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ABSTRACT 

Corona virus 2019 (COVID-19) have been pandemic both in Africa and the whole 

world. This work formulated and analyzed mathematical model of COVID-19 that 

monitors the temporal dynamics of the disease in the presence of preventive vaccine. 

The most effective ways of controlling the transmission of infectious disease is 

through vaccination and treatment. Due to transmission characteristics of COVID-19 , 

the population was divided into six classes. That is; susceptible(S), vaccinated (V), 

infective (I), hospitalized (H), home based care (𝐻𝐵) and recovery(R). In this thesis, 

non-linear system of differential equations governing the model was formulated to 

compute and were solved using quantitative analysis. Feasibility region and positivity 

of model variable was worked out in which the model is bounded so as to obtain the 

feasibility solution of the set and positivity of variables. The disease free equilibrium,  

local and global stability of the disease free equilibrium  are discussed. The endemic 

equilibrium , local and global endemic equilibrium are determined.  The model 

monitor reproduction number 𝑅𝑂  using next generation matrix method which 

describe the dynamics of the COVID-19.The disease  free equilibrium is local 

asymptotically stable when basic reproduction number 𝑅𝑜 < 1 and unstable when 

basic reproduction number   𝑅𝑜 > 1. The numeric results obtained are determined 

graphically by use of MAPLE simulation method. The solution has been computed 

using numerical classical fourth order Runge Kutta integration method to gauge its 

effectiveness . The  results indicated that; high vaccination coverage of 𝜑 =0.9 leads 

to high number of individuals recovering and low vaccination coverage  of 𝜑 = 0.1 

leads to high reproduction number  hence the disease may not be eradicated . 
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CHAPTER ONE 

INTRODUCTION  

1.1 Introduction 

The increasing study of realistic and practically useful mathematical models in 

population, whether we are dealing with a human population with or without its age 

distribution, population of an endangered species, bacterial or viral growth and so on, 

is a reflection of their use in helping to understand the dynamic processes involved 

and in making practical predictions. Kermack et-al (1927), Varotsos et-al (2020) and 

Maini et-al (2022). 

1.1.1 Background Information and Causes of COVID -19 

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 

virus. The best way to prevent and slow down transmission is to be well informed 

about the disease and how the virus spreads. Most people infected with the virus will 

experience mild to moderate respiratory illness and recover without requiring special 

treatment. However, some will become seriously ill and require medical attention. 

Older people and those with underlying medical conditions like cardiovascular 

disease, diabetes, chronic respiratory disease, or cancer are more likely to develop 

serious illness. Anyone can get sick with COVID-19 and become seriously ill or die at 

any age. The virus can spread from an infected person’s mouth or nose in small liquid 

particles when they cough, sneeze, speak, sing or breathe. These particles range from 

larger respiratory droplets to smaller aerosols. It is important to practice respiratory 

etiquette, for example by coughing into a flexed elbow, and to stay at home and self-

isolate until one recover .If one feel unwell and wear a face mask to prevent droplet 

from falling on surface as in Jaguga et-al (2020). 
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To prevent infection and to slow down the transmission of COVID-19, the following 

should be done: one should   get vaccinated, maintaining one meter apart from others, 

wearing a properly fitted mask, wash the hands regularly with soap and water or clean 

with alcohol-based hand rub, Cover the mouth and nose when coughing or sneezing 

and if one feel unwell, stay home and self-isolate until you recover. Most infected 

people will develop mild to moderate illness and recover without hospitalization. 

Vaccination is a simple, safe, and effective way of protecting one against harmful 

diseases, before coming into contact with them. It uses the body’s natural defenses to 

build resistance to specific infections and makes the immune system stronger. 

Vaccines train the immune system to create antibodies, just as it does when it’s 

exposed to a disease. However, because vaccines contain only killed or weakened 

forms of germs like viruses or bacteria, they do not cause the disease or put one at the 

risk of its complications 

The first mass vaccination programmed started in early December 2020 and the 

number of vaccination doses administered was updated on a daily basis on the website 

of world health organization the date was provided by department of the Ministry of 

Health in each country. At least 13 different vaccines (across 4 platforms) have been 

administered. The Pfizer/BioNtech Comirnaty vaccine was listed for WHO 

Emergency Use Listing (EUL) on 31 December 2020. The SII/Covishield and 

AstraZeneca/AZD1222 vaccines (developed by AstraZeneca/Oxford and 

manufactured by Serum Institute of India and SK Bio respectively) were given EUL 

on 16 February 2021. The Janssen/Ad26.COV 2.S developed by Johnson & Johnson, 

was listed for EUL on 12 March 2021. The Moderna COVID-19 vaccine (mRNA 

1273) was listed for EUL on 30 April 2021 and the Sinopharm COVID-19 vaccine 

was listed for EUL on 7 May 2021. Beijing Bio-Institute of Biological Products Co 



3 
 

Ltd, subsidiary of China National Biotec Group (CNBG), produces the Sinopharm 

vaccine. The Sinovac-CoronaVac was listed for EUL on 1 June 2021. 

In Kenya, there were over 250K confirmed cases of COVID-19 and more than 5150 

deaths while in the whole world its 219M total cases and 4.55m deaths case reported 

to WHO. As of 27 September 2021, a total of 3712030 vaccine doses had been 

administered. Since the vaccination was introduced in Kenya daily cases reduced. Up 

to date over 1M have received the first dose and over 450k have been vaccinated 

fully. 

This study develops and analyzed the COVID-19 model for monitoring the  disease in 

presence of consistent preventive vaccination This study monitored the  recovery rate 

of those getting treatments after being vaccinated. Those with COVID-19 can take 

medication in home-based care or in the hospital. 

 

1.2 Statement of the Problem 

A six compartment model namely; susceptible (S), vaccinated (V), infective (I), 

hospitalized (H), home base care (𝐻𝐵) and recovered(R)  (𝑆𝑉𝐼𝐻𝐻𝐵𝑅) was develop to 

determine the spread and control of COVID-19 and the effects of a preventive 

vaccine. Many studies and literatures show that, scholars have study much on safe 

ways of   treatment and controlling the spread of COVID-19 disease, determination of 

age to be vaccinated and more so time interval between the first dose and the second 

dose. Recent studies   (Gonzalez, 2021)  focused on varying population size to model 

of COVID-19 with interested of the impact of the temporal regime of vaccination that 

is varying the time between the first and the second dose without considering effect of 

vaccination since it incorporates births and deaths due to fatal diseases. Hence 

introducing a effect vaccination on the spread and control of COVID-19 will help to 

eradicate these diseases.   
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1.3 Research Objectives 

1.3.1 General objective 

The main objective of this study is to develop and analyze COVID-19 model that 

monitors the temporal dynamics of the disease in the presence of preventive vaccine. 

 

1.3.2 Specific objectives 

Specific objectives was to; 

i. Formulate the SVIH𝐻𝐵R  model incorporating the impact of hospitalization 

and home-based care in the treatment of COVID-19. 

ii. Determine the model disease-free equilibrium (DFE) points and the existence 

of DFE local and global stabilities using basic reproduction number 𝑅𝑂 

criteria. 

iii. Determine the model endemic equilibrium (EE) and the existence of EE local 

and global stability using basic reproduction number 𝑅𝑂  criteria. 

iv. Perform quantitative analysis of the model and determine the effect of vaccine 

in the eradication of COVID-19 disease. 

 

1.4 Justification of the study 

The study focusses on COVID-19 in a fraction population size where the susceptible 

individual recruited and later vaccinated. Many scholars i.e Yavuz et-al (2021) 

,Vespignani et-al(2020), Samui et-al(2020) and Ndairou et-al(2020) have formulated 

mathematical models to describe the optimal control and preventive measures of 

Corona virus to eradicate this disease, more births than death would be a better 

assumption. Recent studies   (Gonzalez, 2021)  focused on varying population size to 

model of COVID-19 with interested of the impact of the temporal regime of 

vaccination that is varying the time between the first and the second dose without 
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considering constant vaccination since it incorporates births and deaths due to fatal 

diseases. To push the models to further realism, we consider addition of varying 

population size and infective individual which have been vaccinated. This study 

formulates a mathematical model that can be used to analyze COVID-19 diseases 

effectively which contributes to the field of mathematical epidemiology. It develops a 

framework that would predict the disease dies out and needs to prevent the spread of 

these diseases. This study will help policy makes in their decision for the use of 

vaccination approach thus helping the government on annual vaccination routines. It 

also acts as a basis for further research by students and researchers on modeling other 

diseases and on building a model. Its help to discover factors which govern the system 

and how the aspects of the system are related. 

 

1.5 Assumptions 

In this thesis, we have study SVIH𝐻𝐵R  model with fraction population size. The 

model has a   susceptible group denoted by S, vaccinated group donated by V, 

infective group donated by I, hospitalized group donated by H, home base care group 

donated by 𝐻𝐵and recovered group denoted by R. The SVIH𝐻𝐵R  model of the 

COVID-19 diseases considers the following assumptions: 

i. The rate of recruiting new members to a system is Λ 

ii. The death rate   due to nature calamities in each class hence population size 

N remains constant. 

iii. There were restrictions on human behavior such as quarantine, wearing masks, 

keeping distance and washing of hands with hand sanitizer. 

iv. A susceptible individual will move into the vaccinated class at average contact 

rate q𝑆 and to infective class at average contact rate 𝛽𝑆𝐼.   

v. Vaccinated individual can move to infective class at contact rate of 𝜌𝑉𝐼. 
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vi. An infective individual will get treatment at home base care at a rate of 𝑘𝐼or in 

hospital at contact rate of 𝜔𝐼 and other will recover at the rate 𝜹𝑰 

vii. Individual  in treatment at home base care progresses  to recovered group due 

to treatment at a rate 𝜒𝐻𝐵 and those in hospitalization progress to recovery 

group at a rate 𝜀𝐻 

viii. We assume 𝛼 to be death rate due to COVID-19 disease infection. 

ix. All the variables are positive at all the time. 

x. The model assumes that the efficacy of the vaccine is 100%. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

Mathematical analysis and modelling is an important part of infectious disease 

epidemiology. The mathematical description of disease epidemics immediately leads 

to several useful results, including the expected size of an epidemic and the critical 

level that is needed for an intervention to achieve effective disease control. This 

chapter gives relevant scholars models which have been improved from SIR model. 

The model consisted of Susceptible, Infective and Recovered which was used to 

determine the spread of an infectious disease over a given period of time. (David et-al 

2014)  

2.2 Literature relevant to this study 

M.L Diagne et-al (2021) formulated a deterministic model of the transmission 

dynamics of COVID-19 with an imperfect vaccine. Their model was theoretically 

analyzed; its effective and basic reproduction numbers were derived. The disease-free 

equilibrium is globally asymptotically stable, and the disease could be eradicated 

when the reproduction number is below unity (𝑅𝑂<1) .They  introduced into the 

model system one time-dependent control variables  𝑢1(𝑡)   representing vaccination 

and  𝑢2(𝑡)    representing treatment of hospitalized individuals and applied the 

Pontryagin maximum principle to determine the optimal control strategy for 

mitigating the spread of the disease. The model fitted well with the observed daily 

data from Senegal early COVID-19 epidemic. Numerical simulations of the optimal 

control of the full model were carried out using a set of model parameter values which 

indicated that COVID-19 can be controlled in the community with the 



8 
 

implementation of vaccination and treatment. While their results suggest that 

vaccination and treatment were very effective in mitigating the spread of COVID-19, 

more efforts are needed to eradicate the disease. 

They also performed a sensitivity analysis using the partial rank correlation 

coefficient in conjunction with the Latin hypercube sampling technique, to identify 

the model parameters that significantly influence the initial disease 

transmission. Early identification of  parameters with greater influence on disease 

transmission is important to inform policy decision on which parameters to focus 

either for data collection or to mitigate the spread of the disease. The critical 

vaccination threshold was derived, and it was noted that if the vaccine efficacy is low 

and the disease reproduction number is high, the disease may not be eradicated even if 

a large proportion of the population is vaccinated. That is, additional efforts will be 

needed to reduce 𝑅0(𝑉)  below unity even if vaccine coverage was high. 

Gonzalez et-al (2021) Studied the impact of different vaccination regime on main 

health outcome such as death. They developed mathematical model of COVID-19 that 

divides the total population into different classes depending on the COVID-19 

progression and vaccination status. Thus, they considered classes or subpopulations 

as: susceptible, latently infected (not yet Infectious), pre-symptomatic (and 

infectious), infected (able to infect others), asymptomatic (able to infect others), 

hospitalized, recovered (not infectious), vaccinated with one dose, and, lastly, 

vaccinated with two doses. They constructed a mathematical model that includes 

ordinary differential equations. The mathematical model constructed considers 

transitions of individuals through the aforementioned classes. They assumed that 

recovered individuals have long immunity against reinfection during the period of 

study that is shorter than a year. They also assume that only susceptible individuals 
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and those vaccinated with one dose are the only ones that can be vaccinated. 

Parameter values used for this study were taken from scientific literature. Their model 

assumed constant vaccination per day. They carry out numerical simulation and 

analyze under different scenarios and plots were processed using python 

programming language, in particular the scipy.odeint () function, which is python 

wrapper for the ODEPACK solver. Their study was mainly interested with impact of 

the temporal regime of vaccination that is varying the time between the first and the 

second dose. However, from their research, vaccinated population was not considered. 

 

Jaharuddin et-al  (2020) used an autonomous nonlinear differential equation system 

for measles dynamics, which incorporates constant vaccination, therapy, and 

treatment rates, is considered first of all. They developed SVEITR model consists of 

six compartments where S-susceptible, V-vaccinated, E-exposed, I-infected, T-

treated, and R-recovered. From this compartment model they formulated equation  

from mathematical model. From the equation developed, they carried out disease-free 

and endemic equilibrium points using Routh–Hurwitz criteria and bifurcation theory 

to find out the stability of the model. They find out that the stability of the equilibrium 

points depends on the basic reproduction number𝑅𝑂.  If, the disease-free equilibrium 

point will be stable, otherwise unstable. The endemic equilibrium point is in an 

asymptotically stable condition if𝑅𝑂 <1, otherwise unstable. Their sensitivity analysis 

of the model reveals that the effective contact rate was the most influencing parameter 

to the model. They extended their research with constant controls including time-

dependent vaccination, therapy, and treatment rates, resulting in the model with 

optimal controls. The Pontryagin maximum principle was employed to derive the 

necessary conditions for existence of an optimal controlled pair that minimizes the 
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number of exposed and infected individuals jointly with the control effort. For more 

accuracy, they compared and evaluated their results  using the forward-backward 

sweep method and the fourth-order Runge–Kutta algorithm. It is demonstrated that 

moderate and high levels of coverage can effectively reduce the measles cases. 

However, the drug resistance individual was no considered as the case of re-infection. 

 

Intissar et-al (2021) research on modeling the effect of population –wide vaccination 

on the evolution of COVID-19.in their study, the total population was partitioned into 

4 sub-populations: S, susceptible (non-infected without immunity); I, infected (active 

cases); R, removed (closed cases, recovered or dead); V, effectively vaccinated (non-

infected individuals that were effectively vaccinated, immune). In their results, the 

daily vaccination rates were used for their epidemic predictions representing the daily 

vaccination rate of fully vaccinated individuals (i.e., non-infected individuals that 

received the two doses of the vaccine). From their compartment, equation   was 

formulated on the flow of COVID-19 disease where Variable and parameters were 

assumed constant. They further worked out the basic reproduction number and found 

it to be greater than one (𝑅𝑂>1)   which indicates that every person would cause a 

proper epidermic outbreak. They used root-mean square error (RMSE) method and 

trapezoidal integration rule to stimulate and discussed their solution. They made a 

conclusion that vaccination should start as soon as possible and the vaccination 

campaign should stop only when there is no susceptible sub population left. This 

study, did not   take account of vital dynamics (demographic births and nature deaths) 

since their population remains constant. 

Zhang et-al (2010) in their research article of the analysis of Epidemic Network 

Model with infective force in latent and infected period, formulated SEIAR model 

and classify the population as susceptible (S), exposed (E), asymptomatically infected 
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(A), symptomatically infected (I), and removed/immune (R).Their model where in 

form of S-E-I-A-R from which they develop differential equation .Their mathematical 

formulation of their epidemic problem were completed using positive parameters. 

From their model, they worked out on global stability and basic reproduction number 

𝑅𝑂  using Next Generation Matrix. Their discussion concluded that, the infection 

disease  free equilibrium is locally asymptotically stable when basic reproduction no 

is less than  (𝑅𝑂 < 1) since their where no vaccination and the infection disease free 

equilibrium is unstable when basic reproduction no is greater than ( 𝑅𝑂>1). Their 

derivation depends on an explicit formula for the Basic reproduction number of 

networks of disease transmission model without considering those who have been 

vaccinated before recruitment. 

Ghostine et-al (2021), in their SEIQRDV model with a vaccination compartment were 

proposed to simulate the novel coronavirus disease (COVID-19) spread in Saudi 

Arabia. Their model considers seven stages of infection: susceptible (S), exposed (E), 

infectious (I), quarantined (Q), recovered (R), deaths (D), and vaccinated (V). From 

these compartments they formulated equation from their SEIR model. They carried 

out mathematical analysis to illustrate the non-negativity, boundedness, epidemic 

equilibrium, existence, and uniqueness of the endemic equilibrium, and the basic 

reproduction number of the model. From their model, an epidemic was expected to 

increase exponentially if   𝑅𝑂 > 1 and end if 𝑅𝑂 < 1  also the disease –free 

equilibrium is locally and globally asymptotically stable if 𝑅𝑂 < 1 and unstable if 

𝑅𝑂 > 1. The results were computed and solved using a fourth –order Runge kutta 

method. They then presented the numerical results in form of graphs. They however 

in their model did not take into account the impact of recruitment population being 

vaccinated before instead they work on effect on vaccination on the spread of disease. 
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In their study Yin et-al (2020), were concerned with the stability of an age-structured 

susceptible–exposed–infective–recovered–susceptible (SEIRS) model with time 

delay. They investigated the existence and uniqueness of the continuous traveling 

wave solution under some hypotheses. Moreover, the age-structured SEIRS system 

was reduced to the nonlinear autonomous system of delay ODE using some 

insignificant simplifications. In their studied, they investigated on dimensionless 

indexes for the existence of one disease-free equilibrium point and one endemic 

equilibrium point of the model. Furthermore, they established the local stability for 

the disease-free equilibrium point(DFE) and the endemic equilibrium (EE) point of 

the infection-induced disease model using Hurwitz’s criterion and Descartes’ rule. 

They found that, disease free equilibrium point (DFE) of the system is locally 

asymptotically stable and has unique endemic equilibrium point and they found to be 

locally asymptotically stable. Finally, some numerical simulations were carried out to 

illustrate their theoretical results and display their results using graphical solution 

using MABLE. In general, their studied provides the practical understanding of the 

different dynamic behavior of an age structured SEIRS model, without considering 

the vaccination strategy. 

 

Idris Ahmed et-al. (2021) attempted  described the  outbreak of coronavirus disease 

2019(COVID-19) with help of a mathematical model using both the ordinary 

differential equation (ODE) and fractional differential equation. The spread of the 

disease has been on the increase across the global for some time with no end in sight. 

The research used the daily data of COVID-19 cases posted in Nigeria  WHO website 

for numerical simulation which has been fitted to the model. The model  bought into 

consideration  both asymptomatic and symptomatic infected individuals with the fact 
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that an exposed individual is either sent to quarantine first or move to one of the 

infected classes with possibility that susceptible individual can also move to 

quarantine class directly. The model had two equilibrium points; the disease-free 

equilibrium point (DFE) and the endemic equilibrium point (EE). Stability analysis of 

their endemic equilibrium points show   was locally asymptotically stable whenever 

Ro<1. The existence and uniqueness of solution established via the technique of 

fixed-point theorem. Furthermore, they solved the fractional model numerically using 

Atangana-Toufik numerical scheme and presented in different forms of graphical 

results to minimize the infection. However, their model didn’t take in consideration   

patients taking their treatment in hospital or under home base care facilities as well as 

the vaccinated individuals. 

 

Concluding this chapter we can observe that the models of Yin et-al (2020), Ghostine 

et-al (2021), Zhang et-al (2010), Jaharuddin et-al  (2020) and Gonzalez et-al (2021) 

were very similar to the model we present in this work. This research extend the work 

of Zhang et-al (2010) from a SEIAR model to a SVIH𝐻𝐵R model and study the 

temporal dynamics. The SVIH𝐻𝐵R  model  formulated in this research advances from 

previous studies by incorporating home base care individual  for treatment from 

infectives individual and those under treatments in hospitals. Assumptions are always 

made to improve the model analysis and make it more realistic. The solution will be 

computed using fourth order Runge Kutta integration method to gauge its 

effectiveness and impact of  vaccination in Covid 19. The main question to be 

addressed is whether vaccination coverage can influence disease spreading and 

control and inform health authorities on prevention and eradication strategies. 

 



14 
 

In the next chapter, the methodologies used  will be discussed and analysis the 

equation  governing model. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The SEIR model formulated was improved to include those individuals who are 

receiving treatment in hospital and those in home-based care as in Zhou et-al(2011). 

The model developed gave reasonable and normal results. Assumption was also made 

to improve the model formulation analysis and to predict the disease dies out. 

 

3.2 Model Description and Formulation 

The model was divided into six sub-classes according to their disease status and the 

movement between them from the human population (N); that is, susceptible(S), 

vaccinated (V), infective (I), hospitalized (H), home base care (𝐻𝐵) and recovered(R)  

compartment.. The S-V-I-H-𝐻𝐵-R  model developed is described in  figure 3.1  below 

. 
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Figure 3.1 An S-V-I-H-𝐇𝐁-R   compartment COVID-19 model 

 

Arrows indicate the movement from one compartment to another and others exits 

from the population. The model assumes that a fraction of the population has been 

recruited into susceptible individuals which are those likely to be affected by COVID-

19. The vaccinated individuals are those susceptible who get COVID-19 vaccine. The 

infective individuals are those who have been infected with COVID-19. The home-

based care individuals had contracted the COVID-19 disease and were taking 

medication at home as prescribed by qualified medical personnel. The hospitalized 

individuals were those infected by the COVID-19 disease and admitted in approved 

medical facility. Modification of assumptions lead to a model where infected 

Compartmental model 
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individuals recover. The recovered individuals were those who got well after a 

COVID-19 infection and tested negative. 

 

Susceptible individual recruited at the rate of  𝚲. The susceptible individual were 

vaccinated at the rate of qS and those vaccinated become infective at the rate of pVI. 

The infected individual were recruited at the rate of 𝜷𝑺𝑰  from susceptible class. The 

rate at which the infected individuals were either treatment over COVID-19 at home-

based care and being attend by qualified doctors at the rate of  𝝎 or received treatment 

in hospital at the rate  𝜿. The rate at which the hospitalizes recovered was 𝜺  while the 

rate at which those on home –based care recovered was 𝝌.The infected individual  

recovered  without getting treatment at contact rate of  𝜹  .The model took into 

account  deaths caused by nature 𝜇 and those caused by corona virus at the rate of 

α  under the assumption that all the parameters are constant. The total population N= 

S+V+I+H+𝐻𝐵+R and all recruitment rates were between zero to one. 

The following values in table 3.1 were the Model parameters corresponded to 

COVID-19 case in Kenya for the average month of January to march 2021.They were 

obtained from the Ministry of health website for  daily reporting of COVID-19 

outbreak in Kenya. The data obtained help in calculating some parameters values by 

doing the average of the 3 months. 
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Table 3. 1 Summary of parameter descriptions 

Parameter interpretation               Values per day                   Source 

Λ        Recruitment rate                                                                   10 Estimated 

𝛽        Rate of recruitment 

to infective class from 

susceptible 

0.5787 Estimated 

q         Rate of recruitment 

to vaccination           from 

susceptible 

0.4213 Calculated 

𝜅        Rate of recruitment 

to vaccination            

0.5493 Calculated 

𝝎 Rate of recruitment 

to home based care                 

0.9506 Calculated 

α Death rate  as a 

result of COVID-19        

0.00961 (parra, 2021) 

𝝁  Death rate as a 

result of natural calamities

  

0.00411 (Deressa, 2020) 

𝜺            Recovery rate of 

hospitalized COVID-19 

patients   

0.15 Calculated 

𝝌  Recovery rate of 

home-based care 

individual  

0.1612 Calculated 

𝜹 Rate at which 

infective individual can 

recover   

0.189 Calculated 

𝝆 Rate at which 

vaccinated individual can 

be infective    

0.2 Estimated 
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The following table 3.2  were   the initial condition used of members of individuals. 

Table  3. 2 Initial conditions 

Compartment Number of 

individuals 

S(0) 1400 

V(0) 300 

I(0) 150 

𝐻𝐵(0) 200 

H(0) 250 

R(0) 100 

 

3.3 Model Equations 

According to the inflows and outflows in Figure 3.1 of the COVID-19 and disease 

pathways with control measures, we can convert them into 1
st
 order ordinary non-

linear differential equation as follows; 

𝑑𝑆

𝑑𝑡
= Λ − (𝛽𝑆𝐼 + 𝑞𝑆 + 𝜇𝑆)……………………………………………… . . .3.1(𝑎)

𝑑𝑉

𝑑𝑡
= 𝑞𝑆 − (𝑝𝐼 + 𝜇)V……………………………………………………… . .3.1(𝑏)

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 + pVI − (𝑘 + ω + δ + 𝜇 + α)𝐼 ………………………………… .3.1(𝑐)

𝑑𝐻𝐵

𝑑𝑡
 =  ωI − (χ + μ + α)𝐻𝐵…………… .……………………………… . .3.1(𝑑)

𝑑𝐻

𝑑𝑡
= kI − (ε + μ + α)H…………………………………………………… .3.1(𝑒)

𝑑𝑅

𝑑𝑡
= 𝜀𝐻 + 𝜒𝐻𝐵 + δI − μR…………………………………… . . …………3.1(𝑓) }

 
 
 
 

 
 
 
 

3.3.1 

Where 
𝑑𝑆

𝑑𝑡
,
𝑑𝑉

𝑑𝑡
,
𝑑𝐼

𝑑𝑡
 ,
𝑑𝐻𝐵

𝑑𝑡
 ,
𝑑𝐻

𝑑𝑡
 𝑎𝑛𝑑 

𝑑𝑅

𝑑𝑡
 are SVIH𝐻𝐵R model equations. 

 

3.4 The Feasibility Region 

This is the region whereby the solution to model equalized is non-negative and 

uniformly bounded.  

Let (S, V, I, H, 𝐻𝐵, R) ϵ ℝ6  be any solution with initial condition         
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 S(0) =𝑆0 ,V(0)=𝑉0   𝐼(0) = 0   H(0) = 0     𝐻𝐵(0) = 0   R(0)=0 and 

N=S+V+I+H+𝐻𝐵+R  …………………………………………………………..( 3.4.1) 

We can differentiate N both with respect to (w.r.t) time sides and to obtain the 

expression;  

 

𝑑𝑁

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
+
𝑑𝑉

𝑑𝑡
+
 𝑑𝐼

𝑑𝑡
+
𝑑𝐻

𝑑𝑡
+
𝑑𝐻𝐵

𝑑𝑡
+ 

𝑑𝑅

𝑑𝑡
 ..…….………….............. ……………….( 3.4.2) 

 

Substituting equation 3.1(a) ,3.1(b) …..to 3.1(f) into eq (3.4.2) to obtain 

 

𝑑𝑁

𝑑𝑡
= Λ + −(V + S + I + H +   𝐻𝐵 + R)𝜇 + (𝐻 + 𝐼 + 𝐻𝐵)α 

 

                           = Λ − 𝜇𝑁 + (𝐻 + 𝐼 + 𝐻𝐵)α……………… ………………(3.4.3) 

 

Ignore death caused by COVID-19 disease  α = 0  

 

𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 

𝑖𝑛𝑡𝑒𝑟𝑔𝑟𝑎𝑡𝑖𝑛𝑔 Equation  3.4.3 w.r.t N 

𝑑𝑁

𝑑𝑡
= (Λ − 𝜇𝑁) 

𝑙𝑛𝑁 = (Λ − 𝜇𝑁)𝑡 

  

                                                              𝑁 = 𝑁𝑂ℯ
(Λ−𝜇𝑁)𝑡

…………….……………….. (3.4.4) 

 

Here 𝑁𝑂 is initial population with initial condition (S0, V0, I0, H0 .𝐻𝐵0, R0) 

Hence t → ∞ the equation  

N will be such that 0 ≤ S + V + I + H + 𝐻𝐵 + R ≤ 𝑁𝑂ℯ
(1−𝜇𝑁)𝑡

…...…….………...eq (3.4.5) 
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Thus 

 (S, V, I, H, 𝐻𝐵, R) ϵℝ6: 0 ≤ S + V + I + H + 𝐻𝐵 + R ≤ 𝑁𝑂ℯ
(1−𝜇)𝑡

     ……… ...…( 3.4.6) 

 

This means that the system is uniformly bounded at all time so that the     SVIH𝐻𝐵R 

model will be biologically feasible. 

3.5 Positivity of the Model 

The COVID-19 model developed was biologically and mathematically feasible since 

all the parameters and variables were positive. 

3.5.1 Model Lemma 

Let the initial condition be  

{S0, V0, I0, H0, 𝐻𝐵0, R0 ≥ 0} ϵℝ6 then the solution set { St, Vt, It, Ht .𝐻𝐵 t, Rt } of the  

model  were positive for all t >0 

Proof: From differential equation 3.1(a)  of a system  

 

𝑑𝑆

𝑑𝑡
= Λ − (𝛽𝑆𝐼 + 𝑞𝑆 + 𝜇𝑆) 

    Positivity implies that; 

 

𝑑𝑆

𝑑𝑡
≥ (𝛽𝑆𝐼 + 𝑞𝑆 + 𝜇𝑆)………………………………………………………………( 3.5.1) 

Or 

𝑑𝑆/𝑆 ≥ (𝛽𝐼 + 𝑞 + 𝜇)𝑑𝑡. 

 

On integrating (3.5.2) we have 

𝑙𝑛S(t) ≥ (𝛽𝐼 + 𝑞 + 𝜇)dt 

S(t) ≥  exp (−(𝛽𝐼 + 𝑞 + 𝜇)𝑑𝑡………………………………………………….(3.5.7) 
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When t=0, we obtain eq 3.5.7 will be; 

S(t) ≥ 𝑆(o)exp (−(𝛽𝑆𝐼 + 𝑞𝑆 + 𝜇𝑆)𝑑𝑡)………………………………………...( 3.5.8) 

Since  

(𝛽𝐼 + 𝑞 + 𝜇)dt≥ 0   …………………………..………….......................(3.5.9) 

 

 

From eq 3.3(b) 

𝑑𝑉

𝑑𝑡
= 𝑞𝑆 − (𝑝𝐼 + 𝜇)V 

Positivity implies that: 

𝑑𝑉

𝑑𝑡
≥ (𝑝𝐼 + 𝜇)V……………………………………………………………….( 3.5.10) 

or 

𝑑𝑉

𝑉
≥ (𝑝𝐼 + 𝜇)dt 

 

On integrating equation (3.5.10) we have 

 

𝑙𝑛V(t) ≥ (𝑝𝐼 + 𝜇)dt 

V(t) ≥ exp (−(𝑝𝐼 + 𝜇)𝑑𝑡…………………………………………………..….( 3.5.11) 

When t=0, we obtain 

V(t  ) ≥ 𝑉(o)exp (−(𝑝𝐼 + 𝜇)𝑑𝑡) …………………….………………………..(3.5.12) 

 

Since  

(𝑝𝐼 + 𝜇) dt≥ 0    ………………………………….…………………………....(3.5.13) 
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From eq 3.3(c) 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 + pVI − (𝑘 + ω + δ + 𝜇 + 𝛼)𝐼 

For positivity of the equation can be written as; 

𝑑𝐼

𝑑𝑡
≥ (𝑘 + ω + δ + 𝜇 + 𝛼)𝐼 

or 

𝑑𝐼

𝐼
≥ (𝑘 + ω + δ + 𝜇 + 𝛼)𝑑𝑡…………………………………………………..(3.5.14) 

On integrating eq 3.5.14  we have  

𝑙𝑛I(t) ≥ (𝑘 + ω + δ + 𝜇 + 𝛼)dt………….……………………………………(3.5.15) 

I(t) ≥  exp (−(𝑘 + ω + δ + 𝜇 + 𝛼)𝑑𝑡………………………..………………..(3.5.16) 

When t=0, we obtain 

I(t) ≥ 𝐼(o)exp (−(𝑘 + ω + δ + 𝜇 + 𝛼)𝑑𝑡) 

Since  

(𝑘 + ω + δ + 𝜇 + 𝛼)dt≥ 0……………….………………….……………….(3.5.11) 

 

From eq 3.3(d) 

𝑑𝐻𝐵
𝑑𝑡

= ωI − (χ + μ + 𝛼)𝐻𝐵 

For positivity of the equation can be written as; 

   𝑑𝐻𝐵

𝑑𝑡
≥ −(χ + μ + 𝛼)𝐻𝐵……………………………………………………… (3.5.17) 

or 

   𝑑𝐻𝐵

𝐻𝐵
= −(χ + μ + 𝛼)𝑑𝑡…………….……………………………………….... (3.5.18) 

 

On integrating equation eq 3.5.18, we have 
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𝑙𝑛𝐻𝐵(𝑡) ≥ −(χ + μ + 𝛼)𝑑𝑡………...………………………………………..eq 3.5.19 

𝐻𝐵(𝑡) ≥  𝑒𝑥𝑝 (−(χ + μ + 𝛼)𝑑𝑡 

When t=0 we obtain 

 

𝐻𝐵(𝑡) ≥ 𝐻𝐵𝑂 𝑒𝑥𝑝 (−(χ + μ + 𝛼)𝑑𝑡)………………………………………… . (3.5.20) 

Since 

(χ + μ + 𝛼) ≥ 0 ……………………...……..………………………………....(3.5.21) 

 

 

From eq 3.3(e) 

 

𝑑𝐻

𝑑𝑡
= kI − (ε + μ + 𝛼)H 

For positivity of the equation can be written as; 

  

𝑑𝐻

𝑑𝑡
≥ −(ε + μ + 𝛼) 𝐻……………………………………………………..….(3.5.22) 

or 

𝑑𝐻

𝐻
= −(ε + μ + 𝛼) 𝑑𝑡……………………………………………….………...(3.5.23) 

 

On integrating  the equation eq 3.5.23 we have 

ln𝐻(t) =exp (−(ε + μ + 𝛼) 𝑑𝑡   ………………………………………………(3.5.24)          

When t=0 ,we obtain 

 

H (t) = exp (−(ε + μ + 𝛼) 𝑑𝑡)      

Since       ε + μ + 𝛼 ≥ 0………………………………………………………( 3.5.25)       
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From eq 3.3(f) 

 

𝑑𝑅

𝑑𝑡
= 𝜀𝐻 + 𝜒𝐻𝐵 + δI − μR 

For positivity of the equation can be written as; 

                   

𝑑𝑅

𝑑𝑡
≥ −μR…………………………………………………………………..…..( 3.5.26) 

or 

 

𝑑𝑅

𝑅
≥ −(𝜇)𝑑𝑡………………………………………………………………...…( 3.5.27) 

On integrating equation  eq 3.5.27 the left-hand side(LHS),the equation become 

𝑙𝑛𝑅(≥  −(𝜇)𝑑𝑡……………………………………………………………….. (3.5.28) 

When t=0 

𝑅(𝑡) =

𝑅0exp (−(𝜇)𝑑𝑡)………………………………………………………….……..(3.5.29) 

Since                  (𝜇) ≥ 0 )……………………………………………….……..(3.5.30) 

Hence 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡), 𝐻𝐵(𝑡)𝐻(𝑡), 𝑅(𝑡) are positive for all t≥ 0 

 

3.6 Disease Free Equilibrium (DFE) 

The disease-free equilibrium points of the model are the steady state when there is no 

corona virus. To determine the D.F.E of this model, we set the entire derivative equal 

to zero and solve the model equation 3.3(a) to eq 3.3(f) .We also assume that the 
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susceptible individual receives constant vaccination against the COVID-19 disease for 

us to get DFE. 

To obtain equilibrium points we let S≠ 0 𝑉 = 0 

𝑑𝑆

𝑑𝑡
 𝑎𝑛𝑑 

𝑑𝑉

𝑑𝑡
= 0,

 𝑑𝐼

𝑑𝑡
=

𝑑𝐻

𝑑𝑡
=

𝑑𝐻𝐵

𝑑𝑡
= 

𝑑𝑅

𝑑𝑡
= 0  ……………….………………..…..(3.6.1) 

 

By setting the differential equation to be zero, we obtain; 

Λ − (𝛽𝑆𝐼 + 𝑞𝑆 + 𝜇𝑆) = 0

𝑞𝑆 − (𝑝𝐼 + 𝜇)V = 0

𝛽𝑆𝐼 + pVI − (𝑘 + ω + δ + 𝜇 + α)𝐼) = 0

 ωI − (χ + μ + α)𝐻𝐵) = 0

kI − (ε + μ + α)H = 0
𝜀𝐻 + 𝜒𝐻𝐵 + δI − μR = 0 }

  
 

  
 

……………………………………. (3.6.2) 

 

Assuming that there is no disease, therefore, when  𝑆 ≠ 0 𝑉 = 0, 𝐼 = 0, 𝐻𝐵 = 0,𝐻 =

0 𝑎𝑛𝑑  𝑅 = 0  

From the above equation 3.6.2 becomes; 

Λ = (𝛽𝑆𝐼 + 𝑞𝑆 + 𝜇𝑆)……………………………………………………….…. (3.6.3) 

 But   𝛽𝑆𝐼 = 0 substituting  in equation 3.6.3 we get, 

 

Λ = (𝑞 + 𝜇)𝑆……….……………………………...……………………………( 3.6.4) 

Hence 

Λ

𝑞+𝜇
= 𝑆0................................................................................................................ (3.6.5) 

 

Hence disease-free equilibrium =(𝑆∗𝑉∗𝐼∗𝐻𝐵
∗𝐻∗𝑅∗) 

              D.F.E = (
Λ

𝑞+𝜇
, 𝟎, 0,0,0,0) 
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3.7 Basic reproduction Number 𝑹𝟎; 

Basic reproduction number can be defined as number of the new infections produced 

by a typical infective individual in a population at DFE. The number can predict 

whether the COVID-19 will be spread from susceptible population to other 

individuals. These basic reproduction number acts as a threshold parameter which   

tells whether the infection dies out or persists in a community. Epidemiologically, the 

reproductive number of the disease tells us how many secondary cases of infective 

individual will be produced in an entirely susceptible population during the individual 

period as an infective. The basic reproduction can be used to determine equilibrium 

stability as used in Van den et-al (2017).. The higher the 𝑅0, the more likely the 

disease will become a pandemic. There are three different possibilities that can occur  

which can be classified using  𝑅0; 

i. If 𝑅0 < 1,the COVID-19 will not spread and will eventually die out 

ii. if 𝑅0 =1, the COVID-19 will remain stable in the society but will not cause an 

epidemic 

iii. If 𝑅0>1, the COVID-19 will spread and cause a pandemic. 

In this thesis, the mean number of new COVID-19 infections was accounted for the 

reproduction number in which a COVID-19 infected individual gets introduced to 

fully susceptible population or vaccinated population. 

The basic reproduction number of the model was obtained using Next generation 

matrix. Where   Heffernan et-al (2005)  have used it.  The method of obtaining  𝑅0 

was worked out as below; 

𝑅0 =   F𝑉
−1...........................................................................................................(3.7.1) 

  



28 
 

Where F𝑉−1 define spectral radius. 

Let X to be the vector function of classes which are infected (I), which are vaccinated 

and those under treatment that is, home Base care(𝐻𝐵) and hospitalized individual 

(H). 

Let Y to be the vector of classes which are uninfected which are susceptible 

individual, those who have been vaccinated and those who recover from the COVID-

19. 

𝑋 = [
𝐼
𝐻
𝐻𝐵

]And Y=[
𝑆
𝑉
𝑅
]……………………………...……………………………( 3.7.2) 

F (X, Y) becomes the vector function containing new infections rate .This same point 

is made by others (Heffernan et-al, 2005).   

V(X, Y) become the vector function containing no new infection rate. 

 

F=[
𝛽𝑆𝐼
0
0
]………………………………………………………..………………. (3.7.3) 

V=[

pVI − (𝑘 + ω + δ + 𝜇 + α)𝐼
ωI − (χ + μ + α)𝐻𝐵
kI − (ε + μ + α)H 

].......................................................................(3.7.4) 

 

Calculating the Jacobian of F and V  with respect to t matrix of all 1𝑠𝑡order partial 

derivatives becomes; 

F= 

[
 
 
 
 
 
𝑑𝐹1

𝑑𝐼

𝑑𝐹1

𝑑𝐻

𝑑𝐹1

𝑑𝐻𝐵

𝑑𝐹2

𝑑𝐼

𝑑𝐹2

𝑑𝐻

𝑑𝐹2

𝑑𝐻𝐵

𝑑𝐹3

𝑑𝐼

𝑑𝐹3

𝑑𝐻

𝑑𝐹3

𝑑𝐻𝐵]
 
 
 
 
 

   

=[
𝛽𝑆0 0 0
0
0

0
0

0
0
].......................................................................................................(3.7.5) 
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V =

[
 
 
 
 
 
𝑑𝑉1

𝑑𝐼

𝑑𝑉1

𝑑𝐻

𝑑𝑉1

𝑑𝐻𝐵

𝑑𝑉2

𝑑𝐼

𝑑𝑉2

𝑑𝐻

𝑑𝑉2

𝑑𝐻𝐵

𝑑𝑉3

𝑑𝐼

𝑑𝑉3

𝑑𝐻

𝑑𝑉3

𝑑𝐻𝐵]
 
 
 
 
 

 

V 

=[
𝑘 + ω + δ + 𝜇 + α 0

−𝜔
−𝑘

χ + μ + α
0

0
0
0

ε + μ + α

]……………………… .……… .… (3.7.6) 

 

 

Obtaining 𝑉−1 from equation 3.7.6 becomes; 

 

𝑉−1 =

[
 
 
 
𝑘 + ω + δ + 𝜇 + α−1 0

ω

(𝑘+ω+δ+𝜇+α)(χ+μ+α)
𝑝

(𝑘+ω+δ+𝜇+α)(ε+μ+α)

χ + μ + α−1

0

0
0

ε + μ + α−1
]
 
 
 

..............................................(3.7.7) 

We can form the next generation matrix (operator) 𝐹𝑉−1 from matrix of partial 

derivates of F and V in equation 3.7.5 and equation 3.7.6.we get 

  

𝐹𝑉−1  =

        [

𝛽𝑆0

𝑘+ω+δ+𝜇+α
0 0

0 0 0
0 0 0

].......................................................................................(3.7.8) 

The Eigenvalues of matrix 

𝛽𝑆0

𝑘+ω+δ+𝜇+α
……………………………………………………………………… (3.7.9) 
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The basic reproduction number 𝑅𝑂  and is given by the spectral radius (dominant 

eigenvalus) of the matrix 𝐹𝑉−1 

 

𝑅𝑂=
β𝑆0

(𝑘+ω+δ+𝜇+α)
..................................................................................................(3.7.10) 

But  𝑆0 =
Λ

𝑞+𝜇
 

Hence 

𝑅𝑂=
βΛ

(𝑘+ω+δ+𝜇+α)(𝑞+𝜇)
……………………………………………………..….(3.7.11) 

 

3.8 Local Stability of Disease-Free Equilibrium 

 

Local stability of an equilibrium point means that if you put the system somewhere 

nearby the point then it will move itself to the equilibrium point after some time. 

Theorem 

The disease-free equilibrium DFE is locally asymptotically stable if 𝑅𝑂<1 

Proof; 

Involved the  analysis of the local stability of the disease-free equilibrium that is in 

absences of corona virus. From the model, Jacobian approach was used to form 

matrix at disease free equilibrium of the non-linear system given by; 

𝐽 =

[
 
 
 
 
 
 −(𝑞 + 𝜇)

𝑞
0
0
0
0

0
−(𝑞 + 𝜌 + 𝜇)

𝜌
0
0
0

−β(
Λ

𝑞+𝜇
)

0

β(
Λ

𝑞+𝜇
) − (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼)

𝜔
𝑘
𝛿

0
0
0

−(𝑥 + 𝜇 + 𝛼)
0
𝑥

0
0
0
0

−(𝜀 + 𝜇 + 𝛼)
𝜀

0
0
0
0
𝛿
−𝜇
]
 
 
 
 
 
 

  

 

...............................................................................................................................(3.8.1) 
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=

[
 
 
 
 
 
−(𝑞 + 𝜇)

𝑞
0
0
0
0

0
−(𝑞 + 𝜌 + 𝜇)

𝜌
0
0
0

β𝑆0
0

β𝑆0 − (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼)
𝜔
𝑘
𝛿

0
0
0

−(𝑥 + 𝜇 + 𝛼)
0
𝑥

0
0
0
0

−(𝜀 + 𝜇 + 𝛼)
𝜀

0
0
0
0
𝛿
−𝜇]
 
 
 
 
 

..(3.8.2) 

 

Which yields the following eigenvalues; 

 

(

 
 
 
 

−(𝑞 + 𝜇)
−(𝑥 + 𝜇 + 𝛼)
−(𝜀 + 𝜇 + 𝛼)
−(𝜋 + 𝜇)

−(𝑞 + 𝜌 + 𝜇)

β
Λ

𝑞+𝜇
− (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼))

 
 
 
 

.........................................................................(3.8.4) 

 

Five of the eigenvalues are negative hence to make the system stable we need to have  

β
Λ

𝑞+𝜇
− (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼) > 0………………………………………….…..(3.8.5) 

 

Hence  

β
Λ

𝑞+𝜇
> (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼)...............................................................................(3.8.6) 

 

In conclusion, if β
Λ

𝑞+𝜇
> (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼).  This means the disease-free 

equilibrium is asymptotically locally stable. 
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3.9 Global Stability of Disease-Free Equilibrium  

Global stability means that the system will come to the equilibrium point from any 

possible starting point. The stability at the equilibrium points is analyzed based on the 

Lyapunov invariance principal. By using appropriate Lyapunov function, the 

uninfected equilibrium point is proven to be globally asymptotically stable when the 

reproduction number is less than one and unstable otherwise.( Li et-al 2000)  

Systematically, we define a Lyapunov function L such that 

 

L=
1

𝑘+𝜔+𝛿+𝜇+𝛼1
𝑙𝑐………………………………  .……………..………(3.9.1) 

The 

𝑑𝐿

𝑑𝑡
=

1

(𝑘+𝜔+𝛿+𝜇+𝛼1)(𝑞+𝜇)

𝑑𝑐 

𝑑𝑡 
 ……………………………………..……………..( 3.9.2) 

          
𝑑𝐿

𝑑𝑡
  = 

1

𝑘+𝜔+𝛿+𝜇+𝛼1
(𝐵𝑠𝑙𝑐 − (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼1)(𝑞 + 𝜇)𝑙𝑐……(3.9.3) 

 

=
𝐵𝑠𝑙𝑐

(𝑘+𝜔+𝛿+𝜇+𝛼1)(𝑞+𝜇)
-𝑙𝑐………………...…………………………….…..( 3.9.4) 

 

 

𝑑𝐿

𝑑𝑡
≤ (

𝐵𝑠𝑙𝑐

(𝑘+𝜔+𝛿+𝜇+𝛼1)(𝑞+𝜇)
 -1) 𝑙𝑐……………………………………….. ..(3.9.5) 

 

𝑑𝐿

𝑑𝑡
≤ (𝑅𝑂 − 1)𝑙𝑐………………………………………..………………(3.9.6) 

  So    
𝑑𝐿

𝑑𝑡
≤ 0, if 𝑅𝑂 ≤ 1 

Furthermore,
𝑑𝐿

𝑑𝑡
= 0 if 𝑙𝑐 = 0 𝑜𝑟𝑅𝑂 = 1 

Hence DFE is globally asymptotically stable if 𝑅𝑂 ≤ 1 
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3.10 The endemic equilibrium (EE) 

This section, looked at the existence of endemic equilibrium point. Let denote the 

endemic equilibrium by E∗ and defined as a steady state solution for the Model. This 

can occur when there is a persistence of the disease. It was obtained by equating the 

system of equation to zero. 

{
  
 

  
 

𝛬 − (𝛽𝑆∗𝐼∗ + 𝑞𝑆∗ + 𝜇𝑆∗) = 0

𝑞𝑆∗ − (𝑝 + 𝜇)𝑉∗  = 0

𝛽𝑆∗𝐼∗ + 𝑝𝑉∗𝐼∗ − (𝑘 + 𝜔 + 𝛿 + 𝜇 + α)𝐼∗ = 0

𝜔𝐼∗ − (𝜒 + 𝜇 + α)𝐻𝐵
∗ = 0

𝑘𝐼∗ − (𝜀 + 𝜇 + α)𝐻∗   = 0

𝜀𝐻∗ + 𝜒𝐻𝐵
∗ + 𝛿𝐼∗ − μ𝑅∗  = 0

………………………………(3.10.1) 

 

From the second, fourth, fifth and the sixth equations (eq 3.10.1) of the model 

the following equation were obtained; 

   

𝑆 ∗=
(𝑝+𝜇)𝑉∗ 

𝑞
……………………...………………………………….…….….. (3.10.2) 

𝑉 ∗=
𝑞𝑆∗

(𝑝+𝜇)
……………………….……………………………………………..( 3.10.3) 

𝐼∗ =
μ𝑅∗ −  𝜀𝐻∗ − 𝜒𝐻𝐵

∗

𝛿
…………………………… .…………………… .… . . ( 3.10.4) 

𝐻𝐵 ∗=
ω𝐼∗

(χ+μ+α)
……………………………………………………………….....( 3.10.5) 

H ∗=
kI∗

(ε+μ+α)
……………..………………………...……………….…….…..(3.10.6) 

𝑅 ∗=
𝜀𝐻∗+𝜒𝐻𝐵∗+δ𝐼∗

𝜇
……………………………………………………….…....( 3.10.7) 

Hence E∗= (S∗; V∗; HB∗; H∗; I∗; R∗) is the endemic equilibrium of the model  
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3.11 Local stability of endemic equilibrium (EE) 

Theorem If 𝑅𝑜>1 then the endemic equilibrium E∗=(𝑆∗, 𝑉∗, 𝐼∗, 𝐻𝐵
∗, 𝐻∗, 𝑅∗)of the 

governing model differential equation will be asymptotically stable. 

Thus, the Jacobian matrix with respect to equation  (3.3.1) is given by; 

  

𝐽E∗

=

[
 
 
 
 
 
−𝛽𝐼∗ − 𝑞 − 𝜇

𝑞
𝛽𝐼∗

0
0
0

0
−(𝑞 + 𝜌 + 𝜇)

𝜌
0
0
0

−𝛽𝑆∗𝐼∗

0
𝛽𝑆∗𝐼∗ − (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼)

𝜔
𝑘
𝛿

0
0
0

−(𝑥 + 𝜇 + 𝛼)
0
𝑥

0
0
0
0

−(𝜀 + 𝜇 + 𝛼)
𝜀

0
0
0
0
𝛿
−𝜇]
 
 
 
 
 

 

 

.............................................................................................................................(3.11.1) 

 

We show the stability of the matrix 𝐽E∗ by verifying the Rourth-Hurwitz conditions, 

that is, all the roots of the resulting characteristic equations must have negative real 

part. The characteristic polynomial of Jacobian matrix at 𝐸𝑢is given by det 𝐽E∗ −⋋ I =

0, where ⋋  is the eigenvalue and I is 6× 6 identity matrix. Thus, 

(𝐽E∗ −⋋ I) =

[
 
 
 
 
 
−𝛽𝐼∗ − 𝑞 − 𝜇

𝑞
−𝛽𝐼∗

0
0
0

0
−(𝑞 + 𝜌 + 𝜇)

𝜌
0
0
0

−𝛽𝑠∗𝐼∗

0
−𝛽𝑠∗𝐼∗ − (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼)

𝜔
𝑘
𝛿

0
0
0

−(𝑥 + 𝜇 + 𝛼)
0
𝑥

0
0
0
0

−(𝜀 + 𝜇 + 𝛼)
𝜀

0
0
0
0
𝛿
−𝜇]
 
 
 
 
 

. 

 

……………………………………………………………………….……….( 3.11.2) 
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= −𝛽𝑠∗𝐼∗ − (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼) −⋋ 1[(𝑥 + 𝜇 + 𝛼) −⋋ 2[−(𝜀 + 𝜇 + 𝛼) −⋋

3][− 𝜇 −⋋ 4]] 

⋋ 1 = −(𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼)<0 

⋋ 2 = −(𝑥 + 𝜇 + 𝛼)<0 

⋋ 3 = −(𝜀 + 𝜇 + 𝛼)<0 

Meaning ⋋ 4 ⋋ ,5 and ⋋ 6 < 0 (all roots are negative). 

Hence by Routh-Hurwitz criteria as in Boyce et-al. (2017), we have that the 

eigenvalues of   𝐽E∗ has negative real part when reproduction number 𝑅0 > 1. This 

shows that the endemic equilibrium E∗ is locally asymptotically stable. 

3.12 Global stability of endemic equilibrium 

We note that there are no established procedures for calculating a Lyapunov function, 

and often finding a Lyapunov function is tedious and tricky when using trial and error 

approach Martcheva et-al (2015).We determine the global stability of the endemic 

equilibrium  E∗ by defining the following Lyapunov function: 

𝑉(𝑆∗𝑉∗𝐼∗𝐻𝐵
∗𝐻∗𝑅∗)=(𝑆 − 𝑆∗ − 𝑆∗𝑙𝑜𝑔

𝑆∗

𝑠
)+(𝑉 − 𝑉∗ − 𝑉∗𝑙𝑜𝑔

𝑉∗

𝑉
)+(𝐼 − 𝐼∗ − 𝐼∗𝑙𝑜𝑔

𝐼∗

𝐼
)+ 

(𝐻𝐵 −𝐻𝐵
∗ − 𝐻𝐵

∗𝑙𝑜𝑔
𝐻𝐵

∗

𝐻𝐵
) + (𝐻 − 𝐻∗ − 𝐻∗𝑙𝑜𝑔

𝐻∗

𝐻
) + (𝑅 − 𝑅∗ − 𝑅∗𝑙𝑜𝑔

𝑅∗

𝑅
)….( 3.12.1) 

V is positive definite since V=0 when(S, V, I, H, 𝐻𝐵, R) = (𝑆
∗, 𝑉∗, 𝐼∗, 𝐻𝐵

∗, 𝐻∗, 𝑅∗) and 

V>0 otherwise; V was radically unbounded. Hence, V is a Lyapunov function. 

We prove that, the derivative of V with respect to t is negative as in  korobeinikov 

(2006). The derivative of V, by calculating along the (eq 3.12.1) becomes; 

𝑉′ =(
𝑆−𝑆∗

𝑆
)𝑆′+(

𝑉−𝑉∗

𝑉
)𝑉′+(

𝐼−𝐼∗

𝐼
)𝐼′+(

𝐻𝐵−𝐻𝐵
∗

𝐻𝐵
)𝐻𝐵

′+(
𝐻−𝐻∗

𝐻
)𝐻′+(

𝑅−𝑅∗

𝑅
)𝑅′…….….…..(3.12.2) 

Hence 



36 
 

𝑉′ =(
𝑆−𝑆∗

𝑆
)[ Λ − (𝛽𝐼 + 𝑞 + 𝜇)] +(

𝑉−𝑉∗

𝑉
) [(𝑞𝑆 − (𝑝 + 𝜇)] +(

𝐼−𝐼∗

𝐼
) [𝛽𝑆𝐼 + pVI −

(𝑘 + ω + δ + 𝜇 + α)]+(
𝐻𝐵−𝐻𝐵

∗

𝐻𝐵
) [ωI − (χ + μ + α)]+(

𝐻−𝐻∗

𝐻
) [kI − (ε + μ +

α)]+(
𝑅−𝑅∗

𝑅
) [𝜀𝐻 + 𝜒𝐻𝐵 + δI − μ]……………………..……………………...(3.12.3) 

Or  

𝑉′ = 𝐹 − 𝐺 

where F represent the positive terms and G the negative terms of the equation. Hence 

F<G in the equation above, then we have that 𝑉′ = 0. 

Clearly  𝑉′ = 0 if and only if 𝑆 = 𝑆∗, 𝑉 = 𝑉∗, 𝐼 = 𝐼∗, 𝐻𝐵 = 𝐻𝐵
∗, 𝐻 = 𝐻∗, 𝑅 =

𝑅∗.Thus E∗ is the endemic equilibrium of the model and was globally asymptotically 

stable if F<G . Boyce et-al. (2021) made this same point. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction  

This section outlines the statistical output obtained based on methodologies used so as 

to achieve each of the study objectives. 

4.2 The Feasibility Region 

The total population N is the sum of the population in the susceptible, vaccinated, 

infective, hospitalized, home base care and recovered compartment i.e., 

N=S+V+I+H+𝐻𝐵+R. 

This proof that the model is non-negative and uniformly bounded.  

4.3 Positivity of a Model 

We are dealing with human being population hence the COVID-19 model is 

biologically and mathematically feasible since all the parameters and variables are 

positive.  

(𝛽𝐼 + 𝑞 + 𝜇)dt≥ 0   from equation (3.5.9) 

replacing the parameters with the values in table 3.1 

𝛽𝐼 =0.5787x150 

𝑞 =0.4213 

𝜇 =0.00411  

Substituting the above values in the equation we get 87.2304≥ 0 hence the model has 

positive parameters and variables. 

(𝑝𝐼 + 𝜇) dt≥ 0    from equation (3.5.13) 

replacing the parameters with the values in table 3.1 

𝑝𝐼 =0.2x 150 

𝜇 =0.00411  
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Substituting the above values in the equation we get 60.00411≥ 0 hence the model 

has positive parameters and variables. 

(𝑘 + ω + δ + 𝜇 + 𝛼)dt≥ 0  from equation (3.5.11) 

replacing the parameters with the values in table 3.1 

𝑘 =0.5493 

ω =0.9506 

 δ = 0.189 

𝜇 =0.00411 

𝛼 = 0.00961    

 Substituting the above values in the equation we get 1.15322≥ 0hence the model has 

positive parameters and variables. 

(χ + μ + 𝛼) ≥ 0 from equation (3.5.21) 

replacing the parameters with the values in table 3.1 

χ=0.1612 

𝜇 =0.00411 

 𝛼 = 0.00961 

Substituting the above values in the equation we get 0.17492≥ 0hence the model has 

positive parameters and variables. 

ε + μ + 𝛼 ≥ 0 from equation  (3.5.25 ) 

replacing the parameters with the values in table 3.1 

ε=0.15 

𝜇 =0.00411 

 𝛼 = 0.00961 

Substituting the above values in the equation we get 0.16372≥ 0 hence the model has 

positive parameters and variables.    
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(𝜇) ≥ 0 )from  equation (3.5.30) 

  𝜇 =0.00411 

Substituting the above values in the equation we get 0.00411≥ 0 hence the model has 

positive parameters and variables. 

4.4 The Basic Reproduction Number 

The basic reproduction number 𝑅𝑂is an estimation which determines if there will be 

an outbreak of COVID-19 or not. 

Since 𝑅𝑂 was an estimation, the most dominant Eigen-value was picked. 

𝑅𝑂=
β𝑺𝑶

(𝑘+ω+δ+𝜇+α)
 from equation (3.7.10) 

Where 
Λ

𝑞+𝜇
= 𝑆0 

𝑅𝑂=
βΛ

(𝑘+ω+δ+𝜇+α)(𝑞+𝜇)
 

replacing the parameters with the values in table 3.1 

where, β = 0.5787 

𝑘 =0.5493 

ω =0.9506 

 δ = 0.189 

𝜇 =0.00411 

 α = 0.00961 

Substituting in the equation above we get 𝑅0 =0.7584 hence the 𝑅0 < 1 

Hence, it’s proof that the disease-free equilibrium is asymptomatically locally stable 

4.5. The Disease-Free Equilibrium 

The estimation of the basic reproduction number determines the disease-free 

equilibrium. At the DFE, the determinant of the Jacobian matrix is positive at 𝑅0 > 1 

then the model is stable. 



40 
 

Hence disease-free equilibrium =( 𝑆∗𝑉∗𝐼∗𝐻𝐵
∗𝐻∗𝑅∗)  = (

Λ

𝑞+𝜇
, 0,0,0,0,0) 

S=
Λ

𝑞+𝜇
  .from equation (3.6.5) 

The susceptible population is the total population which is free of the disease while 

V= 𝐼 =  𝐻𝐵 = 𝐻 =   𝑅 = 0. 

This means that the infected, home-based care and hospitalized are not there because 

there is no disease in the equilibrium. Since there are no diseases, no one recovers. 

 

4.6 Local Stability of the Disease-free equilibrium. 

The equation    β
Λ

𝑞+𝜇
> (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼) from equation (3.8.6)  

Proof; replacing the parameters with the values in table 3.1; 

 β = 0.5787  

 Λ = 10 

 𝑞 = 0.4213 

𝑘 =0.5493 

ω =0.9506 

 δ = 0.189 

𝜇 =0.00411 

 α = 0.00961 

  

13.603>1.15322 was obtained. 

This proof that the disease-free equilibrium was asymptomatically locally stable. 

 

4.7 Global Stability of Disease-Free Equilibrium 

DFE is globally  stability is  𝑅𝑂 ≤ 1 
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But reproduction number 𝑅0 =0.7584 

Hence 0.7584≤ 1 

This proof that the disease-free equilibrium is globally asymptomatically stable. 

 

4.8 The endemic equilibrium (EE) 

 

𝑆 ∗=
(𝑝+𝜇)𝑉∗ 

𝑞
  from equation (3.10.2) 

Replacing values of parameters in table 3.1 

 𝑝 =0.2 

 𝑞 =0.4213 

  𝜇 =0.00411 

 we get: 𝑆 ∗= 0.4845 𝑉 ∗  

 

𝑉 ∗=
𝑞𝑆∗

(𝑝+𝜇)
 from equation (3.10.3) 

Replacing values of parameters in table 3.1 

𝑝 =0.2 

 𝑞 =0.4213 

  𝜇 =0.00411 

 we get: 𝑉 ∗= 2.064𝑆 ∗ 

 

 𝐼∗ =
μ𝑅∗− 𝜀𝐻∗−𝜒𝐻𝐵

∗

𝛿
from equation ( 3.10.4) 

Replacing values of parameters in table 3.1 

χ=0.1612 

𝜇 =0.0041 
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 δ = 0.189 

 𝜀 = 0.15 

 we get: 𝐼∗ =
0.00411𝑅∗− 0.15𝐻∗−0.1612𝐻𝐵

∗

0.189
 

 

𝐻𝐵 ∗=
ω𝐼∗

(χ+μ+α)
 from equation ( 3.10.5) 

Replacing values of parameters in table 3.1 

ω =0.95061 

χ=0.1612 

𝜇 =0.0041 

 𝛼 = 0.00961 

 we get: 𝐻𝐵 ∗=
0.9506𝐼∗

0.17492
 

 

H ∗=
kI∗

(ε+μ+α)
 from equation ( 3.10.6) 

Replacing values of parameters in table 3.1 

 k = 0.5493 

 ε=0.15 

𝜇 =0.00411 

 𝛼 = 0.00961 

 we get: 𝐻 ∗=
0.5493𝐼∗

0.16372
 

 

𝑅 ∗=
𝜀𝐻∗+𝜒𝐻𝐵∗+δ𝐼∗

𝜇
 from equation ( 3.10.7) 

Replacing values of parameters in table 3.1 

ε=0.15 
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   δ = 0.189 

 𝑥 = 0.1612 

𝜇 =0.00411 

 we get: 𝑅 ∗=
0.15𝐻∗+0.1612𝐻𝐵∗+0.189𝐼∗

0.00411
 

Hence E∗= (S∗; V∗; HB∗; H∗; I∗; R∗) is the proof of endemic equilibrium of the 

model  

 

4.9 Local stability of endemic equilibrium (EE) 

The equation  

= −𝛽𝑠∗𝐼∗ − (𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼) −⋋ 1[(𝑥 + 𝜇 + 𝛼) −⋋ 2[−(𝜀 + 𝜇 + 𝛼) −⋋

3][− 𝜇 −⋋ 4]] 

⋋ 1 = −(𝑘 + 𝜔 + 𝛿 + 𝜇 + 𝛼)<0 

⋋ 2 = −(𝑥 + 𝜇 + 𝛼)<0 

⋋ 3 = −(𝜀 + 𝜇 + 𝛼)<0    Is true , 

Proof: 𝑘 =0.5493 

           ω =0.9506 

              δ = 0.189 

                𝜇 =0.00411 

                α = 0.00961 

             𝑥 = 0.1612 

              𝜀 = 0.15 

we have that the eigenvalues of   𝐽E∗ has negative real part when reproduction 

number 𝑅0 > 1. This shows that the endemic equilibrium E∗ is locally asymptotically 

stable. 
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4.10 Global stability of endemic equilibrium 

𝑉′ =(
𝑆−𝑆∗

𝑆
)[ Λ − (𝛽𝐼 + 𝑞 + 𝜇)] +(

𝑉−𝑉∗

𝑉
) [(𝑞𝑆 − (𝑝 + 𝜇)] +(

𝐼−𝐼∗

𝐼
) [𝛽𝑆𝐼 + pVI −

(𝑘 + ω + δ + 𝜇 + α)]+(
𝐻𝐵−𝐻𝐵

∗

𝐻𝐵
) [ωI − (χ + μ + α)]+(

𝐻−𝐻∗

𝐻
) [kI − (ε + μ +

α)]+(
𝑅−𝑅∗

𝑅
) [𝜀𝐻 + 𝜒𝐻𝐵 + δI − μ] from equation (3.12.3) 

Proof: the initial condition in table 3.2              S=1400 

V=300 

I=150 

𝐻𝐵 = 200 

𝐻 = 250 

𝑅 = 100 

Replacing the above parameters and 𝑆 = 𝑆∗, 𝑉 = 𝑉∗, 𝐼 = 𝐼∗, 𝐻𝐵 = 𝐻𝐵
∗, 𝐻 =

𝐻∗, 𝑅 = 𝑅∗.  

𝑉′ =0  was obtained. 

Thus, this the proof that the endemic equilibrium was globally asymptotically stable 

              

4.11 Quantitative analysis of the model. 

The numerical solution of the COVID-19 model problem was computed using the 

classical fourth order Runge-Kutta method Atkinson, (2008); Boyce et-al., (2021); 

Martcheva, (2015) code using Maple mathematics tool. The pure numerical technique 

was used to solve the differential equations of system (3.3.1) of the form: 

 

𝑑𝑆 

𝑑𝑡
= 𝑓(𝑅, 𝑆, 𝐼), 

𝑑𝑉

𝑑𝑡
= 𝒇(𝑆,V) 

𝑑𝐼

𝑑𝑡
= 𝑓(𝑆, 𝐼, V ), 
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𝑑𝐻𝐵
𝑑𝑡

 =  𝑓(I, 𝐻𝐵) 

𝑑𝐻

𝑑𝑡
= 𝑓(I,H) 

𝑑𝑅

𝑑𝑡
= 𝑓(𝐻, 𝐻𝐵, V, I,R) 

 

Satisfying 

 

𝑆(0) =    𝑆0;  𝐼  𝑆0 =  𝐼 𝑆0;  𝑉𝑠 (0) = 𝑉  𝑆0 𝐻 (0) =  𝐻 𝑟0     𝐻𝐵 (0) =

 𝐻𝐵 𝑟0   𝑎𝑛𝑑  𝑅(0)  =  𝑅0. 

We let ℎ =   𝑡𝑛+1 −  𝑡𝑛,      𝑛 =  0.1. 2…. 

So that the Taylor series of S ( 𝑡𝑛+1) =  𝑆𝑛+1 about  𝑆𝑛    is given by, 

S ( 𝑡𝑛+1)  =  𝑆𝑛    +  ℎ𝑓( 𝑡𝑛 ,  𝑆𝑛 ) +
1

2
! ℎ2𝑓( 𝑡𝑛 ,  𝑆𝑛 )+. . 

 

 

 

Figure  4. 1 Simulation for population dynamics with high vaccination coverage 



46 
 

Figure 4.1 demonstrates the impact of high vaccination coverage on the disease-free 

initial population dynamics. The total population is assumed that at the initial year 

all the human population is susceptible to the COVID-19 disease; this implies that all 

individuals are likely to be affected by the disease. We note that the population of the 

susceptible individuals decreases with time while that of the Recovered group 

gradually increases due to recruitment of vaccinated susceptible individuals and 

infective susceptible individuals. Vaccinated individual gradually decreases with time 

due to recruitment to infective individual. The population of individuals under 

treatment both in hospital and those under home based care decrease gradually due to 

high recovary rate. The recovery group display a sharp increase as time increases due 

to more recruitment through vaccination. It is interesting to note that with an initial 

low number of infective populations the COVID-19 disease gradually grows until it 

attains a peak value then decreases gradually to disease Free State. The exponential 

rise of infections initially is due to recruitment of susceptible as a result of high force 

of infection witnessed in COVID-19 disease. The sharp decrease from peak to disease 

free state is due to treatment and high vaccination coverage (𝜑= 0.9). The Population 

eventually attains disease free with all the time. 
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Figure 4. 2 Simulation for population dynamics with low vaccination coverage 

 

Figure 4.2 shows the effect of low vaccination proportion on the dynamics of 

population with low number of infective present in the community. The population of 

the susceptible group reduces gradually with time as well as small increase in the 

population of recovered group is noted. There will be high reproduction number. 

However, it is important to observe that the population of infective may never 

disappear with time and the endemic equilibrium state will not be achieved. This 

demonstrates that a disease-free equilibrium only occurs when the reproduction 

number 𝑅𝑂> 0. Hence, low vaccination coverage level the reproduction number is 

𝑅𝑂< 0. leads to persistence of the COVID-19 disease in the Community with the 

endemic state being stable asymptotically. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1 Conclusion 

A 𝑆𝑉𝐼𝐻𝐻𝐵𝑅 deterministic model formulated that monitors the temporal dynamics of 

COVID-19 disease in the presence of preventive vaccination. The mathematical 

analysis was done using ordinary differential equation (ODE). The data used in 

simulation is based on the disease spread in Ke nya early 2022 and the findings 

revealed the presence knowledge and acceptability among medical staff towards 

COVID-19 vaccination. The model incorporates the fact that susceptible population 

are infectious to the community they spread COVID-19 to other individuals. 

 The study proves the existence of the feasible region that is mathematically is non-

negative and uniformly bounded. The model has positive parameters and variables 

since we are dealing with human population. The existences of diseases free and 

endemic equilibrium are asymptomatically locally stable. 

The model is theoretically analyzed; its effective and basic reproduction numbers are 

derived. It is observed that, when 𝑅𝑂 < 1 the disease-free equilibrium is locally 

asymptotically stable and the disease could be eradicated otherwise was unstable. The 

equations indicate that the COVID-19 disease is declining with a very high number of 

individual’s recovery and it is noted that if the vaccine efficiency is low and the 

disease reproduction number is high, the disease may not be eradicated even if a large 

proportion of the population is vaccinated. The global stability of endemic 

equilibrium is attained if vaccination reproduction number is greater than unity. 

 The computations using Fourth order Runge-Kutta method indicates that COVID-19 

can be controlled in the community with the implementation of high vaccination rate 
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and treatment while our results suggest that vaccination and treatment are very 

effective in reducing the spread of disease as stated by Atangana (2020).  

 

5.2 Recommendation 

Based on finding in figure 4.1 and 4.2 we recommend high vaccination rate to achieve 

a disease-free state in our community.More so, policy makers should take steps to 

encouragement individuals to have positive perceptions toward vaccination and 

improved acceptability towards COVID-19 vaccinations in order to reduce the 

vaccine hesitancy and the spread of the disease. 

This study is not exhaustive students and researchers can investigate the chances at 

which the vaccinated individual and the recovery individual can be carries to COVID-

19.   
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APPENDIX I: Similarity Report 

 


