumulative bioconcentration factor of the 

plants in Table 4.12.   

Table134.12: BCF of the different organs of BN and RR 

PTM BN RR 

 
Root Stem Leaf Root Stem Leaf 

Cr 2.41* 0.42 1.99* 2.84* 0.70 0.66 

Pb 0.91 0.23 0.04 0.77 0.02 0.16 

*plant with hyperaccumulation potential of PTM 

4.6.3 Effects of colchicine dosage on PTMs concentrations in the plants’ organs 

Effects of colchicine dosage on potentially toxic metals uptake in the plants’ biomass 

for the different planting periods, that is, M1, M2, and M3 were assessed. Treatment 

doses of colchicine in both plants were 0.00% 0.25%, 0.50% and 1.00%. In B. napus 

as presented in Table 4.13, the higher mean concentration of Chromium, 241.35±0.22 

mg/kg was recorded in the planted species treated with 0.50% dosage of colchicine 

and the lower mean concentration in plants that received 0.00% in M1, with a 

significant difference (F 0.05 (3, 12) =2783.90, p=0.0001). A Ronald Aylmer Fishers Post 

hoc test, Least Significance Difference (LSD) showed that significant differences 

were found within all treatment levels, 0.00%, 0.25%, 0.50%, and 1.00%. In M2, the 

higher mean concentration of chromium, 210.05±0.44 mg/Kg was recorded in the 

plants treated with 0.50% dosage of colchicine, and the lower mean concentration, 

138.73±3.13 mg/Kg in plants that received 0.00% treatment of colchicine. A similar 

trend was observed in M3 in B. napus. A generally comparable trend was observed in 

the treatments M1, M2, and M3, where a statistically significant difference was 

observed in Chromium absorption within all generations (p<0.05). Similarly, higher 
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mean concentrations of Pb, 1619.67±1.99 mg/Kg, 729.47±0.83 mg/Kg, and 

750.19±0.69 mg/Kg found in M1, M2, and M3 respectively were recorded in plants 

treated with 0.50% dose colchicine. The lower mean concentrations, 484.19±0.63 

mg/Kg, 422.05±1.23 mg/Kg, and 454.64±9.02 mg/Kg were recorded in plants that 

received 0.00% for M1, M2, and M3, respectively. In M1, the mean concentration has a 

significant difference, (F 0.05 (3, 12) =659900.00, p<0.0001). M2 and M3 also followed a 

similar trend, with significant (p<0.05) between and within means of all treatment 

dosages as indicated in Table 4.13. 

Table 144.13: Effect of colchicine dosage and Trial on the plant’s biomass 

accumulated PTMs 

 
  

M1 M2 M3 

      

Plant  
PTM 

Colchicine 

dosage 

Mean±Std 

(mg/Kg) 

Mean±Std 

(mg/Kg) 

Mean±Std 

(mg/Kg) 

BN 

Cr 

0.00% 105.53±0.67a* 138.73±3.13b* 60.41±0.44c* 

0.25% 188.13±0.42a* 193.28±1.67b* 106.33±0.47c* 

0.50% 241.35±0.22a* 210.05±0.44b* 165.36±1.42c* 

1.00% 181.71±1.06a* 209.16±1.05b** 116.19±3.50c* 

Pb 

0.00% 484.19±0.63a* 422.05±1.23b* 454.64±9.02c* 

0.25% 627.600.86a* 525.42±0.67b* 565.13±3.22c* 

0.50% 1619.67±1.99a* 729.47±0.83b* 750.19±0.69c* 

1.00% 883.821.03a* 555.56±0.86b* 624.08±1.72c* 

RR 

Cr 

0.00% 103.70±0.42a* 119.21±1.28b* 53.09±0.77c* 

0.25% 180.67±1.39a* 196.35±0.72b* 65.63±0.88c* 

0.50% 226.69±1.22a* 236.95±0.82b* 101.35±1.18c* 

1.00% 191.38±0.75a* 225.26±0.85b* 70.18±3.99c* 

Pb 

0.00% 248.53±1.75a* 334.59±0.55b* 305.35±13.78c* 

0.25% 438.46±0.75a* 394.18±0.99b* 376.49±7.72c* 

0.50% 880.49±1.46a* 518.80±±0.81b* 498.96±14.45c* 

1.00% 663.29±0.68a* 418.920.47b* 381.77±9.70c* 

a,b,c, Means followed by the different letters in the same row are significantly 

different at p=0.05 between seasons, whereas means followed by a single asterisk (*) 

and double asterisks (**) showed significantly and no significant differences within 

seasons at p=0.05, respectively. 
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In R. raphanistrum, Chromium higher mean concentrations uptake were recorded in 

plants treated with colchicine at 0.50% and had a significant difference (p<0.05) for 

all within generations, 0.00%, 0.25%, 0.50%, and 1.00% and across, M1, M2, and M3 

for all treatments. At 0.50% colchicine treatment, 226.69±1.22 mg/Kg, 236.95±0.82 

mg/Kg, and 101.35±1.18 mg/Kg of Cr were recorded for M1, M2, and M3, 

respectively. While at 0.00% colchicine dose, 103.70±0.42 mg/Kg, 119.21±1.28 

mg/Kg, and 53.09±0.77 mg/Kg Chromium were recorded for M1, M2, and M3, 

respectively. Also, a statistically significant difference (p<0.05) was recorded during 

the experimental trials of Chromium uptake in Raphanus raphanistrum as presented 

in Table 4.13. A similar trend was observed in Lead uptake within all treatments in 

Raphanus raphanistrum. At 0.50% colchicine dose, 880.49±1.46 mg/Kg, 518.80±0.81 

mg/Kg, and 498.96±14.45 mg/Kg Pb were recorded at M1, M2, and M3, respectively. 

In addition, lower uptake of Pb was observed in plants treated with a 0.00% dose of 

colchicine in Raphanus raphanistrum. There was a significant difference (p<0.05) at 

0.50% colchicine treatment within all generations as presented in Table 4.13. 

4.6.4 Effects of colchicine dosage on plants’ morphology  

Effects of colchicine doses treatment on potentially toxic metals uptake and plant 

morphology were assessed in both species, R. raphanistrum and B. napus. An 

increased in Cr and Pb concentrations uptake in B. napus led to negative and not 

statistically significance correlations with the height and leaf broadness within all 

generations, M1, M2, and M3 (p>0.05) as indicated in Table 4.14. 

In R. raphanistrum, an increased Pb level resulted in a positive but not significant 

correlation with plant height and leaf broadness in all generations (p>0.05), as 

presented in Table 4.14. At the same time, Cr resulted in a positive but not significant 



75 

 

 

correlation between plant height and leaf broadness in M1 and M3. In addition, a 

negative and not significant correlation was observed in M2 as presented in Table 

4.14. 

Table  4.14: Correlation of plant height and leaf broadness to PTMs 

concentration and trial 

 
PTM M1 M2 M3 

BN Cr -0.15 (0.5436) -0.11 (0.6762) -0.12 (0.6471) 

 
Pb -0.07 (0.9052) -0.09 (0.1210) -0.15 (0.7204) 

RR Cr 0.06 (0.8093) -0.12 (0.6326) 0.38 (0.1175) 

 
Pb 0.28 (0.1015) 0.45 (0.1390) 0.19 (0.2845) 

Means numbers in parenthesis are p values 

Furthermore, a correlation analysis between the heights and leaf areas of the B. napus 

and R. raphanistrum treated with different doses (0.25%, 0.50%, and 1.00%) of 

colchicine against the control (0.00%) was evaluated. The results showed statistically 

no significant difference (p>0.05) in plant heights and leaf broadness for all B. napus 

across all generations and within all treatment doses of colchicine as illustrated in 

Figure 4.4. For R. raphanistrum, a similar trend was recorded in heights, however, 

there was significant different between treatment doses 0.50% and 0.00% (p= 

0.0283), r2=0.998 and between treatment 1.00% and 0.00% (p=0.0355), r2=0.997 in 

leaf broadness, Figure 4.4.  
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Figure 64.4: Heights (cm) and leaf broadness (sq. cm) of BN and RR in the Trials 

 

4.6.5 Efficiency of enhanced Brassica napus and Raphanus raphanistrum  

Percentage efficiency in potentially toxic metals removal was estimated at the optimal 

colchicine dosage, 0.50% for all treatments in all generations. This was calculated as 

the total mean concentration of the metals (mg/Kg) in each plant divided by the initial 

concentration in the soil multiplied by 100. The average Cr removal efficiency for B. 

napus, 74.88% was not significantly different from R. raphanistrum (p>0.05) but 

recorded a higher removal efficiency than R. raphanistrum, 68.60%.  In M3 

generation, B. napus had high percentage Cr removal efficiency of 60.22%, 

significantly different from that of R. raphanistrum, 36.92% (χ2 = 5.4454, d.f.=1, p= 

0.0196). 
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The average percentage of Lead removal efficiency was higher but not significantly 

different in B. napus, and lower in R. raphanistrum (χ2=2.3935, d.f.=1, p= 0.1218) as 

illustrated in Figure 4.5. In the M1 generation, the percentage of Lead removal by B. 

napus, 40.64% was high and significantly different (χ2 = 5.7569, d.f.=1, p= 0.0164) 

compared to that of Raphanus raphanistrum, 22.09%. 

 

Figure 74.5: Total PTMs uptakes per enhanced plants Brassica napus and 

Raphanus raphanistrum  
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CHAPTER FIVE 

DISCUSSION 

 

5.1.1 Potentially toxic metals in soils in the study area 

The PTMs results presented in Table 4.1, showed that the potentially toxic metals–As, 

Cr, Cd, and Pb concentrations (mg/kg) levels in soils from the study areas are within a 

similar range of a review study on potentially toxic elements (PTMs) monitoring in 

East Africa agroecosystems. In that study, the elements reviewed focused on Hg, Cu, 

Cd, Zn, Pb, and Cr which are most probably sourced from the use of agrochemicals as 

reported by Munishi et al., (2021). A  similar study on Cd, Pb, Zn, Cu, Cr, As, Hg and 

Ni in agricultural soils in Kenya also reported comparable concentrations of the 

metals as reported by Mungai et al., (2016). However, the mean concentration of Pb 

in all areas, 28.72±7.59 mg/kg was higher than the background values recommended 

by Hakanson and Bowen’s preindustrial standards as presented in Appendix IV. Other 

metals, that is, Cd and Hg were lower and below minimum threshold values 

respectively as presented in Table 4.2. These concentration levels in soil compared to 

a similar study in Baltimore in the United States reported by Qi et al. (2020), showed 

that Moiben recorded higher levels of As and Cr and lower levels for Cd, and Pb 

except for Hg which was not detected.  

Concerns over increasing levels of potentially toxic metal concentrations in 

agricultural soils have long been investigated to understand the health and ecological 

risks of PTMs and the possible transfer from soil into foods as discussed by Holmgren 

et al. (1993). As found in this study, increased Pb concentrations in agricultural soil 

are mostly associated with the use of agrochemicals, and the combustion of leaded 

fuel in vehicular and industrial wastes (Musa et al., 2017; Shi et al., 2019; Tóth et al., 
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2016). Soil health is crucial to sustainable agriculture, ecosystem services delivery, 

and human health. It enhances soil nutrients, microorganisms, carbon, and structure 

management and improves high productivity that supports food security (Chu et al., 

2019; Kibblewhite et al., 2008). Increased PTMs levels in agrarian soils lead to PTMs 

bioaccumulation in soil and food crops, hence leading to ecological and health risks 

according to Chen et al. (2016).  

On the other hand, potentially toxic metals including As, Cr, Cd, and Pb contaminate 

agricultural soils, synergistically and antagonistically reducing macro and 

micronutrient bioavailability to different crops and vegetables according to Khan et 

al. (2019). Several potentially toxic metals remediation techniques have been 

developed to minimize human exposure and improve soil quality for agricultural 

purposes, for example, phytoremediation, soil washing, excavation, electro kinetics, 

and metals binding (Awa et al., 2020). However, the levels of the metals from the 

study areas were within the range of some previous findings and standards as shown 

in Table 4.2. Correspondingly, the concentrations of As and Cr at all sampling sites 

were above the USEPA allowable limits of 0.110mg/Kg and 11.00mg/Kg, 

respectively; whereas Cd and Pb, did not exceed the regulatory standard, 0.48mg/Kg 

and 200mg/Kg, respectively (USEPA, 2002). The high levels of Cr are probably due 

to the use of various fertilizers, both organic and inorganic in the local markets. A 

study by Kinaichu (2020) on the levels of Cd, Cr, and Pb of bio-slurry (cow dungs 

and chicken droppings) and inorganic fertilizers (DAP, CAN, UREA, and NPK) in 

Kenya showed the highest detectable amounts of Cr in the inorganic fertilizers 

compared Cd and Pb in CAN, DAP UREA, and NPK, respectively. In addition, the 

elevated levels of Arsenic in agricultural soils in the study areas were not further 

investigated, especially source apportionment of the PTMs. However, elevated levels 
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of Arsenic in farm soils are as results of application of pesticides, fertilizers and use of 

As-polluted irrigated water in farming as reported by Wang et al. (2019); and Dahal et 

al. (2008). An elevated amount of Arsenic in agricultural soil poses several health 

problems. Furthermore, research in Taiwan conducted by Lee et al. (2021) found that 

increased levels of Arsenic in agricultural soils were associated with the prevalence of 

Parkinson’s Disease (PD) in that country. Agricultural soil plays an important role in 

food production and safety as it provides the means of food composition. Therefore, 

increased levels of potentially toxic metals in agricultural soils pose threat to PTMs 

translocation and bioaccumulation in food crops (Chen et al.,, 2016). This is typically 

common with Cd and Pb in cereal crops such as maize, rice, and wheat grown in 

contaminated agricultural soils (Feng et al., 2021; Zhang, Li, et al., 2018). Hence, 

prolonged exposure to PTMs through incidental ingestion via water, food, and 

vegetables or dermal to contaminated dust and soil, especially in children (As, Cd, 

and Pb) can probably lead to serious health consequences such as cancer, vital organs 

malformation, and retarded growth (Pruvot et al., 2006). In Kenya, several studies 

have attributed the high levels of PTMs in food to the increased levels in the soil. 

Among them, a study reported by Mongi et al. (2020) on cocoyam produced in the 

Lake Victoria basin indicated high levels of PTMs above the WHO levels in food and 

was related to the high levels of the PTMs in soils. In addition, research by Tenai et 

al. (2016) found PTMs (As, Cd, Cr, and Pb) in Lesser Flamingos tissues from Lakes 

Nakuru, Elementaita, Crater, and Oloidien as a result of high PTMs concentrations in 

the Lakes’ water and sediments resulting from agricultural runoff from the 

surrounding areas.  A similar study on Lakes Naivasha, Elementataita, Nakuru, and 

Bogoria that investigated PTMs comprising of As, Cd, Hg, and Pb acknowledged 

human activities as the primary cause of PTMs pollution in the Lakes. The results 
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further indicated that As and Hg may pose probable non-carcinogenic health risks to 

residents via ingestion from Lakes Elemenntaita, and Bogoria according to Yang et al. 

(2017). 

Also, the potential ecological risk per site computed values is disproportionate to the 

single factor results (Appendix III) and was generally high at the Pb level, but had low 

ERI, <40 as discussed by Pan et al. (2016). This is true for many agricultural-induced 

soil pollutions compared to industrial, smelting, and mining-induced soil pollutions, 

even though, these categorized contaminations are anthropogenic as discussed by 

Wang et al., (2013). Therefore, this level of potentially toxic metal pollution in soil 

calls for timely intervention to control, monitor, and manage through sustainable 

measures and avoid further Pb contamination of the soil. This will lower the likely 

probable harm of the potentially toxic metals in the study areas as reported by 

Abuduwaili et al. (2015).    

Increased potentially toxic metal concentrations in agricultural soil pose a health risk 

and lower soil quality according to Golui et al. (2019). Similarly, harmful to the 

environment is the use of inorganic fertilizers and pesticides in agriculture. These 

amendments pollute the environment and subsequently affect food quality (Gajić et 

al., 2018). Exposure to potentially toxic metals such as Hg, Cd, and Pb over a long 

period causes health consequences including carcinogenicity, mutagenicity, and 

teratogenicity as well as endocrine disruption and behavior change in children (Ali et 

al., 2013). With different background values (Appendix IV), environmental risk 

indices including Igeo, and ERI are widely used to evaluate and monitor potentially 

toxic metals pollution and toxicity in environmental matrices (Bahloul et al., 2018; 

Golui et al.,, 2019; Hakanson, 1980; Rostami et al., 2021).  
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5.1.2 Health and Ecological risk characterization  

5.1.3 Health risk characterization 

The CTR results are less than the minimum reference standards for children and 

adults in the study areas according to the USEPA environmental health assessment 

protocol. Therefore, the potentially toxic metals in the study areas are unlikely to pose 

a cancer risk to humans at present. Similarly, the HI for non-carcinogenic risk was 

less than 1, indicating no significant non-carcinogenic risk to exposed individuals 

including children and adults in the study areas per the USEPA assessment protocol 

used (USEPA, 2011). The finding is similar to a recent PTM study in agricultural 

soils from Iran. The study by Kharazi et al., 2021 reported that PTMs (Pb, As, Cd, 

and Hg) concentrations were lower than recommended standard. But reported high 

CTR and HI on the contrary (Kharazi et al., 2021). This result is parallel to a 

contemporary health and ecological risks study of contaminated agricultural soils 

conducted by Zhang et al., (2022) in China. Although the findings are dissimilar in 

terms of the empirical results, this could be due to the difference in physicochemical 

parameters of the distinct geographical locations and the anthropogenic activities in 

land-use changes (Zhang et al.,, 2020). In Africa, a study on PTM contamination in 

agricultural soil in Malawi showed low to moderate ecological risks as was found in 

this study (Mussa et al., 2020). Additionally, a case study on eight PTMs (Pb, Cd, Cu, 

Cr, Ni, Hg, As, and Zn) in agricultural soils from selected areas in Kenya was found 

to be near toxicity threshold values in line with the USEPA regulatory standards.  

The ecological risk index of PTMs showed increased levels of anthropogenic impacts 

in agricultural soils primarily due to increasing unsustainable agricultural techniques 

and amendments, urbanization, and industrialization (Mungai et al.,, 2016). As the 

PTMs, Cd, and Pb levels found in this study, a similar previous study in the study area 
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(Moiben), found that PTMs concentrations in agricultural soils showed relatively high 

levels of the contaminants in soil samples but within WHO allowable standard limits 

as was reported by Akenga et al. (2020).  

5.1.4 Ecological risk  

The ecological risk indices including Geo-accumulation (Igeo) factor and ecological 

risk index (ERI) were used to evaluate the anthropogenic footprint of PTMs in 

agricultural soil in the study areas.  With different background values (Appendix IV), 

environmental risk indices are generally used to assess and monitor potentially toxic 

metal pollution and their probable toxicity in environmental matrices (Bahloul et al.,, 

2018; Golui et al.,, 2019; Hakanson, 1980). The indices also are used to assess the 

intensity of human activities on the presence and spread of the PTMs in surface soils 

as discussed by Barbieri (2016). The results of the geo-accumulation factor ranged 

from 21-72mg/kg Cr and 24.69-53.84 mg/kg Pb as found in Moiben, which recorded 

relatively the highest Igeo compared to others in the study area.   

The Igeo indicated that the pollution of Cr and Pb ranged from low to extremely high 

contamination levels. The below 40 ecological risk index in the study area indicates 

low ERI as presented in Table 4.2. These results showed that there are Cr and Pb 

contaminations in the study areas that required remediation efforts to minimize the 

levels of PTMs in soil and their subsequent transfer into the food chain as suggested 

by Dogra et al. (2020). These results are similar to the geo-accumulation study of 

PTMs in agricultural soils. as reported by Rostami et al., (2021) which found that Cd 

and As were moderately contaminated and showed a low ecological risk for the 

PTMs. It further stated that the contamination levels of the PTMs are a result of 

anthropogenic activities mainly agrochemicals, such as pesticides and fertilizers used 
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in agriculture. This argument is supported by a study report conducted in the soil near 

a fertilizer production plant in Egypt. The study found that elevated levels of PTMs, 

Cu, Cd, Pb, and Zn in the sampled soils were above the national background and 

WHO levels; also the Igeo and Contaminated factor showed high contamination 

degree according to Mohamed et al. (2014) and Ullah et al. (2020). A related study 

reported that Cd and Pb in agricultural soil from Thall, Dir-Kohistan recorded low to 

moderate Igeo contamination with higher ERI, particularly from Cd which exceeded 

40 in the area.  

Also comparable to the finding in this study is an assessment report of PTMs in 

agricultural soil in Morocco. According to Oumenskou et al. (2018), the elevated 

levels of PTMs found in soils are an indication of the human activity’s impacts on the 

soils in the study area. Similarly, in Ghana, PTMs assessment in soils from various 

human activities including vehicle overhauling, oil exchange, and spraying fields 

showed alarming levels of the metals which were followed that the ecological risks, 

ERI, and Igeo of the Pb, As, and other PTMs were heavily contaminated in the surface 

soils as reported by Asamoah et al. (2021). According to a study reported by Wanjala 

et al. (2020)  in Ortum, Kenya on selected PTMs, Cr, Pb, As, and Cu among others in 

soils from various environmental matrices showed that the Igeo ranged from 0.4 to 

4.92 mg/Kg and ERI, 19.69 were moderately contaminated and posed low ERI 

pollution, respectively. A similar finding was reported from the sediments in Lake 

Naivasha, Kenya indicating low to moderate contamination of the sediments which 

also confirmed human interferences with the environment as reported by Maina et al. 

(2019). This finding was recently supported via research conducted by Njogu et al. 

(2021) in which PTMs (Pb and Cd) concentrations in soil, sediment, and food samples 
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in the Lake Naivasha basin reported high values as a result of increased agricultural 

activities in the lake’s basin. 

5.2 Physicochemical parameters of soil 

5.2.1 Soil pH  

Soil pH plays a pivotal role in potentially toxic metals and nutrient availability, 

distribution, and uptake by plants in soils (Solis et al.,, 2005). Table 4.5 and Table 4.1 

summarizes the physicochemical parameters and the PTM concentrations in the study 

area, respectively. The agricultural soil was found to be acidic, pH of 5.20 with 

relatively high concentrations of Pb, 35.97±0.41 mg/Kg, and Cr, 48.19±1.51 mg/Kg. 

The pH and PTMs concentrations were slightly higher in a non-agricultural (neutral) 

soil in the same area, that is, pH 5.39, Pb 36.03±1.14 mg/Kg, and Cr 48.23±0.46 

mg/Kg. Thus, it is widely accepted that low pH enhances increased potentially toxic 

metal concentrations, but on the contrary, this study found that the PTM concentration 

in the neutral soil, with a slightly high pH, had higher Pb concentrations with no 

significant difference, Table 4.4. Though it is difficult to conclude what led to these 

differing results, however, other studies have reported similar contrary results in pH-

PTMs concentrations in soils (Khaledian et al., 2017; Mao et al., 2019). A student t-

test conducted found that there was no significant relationship between the pH, Cr, 

and Pb in the agricultural and neutral soils collected from the study areas. This could 

be due to the kind of farm practice, the areas are largely involved in mixed cropping, 

maize and wheat farming with the use of inorganic fertilizer and other amendments 

that subsequently leach nitrogen and increases phosphorus, and potassium hence 

increasing soil pH as stated by Lv et al. (2020). The low soil pH is also accredited to 

agrochemicals use, particularly sulfur-containing. Ammonium-based fertilizers and 
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carbamate (urea). These chemical substances including atmospheric depositions and 

precipitation of acidifying gases increase soil acidity (Goulding, 2016).  

The high concentration levels of PTMs in the study areas could also be a result of 

intense anthropogenic activities, mainly agriculture including fertilizer and pesticide 

applications (Shan et al., 2013; Su et al., 2022). This lowers the soil pH and increases 

the bioavailability of PTMs in crops. High intake of bioavailable PTMs from the soil 

into crops and vegetables increases the ecological and health risk of the consumers 

including humans, animals, and the ecological communities (Ali et al., 2019; Lian et 

al., 2019).  

5.2.2: Organic Matter  

 

The biochemistry of soil organic matter is an important, complex, and dynamic soil 

physicochemical parameter that contributes greatly to the functioning of the soil 

environment and the welfare of the soil ecosystems. It contains mostly carbon, the 

constituent backbone of living matter. The biogeochemistry, that is, the composition, 

distribution, and interaction of organic and inorganic matters, for example, PTMs are 

to a larger extent regulated by soil organic matters (Ondrasek et al., 2019).  In this 

study, the soil organic matter, 1.84 % in agricultural soil was slightly higher than 

1.38% in non-agricultural soil with low soil pH, 5.20 and 5.39, respectively. This is 

similar to a study by Enya et al., (2020); the authors reported that soil pH plays 

important role in the regulation and distribution of soil organic matter in contaminated 

soils.  A similar study report was also described by Cao et al., (2019), using B. napus 

to test soil physicochemical parameters on the bioavailability of PTMs, Cd, and Pb. 

The result showed that PTMs (Cd and Pb) concentrations in the rape oilseed strongly 

correlated to the soil organic matter, available phosphorus, and potassium in 
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agricultural soil as reported by Cao et al. (2019). Also, a study report on the 

bioavailability of Cd and Pb in Maize from an agricultural field indicated that 

synergic effects of combined soil pH and organic matter were strongly correlated to 

the PTM uptake  (Hou et al., 2019).      

In the forest, a study conducted in Poland reported that physicochemical parameters, 

such as pH, and Nitrogen were highly impacted in roadway forested areas, 

subsequently increasing the sodium concentration that antagonistically increased soil 

pH and organic matter concentration (Kupka et al., 2021; Łyszczarz et al., 2021). A 

study report on the disturbed cultivated (anthropogenic impact) and undisturbed lands 

in Cameroun showed a significant increase in the available nitrogen, potassium, 

phosphorus, pH, and cation exchange capacity within the forest soil than in cultivated 

soil. This is in line with our finding, except for soil organic matter which indicated an 

opposed trend (Tellen et al., 2018); a parallel result was also reported in Ethiopia in a 

comparative physicochemical parameters study on forest and agricultural soils which 

showed low pH in agricultural land than forestland with a significant difference as 

reported by Assefa et al. (2020). A similar trend was reported in Nigeria where the 

natural forest indicated the highest levels of soil chemical parameters (organic matter, 

cation exchange, phosphorus, and total nitrogen) than arable land, plantations, and 

farmlands reported by Olorunfemi et al. (2018). On the contrary, it was found that 

anthropogenic and natural phenomena affect the biogeochemistry of soil. The report 

further highlighted that human impact acidified areas had a high level of 

exchangeable Al+3 than the natural site, contrary to our finding as stated by Pavlů et 

al. (2021). In summary, land-use change including anthropogenic activities such as 

crop farming, animal grazing, deforestation, and mineral extraction rigorously affects 
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soil physicochemical properties. Moreover, these parameters can be used to measure 

human impacts on the serene environment. 

5.3 In vitro bioaccessibility 

The relative bioaccessibility of the potentially toxic metals, Cr and Pb varied in the 

study area. The results indicate high bioaccessibility of Lead than chromium, Pb>Cr. 

The results showed that in vitro bioaccessibility of PTMs in the agricultural soil varies 

across the study areas and is related to physicochemical properties (Fernández-

Landero et al.,, 2021; Guo et al.,, 2022). The Bioaccessible amounts of Pb and Cr 

were 11.88% and 0.77%, respectively.  Humans and ecological risk research 

conducted by Louzon et al., (2020) on the bioaccessibility of PTMs in soil reported 

similar results on As, Cd, and Pb (Louzon et al., 2020). These results are comparable 

to another study on Pb in agricultural soils (Misenheimer et al., 2018). The 

Bioaccessible amounts of Cr were far lower than their total concentrations in soil, 

48.19±1.51 mg/Kg. However, Cr bioaccessibility amounted to the lowest in this 

study. There are few literature reports on Cr bioaccessibility in agricultural soils. The 

bioaccessibility and total concentrations of Cr as reported in this study are similar to 

some studies in agricultural soils (Wang, Wei, et al., 2021; Xie et al., 2018).  

The likely effect of PTM's total concentrations and in vitro bioaccessibility (IVBA) 

concentrations of each metal in the soils was studied employing correlation analysis. 

The relationship between the physicochemical parameters and in vitro bioaccessibility 

was significant for Pb except for Al+3 and H+ as indicated in Appendix IX. Similarly, 

the correlations between the physicochemical parameters and in vitro bioaccessibility 

of PTMs in soils from the sampling location were significant and strongly related. 

Similar studies have reported a strong correlation between the physicochemical 

parameters and percent bioaccessibility of PTMs in agricultural soils; in Baoji 
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Northwestern China (Ai et al., 2019), Naples, Italia (Agrelli, Caporale, et al., 2020); 

and Tharsis (Spain) agricultural soils influenced by acid mine drainage closed to a 

historic mining site (Fernández-Caliani et al., 2019).  

Soil pH is fundamental in soil bioaccessibility assessment, and a study on soil 

microbial and PTM availability was conducted. The results showed that among the 

soil physicochemical parameters, the soil pH was the dominant factor to distinguish 

different land use activities and the PTM contamination in soil  (Xiao et al., 2022).  

An in vitro bioaccessibility of selected PTMs in the soil also indicated that in addition 

to the soil pH, the geochemistry and geology of the soil sample including the 

composition of the bioaccessibility extracting solutions influenced the bioaccessible 

amount of  PTMs in soil (Fernández-Landero et al.,, 2021). The total concentration of 

the PTMs in soils also influenced the results of PTMs bioaccessibility, a study 

conducted by Soltani et al. (2021) reported that the bioaccessibility of PTMs in soils 

is generally explained by the total concentrations of PTMs in the soils. These study 

reports agreed with our finding that the total concentration and physicochemical 

parameters, soil pH, and OC percentage of PTMs in soil influence the bioaccessibility 

of PTMs in soil from the study areas. Other physical parameters of soil that  also 

influence bioaccessibility of PTMs in soil are the particle size, aggregate and the soil 

class, for example, sand, loam, or clay (Wang, Xue, et al., 2021). Several studies have 

compared and reported in vitro bioaccessibility and the health risk of PTMs in soil. 

The results are mostly parallel, that is, increasing bioaccessibility often results in 

increased health risk of PTMs in the soils as reported by other studies (Cao et al., 

2020; Liu et al., 2019). 
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5.4 Brassica napus and Raphanus raphanistrum seeds germination  

Various seed priming techniques were used to induce germination in Brassica napus 

and Raphanus raphanistrum. Priming is an experimental procedure, a less expensive, 

and maneuverable technique that helps to improve seed germination and enhance 

early seedling emergence, and stem formation against environmental stress conditions 

(Ashraf et al., 2018). Seeds priming techniques have a great influence on the overall 

performance of plants. It improves the physiology of the plants, that is, the 

biochemistry and phenotypic characteristics including heights, growth, yields, and 

development quality (Zulfiqar, 2021). Different seed priming procedures have been 

used to enhance seed preservation, cultivation, and viability. Seed dormancy and 

vigor significantly impact plant development and evolutionary characteristics (Rao et 

al., 2019).  There are several means of seed priming, including osmo-priming, hydro-

priming, chemical priming, physical priming, Nano-priming, and hormonal priming 

(Lutts et al., 2016; Nawaz et al., 2013). Modern technological method of priming, 

cold-plasm (CP) is gaining attention. This new technique involves the production of 

low-frequency charged particles at low pressure from various kinds of reactors to 

which seed samples are exposed directly or indirectly within specified times (Shelar et 

al., 2022). It is affected by several other factors including temperature, aeration, 

photosynthesis, prime time, and characteristics of the seed(Waqas et al., 2019). Seeds 

priming techniques are used to develop traits in plants for different physiological and 

environmental stress factors. It is lately used by plant breeders to develop drought 

resistance crop seeds in arid and semi-arid areas amidst the global climate crisis as an 

alternative low-cost for drought tolerance seed production to mitigate food insecurity 

(Marthandan et al., 2020). This technique in combination with other agronomic 
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practices such as proper spacing also helps to improve the harvest time, yields, and 

productivity of crops and boost the economic returns for farmers (Farooq et al., 2020).  

5.4.1 Chemical priming  

There are several chemical germination agents used to prime seeds including KNO3, 

H2O, HCl, and H2SO4 using different concentrations for different seeds depending on 

the secondary dormancy and stress resistance. Halo priming using 0.1M of KNO3 

used for the two species was very effective for B. napus compared to R. raphanistrum 

which agreed with similar studies report (Abdollahi et al., 2012; Omidi et al., 2011).  

Also, used were H2SO4 and HCl on the same crops. The seeds were exposed to the 

acid solutions for a shorter time compared to KNO3, that is, 5 minutes and 30 minutes, 

respectively. Hydrochloric and sulfuric acids blocked germinations in B. napus and R. 

raphanistrum contrary to the halo-chemical, KNO3, and this is also true for other 

related studies (Rincón-Rosales et al., 2003). However, a similar study using the same 

acids, HCl and H2SO4 showed high germination rates in other species of Brassicaceae 

contrary to this study (Barmukh et al., 2008; Bhoyar et al., 2010; Kanmegne et al., 

2017; Rincón-Rosales et al.,, 2003). On the contrary, the use of acid to improve seed 

germination is commonly practiced. The acid, for example, sulfuric acid can be used 

to remove seed husks and enhance germination in seeds compared to manual cleaning 

and flaming. A study report showed that acid cleaning increased seed germination 

efficiency and cleaning (Pedrini et al., 2019). 

  

5.4.2 Hormonal priming  

Gibberellic acid (GA3) is a plant hormone used to enhance germination in plants. 

Hormonal priming using GA3 that stimulates diverse metabolic synthesis in plants 

was used to induce laboratory seed germination, extensive growth, and flowering as 
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reported by several studies (Gupta et al., 2013; Schwechheimer, 2008). A single 

concentration dose, 0.25mg/L, of GA3 was applied to induce germination in Brassica 

napus and Raphanus raphanistrum. The results, 80% and 70%, germination for BN 

and RR, respectively were achieved. In this experiment, GA3 was the most promising 

and effective priming agent, confirming similar studies on GA3 to enhance 

germination in Brassicaceae (Bojović et al., 2010; Chauhan et al., 2006; Li et al., 

2010). Gibberellic acid enhanced seed germination in many different seed types that 

show secondary dormancy traits. GA3 enhances seed germination through the 

inducement of growth by lowering the physical barriers in the closed environment 

(Tuan et al., 2018). A study by Tsegay et al. (2018) agreed with our finding using a 

similar concentration of GA3 to induce germination in maize, Pisum sativum, and 

Lathyrus sativa seeds germination was effective. The hormone enhanced germination 

percent, shortened the average germination period, and increased growth in the crops. 

The long-term beneficiary effects of GA3 priming on seeds have also been reported. 

According to Ma et al. (2018), L. chinensis seed primed with a single GA3 treatment 

has a worthy growth-promoting, such as increased germination, biomass (fresh and 

dry weight), and plant height in subsequent seasons.  The effects lasted though in 

certain plant species, and at specified concentrations, GA3 slows the germination of 

some seeds (Ghodrat et al., 2012).  
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5.5 Phytoremediation 

5.5.1 Effects of enhanced Brassica napus and Raphanus raphanistrum in PTMs 

uptake 

In this study, selected Brassicaceae plants were modified to ameliorate their efficacy 

to decontaminate PTMs polluted soils. There are several enhancement techniques, but 

chemical modification using colchicine was used to induce growth, development, and 

resistance in Brassica napus and Raphanus raphanistrum as reported by Nedjimi 

(2021). The different treatment doses, 0.00%. 0.25%. 0.50% and 1.00% colchicine in 

Brassica napus and Raphanus raphanistrum for PTM removal in contaminated 

agricultural soil were assessed. The treated plants turned to absorb more PTMs at the 

medium dosage (0.50%) of colchicine compared to the minimum and maximum 

doses, 0.25%, and 1.00%, respectively. An increased PTM absorption trend as a result 

of colchicine treatment was observed from minimum to medium before the plants’ 

absorption trend turned to reduce absorption with a high concentration dose of 1.00%. 

This showed that high-concentration dosages of colchicine are possibly toxic to 

treated plant growth as was `reported by Hansen et al. (1996).  As found and reported 

in this study, plants generally strive to grow and develop in stress conditions, such as 

in potentially toxic metals-contaminated soils when treated with minimum to medium 

dosages of colchicine (Abello et al., 2021; Kara et al., 2018). Colchicine treatment 

enhances increased growth in plants' root hairs, leaves, and biomass. This improves 

the plant’s potential to uptake potentially toxic metals, mostly in the biomass, 

especially in the roots as was reported by Feng et al. (2019). A similar growth pattern 

was observed in this study with both plants, Brassica napus and Raphanus 

raphanistrum across all planting trials. A correlation study analysis (Table 4.12) 

showed that there was no positive significant relationship between the concentrations 
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of PTMs removed from soil to the morphology, height, and leaf broadness in the 

treated plants. This is similar to studies that reported comparable results on plant 

height and leaf areas treated with a low dose of colchicine (Zahedi et al., 2018). 

Colchicine has also been used in crossing the breeding of Brassicaceae. The treatment 

of B. junea x B. oleracea with 0.05 to 0.25% resulted in a successfully fertile and 

partly established allohexaploid as reported by Mwathi et al., (2020). Similarly, 

treatment of Raphanus sativus L. with different doses and durations of colchicine 

from 0.05 to 2.00% and from 1 to 12 hours, respectively. The results showed that 

treatment with 1.0% colchicine for 1 hour was effective to produce breeds, thus with a 

significant reduction in the leaf and root width as reported by Kim et al. (2022).  

Colchicine concentrations of 0.50% and 1.00% showed significant morphological 

enhancement in the leaf areas of Raphanus raphanistrum by enhancing their potential 

bioaccumulation of potentially toxic metals, especially for Chromium in the leaf, root, 

and stem (Table 4.8). This finding corresponds to several similar study reports of 

colchicine-induced putative plants in phytoremediation using the Brassicaceae family 

of plants. A similar study using red-flesh radish with similar concentration doses of 

colchicine was comparable in morphological and phytoextraction characteristics of 

the treated plants as was reported by Chen et al. (2021). Also, other species of 

Brassicaceae including Lepidium sativum and L., Aethionema, L, used in different 

communities for food, medicine, and ornaments have shown similar results of PTMs 

uptakes (Aqafarini et al., 2019; Manzoor et al., 2018). The results also agree with the 

finding by Rodiansah et al. (2020) on Setaria Italica (L.) Beauv, when treated with 

different doses of colchicine increased leaf broadness, that is, length, width, and 

diameter with little change in the plant height.  



95 

 

 

In terms of the different plants’ organs: roots, stems, leaves, and seeds, the roots 

uptake and store more PTMs than other parts of the plants. This phenomenon is 

fundamental, mainly in potentially toxic metals phytoextraction studies as discussed 

by Rezvani et al. (2011). The roots are the primary lines of PTM extraction in hyper-

accumulating plants in most phytoremediation studies. Overall, Chromium was the 

most absorbed metal in both plants, with about 87.91%, 76.51%, and 60.23% percent 

absorption efficiency in Brassica napus against 82.57%, 86.30%, and 36.92% percent 

absorption efficiency in Raphanus raphanistrum for planting trials: M1, M2, and M3, 

respectively as presented in Appendix V. This finding is similar to an assisted 

phytoremediation study report of ryegrass multiple PTMs decontamination 

experiment, in which a triple voltaic electrical current treatment of ryegrass increased 

the plant’s roots and shoots potential to uptake more Pb, Cd, and Zn from the PTMs 

contaminated soils in a greenhouse study as by Keshavarz et al. (2021).  

From the results of colchicine, treated plants, at 0.50% enhanced Brassica napus and 

Raphanus raphanistrum PTMs uptake compared, the latter removed more Cr in M2 

than M1 and M3, while the former, removed more Cr and Pb in M1 than M2 and M3. 

The result is similar to others on colchicine enhancement in plant breeding (Chen et 

al., 2021; Manzoor et al., 2018).  

Even though there are several species of chromium in the environment, the results 

presented herein focus on non-radioactive, total Chromium in soil that is naturally 

occurring on the earth and induced by anthropogenic activities (Jin et al., 2018; 

Ranieri et al.,, 2020). This study is similar to a phytoremediation study conducted by 

Tabinda et al. (2018) on Chromium and Copper (Cu). In their research report, the 

former was efficiently removed with a higher percentage. Another study also that 

agreed with this report on Cr removal efficiency in phytoremediation, including the 
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addition of fungi to enhance plant PTMs uptake, is reported in several pieces of 

literature (Hussain et al., 2018); Shehata et al. (2019). 

 

Plate 25.1: Root masses of treated M1 and M2 Raphanus raphanistrum 0.50% 

colchicine 

In the phytoremediation of PTMs from the soil, the roots played critical roles 

comprising of providing the surface area for the biochemical activities, storage, and 

channeling of the PTMs from ground to shoot. It forms the soil-plant interface where 

complex biogeochemical activities occur, including phytoaccumulation, 

phytoextraction, and translocation of PTMs to other parts of the plant. Sometimes, the 

plants biodegrade, stabilize or volatilize the PTMs in soil (Tangahu et al., 2011). This 

biochemistry involves chelation formation, a molecular compound that provides 
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bonding for metal ions in which the ligand binds through the exchange of the donor 

atoms. Plant’s capacity to signal and synthesize various metal chelators including 

Phytochelatin, metallothioneins, or ferritin, the more that plant can decontaminate 

PTMs from soils. Synthesis of the chelates enhances the plant's PTM uptake, storage, 

and resilience to metal polluted soils environment. This process occurs at the interface 

of the soil-plant barrier in soil; the process involves in vivo/in vitro chemical activities 

as discussed in Kumar et al. (2016) research report. Though synthetic chelators are 

available, phytochelatins are oligomers formed by phytochelatins synthase in plants, 

fungi, and algae where they enhance PTMs decontamination. This induces more 

secretions of chelates, hence hyperaccumulation of PTMs. The plant’s response to 

potentially toxic metal stress, mostly as an antioxidant is the most effective 

mechanism for PTMs tolerance in plants (Kumar et al., 2019). This complex process 

is also considerably affected by other processes such as plant species, soil pH, PTMs 

bioavailability, and enhancement techniques (Awa et al.,, 2020). According to Gul et 

al. (2020), enhanced phytoremediation of Pb in a pot experiment yielded high results 

especially in the root when synthetic chelators, EDTA, ammonium nitrate, and nitric 

acid were applied in the soil. Acidic soil (pH 0.1-pH 6.5) enhances PTMs' 

bioavailability and then phytoremediation. Soil pH is critical to PTMs' 

biogeochemistry; it provides the ideal conditions for chemical reactions including 

redox and potentiometric reactions to take place. Low soil pH increases the solubility 

of PTMs in soil, consequently increasing PTMs' bioavailability and phytoremediation 

(Yan et al., 2020; Yuan et al., 2021). The report also agrees with the finding by 

Poursattari et al. (2022) in EDTA-enhanced soil where Brassica napus removed high 

concentrations, more than 98% of Pb in the soil. Likewise, EDTA-assisted 

phytoremediation of PTMs using Bryophyllum laetiveriens from contaminated garden 
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sludge soil was about 2 to 6 more effective compared to the control, particularly in 

bioaccumulation of the PTMs in the roots as reported by Li et al. (2020). 

Our study was aimed at PTMs decontamination in Moiben soil using enhanced plants, 

Brassica napus, and Raphanus raphanistrum to optimize their potential to uptake 

PTMs without selection as discussed by Gavrilescu (2022). It was observed that this 

led to the formation of elaborate root mass (Plate 5.1). The enhanced plants had 

higher uptake of PTMs and were optimum at 0.50% of colchicine for both species of 

the second generation. This is confirmation of the enhancement of phytoremediation 

of PTMs in polluted soil. This led to the high uptake of PTMs: Cr and Pb in soil, 

particularly in the M2 generation at optimum treatment, 0.50% Colchicine. In our 

report of three planting trials, the overall root performed better than other plants’ 

organs. It was found that at this treatment level that in Brassica napus, 92.41% of the 

total removed Pb was found in the root followed by 3.19% in the leaf. For Cr in the 

same plant, 35.11% of the absorbed was found in the root followed by 30.84% in the 

leaf. As for Raphanus raphanistrum, 58.87% of the total absorbed Cr was found in 

the root followed by 49.52% in the leaf; however, 50.42% of total absorbed Pb was 

found in the leaf closely followed by 46.42% in the roots. This finding agrees with 

enhanced phytoremediation studies’ reports in which plant treatment led to root 

improvement and subsequently PTMs decontamination (Luo et al., 2016). This 

finding also corresponds to a study by Perotti et al. (2020), where enhanced hairy 

Brassica napus root removed about 98% Cr from the solution. Similarly, our finding 

agrees with a study by Pino-Vallejo et al. (2021). In their study report of Raphanus 

raphanistrum phytoremediation of Pb from wastewater sludge mud, the roots 

efficiently absorbed about 16.40% Pb more. Moreover, it was reported that 

chemically treated Raphanus raphanistrum among other plants, was effective in 
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PTMs (Pb, Cd, Ni, Zn, and Cu) decontamination in soil. In environmental 

management practices, these plants can be used to produce diesel fuel, Brassica napus 

and biomass energy, and Raphanus raphanistrum from the high calorific biomass 

through what is termed Integrated phytoremediation (DalCorso et al., 2019), after 

which the residues can be disposed of appropriately as hazardous wastes.  

5.5.2 Enhanced phytoremediation of Brassica napus and Raphanus raphanistrum  

Enhanced phytoremediation is a promising environmental technology that has drawn 

more research toward seeking hyperaccumulating plants. Chemical inducement, 

genetic engineering, biotechnology, and microbial use have increased incredibly in 

this regard. The phytoremediation potential of chemically induced plants, Raphanus 

raphanistrum, and Brassica napus was tested using empirical analysis. There is 

presently no single authorized conventionally agreed definition to characterize hyper-

accumulating plants in phytoremediation studies. Scientists and research groups use 

different criteria to define hyperaccumulation according to Farooqi et al. (2022). A 

few criteria have well-defined hyperaccumulation in terms of specific metals 

absorption capacity, for example, Nickel (Ni), Lead, Chromium, and Cadmium, or 

some define it in terms of empirical computation, for example, Bioaccumulation 

Factor, Bioconcentration Factor, and Translocation Factor and other define it in term 

of the potential of plants use in phytoremediation studies (Alaboudi et al., 2018; Deng 

et al., 2018). A Bioconcentration factor less than one and a translocation factor value 

greater than one computed in soil-plant ratio indicate phytoextraction potential; 

whereas a bioconcentration factor greater than one and translocation factor greater 

than one shows bioaccumulation potential (Mellem et al., 2012; Takarina et al.,, 

2017). In a review study of two decades search of hyperaccumulators of PTMs in 
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China, a Brassicaceae, Arabis peniculata is enlisted among classified hyper 

accumulating plants in China for PTMs Cd, As, Cr, Pb, and Zn as its bioconcentration 

and translocation factors were greater than 1 as reported by Li et al. (2018).  

The BCF results (Table 4.10) showed B. napus roots and leaves were encouraging 

potential hyperaccumulating species for phytoremediation and decontamination of Cr-

polluted soils. R. raphanistrum showed a similar pattern. With regards to Cr, it was 

discovered that Pb, although more than 40 percent of it was removed, was not 

bioconcentrated and a little amount could be moved from the root to the shoot. The 

research universally is continuing to investigate and develop more methodologies at 

present. This finding is similar to the study report by Rosca et al. (2021), where B. 

napus showed poor translocation of Pb and Cd from root to shoots in the 

phytoremediation experiment. It also corresponds to a similar study on various plants 

including B. napus for phytoremediation of Pb and Ni where B. napus 

underperformed compared to others (Kaur, 2018). In addition, a similar study in a 

Mexico mining area reported that, local widely distributed tailings weed, V. 

Campechiana a  hyperaccumulator of PTMs, Cr, Pb, and Cu as can bioaccumulate the 

PTMs in its biomass, roots, and leaves from the soils as reported by Santoyo-Martínez 

et al. (2020). 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 Introduction 

The study aimed to evaluate and improve phytoremediation of selected potentially 

harmful metals, such as Pb, Cd, Cr, Hg, and As, found in agricultural soils from 

Kaprobu, Kosyin, Moiben, and Ziwa located in Uasin Gishu County, Kenya that can 

be replicated to bioremediate other PTMs contaminated soils. The study analyzed the 

concentration levels of PTMs in the soils, as well as their in vitro bioaccessibility and 

physicochemical properties. In addition, the study found, improved, and evaluated 

two locally available Brassicaceae species, B. napus, and R. raphanistrum, as 

promising potential phytoremediation species of PTMs polluted soils; and from the 

study results, the following conclusions were drawn.  

6.2 Conclusion  

The PTMs concentrations in the soil samples from the study areas ranged from 0.08-

0.13mg/Kg Cd, 2.99-6.39mg/Kg As, 6.46-35.89mg/Kg Pb, and 14.37-48.19mg/Kg Cr 

whereas Hg was not detected. The PTMs, As and Cr generally exceeded the USEPA 

regulatory standards of PTMs in agricultural soil, while Cd and Pb were within 

acceptable limits. Similarly, when compared with Tanzania's national/FAO standards, 

only As (1.0mg/Kg) was found to be high. However, when compared with the WHO 

Standards of PTMs in agricultural soils, As, Cd, Cr, and Pb in the study areas were 

above the allowable limits. Nonetheless, the environmental risk assessment indices, 

Geo-accumulation (Igeo), and ecological index (Eri) revealed that there are 

anthropogenic impacts of pollution in the study area. Whereas, there was a low 



102 

 

 

chance of carcinogenic and non-carcinogenic risks to exposed individuals-children 

and adults from selected potentially toxic metals, Cr and Pb in the research study.    

From the physicochemical parameters assessed, the soil pH and organic matter 

concentrations in the study areas were low. This low soil pH leads to soil acidity and 

subsequently reduces organic matter and increases PTM solubility. The lowering of 

soil pH can be naturally caused by soil geochemistry or induced by anthropogenic 

activities such as land-use change and the addition of nitrogen-based fertilizers. This 

may have been caused by the use of agrochemicals, mostly inorganic fertilizers and 

pesticides in farm amendments. This trend, if continues will aggravate potentially 

toxic metal levels in agricultural soils in the study areas. Moreover, the 

bioaccessibility of PTMs in soil was measured. The results showed that the 

bioaccessible amounts of the PTMs, Cr and Pb were low, 0.77% and 11.88%, 

respectively. It can be concluded from these values that the PTMs are less 

bioavailable for absorption in organisms upon exposure (Darko et al., 2022). A strong 

association was found between the soil pH and organic matter on one hand and in 

vitro bioaccessibility, Cr, and Pb on the other hand. Notwithstanding this low 

bioaccessible amount changes with time, unsustainable land-use practices including 

excessive use of inorganic fertilizers will equally increase PTMs in vitro 

bioaccessibility in the study areas. 

Germination test in the Brassicaceae seeds conducted using various priming agents 

showed that germination was effective in B. napus and R. raphanistrum when primed 

with 0.25mg/L of gibberellic acid (GA3) hormones and 0.1M of KNO3 alkaline. 

Although chilling the seeds was partially efficiently breaking secondary dormancy 

and inducing germination in the Brassicaceae, it was not effective. Hydro priming, 

which utilized distilled water, was completely poor and ineffective. 



103 

 

 

Furthermore, it was found that the optimal treatment for both plants, B. napus and R. 

raphanistrum in enhanced phytoremediation was achieved at a concentration 

treatment dose of 0.50 % colchicine, especially in M1 and M2 generations.  Therefore, 

a higher concentration dose of colchicine, 1.00 % resulted in a decreased level of 

PTM absorption in the plants. B. napus and R. raphanistrum showed promising 

potential for enhanced PTMs phytoremediation, particularly from contaminated soils. 

Enhanced B. napus and R. raphanistrum were able to remove up to 74.88% and 

68.60% of Cr from the soil, respectively. Similarly, 44.0% and 22.00% of Pb were 

removed respectively by B. napus and R. raphanistrum. Treatment with colchicine 

enhanced morphological development in plant heights, root systems, and leaf organs. 

B. napus had a higher percentage of PTMs removed from soils compared to R. 

raphanistrum; nevertheless, the latter is empirically effective in PTMs removal when 

compared to the former, notably for Cr decontamination. The chemically modified R. 

raphanistrum has a hyperaccumulation potential compared to that of B. napus. 
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6.3 Recommendations 

From the research finding, the following are recommended:  

1. From this study’s results, PTMs bioremediation in agricultural soils in the 

study areas as the present levels of As and Cr exceeded the USEPA regulatory 

standards in soils. In addition, it is recommended to continuously monitor the 

soils and pay keen attention to PTMs, Pb as its levels were relatively high 

compared to Cr even though it was found within the limits of USEPA 

regulatory standards.   

2. In addition, from the enhanced phytoremediation trials, it is recommended to 

use 0.50% colchicine concentration treatment to enhance B. napus and R. 

raphanistrum, especially for the decontamination of PTMs polluted soils in 

the study areas and elsewhere.  

3. This study found that enhanced B. napus and R. raphanistrum have promising 

potential in the phytoremediation of PTMs, Lead, and Chromium in polluted 

soils; however, it is recommended to conduct a study aimed at understanding 

the biogeochemical mechanism of the soil-plant interface where the 

biochemistry of PTMs uptake occurs in the phytoremediation. 
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APPENDICES 

Appendix I: Exposure factors used in the human health risk for rate model  

Reference exposure risk assessment parameters used by the United States 

Environmental Protection Agency.  

NB: the United Nations Population Division projection of the life expectancy at birth 

for an average Kenyan is 66.669 years, that is, approximately ⁓70 years as used in 

this study (UNPD, 2019). 

Parameters Unit  Children (1-6years) Adult  

Lifetime (LT) years  70 

Average Time Carcinogenic Days  25,550*LT=25550 365*LT=25550 

Average Time Non-Carcinogenic Days  365*ED=2,190 365*ED=8,760 

Body Weight average  Kg 15 70 

Dermal absorption factor (ABS) Unit less 0.001 for all metals  0.03 for As  

Dermal exposure ratio (FE)  Unit less  0.2 0.7 

Exposure duration (ED) Years  6 24 

Exposure frequency (EF) Days/year 180 350 

Ingestion rate  mg/Kg 200 100 

Inhalation rate mg/Kg 7.6 20 

Particular emission factor  m3/kg 1.36 E-09  

Skin surface area (SA) cm2 2,800 3,300 

Soil adherence factor (AF) mg/cm2 0.2 0.07 

Conversion factor  Kg/mg 1.000 E-06  
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Appendix II: Oral Reference Dose and Cancer Slope Factors of Selected PTMs  

Oral reference dose and cancer slope factor of selected PTMs use in carcinogenic and 

non-carcinogenic risks assessment according to the USEPA protocols.  

PTMs  Oral Ref 

Dose 

Inhalation 

Ref Dose 

Dermal 

Ref Dose 

Cancer slope 

factor (CSF) 

oral 

CSF 

Inhalation 

CSF Dermal 

Absorption 

As 3.00 E-04 4.29 E-06 3.00 E-04 1.5 1.50 E + 01 3.66 E+00 

Cd 1.00 E-03 2.86 E-06 2.50 E-05 - 6.30 E + 00 - 

Cr 3.00E-03   5.00E-01   

Pb 4.00 E-03 3.50 E-03 5.25 E-04 8.50 E-03 4.20 E-02 8.50 E-06 
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 Appendix III: Matrices of Contamination Factor (Cf), Contamination Degree 

(Cdeg), and Ecological Risk Index (Eri) 

 

Indices for ecological risk assessment: contamination (Cf), degree of Contamination 

(Cdeg), and Ecological risk (Eri).  

 

 

Igeo 

Index 

Cf Index  Cdeg Index Eri Index  Risk status  

Igeo ≤ 0 Cf < 1 Cdeg ≤8  Eri < 40 Low  

0< Igeo≤1 1 < Cf < 

3 

8≤Cdeg<16 40 ≤ Eri <80 Moderate  

1< Igeo≤2 3 < Cf < 

6 

16 ≤ Cdeg < 

32 

80 ≤ Eri < 160  Considerable  

2< Igeo≤3 6 ≥ Cf Cdeg ≥ 32  160 ≤ Eri < 

320 

Very High  

3< Igeo≤4    --- Eri ≥ 320 Heavy to extreme  

4< Igeo≤5 

5< Igeo 

  ------- Extremely 

contaminated  
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Appendix IV: Background levels of potentially toxic metals of selected  

Soil preindustrial Background values of potentially toxic metals in the environment.  

Metal  Geochemical Background 

(Czarnowska, 1996) 

Preindustrial 

(Hakanson, 1980) 

(Bowen, 

1966) 

Toxic 

Factor 

As   15 6.0 10 

Cd 0.18 1.0 0.06 30 

Cr  90 100 2 

Hg  0.25 0.03-0.8 40 

Pb 9.8 7.0 10 5.0 
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Appendix V: Total PTMs uptake in percent (%) per Brassica napus and 

Raphanus raphanistrum in all trials  

Table 

PTM 
 

Trial initial 

Total Uptake  

at 0.50% 

  

% efficiency 

Cr 

Brassica 

napus 

M1 274.555 241.348 87.90516 

M2 274.555 210.048 76.50489 

M3 274.555 165.357 60.22728 

Raphanus 

raphanistrum 

M1 274.555 226.691 82.5667 

M2 274.555 236.946 86.30183 

M3 274.555 101.354 36.91574 

Pb 

Brassica 

napus 

M1 3985.642 1619.67 40.63762 

M2 3985.642 729.474 18.30255 

M3 3985.642 750.193 18.82239 

Raphanus 

raphanistrum 

M1 3985.642 880.494 22.09165 

M2 3985.642 518.804 13.01682 

M3 3985.642 498.956 12.51884 
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Appendix VI: NACOSTI Research Permit  
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Appendix VII:  Some pictorials of wild seeds collection  

 

 

Field Assessment of Raphanus Raphanistrum (1,2) and seed  BN (3) and RR (4) 
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Appendix VIII:  Schematic diagram of experimental design and set-up  

 

 

 

 

 

 

 

 

 

 

 

 

 

Schematic diagram of pot experimental design and set-up in the glasshouse 
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 Appendix IX: Statistical summary analysis or Chromium 

 

  

Chromium

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of SquaresDf Mean SquareF-Ratio P-Value

Root 4 67.1237 0.14914 0.22% 67 67.3 0.3 Between groups51224.4 3 17074.8 1040764 0

T1 BN Stem 4 11.649 0.12861 1.10% 11.5 11.8 0.3 Within groups0.19687 12 0.01641

Leaves 4 150.25 0.1291 0.09% 150.1 150.4 0.3 Total (Corr.)51224.5 15

Seed 4 12.3249 0.10088 0.82% 12.2 12.4391 0.2391

Total 16 60.3369 58.4377 96.85% 11.5 150.4 138.9

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of SquaresDf Mean SquareF-Ratio P-Value

T2 Root 4 67.864 0.5438 0.80% 67.287 68.591 1.304 Between groups4065.5 3 1355.17 5218.99 0

BN Stem 4 28.9023 0.65281 2.26% 28.066 29.585 1.519 Within groups3.11593 12 0.25966

Leaves 4 59.6005 0.33369 0.56% 59.199 59.981 0.782 Total (Corr.)4068.62 15

Seed 4 36.9135 0.45322 1.23% 36.292 37.379 1.087

Total 16 48.3201 16.4694 34.08% 28.066 68.591 40.525

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of SquaresDf Mean SquareF-Ratio P-Value

T3 Root 4 136.233 1.65533 1.22% 135.168 138.655 3.487 Between groups48200 3 16066.7 20862.8 0

BN Stem 4 5.19603 0.25792 4.96% 4.926 5.42492 0.49892 Within groups9.24131 12 0.77011

Leaves 4 9.407 0.1957 2.08% 9.203 9.631 0.428 Total (Corr.)48209.2 15

Seed 4 14.521 0.48527 3.34% 14.043 15.069 1.026

Total 16 41.3392 56.6917 137.14% 4.926 138.655 133.729

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of SquaresDf Mean SquareF-Ratio P-Value

T1 RR Root 4 108.051 56.5821 52.37% 23.214 138.655 115.441 Between groups29188.6 3 9729.54 12.15 0.0006

Stem 4 5.19603 0.25792 4.96% 4.926 5.42492 0.49892 Within groups9605.61 12 800.467

Leaves 4 9.407 0.1957 2.08% 9.203 9.631 0.428 Total (Corr.)38794.2 15

Seed 4 14.521 0.48527 3.34% 14.043 15.069 1.026

Total 16 34.2938 50.8555 148.29% 4.926 138.655 133.729

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of SquaresDf Mean SquareF-Ratio P-Value

Root 4 139.494 0.39404 0.28% 139.261 140.084 0.823 Between groups37383.7 3 12461.2 91579.8 0

T2 RR Stem 4 36.6553 0.46485 1.27% 36.133 37.184 1.051 Within groups1.63284 12 0.13607

Leaves 4 49.5215 0.36773 0.74% 49.209 49.991 0.782 Total (Corr.)37385.4 15

Seed 4 11.2747 0.19415 1.72% 11.036 11.447 0.411

Total 16 59.2364 49.9235 84.28% 11.036 140.084 129.048

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of SquaresDf Mean SquareF-Ratio P-Value

Root 4 38.2777 0.80442 2.10% 37.23 39.026 1.796 Between groups5370.77 3 1790.26 5540.2 0

T3 RR Stem 4 8.82475 0.44405 5.03% 8.217 9.268 1.051 Within groups3.87768 12 0.32314

Leaves 4 5.95784 0.61712 10.36% 5.27668 6.5558 1.27912 Total (Corr.)5374.65 15

Seed 4 48.294 0.25973 0.54% 48.015 48.634 0.619

Total 16 25.3386 18.9291 74.70% 5.27668 48.634 43.3573

Statistical summary of chromium in phytoremediation  
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Appendix X: Statistical summary Lead analysis  

 

Lead

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of Squares Df Mean Square F-Ratio P-Value

Root 4 1024.16 1.56867 0.15% 1022.34 1025.92 3.58072 Between groups 2.78E+06 3 925178 1199703.21 0

Stem 4 546.416 0.76784 0.14% 545.515 547.336 1.82045 Within groups 9.25407 12 0.771173

T1 BN Leaves 4 47.3478 0.17374 0.37% 47.1415 47.5594 0.41788 Total (Corr.) 2.78E+06 15

Seed 4 1.75018 0.06477 3.70% 1.68158 1.83729 0.15571

Total 16 404.919 430.158 106.23% 1.68158 1025.92 1024.24

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of Squares Df Mean Square F-Ratio P-Value

Root 4 674.132 0.36704 0.05% 673.768 674.571 0.803 Between groups 1.29E+06 3 430556 4277272.29 0

T2 Stem 4 30.7318 0.49455 1.61% 30.064 31.254 1.19 Within groups 1.20793 12 0.100661

BN Leaves 4 23.4643 0.13811 0.59% 23.341 23.624 0.283 Total (Corr.) 1.29E+06 15

Seed 4 1.14675 0.06539 5.70% 1.091 1.235 0.144

Total 16 182.369 293.447 160.91% 1.091 674.571 673.48

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of Squares Df Mean Square F-Ratio P-Value

Root 4 709.405 0.58353 0.08% 708.691 710.101 1.41 Between groups 1.45E+06 3 484403 1221907.76 0

T3 Stem 4 15.96 0.5046 3.16% 15.54 16.655 1.115 Within groups 4.75718 12 0.396432

BN Leaves 4 21.9288 0.88533 4.04% 21.106 22.791 1.685 Total (Corr.) 1.45E+06 15

Seed 4 2.8995 0.45474 15.68% 2.556 3.569 1.013

Total 16 187.548 311.257 165.96% 2.556 710.101 707.545

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of Squares Df Mean Square F-Ratio P-Value

Root 4 812.064 0.64794 0.08% 811.239 812.807 1.56738 Between groups1873910.00 3.00 624638.00 2238272.54 0.00

T1 RR Stem 4 12.3052 0.15292 1.24% 12.0762 12.3893 0.31315 Within groups 3.35 12.00 0.28

Leaves 4 51.7362 0.73909 1.43% 51.2367 52.8221 1.58543 Total (Corr.) 1873920.00 15.00

Seed 4 4.388 0.35613 8.12% 4.013 4.729 0.716

Total 16 220.123 353.451 160.57% 4.013 812.807 808.794

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of Squares Df Mean Square F-Ratio P-Value

Root 4 240.811 0.86597 0.36% 240.099 241.929 1.83 Between groups 237850.00 3.00 79283.30 232203.16 0.00

Stem 4 14.3708 0.22986 1.60% 14.145 14.634 0.489 Within groups 4.10 12.00 0.34

T2 RR Leaves 4 261.825 0.72055 0.28% 261.312 262.844 1.532 Total (Corr.) 237854.00 15.00

Seed 4 1.79775 0.20936 11.65% 1.517 1.978 0.461

Total 16 129.701 125.924 97.09% 1.517 262.844 261.327

Summary Statistics ANOVA Table

Count Average Standard deviationCoeff. of variationMinimum MaximumRange Source Sum of Squares Df Mean Square F-Ratio P-Value

Root 4 476.368 14.721 3.09% 459.821 494.814 34.9929 Between groups 659680.00 3.00 219893.00 4044.09 0.00

Stem 4 6.67675 0.40761 6.10% 6.07963 6.94917 0.86954 Within groups 652.49 12.00 54.37

T3 RR Leaves 4 13.4864 0.53364 3.96% 12.6889 13.8168 1.1279 Total (Corr.) 660332.00 15.00

Seed 4 2.42425 0.58024 23.93% 1.617 2.999 1.382

Total 16 124.739 209.815 168.20% 1.617 494.814 493.197

Statistical summary of phytoremediation of Lead  
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