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ABSTRACT 

HIV/AIDS pandemic has remained the leading causes of death among the sexually 

transmitted diseases. To date, there has been no cure, and all the intervention measures 

involve preventive and reduction of the severity of the spread. Several dynamics related 

to HIV/AIDS have been studied using mathematical models, but the study of the spread 

of HIV by a vector has not been exhausted. In this study, HIV/AIDS is considered as a 

human ‘vector borne’ disease, where both the host and the vector is affected. This is 

possible with the definition of Fisherfolk, as a unique group of people with significantly 

different disease characteristics, and thus seen to play the role of a vector in the 

transmission of HIV. This is based on reported high prevalence of HIV among the 

Fisherfolk, of up to 4 times of the rest of the susceptible. A mathematical model will be 

formulated, and analyzed to arrive at the following objectives. The first task was to 

formulate a mathematical model using differential equations to describe human 

HIV/AIDS disease dynamics of Fisherfolk and normal population around Lake Victoria. 

The formulated model was then analyzed for the well posedness, in terms of stability, 

positivity and boundedness to ensure feasible and realistic solutions. In order to optimize 

the controls, the system was then expressed as a linear programming problem, and used 

to determine the threshold values of parameters for optimality of disease control 

measures. Finally, the system was coupled and tested for synchronization, stability and 

robustness under small perturbation, through All-to-All coupling topology. The 

achievement of these objectives were realized with the use of the following methods; 

compartmental formulation of mathematical model, coupling using nearest neighbor and 

all to all configuration, and use of Lyapunov type numbers to test stability and robustness 

under small perturbation. The study results found using a system of eight ordinary 

differential equations that two equilibrium points exists, disease free equilibrium (DFE) 

and endemic equilibrium point (EEP). DFE was found to be asymptotically stable 

whenever 𝑅0 < 1. Intervention strategies like public health education and treatment were 

found to stabilize periodic solutions of EEP when 𝑅0 > 1. Synchronization manifold of 

all to all coupling configuration was determined to be stable under small perturbations 

with a coupling strength of 𝑘0 ≥ 1.1137. This means interaction of a minimum of 12% 

of the population will lead to synchronization of metapopulations, and therefore any 

intervention strategy should exceed a threshold of 12% of the population. The findings 

are valuable to public health and government for planning and budgeting on the desired 

cost of treating the public, together with other strategies of minimizing interaction 

through creation of markets, control of fishing points through licensing bottlenecks, and 

other mitigation strategies to reduce the scourge. This will improve the human resource 

capacity and improve on fish production in the region. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background of the study 

Mathematical modeling involves the use of mathematical formula to create a system 

which mimics a real phenomenon. Mathematical biology, involves the use of 

mathematical relations and formula to represent a biological system. Mathematical 

epidemiology on the other hand, is a branch of mathematical biology, which deals with 

epidemics. Mathematical equations in this case should give information on the speed of 

the spread, sensitivity of factors causing the spread, the nature of the epidemic, whether it 

will persist or if it will die off, the effect of intervention strategies, for example isolation, 

vaccination, treatment, public health education, and use of contraceptives and many other 

intervention strategies.  

Modeling infectious diseases is efficiently done using compartmental modeling. 

1.2 Mathematical Modeling 

Mathematical modeling is the process of representing a real physical phenomenon using 

mathematical equations, in order to mimic the reality. He purpose of modeling is to create 

an opportunity to assess the effects of varying parameters which represent a specific 

characteristic of the intended phenomenon. For example in modeling infectious diseases, 

a researcher may be interested in the effect of vaccination. A parameter is introduced in 

the model to account for the effect of vaccination, and this value is varied to determine, 

the minimum value that yields the desired results, in terms of herd immunity and cost. 

During modeling, the process involves formulating a general model, then trimmed using 

Occam’s razor theory (Domingos, 1999), to reduce complexity and represent the salient 
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features without affecting the qualitative dynamics of interest. In this regard, 

compartmental techniques were used to represent our model. 

Suppose one considers a totally susceptible homogeneous population in an isolated 

community. The only changes expected are the recruitment rate through birth and the 

elimination rate through deaths. This can be represented by the diagram in Figure 1.1. 

 

Figure 1.1 Simple Population model with Demographics 

 

Notice that if the birth rate 𝜆 equals t the death rate 𝜇, the population remains constant. 

Here, it is assumed that other sources of human population like migration and occurrence 

of catastrophes and natural phenomenon, which significantly affects the total population 

are not significantly affecting the dynamics. 

An ordinary differential equation equivalent to the flow chart in Figure 1.1 is given by; 

 
𝑑𝑃(𝑡)

𝑑𝑡
= (𝜆 − 𝜇)𝑃(𝑡);   𝑃(0) = 𝑃0     (1.1) 

which describes the population dynamics with demography. If the birth rate is greater 

than the  death rate, that is,  𝜆 > 𝜇 the population grows exponentially, otherwise it 

decays exponentially, with the solution; 

 𝑃(𝑡) = 𝑃0𝑒
(𝜆−𝜇)𝑡       (1.2) 

Population 𝜆 𝜇 

Birth Death 
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Suppose one considers a situation of modeling disease dynamics in a population. In this 

case, we define unique disease stages that are of interest. These stages include susceptible 

class, infective class, and the removed class (which do not contribute to the dynamics of 

the others). This is commonly known as 𝑆𝐼𝑅 model, and represented by a diagrammatic 

model with three compartments, and arrows showing the flow of individuals from one 

class to the other, as denoted in Figure 1.2.  

Parameters defining the flow rate from one compartment to the other will be placed along 

the arrows joining the compartments. These parameters are either variable, to be 

investigated or fixed as obtained from data collection. 

 

Figure 1.2  SIR Model with demographics 

The removed class (𝑅) represents all the group of people who were once infected but 

either became immune, treated, vaccinated or died, and thus do not contribute to the 

disease dynamics again. In Figure 1.2, the transmission parameters denote; 𝜆 constant 

recruitment rate, 𝜇 natural mortality rate, 𝛽 force of infection, 𝛾 progression rate from 

infective state to removed state, and 𝜏 is the rate of loss of immunity and thus reinfection. 

Susceptible Infective Removed 
𝜆 𝛽 𝛾 

𝜇 𝜇 𝜇 

𝜏 
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For some diseases, people once infected are conferred immunity temporarily, and once 

the immunity wanes, they become susceptible again, and therefore indicated by the dotted 

arrow in Figure 1.2, from the removed class back to the susceptible class. In other cases, 

the removed class is labelled as recovered, or death or for the case of HIV/AIDS, it may 

be labelled as AIDS class. This compartment represent the group of people who are at the 

last irreversible class, unless through loss of immunity. This model will be represented by 

a system of three ordinary differential equations, with mortality rate assumed to be equal 

in all compartments. 

In this study, a similar model to the one in Figure 1.2 will be used, but with two sets of 

populations, the normal population and the vector population. In modeling vector borne 

diseases, it is important to analyze the population dynamics of the vector alongside the 

human population. This is because, the velocity of the disease spread depends on the 

number of vectors, or equally, depends on the probability of interaction of the humans 

and the vector. This probability is dependent on the population of the vector. The spread 

of diseases like malaria is dependent on the mosquito population and the control of 

mosquito vector will definitely lead to the control of malaria. The same case applies to all 

other vector borne diseases. This study explores the possibility of considering an isolated 

set of human population as a vector. This is qualified by the fact that the said isolated 

population have uniquely high prevalence of the disease, and in case of any interaction 

with the normal human population, there is always a one way spread of the disease from 

the ‘vector’ to the normal human population. The population under consideration here is 

the Fisherfolk community, which are known to have HIV prevalence up to more than 

four times higher than the normal population (Huang, 2002; Kissling et al., 2005). 
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A mathematical model is a description of a system using mathematical concepts and 

language. The process of developing a mathematical model is termed mathematical 

modeling. Mathematical models are used not only in the natural sciences (such as 

physics, biology, medicine, earth science, meteorology) and engineering disciplines (e.g. 

Computer science, artificial intelligence), but also in the social sciences(such as 

economics, psychology, sociology and political science); engineers, statisticians, 

operation research, analysts and economists use mathematical models quite extensively.  

Simple models have additional value as they are the building blocks of models that 

include more detailed structure. Detailed models are difficult to solve analytically and 

hence their usefulness for theoretical purposes is limited, although their strategic value 

may be high. 

One of the early triumphs of mathematical epidemiology was the formulation of a simple 

model that predicted behavior very similar to the behavior observed in countless 

epidemics.  The Kermack McKendrick model (Murray, 2007) is a compartmental model 

based on relatively simple assumptions on the rates of flow between different classes of 

members of the population. The basic compartmental models to describe the transmission 

of communicable diseases are contained in a sequence of 3 papers in 1927, 1932 and 

1933. The Kermack-McKendrick epidemic model is a special model. The general model 

included dependence on age of infection, that is, the time since becoming infected.  

Many of the early developments in the mathematical modeling of communicable diseases 

date back to the late 18
th

 century. The first known result in mathematical epidemiology is 

a defense of the practice of inoculation against smallpox in 1760 by Daniel Bernoulli, a 
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member of a famous family of mathematicians (8 spread over 3 generations) who had 

trained as a physician. The first contributions to modern mathematical epidemiology are 

due to P.D En’ko between 1873 and 1894. The foundations of the entire approach to 

epidemiology based on compartmental models was laid by Sir Ross, Hamer, 

McKendrick, Kermack and Brownlee (Brauer, 2017; Murray, 2007). Sir Ross R.A. was 

awarded the second Nobel Prize in Medicine for his demonstration of the dynamics of the 

transmission of malaria between mosquitoes and humans. After Ross formulated a 

mathematical model that predicted that malaria outbreaks could be avoided if the 

mosquito population could be reduced below a critical threshold level, field trials 

supported his conclusions and led to brilliant successes in malaria control. 

Mathematical modeling now plays a key role in policy making, including health-

economic aspects; emergency planning and risk assessment; control-programme 

evaluation; and monitoring of surveillance data. In research, mathematical modeling is 

essential in study design, analysis (including parameter estimation) and interpretation. 

With infectious diseases frequently dominating news headlines, public health and 

pharmaceutical industry professionals, policy makers, and infectious disease researchers, 

increasingly need to understand the transmission patterns of infectious diseases, so as to 

be able to interpret and critically-evaluate both epidemiological data, and the findings of 

mathematical modeling studies. Recently there has been rapid progress in developing 

models and new techniques for measurement and analysis, which have been applied to 

outbreaks and emerging epidemics, such as Influenza A (H1N1) and SARS (Keeling & 

Rohani, 2011). A simple but powerful new technique for assessing the potential of 
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different methods to control an infectious-disease outbreak was recently developed by 

course presenters. 

A deterministic model describing of the spread of HIV infection of CD4+T cells was 

formulated and analyzed (Atangana & Doungmo Goufo, 2014). Investigations of the 

endemic equilibrium and disease free are done using the method of Jacobian matrix, 

where the iteration technique (homotopic decomposition method), was implemented to 

give an approximate solution of nonlinear ordinary differential equation systems and 

results compared with other techniques such as Runge-Kutta. The results stressed the 

trustworthiness of the iterative technique. 

The study by (Perelson & Ribeiro, 2013) reviewed developments in HIV modeling, 

stressing quantitative findings about HIV biology uncovered by studying acute infection, 

the rate of generation of HIV variants and the response to drug therapy that escape 

immune responses. The study showed how modeling gave insight to dynamical features 

of HIV infection and gave clue to the ultimate cure for this infection. 

 
The paper by (Brauer, 2017) presented review of works devoted to studies on Human 

Immunodeficiency Virus (HIV) and Acquired Immunodeficiency Syndrome (AIDS) 

dynamics through mathematical modeling (Buratto, Cesaretto, & Zamarchi, 2015). About 

a hundred papers were analyzed from 1989 to 2015. The models were distinguished 

according to the absence or presence of variables such as infected T Lymphocytes, 

precursors or immune effectors, and the absence or presence of differentiation in infected 

T cells, uninfected T cells and viruses. The study pointed the main features a 
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mathematical model should have in order to describe faithfully the complex interactions 

between HIV and the immune system. 

 

The study by (Chacko, 2013), developed a mathematical model that predicts T cell/HIV 

dynamics by incorporating the three Lotka-Volterra interactions and other salient 

biological phenomena that influence the dynamics, such as T cells and the presence of 

viral reservoirs. 

1.3 Epidemiology and HIV/AIDS 

Epidemiology is the study of the spread of diseases in space and time. It involves tracing 

the casual factors responsible for or which contributed to their occurrences and 

dispersion. The threshold for many epidemiology models is the basic reproduction 

ratio 𝑅0. The basic reproduction ratio is the average number of secondary infections 

produced when one infected individual is introduced into a host population where 

everyone is susceptible (Fulford, Roberts, & Heesterbeek, 2002). A disease becomes 

epidemic if it spreads to a large number of individuals in a given population within a 

short period of time (usually less than two years) and it is an endemic if it is constantly 

present to a greater or lesser degree in people of a certain class or certain geographical 

region. For many deterministic models, an infection can get started in a fully susceptible 

population if and only if R0 > 1. The basic reproduction number is therefore considered as 

the threshold quantity that determined when an infection invaded and persisted in a new 

host population. 

Despite improved sanitation, antibiotics and extensive vaccination programs, infectious 

diseases continue to be major causes of suffering and mortality. More importantly, 

infectious disease agents adapt and evolve so that new infectious diseases have emerged 
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and existing diseases have re-emerged. Diseases that have emerged in recent years 

include, Hepatitis C, Hepatitis E, Ebola hemorrhagic fever and Hantavirus (Dobson & 

Carper, 1996).. Human Immunodeficiency Virus (HIV) which is the etiological agent of 

Acquired Immune Deficiency Syndrome (AIDS) emerged in 1981 and has become the 

leading deadly sexually transmitted disease throughout the world. Drug and antibiotic 

resistance have become serious issues for diseases such as tuberculosis, malaria and 

gonorrhea. Malaria, dengue and yellow fever have re-emerged and are spreading into new 

regions as climate changes occur (Dobson & Carper, 1996).  

Invasion of an infectious agent is considered to be successful if the agent is able to enter 

into a given patch and spread rapidly within a completely susceptible population that is, 

when an initially infected host is able to infect other hosts in the population. When such 

an invasion occurrs, then it could either go extinct after an initial epidemic or might 

become endemic in the population without subsequent re-invasion. In homogeneously 

mixing populations, infectious agents tend to become extinct when the host population 

size is below a critical community size (Matthew Jesse, Ezanno, Davis, & Heesterbeek, 

2008). However, in metapopulations, the situation become more complex, due to the 

connectivity of the structure; the infection might become extinct in one patch but 

simultaneously invade other patches thereby increasing the risk of re-invasion in future. 

Inter and Intra patch dynamics in metapopulations therefore become important for the 

study of persistence of the infectious agent. In addition, to spatial dynamics, demographic 

and epidemiological processes are important factors that influenced persistence of 

infectious agent in metapopulations.  
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Acquired Immuno-Deficiency Syndrome (AIDS) is the final stage of Human-

Immunodeficiency Virus (HIV) infection. It can take years for a person infected with 

HIV, even without treatment, to reach this stage. Having AIDS means that the virus has 

weakened the immune system to the point at which the body has a difficult time fighting 

infections. When someone has one or more of these infections and a low number of T 

cells, he or she has AIDS. Initial infection of HIV is usually in the macrophages. The 

antigen presenting cells and the phagocytes serve as a cloak for virus that can now be 

carried to all parts of the body through blood. Since infected CD4+ T die by apoptosis or 

due to lysis from infection, then as the infection develops, the immune system is depleted 

so that the host becomes susceptible to opportunistic diseases, (diseases that take 

advantage of the weakened immune system) and pathologies. AIDS is clinically 

diagnosed when the CD4 count is less than 200/mm
3
 out of the normal range of between 

800mm
3
 to 1200mm

3
. 

The use of Highly Active Anti-Retroviral Therapy (HAART) does not treat the disease 

but reduces the impact of infection by controlling the levels of viruses in the body and 

increasing the CD4 count in the body. This increases the number of potential infectives, 

able to infect other individuals. There are two categories of Anti-Retrovirals (ARV’s), 

namely; reverse transcriptase inhibitors (which interfere with the transcription of RNA to 

DNA thus halting cellular infection) and protease inhibitors (which interfere with post-

translation viral particle assembly) Most chemotherapies reduce viral production in a 

dose based manner to the expense of multiple side effects and ineffectiveness after some 

time when the virus mutates. 
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According to (Kwena et al., 2019), achieving the United Nations AIDS Control 

(UNAIDS) goal of ending HIV by 2030 requires identifying HIV hotspots for targeted 

interventions to prevent new infections. The current HIV prevention approaches advocate 

for geographic and subpopulation targeting in investing available resources for maximum 

impact. Sub-Saharan Africa bears the greatest burden of the HIV epidemic described as 

generalized; but with substantial regional and subpopulation differences (Béné & Merten, 

2008). According to (Béné & Merten, 2008) the most affected are countries in southern 

and eastern Africa, such as Kenya, as well as occupational subpopulations of migrant 

workers, sex workers, long distance truck drivers and others like injection drug users 

(IDU) and men who have sex with men (MSM). These populations, characterized by high 

HIV prevalence may sometimes act as important sources of new HIV infections to the 

general population. 

The UNAIDS 90-90-90 targets (Sidibé, Loures, & Samb, 2016) outline that at least 90% 

of population should be aware of their HIV status as an entry point into care that acts 

both as prevention and treatment. This is more urgent in HIV hotspots to reduce 

transmission within the key populations and to the general population. To achieve these 

targets and the vision of an AIDS-free generation, it is essential to  identify all most-at-

risk subpopulations and provide services to increase awareness of their HIV status. 

Available literature from studies in small localized fishing communities from Kenya and 

Uganda show that Lake Victoria fishing communities, who comprise fishermen, fish 

traders/processors, boat owners and other traders selling assorted fishing commodities, as 

well as restaurant/bar workers and sex workers at the fish-landing beaches, are at a much 

higher risk of HIV infection compared to the general population. According to (Kwena et 
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al., 2019) HIV prevalence in the fish-landing beaches, defined as designated areas where 

fishing boats land with fish for sale, has been shown to range from anywhere between 12 

to 32%. 

The high risk of HIV infection among fishing communities has been attributed to many 

factors that are both behavioral and structural in nature. For instance, fisher-folk in many 

places, especially in sub-Saharan Africa including Kenya, are described as being highly 

mobile in pursuit of fish. As such, they are often away from homes and their families for 

long periods and interact with a lot of women fish traders in the course of their work.  

According to (Kwena et al., 2019), in the process of these interactions, fishermen end up 

forming casual sexual relationships known as jaboya (fish-for-sex) with women fish 

traders, which take place within the context of perpetual low condom use and high 

consumption of alcohol and drugs in the fishing villages. (Kwena et al., 2019), observes 

that global efforts to end HIV by 2030 focus on reducing and eventually eliminating new 

infections in priority populations. Identifying these populations and characterizing their 

vulnerability factors helps in guiding investment of scarce HIV prevention resources to 

achieve maximum impact. 

The study of infectious diseases does not only end in focusing on one particular 

population group. Assumptions of homogeneity of the population is not practical. There 

is need to look into the population in terms of patches, each with unique disease 

dynamics. This paves way to the analysis of coupling and arising scenarios of 

synchronization, stability and robustness.  

(Culshaw & Ruan, 2000) studied a delay-differential equation model of HIV infection of 

CD4
+ 

T-cells using   three compartments: the healthy CD4
+ 

T-cells, infected CD4
+ 

T-cells 
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and the free virus. The study examines the effects of time delay on the stability of 

endemically infected equilibrium. Numerical simulation to illustrate the effects   of time 

delay is presented by the study. The study establishes that the infected steady state was 

stable for all 𝜏 ≥ 0.  They also found out that under certain assumption for large values of 

N, the effect of delay is not as strong as for small N. This work has not considered effects 

of chemotherapy on the in vivo dynamics of HIV nor does it examine the effect of time 

delay on the disease free equilibrium. 

(Perelson & Ribeiro, 2013) studied the dynamics of HIV infection of CD4
+
T cells, 

using a system of linear ordinary differential equations. The study done by (Perelson & 

Ribeiro, 2013) studied various scenarios including the effects of AZT on HIV virus 

dynamics, but the effects of time delay on chemotherapy or on infection of CD4
+
 T cells 

was not considered. 

(Nelson & Perelson, 2002) studied a mathematical analysis of delay differential 

equation model of HIV-1 infection. This study considered delay in reference to protease 

inhibitor only. The study therefore has not considered time delay on HIV-1 in vivo 

dynamics in the presence of both protease and reverse transcriptase inhibitors or in the 

absence of treatment.  

(Kirschner & Webb, 1996) studied a model for treatment strategy in the 

chemotherapy of AIDS. The study has looked at the interaction of HIV-1 and the immune 

system using a system of ODE’s. A mechanistic description of chemotherapy was studied 

by age structuring of CD4
+
T-cells. The effects of chemotherapy in this study was 

modeled using a scalar function which was assumed to be on during treatment and of 
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during off treatment. Two types of models were considered: age structured model and the 

other without age structure.  

The results of the study were; one, periodicity of treatment during a given day does not 

reveal a significant difference in the overall effect, quantitatively or qualitatively. This 

means that whether one receives a 500mg dose once a day or 100mg dose five times a 

day, the overall result is the same.  This is because the treatment serves only to perturb 

the system of AIDS into steady state. Two, chemotherapy should begin only after the 

second decline of CD4
+
T-cells. Although this study has looked at various aspects in 

chemotherapy of AIDs, effects of time delay is not considered in the HIV-1 in vivo 

dynamics.  

A mathematical model of HIV-1 infection including the saturation effect of healthy cell 

proliferation was studied under the assumption that that infection rate between healthy 

and infected cell is a saturating function of cell concentration (Kouche & Ainseba, 2010). 

Numerical simulation and stability analysis of the model was carried. The study revealed 

through simulation that, if less than 7.7% of infected cells survive the incubation period, 

the system converges to its healthy equilibrium. If between 7.7% and 30% of infected 

cells survive the incubation period, then system stabilize at infected equilibrium, and if 

more than 30% of infected cells survive the incubation period ,periodic oscillation of cell 

concentration was observed. Qualitatively under realistic parameter regimes, the model 

exhibits two Hopf-bifurcation and the infected steady state is locally asymptotically 

stable either when the average delay is high or small. The study also reported that the 

model exhibited stable periodic solutions for other delays due latency of infected cells. 
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Although the study looked at various scenarios on delay effects, effects of chemotherapy 

is not mentioned in the study. 

Global dynamics of HIV infection model with two classes of target cells and 

distributed delays was considered in the study by (Elaiw, 2012). The study investigated 

the global dynamics of an HIV-1 infection with CD4
+
T-cells and macrophages. The 

incidence rate is modeled by a saturation functional response. Two types of distributed 

delays describing the time needed for infection of target cells and virus replication has 

been considered. Lyapunov functional was constructed to establish the global stability of 

infected and uninfected steady states of the model. In this study numerical investigation is 

not done nor the specific effect of time delay investigated. 

(Elaiw, 2012) studied a global stability models with intracellular delays. In the first of 

the model, delay odes are used to describe the dynamics of the interaction of HIV with 

two classes of target cells, CD4
+
T-cells and macrophages taking into account the 

saturation infection rates. The second model is a generalization of the first one by 

assuming that the infection rate is given by (Bhardwaj & Das, 2020) functional response. 

Two time delays are used in each of the models to describe the time periods between viral 

entry into the two classes of target cells and the production of new virus particles. The 

study used Lyapunov functional and Lasalle-type theorem for delay differential equations 

(DDE) to establish the global asymptotic stability of the uninfected and infected steady 

states of the HIV infection models. The study of the effects of the time delays and the 

effects of chemotherapy was not considered in this study.  
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Infections are disorders caused by pathogenic agents such as bacteria, virus, fungi and 

protozoa. These are the major causes of morbidity and mortality mostly in low income 

nations and among children and the aged. This has elicited synergistic union of scientists 

in different disciplines to carry out research with the aim of understanding the spread of 

these infection causing pathogens in populations and also within the host. This would 

greatly help in the prevention and treatment of these infectious pathogens. The immune 

system is spread throughout the body and comprise of organs, tissues, cells and proteins 

that help the body fight these infectious agents and maintain the overall integrity of host’s 

health. Human beings are always at risk invasion by these infectious agents and have 

therefore evolved a system to eliminate these infective agents in the body, which is the 

immune system defense. The immune system is essential for the survival of the host with 

over 15% of genes in human genome being associated to immune function (Saxena et al., 

2012). Generally everyone’s immune system has unique qualities different from another 

but in all hosts the immune system becomes stronger with age to some extent. This is 

partially because by the time of adulthood one will have encountered more pathogens and 

developed more immunity. A distinguishing and unique feature of the immune system is 

in its ability to differentiate an un offending pathogen like embryo in a mother and an 

offending pathogen like a virus. It is also able to identify pathogens previously 

encountered and those not previously encountered. This is a sophisticated process and is 

carried out by a host of cells each specialized in their functions in conjunction with 

biochemical substances such as enzymes and other proteins. 

There are three distinct types of immunity in humans that are aimed at fighting 

pathogens: innate, specific adaptive and passive immunity. Innate immunity is present at 
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birth, it is nonspecific and offers the first line of defense. It is activated when an 

offending pathogen is encountered and recognized because of its specific molecular 

pattern. It includes exterior barriers like the skin, mucous membrane and secretions. 

The adaptive immune system has two main branches that fight infectious agents, the Cell 

Mediated Immunity and the antibodies. Cell mediated immunity are those specific 

immune responses in which antibody plays only a minor or subsidiary role. This 

immunity mainly involves the lytic activity of cytotoxic T Lymphocytes (CTL) to fight 

and eliminate intracellular pathogens The CTL cells are produced in the bone marrow 

and matures in the thymus and are maintained in naive in secondary lymphoid organs. 

Cell mediated immunity is activated when a pathogen is presented by antigen presenting 

cells and identified as offending. This process leads to an immune response characterized 

by three phases: cellular expansion, contraction and memory cell generation (Rocha & 

Tanchot, 2004). 

Cytotoxic T Lymphocytes Cells (CTL) cells mainly defend the host against virus in the 

intracellular phase and against intracellular bacteria and protozoa. The CTL cells detect 

pathogen driven groove of (Major Histocompatibility Cells) MHC-1 class I as presented 

by the Antigen Presenting Cells (APCs), key among them the Dendritic cells. It has also 

the ability to examine inside the cell to establish its status, whether it is damaged or 

healthy. Normally cells can not examine what could be happening inside other cells. By 

this cell-cell examination MHC class I provides a way of detecting cell normally 

allowing the immune system to expose the infected cells (Terry, Marvel, Arpin, 

Gandrillon, & Crauste, 2012). Passive immunity also called ’borrowed’ immunity 

happens when immunity is passed from one source to another as it happens during breast 
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feeding following birth or when the mother passes antibodies to an unborn child through 

the placenta. This immunity is short lived and is important in protection of a new born in 

the early years. However, it must be understood that technically mathematical model 

description and explanations of a biological behaviour are not necessarily the 

explanations given by Biosciences. Mathematical modeling and analysis is critical and 

must be used if any understanding will be converted from theoretical to predictive and 

quantitative science. The aim of mathematical modeling is not to develop a model that 

incorporates every aspect of the observed behaviour, if this was at all possible. If every 

detail was to be incorporated the resulting model would be too complex to give any 

meaning understanding of how crucial interactions within the system work. Rather it is to 

develop a model that incorporates important and critical interactions whose outcome cam 

be understood (Murray, 2007).  

1.4 Metapopulations and Coupled Biological Oscillators 

Many population models assume that individuals mix homogeneously implying that all 

individuals in the population are equally likely to encounter each other. In reality 

however, many populations are structured in space and are interconnected by human 

travel. The population may therefore be sub-divided into spatially separated patches also 

known as the subpopulations. These patches are connected to each other by migration of 

the hosts. Moreover, each patch has its own dynamics which are influenced by both 

immigration and emigration. Such a distinct group of sub-population is known as a 

metapopulation.( Jesse, et al 2008). Metapopulation is therefore a fragmented population 

in which population dynamics occurs at two distinct levels. These levels are;  

i) Within patch dynamics and  
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ii) Between patch dynamics.  

In a metapopulations, a patch is said to be infected if it contains at least one infected 

individual. In the simplest metapopulations models, individuals are assumed to migrate 

randomly among patches thus there is no spatial dimension. Such a model is known as 

spatially implicit model (Matthew Jesse et al., 2008).  

In this type of model, metapopulations is assumed to be divided into separate patches but 

their spatial dimension between the patches is neglected. In contrast, the patches may also 

be structured in a network with explicit spatial dimension as seen in Figure 1.3. In this 

structure each patch is viewed as a node or an oscillator in the network and is connected 

to other patches/oscillators by an edge. These edges represent both immigration and 

emigration between the patches. These edge connections are called coupling. Different 

coupling yields various lattice structures. The nature of coupling determines the type of 

connection topology obtained. Frequently, systems of subpopulations are arranged in 

geometric structures, with nearest neighbour coupling; that is, the subpopulations are 

linked to their immediate neighbours (Wasike & Rotich, 2007). 

 According to (Wasike & Rotich, 2007), there were different forms of nearest neighbour 

coupling. Some of the various types of nearest neighbour coupling structures are as 

shown in Figure 1.3. That is (a) Coupling on a line; like in chemical reactors systems and 

neural networks, (b) Nearest neighbour coupling on a ring; like in chemical reactors, (c) 

Coupling on a two dimensional Bravais lattice, (d) One-to-all coupling, (e) All-to-all 

coupling and (f) subpopulations coupled to their nearest neighbour in a three dimensional 

Bravais lattice. Dynamics of the disease in a subpopulation can be described as an 
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oscillator. Oscillators can be modeled using ordinary differential equations (ODE’s), 

partial differential equations (PDE’s) or delay differential equations (DDE’s). The scope 

of this study revolves around oscillators described by ordinary differential equations. 

Since there can be no oscillations in one state variable, for the case of an ordinary 

differential equation there must be at least two state variables. 

Consider a biological oscillator governed by the solutions of the first order ordinary 

differential equation 

 �̇�(𝑡) = 𝑔(𝑧)       (1.3) 

Where the dot “.” denotes the derivative with respect to time 𝑡, and the 𝑧 is the state 

variable and 𝑔 is some function. The connection topology described in Figure 1.3 can be 

represented by the coupled system 

 �̇� = 𝐴(𝑘)𝑧 + 𝑓(𝑧)       (1.4)  

Where 𝑓(𝑧) = 𝑔(𝑧1), 𝑔(𝑧2), … , 𝑔(𝑧𝑛) and 𝐴(𝑘) is the coupling configuration matrix with 

𝑘 as the coupling strength. The Coupling matrix 𝐴 is linear for nearest neighbour and all 

to all coupling. If the system (1.2) has a global attractor 𝒜𝑘 for every 𝑘 > 0 , then it 

indicates that the system is synchronized. That is to mean that there exists a bounded 

invariant manifold, where 

 ℳ1 ≔ (𝑧 ∈ ℝ𝑛: 𝑧1 = 𝑧2 = ⋯ = 𝑧𝑛 ≠ 0)    (1.5) 

This means the space ℳ1 is not varying, so that solutions starting on ℳ1 remains in the 

same space as time increases. The solutions are also bounded above and below. 
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Figure 1.3 Oscillators Coupled in Different Coupling Topologies. Source: Author 

 

An oscillator is defined as a set of differential equations which have a non-constant 

periodic solution, which changes from one point to another, and with respect to biological 

oscillators, refers to the set of differential equations which represents a biological 

phenomenon with non-constant repeating behavior. These includes for example the heart 

pacemaker, occurrence of diseases, menstrual cycle, hormone imbalance, flickering of 

fireflies, just to mention but a few. The subtle concept of study in this case is the 



22 

 

 

 

existence of invariant manifold and synchronization of coupled oscillators. Apart from 

synchronization, which refers to the situation in which each oscillator behaves in the 

same way as the others in such a way that the knowledge of one, infers to the behavior of 

the other, and the difference of the behavior of each oscillator is zero, it is also important 

to study robustness of the synchronization manifold. 

In this study, the dynamics of HIV/AIDS among the Fisherfolk is considered as periodic, 

and thus forming an oscillator. Considering population patches, and their interaction, the 

dynamics of HIV/AIDS among Fisherfolk metapopulations in Lake Victoria region in 

Kenya is investigated. Lake Victoria is the source of river Nile, and around Lake 

Victoria, there are distinct patches of communities who live around the lake, and due to 

the geographical nature of the lake, the individual patches are separated by space and 

only interact due to common market or common fishing grounds. On the other hand, the 

HIV/AIDS prevalence among the Fisherfolk is significantly higher than that of the 

normal population, up to about four times higher (Kissling et al., 2005). 

1.5 Statement of the Problem 

HIV/AIDS pandemic is an infectious disease which has lasted over four decades, with no 

curative strategy available. All the chemotherapeutic strategies available are purely 

preventive, and treatment of opportunistic diseases. The scourge is still heavy and the 

spreading velocity still high, and thus affecting the workforce and general wellbeing of 

the population. This includes economic impact as a result of therapeutic cost. The disease 

prevalence is high, but alarming for a specific community (Fisherfolk), because of their 

behavior, which includes barter trade of fish in exchange of sexual intercourse (Béné & 

Merten, 2008). Besides the analysis of data on prevalence, it is necessary to consider the 
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prognostic dynamics of the diseases as to find a lasting intervention strategy on the 

control of the spread. Because the Fisherfolk have extraordinary prevalence rate as 

compared to the normal population, this community is considered as a kind of an agent 

that carries and transmits disease pathogens to the normal human population, thus the ley 

are labelled as ‘HIV vector’. 

Considering Fisherfolk as HIV vector, the dynamics of coupling, interaction, 

synchronization, stability and robustness of the metapopulations is necessary in order to 

determine the optimal disease control parameters to curb the spread of the pandemic. As 

chemotherapy is sought, there is need for some preventive intervention strategy, which 

can be employed by the public health, apart from the usual ABC (Abstinence, Being 

faithful and Contraceptive). This does not suggest to propose a kind of isolation and 

imprisonment of HIV victims, but a way of understanding how interaction through 

coupling can permeate the spread of the disease into new population patches. This 

phenomenon can be understood through formulation of a mathematical model, with 

parameters describing control strategies. Due to the periodic solution of each system, 

coupling allows for the study of synchronization and stability of the invariant manifold. 

Occurrence of other dynamics like bifurcation will necessitate the analysis of stability 

and robustness of the manifold. Besides that, there is need to simulate results and 

determine the optimal threshold values of control parameters, like coupling strength, 

stability, persistence and diffusivity across the metapopulations. 

It is for this reason that this study intended to study Fisherfolk as HIV vector, and the 

dynamics of coupled metapopulations. 
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1.6 Objectives of the study 

1.6.1 General Objective of the Study 

 

The general objective of this study was to formulate a mathematical model, which 

describes HIV/AIDS dynamics among the Fisherfolk, as a HIV vector and the impact of 

HIV prevalence rate All-to-All coupling with neighbouring and interacting Lake Victoria 

fishing metapopulations. 

1.6.2 Specific Objectives 

 

The specific objectives of this study were; 

i) To formulate a mathematical model using differential equations to describe 

human HIV/AIDS disease dynamics of Fisherfolk and normal population around 

Lake Victoria. 

ii) To analyze for the well posedness of the model, in terms of stability, positivity 

and boundedness  of model solutions. 

iii) To express the model in form of a linear programming problem, and determine 

the threshold values of parameters for optimality of disease control measures. 

iv) To analyze the existence of synchronization manifold, study it’s stability and 

robustness under small perturbation, through All-to-All coupling topology. 

1.7 Significance of the Study 

The success of the study produces results which are very important to the government on 

policy formulation of the control strategies of HIV pandemic. It is well known how the 

disease affects the workforce and the economy of the country, and such policies will 
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alleviate the population of the poverty situation which is arising due to heavy financial 

burden on ARV’s and general care of people living with HIV/AIDS. 

The other significance is to the researchers. This study produces results that forms the 

foundation to a new dimension of disease control. There is a possibility of controlling the 

levels of interaction of coupled metapopulations using methods like establishing fishing 

boundaries and creating markets for every community. This study provided information 

on the efficiency of such control methods on the spread of HIV/AIDS. 

The other significance is the dimension of optimal control strategy. The study provides 

information on the minimum efforts required to control the pandemic. This information 

will guide on budgetary allocation to avoid a situation where unnecessary excess 

resources or insufficient resources are allocated to such intervention strategies. 

1.8 Operational Definition of Terms 

The following terms are used in the Thesis and are therefore defined. 

Invariant Manifold 

A set ℳ1 is said to be invariant under the flow defined by equation (1.4) if picking any 

initial point on the ,manifold 𝑧0 ∈ ℳ1 the solution 𝑧(𝑡; 𝑧0) ∈ ℳ1 for all 𝑡 ≥ 0. 

Manifold 

A Manifold is a set which locally has a structure of Euclidean space. They are m-

dimensional surfaces embedded in the real space. If the function in equation (1.4) is 

describing a surface which has maximal rank, with non-zero Jacobian, then by implicit 

theory, this surface can be represented locally by a graph. The surface is a smooth 

manifold if the graph representing it is smooth. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

The World Health Organization (WHO) report of 2004 stated that, AIDS was discovered 

in 1981 and has become one of the leading causes of death, globally, affecting mostly 

impoverished people already suffering from poor nutrition and health (WHO, 2008). HIV 

stands for human immunodeficiency virus; it is a virus that attacks the immune system.  

While HIV does not kill, it causes the immune system to become defenseless against 

other opportunistic diseases it could normally fight off. According to (Abu-Radded, 

2007), HIV/AIDS has killed an estimate of 25 million people globally. The HIV/AIDS 

epidemic has had a major impact throughout the world. In December 2007, the World 

Health Organization (WHO) and joint United Nations Programme on HIV/AIDS 

(UNAIDS) estimated that there are 33 million people living with HIV. Most of these 

people are unaware of their HIV infection and, as a result, unknowingly contribute to the 

spread of the infection (WHO, 2008). The epidemic has disproportionately affected 

people residing in areas of the world that have fewer resources to combat the disease. The 

(WHO, 2008) further estimated that there were 2.7 million people who were newly 

infected with HIV in 2007 and greater than 95% of these new infections occurred among 

persons residing in Low and Middle Income Countries (LMIC). Sub-Saharan Africa 

accounts for an estimated 22 million cases of HIV/AIDS and has an estimated prevalence 

of 5% in adults ages 15-49. In these LMIC, (WHO, 2008) says that the HIV/AIDS 

epidemic has often over-burdened the under-resourced health care infrastructure. 
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HIV/AIDS was first described from a Ugandan fishing Village on the shores of Lake 

Victoria in 1982 (Allison & Seeley, 2004). In the past recent decades, it is evident that 

HIV/AIDS-related illnesses and mortality are devastatingly high in some fishing 

communities. A synthesis of survey conducted since 1992 in ten low or middle-income 

countries in Africa, Asia and Latin America revealed that HIV/AIDS prevalence among 

fishers or fishing communities are between 4 and 14 times higher than the National 

average prevalence rate for adults aged 15-49 (Kissling et al., 2005). These considerable 

rates of HIV/AIDS infection place Fisherfolks among groups that are more usually 

identified as being at high risk (Olowosegun, Akangbe, Olowosegun, Iyilade, & Falaki, 

2013).  

The vulnerability of fishing communities to HIV/AIDS stems from complex interactions, 

mobility of many fishermen, the time they spend away from home, their access to cash 

income, demographic profile (they are often young and sexually active), low level of 

education (especially sex education), and readily available commercial sex hawkers in 

most of the fishing ports and shores of fishing grounds (Olowosegun et al., 2013). The 

sub-ordinate economic and social positions of women in many fishing communities make 

them even more vulnerable to the infection (Kissling et al., 2005). (Huang, 2002) also 

reported that due to poverty, women fishmongers have become victims of fishermen who 

demand for sexual favour on top of supplying fish. It is no longer gainsaying that people 

exchange sex for gift or economic gain for their up keep, commercial sex activities are 

thriving in the lake Victoria region, which may be one of consequences of effect of global 

warming on the water bodies which the desired attention has not been proffered (Béné & 

Merten, 2008). 
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(Kissling et al., 2005) compared HIV prevalence among Fisherfolks with both the wider 

population and with other groups generally considered at high risk of HIV infection. 

Their study yielded comparative data for ten low and middle income countries. In nine of 

those countries, Fisherfolk were more likely to have HIV than the general population, by 

factors ranging between 4.4 and 14.0. Three of the studies were conducted in Africa. 

Prevalence rates for Fisherfolk were 20.3% in the Democratic Republic of Congo (DRC), 

30.5% in Kenya and 24.0% in Uganda, representing rates respectively 4.8, 4.5 and 5.8 

times higher than in the general population. Moreover, in Kenya and Uganda, this 

incidence was respectively 2.1 and 1.8 times higher than for truck drivers, a known high-

risk group. The absolute numbers were also higher: 44,000 Kenyan Fisherfolk infected as 

compared with 8,000 truck drivers, and 33,000 Ugandan Fisherfolk compared with 5,000 

truck drivers. The Kenyan study suggests that rates of HIV infection are even slightly 

higher for Fisherfolk than for sex workers. Studies done in parts of Africa (e.g., Senegal, 

Ghana, Tanzania, Zambia, South Africa, Nigeria and Benin) (Abu-Radded, 2007) 

indicates that many fishing communities have high HIV/AIDS prevalence rates. Cash 

income, poverty, irregular working hours and being away from home places fishermen in 

a group with disposable income and time off (when not fishing), that favors the 

consumption of alcohol and prostitution; the corollary of this is that low-income women 

are drawn to fish landings or ports precisely because of the opportunities to sell food, 

alcohol or sex. The chance of being exposed to HIV is increased where a small number of 

women have unprotected sex with a larger number of men, or vice versa (Garnett & 

Anderson, 1996), cited in (Loevinsohn & Gillespie, 2003). In places where women 

compete intensely for the fish catch (for small-scale processing and local trade); “fish for 
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sex” is not uncommon; Gender inequality, compounded by poverty that puts women at 

risk of exploitation, makes it difficult for women to insist on condom use; and fishing 

communities have limited access to sexual health services. Africa’s industrial fisheries 

and fish processing sub-sectors are also affected by HIV/AIDS, through the loss of 

skilled labor and high levels of absenteeism due to sickness or compassionate leave to 

attend funerals. In addition, Allison and Seeley (Allison & Seeley, 2004) highlight 

potential impacts on natural resource management, pointing out that: HIV/AIDS 

undermines the long-term perspective needed for successful co-management in fisheries, 

whilst deepening and desperate poverty may drive Fisherfolk towards increasingly short-

sighted and unsustainable practices; and indigenous knowledge about resource 

management may also be lost, along with crucial capacities in universities and public 

services.  

HIV/AIDS in the fisheries sector has much wider impacts too. Mobile and part-time 

fishing populations, moving in and out of the sector, along with interactions through trade 

and markets, permit HIV and its impacts to be spread outside the sector. The multiplier 

effects of the loss of productive labor and declining productivity may affect rural incomes 

more broadly. HIV/AIDS, moreover, threatens the ability of the fisheries sector to supply 

fish and fish products to the low-income groups for whom it represents an important and 

affordable source of animal protein and micronutrients. 

HIV/AIDS disease studies done among fishing communities in Tanzania, Africa, found 

that fishers were most likely to die from any cause - AIDS or Non-AIDS. In fact, this 

study found that they were five times more likely to die of AIDS and of other causes than 

are farmers in the same region (Seeley & Allison, 2005). Their entire lifestyle also makes 
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them vulnerable to death due to infection from sexually transmitted diseases, including 

HIV/AIDS. One study among Malaysian fishers in the state of Kedah reported that 18.1% 

of the subjects had sex with commercial sex workers, 19.2% used various drugs and 

14.4% consumed alcohol, all behaviors which put them at risk of being infected (Huang, 

2002). 

There is also an immediate need for action to tackle HIV/AIDS in fishing communities: 

to develop and implement policies; to translate the emerging lessons and approaches into 

programmes and activities on the ground, making sure that some of the key foundations 

are in place (including the availability of condoms, VCT centers, workplace policies, and 

other sensitization and education programmes); and to engage with donors, governments, 

the private sector and communities to harness the commitment and resources needed to 

fight the problem. Such action implies a variety of roles appropriate to different groups 

and professions working at different levels, from policy right down to the communities 

themselves. 

2.2 Optimal Control 

The HIV/AIDS epidemic has had a major impact throughout the world. In December 

2007, the World Health Organization (WHO) and joint United Nations Program on 

HIV/AIDS (UNAIDS) estimated that there are 33 million people living with HIV. Most 

of these people are unaware of their HIV status and infectiousness, and as a result 

unknowingly contribute to the spread of the infection (WHO, 2008). The epidemic has 

disproportionately affected people residing in areas of the world that have fewer 

resources to combat the disease. WHO (WHO, 2008) also estimated that 2.7 million 

people were newly infected with HIV in 2007 and greater than 95% of these new 
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infections occurred among persons residing in Low and Middle Income Countries 

(LMIC). Sub-Saharan Africa accounts for an estimated 22 million cases of HIV/AIDS 

with an estimated prevalence of 5% in adults ages 15-49. Of these LMIC countries, 

HIV/AIDS epidemic has often over-burdened the under-resourced health care 

infrastructure worsening the situation. 

In the past decade, it is evident that HIV/AIDS-related illnesses and mortality are 

devastatingly high in some fishing communities. A synthesis surveys conducted since 

1992 in ten low or middle-income countries in Africa, Asia and Latin America revealed 

that HIV/AIDS prevalence among fishers or fishing communities are between 4 and 14 

times higher than the National average prevalence rate for adults aged 15-49 years. These 

considerable rates of HIV/AIDS infection place Fisherfolks among groups that are 

usually identified as being at high risk (Olowosegun et al., 2013).  

HIV/AIDS was first described from a Ugandan fishing Village on the shores of Lake 

Victoria in 1982 (Allison & Seeley, 2004). The vulnerability of fishing communities to 

HIV/AIDS stems from complex interactions, mobility of many fishers, the time they 

spend away from home, their access to cash income, demographic profile (they are often 

young and sexually active), low level of education (especially sex education), and readily 

available commercial sex hawkers in most of the fishing ports and shores of fishing 

grounds (Olowosegun et al., 2013). The sub-ordinate economic and social positions of 

women in many fishing communities make them even more vulnerable to the infection 

(Kissling et al., 2005). It has been reported that due to poverty women fishmongers have 

become victims of fishermen who demand for sexual favor on top of supplying fish 

(Awuonda, 2003; Duwal et al., 2015). It is no longer gain saying that people exchange 



32 

 

 

 

sex for gift or economic gain for their up keep, commercial sex activities are thriving in 

the area which may be one of consequences of effect of global warming on the water 

bodies which the desired attention has not been offered (Béné & Merten, 2008). 

A comparative data for ten low and middle income countries on HIV prevalence among 

Fisherfolks with both the wider population and with other groups generally considered 

Fisherfolk at high risk of HIV infection (Kissling et al., 2005).  

Among the HIV-associated pulmonary complications, opportunistic pneumonias are 

major causes of morbidity and mortality. Pneumonia refers to any inflammation of the 

lungs, usually caused by a germ. It can involve both lungs, one lung or one part of a lung. 

Pneumonia requires hospitalization and can even lead to death. The spectrum of HIV-

associated opportunistic pneumonias is broad and includes bacterial, mycobacterial, 

fungal, viral, and parasitic pneumonias. Bacterial pneumonia is the most frequent 

opportunistic pneumonia.  

While there is no cure for HIV, most drugs available are meant to boost immunity and 

treat opportunistic diseases. In addition to providing antiretroviral therapy to those with 

HIV infection, accurate diagnosis and appropriate treatment and prevention of HIV-

associated opportunistic pneumonias are both important strategies for reducing the 

morbidity and mortality from HIV/AIDS. This paper, among other aspects, incorporates 

antiretroviral therapy for the AIDS cases and analyzes its implications on pneumonia. 

It is not the AIDS that kills, but the opportunistic infections which take advantage of the 

body's weakened defense system(The Columbia University Handbook of HIV and AIDS, 

2009). It is estimated that more than 34.3 million people in the world live with HIV 
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infection, out of which more than 24 million are in the developing world. Much of the 

research on anti-HIV vaccine is focused on the immune system because such a treatment 

if found can serve to help the body to fight HIV infection on its own. For this reason, the 

object of the new treatments is reducing the viral load while improving the immune 

response(H.R, 2011). 

Human body organs called lymphoid, associated with the immune system is positioned 

throughout the body. The bone marrow is the ultimate source of all blood cells, including 

white blood cells. T-cells travel throughout the body through the blood vessels or 

lymphatic vessels. The exchange of cells and fluids between blood and lymphatic vessels 

makes it possible for the monitoring invasion by microbes(Institute, 2003). 

The immune system keeps large stockpiles made up of lymphocytes and the cell-

devouring phagocytes and their relatives. B-cells and T-cells are the main types of 

lymphocytes’-cells do their duty by secreting antibodies into the body’s fluids. These 

antibodies attack antigens circulating the bloodstream but are unable to penetrate 

cells(Institute, 2003). 

Unlike B-cells, T-cells do not recognize free-floating antigens. T-cells contribute to 

immune defenses through two ways: directing and regulating immune responses and 

directly attacking infected cells. Helper T-cells coordinate immune responses, by 

communicating with other cells or by stimulating B-cells to produce antibodies or by 

activating other T cells. Killer T-cells, also known as cytotoxic T-lymphocytes or CTLs 

directly attack other cells carrying certain foreign or abnormal molecules on their 
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surfaces. Killer T-cells are useful for attacking viruses that often hide and grow inside 

infected cells(Institute, 2003). 

According to Zhu and Paul (2008), CD4 T-cells contribute to immunity through their 

capacity to help B-cells make antibodies; to induce macrophages to develop enhanced 

microbicide activity; to recruit neutrophils, eosinophils, and basophils to sites of infection 

and inflammation. They also help through their production of cytokines and chemokines 

that orchestrate immune responses. 

According to("Virological and immunological features of long -term human 

immunodeficiency virus-infected individuals who have remained asymptomatic 

compared with those who have progressed to acquired immunodeficiency syndrome," 

1998), most people mount an effective immune response to HIV during the first few 

months of infection. However, the effectiveness of their response wears down with time. 

The response to HIV infection comes in two forms: cellular and humoral. In the cellular 

response, the activity of the CD4 and the cytotoxic lymphocytes(also called CD8 T-cells) 

the lymphocytes directly attack infected cells. In the humoral response, the lymphocytes 

use antibody production and activity to fight HIV/AIDS. 

("The viruses progression in early human immunodeficiency virus type 1 infection and 

their replication," 1997), asserts that the first few weeks after infection, experience an up 

to  20fold increases the number of CD8 T-cells and a sharp fall in CD4T-cell. This is 

paired with a decline in the immune functions governed by the CD4 T-cells. It sometimes 

results in the appearance of infections such as Candida, herpes and Pneumocystis 

pneumonia during seroconversion illness. About six months after infection, CD4 T-cell 
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function improves except in relation to HIV-specific antigen. The few people who 

maintain strong HIV-specific CD4 T-cell responses have lower viral loads than people 

with poor responses. This is due to the abundance of CD4 proteins on the surface of T 

cells. 

As HIV infects and kills the CD4+ T cells the total number of healthyCD4+ T cells in the 

body. This is what is meant the lowering of CD4 counts in people living with HIV who 

are progressing to AIDS. The eventually depletion of CD4+ T cells weakens the ability of 

the human immune system to defend itself against attack from other pathogens. When 

HIV invades the body, the dendritic cells and macrophages attempt to do their usual job 

by engulfing HIV and displaying the antigen. But when CD4+ T cells respond they 

become infected by HIV. The HIV hijack CD4+ T cells and forces them to channel their 

activities into manufacturing more viruses. Medicines Australia (2014) traces the term 

vaccination from the Latin word "vice" that means "cow." They assert that the term was 

coined from the process of inoculating a naive patient with attenuated cowpox pathogens 

to induce immunity in subsequent attacks of the disease. They define a vaccine as a 

preparation whose intension is producing immunity to a disease by stimulating the 

production of antibodies. Vaccines include suspensions of killed or attenuated 

microorganisms, or derivatives of microorganisms. Vaccines are prophylactic medicines 

designed to prevent rather than treat disease.  

Vaccination aims at eliciting a specific immune response to protect the immunized 

individual from a pathogen should he or she be exposed to it at a later date. The ability of 

a vaccine to do this is sometimes enhanced when combined with an adjuvant. An 

adjuvant is a substance that attracts additional inflammatory cells to the site of injury and 
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stimulates them to release more and different types of cytokines. These cytokines further 

stimulate and activate macrophages and lymphocytes to acquired additional protective 

functions (Abul Abbas, Lichtman, & Pillai, 2019). 

According to (Delves & Roitt, 2000), vaccines provide a unique modern medication for 

they offer effective protection against the onset and progression of specific infections. 

Most of the other treatments are therapeutic. They are usually used to treat a disease and 

or its symptoms. Only a few are preventative. Vaccination is also unique in harnessing 

the cells, tissues and molecules of an individual’s immune system so that they become 

able to offer protection through a variety of natural mechanisms and processes 

fundamental to human biology. 

According to (Korobeinikov, 2007), mathematical models are valuable in understanding 

the dynamics of biological problems. Ianthe last decade, for instance, numerous 

mathematical models have been developed to describe immunological response to 

infection with Human Immunodeficiency Virus (HIV). Differential equations have been 

used to study the dynamical properties of HIV-1 infection models and provided much 

knowledge about the HIV-1 infection.  

The mathematical study of epidemics reduces dependency on laboratory experiments 

which can be expensive. Further, the testing done in cases involving humans can be 

detrimental. Using a mathematical approach to describe the interaction between the 

Immune system with HIV viral pathogens in presence of vaccines will make a positive 

contribution to epidemiology. 
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2.3   Metapopulations and Epidemics 

Although vaccines are available for many infectious diseases, these diseases continue to 

cause suffering in both developing and developed countries. In developed countries, 

chronic diseases such as cancer have received more attention than infectious diseases but 

the infectious diseases have continued to cause mortality in the world. The transmission 

mechanism from the infective to the susceptible is understood for many infectious 

diseases and the spread of the diseases through a chain of infections is known.  

 

However, the transmission interactions in a population are very complex and are 

therefore difficult to understand the large scale dynamics of the disease spread without 

the formal structure of the mathematical model. In many sciences, it is possible to 

conduct experiments to obtain information, however experiments with infectious disease 

spread in human populations are often impossible, unethical or expensive. Data is 

sometimes available from naturally occurring epidemics or from natural incidence of 

endemic diseases (Rotich, 2013). 

 

This data is however incomplete due to under reporting. The lack of reliable data makes 

accurate parameter estimation difficult so that it may only be possible to estimate a range 

of values for some parameters.  

 

(Patel, Longini Jr, & Halloran, 2005) used an epidemic model to investigate which age 

groups should be vaccinated first to minimize the cost or deaths in an influenza epidemic. 

They established that the optimal vaccination strategy involves concentrating the vaccine 

on children with the left over vaccine going to the middle aged adults. Their study 
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revealed that given a population of 280 million people, it will be possible to prevent 31 

million illnesses more by applying the optimal vaccination strategy when compared with 

the random mass vaccination. 

 

(Lloyd & Jansen, 2004) studied an n-patch model with k different levels of individuals. 

Their study concentrated on the linear stability of the spatially homogeneous solutions of 

the model with population settings in which individuals migrated between patches 

according to a simple linear term. The dynamic behavior of the endemic SIR model was 

decomposed into spatial modes. They found out that for parameter values appropriate for 

childhood diseases, the out of phase modes decayed much more rapidly than the in-phase 

modes for a broad range of coupling strengths.  

(Rotich, 2013) studied the dynamics of the immune system and the drug sensitive 

Wildtype HIV variant. Their study focused on the transient and steady state behavior of 

the mathematical model to assess the effects of time delay on the stability of the periodic 

oscillations. 

The study showed that among the parameters which affects the management of HIV virus 

at very low levels, time delay and drug efficacy were shown to be the major contributors 

of stability condition. They also observed that since the lifespan of infected cell cannot be 

stretched beyond a certain limit. The minimum time delay before the infected cell 

become productive is given by 𝜏𝑚𝑖𝑛 and the maximum lifespan of the cell is 𝜏max and in 

this range of time delay, the drug efficacy was effective within an interval of 50% and 

70%.  
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(Marieke Jesse & Heesterbeek, 2011) investigated the effect of migration on the 

persistence of infectious agent in a metapopulation. Their study revealed that a higher 

migration rate would mean that an infectious individual would spend shorter time in one 

patch thus changing patches more frequently. By changing patches frequently, the 

infectious individual increases the number of contacts with susceptible individuals which 

increase the probability of the persistence of the infectious agent. 

 

(Enagi & Ibrahim, 2011) studied the effects of combining immunization with treatment 

of latent tuberculosis in controlling the spread of TB in a population. Stability of DFE 

was discussed in this study using Routh Hurwitz theorem. Routh Hurwitz theorem (Clark, 

1992) helped determine the sign of the eigenvalues of a matrix without necessarily 

computing their values. This work established that for DFE to be stable, the product of 

total contractions and total breakdown of latent class should be less than total rates from 

both latent and infectious classes. This work has studied the effects of immunization and 

treatment in a single population assumed to be closed. Effects of interactions with other 

near populations is not discussed, an assumption which is not practical. 

    

(Sharma, 2014a) studied the effect of poverty and media coverage on the transmission of 

infectious diseases using numerical simulation. He found out that in life every individual 

usually takes preventive measures to protect themselves from infection as soon as the 

infected individuals are reported by media coverage thereby reducing the transmission 

rate, this research however showed that media coverage has very little effect on the 

transmission rate of infectious diseases to the population living below poverty line due to 

little access to media tools. He further observed that the unique disease free equilibrium 
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follows global asymptotic stability if 𝑅0 < 1 but when 𝑅0 > 1, the endemic equilibrium 

is asymptotically stable. 

 

(Rahman & Zou, 2012) studied the dynamics of a vector-borne disease containing latency 

and non-linear incidence rates. They assumed that the population of vectors at a time t is 

proportional to the population of the infectious hosts and used the saturating incidence 

rate functions. They formulated a mathematical model to describe the dynamics of a 

vector borne disease with two-strains and with latency delays. They determined the 

global dynamics by selecting suitable Lyaponov functional. They showed that when the 

basic reproduction number is less than one then the disease dies out but when Ro> 1 then 

the disease will persist in one or both the strains will become endemic. 

 

Time series data for the Ebola virus disease cases in Guinea, Sierra Leone and Liberia up 

to September 8, 2014 and employed novel methodology to estimate how the rate of 

exponential rise of new cases had changed over the outbreak using piecewise fit of 

exponential curves to the outbreak data. They found that in Liberia and Guinea the 

effective reproduction number rose around the time that the outbreak spread to densely 

populated cities (Towers, Patterson-Lomba, & Castillo-Chavez, 2014). The authors 

further observed that the enforced quarantine measures were not effective control 

measures. 

 

Existing data from Liberia and Sierra Leone were used to parameterize a mathematical 

model of Ebola and used the model to forecast the progression of the epidemic, as well as 

the efficacy of the several interventions including increased contact tracing, improved 

infection control practices, the use of hypothetical pharmaceutical intervention to 
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improve survival in hospitalized patients. Modeling results showed that increased contact 

tracing and improved infection control or the combination of the two can have a 

substantial impact on the number of Ebola cases but the interventions were not sufficient 

to halt the progress of the epidemic. The hypothetical pharmaceutical intervention while 

impacting mortality had a smaller impact on the forecasted trajectory of the epidemic 

(Rivers, Lofgren, Marathe, Eubank, & Lewis, 2014). 

 

A mathematical model for a Lassa fever was developed with three compartments of 

susceptible humans (S), infected humans (I) and the rodents carrying the virus (V) and 

incorporated infection contact rates. They obtained the basic reproduction ratio (Ro) and 

established conditions for local stability of both the disease free and endemic equilibria 

(Okuonghae & Okuonghae, 2006). 

 

(Bawa, Abdulrahman, Jimoh, & Adabara, 2014) extended the work of (Okuonghae & 

Okuonghae, 2006) by developing a mathematical model with five compartments of 

susceptible humans (SH), infected humans (IH), infant reservoirs (IR), adult reservoirs 

(AR) and the Lassa virus in the environment (V). The authors also incorporated the 

demographic factors, disease induced deaths, human-to-human contact rate (𝛽1), rodent-

to-human contact rate (𝛽2) and infection contact rate (𝛽3). Their model results showed 

that Lassa fever could be controlled if the basic reproduction ratio (𝑅0) was less than one 

regardless of the initial population profile. 

 

(Ullah, Zaman, & Islam, 2013) investigated the stability of the general SIR epidemic 

model of infectious disease. The authors showed that the local dynamic of the general 

SIR model is determined by the basic reproduction ratio(𝑅0). They used the Lyapunov 
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theory to show that disease free equilibrium is globally asymptotically stable when Ro< 1 

while the endemic equilibrium is locally asymptotically stable when Ro> 1. Here local 

means around the fixed points, while global is at any other point away from the fixed 

points. 

In the literature reviewed above, the disease dynamics were analyzed in a homogeneous 

population, where individuals are expected to interact freely and randomly. Boundaries 

were nonexistent between subpopulations and individuals mingled freely amongst 

themselves. In this study, the researcher introduced subpopulations and analyzed the 

disease dynamics in a metapopulation, where boundaries are assumed to exist between 

homogeneous subpopulations. The dynamics between and within subpopulations were 

analyzed. 

Epidemiology is the study of the disease distribution in a population and seeks to 

determine the causes and patterns of the disease. The main object of epidemiological 

study is to establish preventive and control methods and therefore prevent the 

transmission of the disease in a given population. One of the main area of 

epidemiological study is the disease surveillance which monitors the spread of a disease 

by establishing patterns of progression of the disease. The goal of the surveillance is to 

predict, observe and minimize the harm caused by the epidemic to the population. 

Epidemic modeling is a tool used to study the mechanism through which an infectious 

disease spreads, predict the future course of the epidemic and identify the possible 

strategies for controlling the epidemic. Thus epidemic modeling has three main goals; 
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i) To understand the mechanism through which the disease spreads. The most important 

part here is the set of mathematical equations that describe the model i.e. the 

mathematical structure of the model. 

ii) To predict the future trend of the disease transmission in the population. In order to 

make a model that can give reliable prediction of the future course of the epidemic, the 

model must describe the epidemic closely and must contain all the specific features of the 

epidemic. 

iii) To identify possible control measures of the epidemic. The threshold for many 

epidemiology models is the basic reproduction Number 𝑅𝑜.  

Basic Reproduction Number is defined as the average number of secondary infections 

produced when one infected individual is introduced into a host population where 

everyone is susceptible (Diekmann & Hesterbeek, 2003). 

The number 𝑅𝑜 is used to measure the transmission potential of an infectious disease. It is 

usually affected by several factors including contact rate in the population, the probability 

of infection in a given contact and the time duration at which an individual who has 

contracted the disease remains infectious.  

The global basic reproduction number 𝑅0 and if 𝑅0 < 1 then an index case introduced 

into a population which is fully susceptible will produce less than one other infection on 

average during its entire infectious period thus the epidemic will die out. However if 

𝑅0 >  1 then each index case introduced into a population of susceptible individual will 

produce on average more than one infection during the period that it remains infectious 

thus the epidemic will occur. The disease reproduction number in a sub-population is also 

known as the local reproduction number is denoted by 𝑅𝑖;   𝑖 ∈ [1,2,3. . . ] and measures 



44 

 

 

 

the number of secondary infections produced in the sub-population i when Epidemic 

refers to one infected case is introduced in the sub-population i when everyone in that 

sub-population is susceptible. 

Epidemic –the sudden increase in the number of cases of an infectious disease above the 

expected number of cases in a given population within a short duration of time (usually 

less than two years) (Beer, McCree, Jeffries IV, Lemons, & Sionean, 2019). 

Endemic – A disease is said to be endemic in a population if it is constantly present to a 

lesser or greater extent to people of a certain class or of certain geographical region. For 

many infectious diseases, the basic reproduction number is considered to be the threshold 

quantity determining when an infection could invade a fully susceptible population. 

In general, the infection can invade and persist in a population which is wholly 

susceptible if and only if 𝑅0 is less than one. 

Despite extensive vaccination programs, use of antibiotics and improved sanitation, 

infectious 

diseases continue to be major causes of morbidity and mortality throughout the world. 

More importantly, pathogens evolve and adapt to new environments leading to 

emergence of new infectious diseases and spreading of the existing diseases to new 

geographical regions Levin’s, Awerbuch and Brinkman, 1994. Diseases that have 

emerged in recent years include Lyme (1975), Hepatitis C (1989), Legionnairer (1976), 

Hepatitis E (1990), Ebola hemorrhagic fever (1976), Hantavirus (1993) and Coronavirus 

disease 2019 (COVID 19). 

Drug resistance by pathogens has become a serious issue in the control of diseases such 

as malaria, tuberculosis and gonorrhea and with occurrence of the climatic changes some 
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diseases such as malaria, yellow fever and dengue are spreading into new regions. 

Recently, new pathogens known as prions have joined the previously known pathogens 

(protozoa, worms, viruses and bacteria). A prion is a misfolded protein with the ability to 

infect normal proteins of the same variant and cause them to be misfolded. They are 

responsible for neuro-degenerate diseases such as Bovine Spongiform Encephalopathy 

(BSE) in variety of mammals. An outbreak of foot and mouth disease in the United 

Kingdom in 2001 caused great economic hardships in the United Kingdom (Ferguson, 

Donnelly, & Anderson, 2001; Woolhouse et al., 2001). Avian influenza has devastated 

bird population in South East Asia. Moreover, it is feared that a recombination of human 

influenza strain with Avian influenza strain might give rise to a novel influenza strain. In 

future therefore, the world is likely to face new challenges as a result of the 

emergence of novel infectious diseases. 

Invasions of new ecosystems by animals and human beings, environmental degradation, 

global warming, changes in economic and social patterns and increased international 

travel will continue to provide opportunities for the transmission of new and existing 

infectious diseases (Martens et al., 1999). The growth of the world population, changes in 

the global climatic conditions, emergence and re-emergence of new infectious diseases 

and deadly strains of the existing infectious diseases have continued to increase the need 

for better methods to guide disease control and prevention. 

 

2.4 The n-Patch Metapopulation Modeling 

The influence of spatial structure in population dynamics have been studied intensively in 

the recent years. One way to incorporate structure is to consider metapopulations 

consisting of well-mixed, coupled patches also known as sub-populations or households. 
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In metapopulation models, the patches are thought to be homogeneously mixed and 

contain individuals in different states of the disease. There are several choices for the 

underlying local dynamics and they can be classified according to the considered phases 

of the disease (compartments) and the reaction between them. Individuals within each 

sub-population are assumed to be well mixed. Metapopulation models allow explicit 

mathematical expressions and straight forward numerical solutions, and hence play an 

important role in mathematical epidemiology. Hierarchical metapopulation models are a 

special type of general metapopulation models. 

Research done by (Shattuck-Hufnagel & Ren, 2018) considered the hierarchy involved in 

human movements (i.e. that sub-populations have some non-random pattern of 

connections)   Simulations from these models show that disease spreading is significantly 

influenced by multilevel movements. New studies based on real human mobility data also 

provide evidence to support the argument that individual movements occur at different 

levels (Schlosser & Brockmann, 2021). Another thing to consider is the way individuals 

interact with each other.  

Interactions between individuals involve both within-patch interactions and between 

patch interactions. It is assumed that the contacts between individuals on each patch are 

frequent and hence random mixing applies within the sub-population. Between-patch 

interactions are of more interest and usually modeled by two methods, depending on the 

frequency of movements. If the interaction between two patches is dominated by frequent 

movements such as people commuting to and from work, the sub-populations are said to 

be interacting with each other in a random manner thus any infection occurring on one 
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patch has the force of infection on the susceptible individuals in the closely related 

patches. 

 Lloyd and Jansen (2004). The force of infection is defined as the per capita rate that the 

infected individuals transmit the disease to susceptible individuals. Alternatively, if the 

movements between two patches mainly take the form of migration, it means that 

individuals migrate to the host population with the disease status they get from the home 

patch first and then take part in the disease transmission process in the host patch (Lloyd 

& Jansen, 2004). These two scenarios were studied separately in the past. In real 

populations, it is obvious that both scenarios occur simultaneously. 

 In this study, we will build a metapopulation model based on multilevel movements 

including both patch coupling and migration. At the lowest level, where the population 

movements between the patches are most frequent, the patches will be coupled by the 

force of infection while patches with less frequent movements in between will be linked 

by migration. In this research, these two kinds of patch relationships will be referred to as 

close-related patches and non-close-related patches. Moreover, it will not necessarily 

mean that well-connected patches are geographically close, in contrast to previous work. 

 Human interaction tends to be more complex than animal migration or plant dispersal 

and is not necessarily related to geographic distances (Burnside et al., 2012). A 

hierarchical system to describe a metapopulation model consisting of m levels of 

movement and having a total of n patches was set up. Individuals were assumed to mix 

homogeneously within each patch. All patches will be assumed to have identical within-

patch population dynamics and environmental conditions. Transmission of infection 

occurs when an infectious individual meets a susceptible individual in one of the 𝑛 
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patches. Interaction of patches is either through coupling or migration. We assumed that 

the population was distributed evenly across all the 𝑛 patches and one infectious 

individual was introduced into one of the patches. 

Vaccines are available for many infectious diseases, but these diseases continue to cause 

mortality and morbidity in both developing and developed countries. Although infectious 

diseases have continued to cause morbidity and mortality throughout the world, chronic 

diseases such as hypertension and cancer have received more attention in developed 

countries. For many infectious diseases, the spreading mechanism through a chain of 

infection and also the transmission mechanism from the infectious to the susceptible 

individuals are understood. However, it is difficult to understand the disease transmission 

on a large scale dynamics without a formal structure of a mathematical model due to the 

complexity of the human to human interplay. In many sciences, it is usually possible to 

obtain data by conducting repeated experiments. However, with transmission of 

infectious diseases in human population, such experiments are often expensive, unethical 

or even impossible. Sometimes epidemiological data is available from naturally occurring 

epidemics but due to under reporting, the data is usually incomplete in many instances. 

This lack of reliable data makes it difficult to accurately estimate parameter values and 

therefore in many instances, parameter estimation is only possible over a range of values. 

Because repeatable experimental data is not readily available in epidemiological study, 

theoretical experiments are usually carried out using mathematical modeling and 

computer simulations to provide data that can be used to predict the future cause of the 

epidemic. 
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Epidemiological models are useful when it is required to determine the effect of the 

control methods to the transmission of the disease in the population. The models are also 

useful when comparison of the effect of the control or prevention procedures are required 

and may be used in the comparison of the control procedures of different diseases in the 

same population, same disease in different populations or even the same disease in the 

same population but at different times. 

Compartmental mathematical modeling can be traced back to Kermack and McKendrick 

model (Brauer, 2005) of 1927 formulated a Susceptible-Infectious-Recovered (SIR) 

compartmental model to study the outbreak of plague of Mumbai in 1906 and the 

outbreak of bubonic plague of London between the years 1665 and 1666 (Brauer et al., 

2019). They formally introduced the concept of thresholds that determines whether a 

disease can invade a given population (Volz & Meyers, 2009). This concept established 

the fundamental theory of epidemic modeling. More intensive studies on epidemic 

modeling have taken place in recent years. A two-region metapopulation model by 

(Nakata & Röst, 2015) used to study stability of influenza with respect to the rate of 

human travel from one region to the next found that the disease approached the disease-

free equilibrium in one region and an endemic equilibrium in the other region when there 

was no movement of individuals between the patches. When small movement of 

individuals between the patches was introduced then the disease approached the endemic 

equilibrium state in both patches.  

On further increasing the rate of human travel between the patches, the disease died out 

in all the patches. The study conducted by (Isdory, Mureithi, & Sumpter, 2015) was 

designed to study the effect of human travel in different parts of Kenya on the 
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transmission of Human Immunodeficiency Virus (HIV) using an SIR metapopulation 

model that incorporated different regions within the country. They parameterized the 

model using HIV data, census data and mobile phone data. The data on mobile phones 

was adopted to track the mobility of individuals in different parts of the country. Their 

model results showed that movement between different regions had relatively small 

overall effect on the rise of HIV cases in Kenya. However, the most important 

consequence of movement patterns was transmission of the disease from high prevalence 

areas to low prevalence areas. They observed that mobility slightly increased HIV 

incidences in regions with initially low HIV prevalence and slightly decreased incidences 

in regions with initially high HIV prevalence. On the other hand, (Marieke Jesse & 

Heesterbeek, 2011) investigated the effect of migration on the persistence of infectious 

agent in a metapopulation. Their study revealed that a higher migration rate would mean 

that an infectious individual would spend shorter time in one patch thus changing patches 

more frequently. By changing patches frequently, the infectious individual increases the 

number of contacts with susceptible individuals which increases the probability of the 

persistence of the infectious agent. The study conducted by (Phaijoo & Gurung, 2017) to 

investigate the effect of temperature and human movement on the persistence of dengue 

disease using a multi-patch Susceptible-Exposed-Infectious-Recovered (SEIR) - 

Susceptible-Exposed-Infectious (SEI) model showed that temperature plays a significant 

role in the transmission of dengue disease while human travel helped in spreading the 

disease to new areas. Stability analysis of the model showed that the disease-free 

equilibrium was locally asymptotically stable when the basic reproduction number is less 

than one and unstable otherwise. Simulation results on the other hand showed that the 
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basic reproduction number of the disease was a function of temperature and human 

travel. In their study to assess the risk of yellow fever importation into urban areas when 

healthy individuals visit forests where yellow fever is endemic, (Esteva, Vargas, & Yang, 

2019) noted that migration of individuals plays a significant role in the distribution and 

persistence of yellow fever. The authors used an ordinary differential equation (ODE) 

model that considered human beings living in urban centers and incorporating migration 

of healthy persons to forests where yellow fever was endemic. They based their study on 

three reproduction numbers of human migrants, humans in the urban centers and 

monkeys in the forests. The results of their model showed that an increase in migration 

leads to increased risk of acquiring the disease. Further, they found that an epidemic of 

yellow fever could occur in urban areas if a large number of individuals visited forest 

areas. 

(Patel et al., 2005) carried out a study to investigate the optimal age group for vaccination 

against influenza in order to minimize the deaths due to influenza epidemic or the cost of 

immunization. They established that the optimal vaccination strategy involves 

concentrating the vaccine on children with the left over vaccine going to the middle aged 

adults. Their study revealed that given a population of 280 million people, it will be 

possible to prevent 31 million illnesses more by applying the optimal vaccination strategy 

when compared with the random mass vaccination.  

An n-patch model with 𝑘 − different levels of individuals studied by (Lloyd & Jansen, 

2004) concentrated on the linear stability of the spatially homogeneous solutions of the 

model with population settings in which individuals migrated between patches according 

to a simple linear term. The dynamic behaviour of the endemic SIR model was 
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decomposed into spatial modes. The authors found that for parameter values appropriate 

for childhood diseases, the out of phase modes decayed much more rapidly than the in-

phase modes for a broad range of coupling strengths. (Rotich, 2013) on the other hand 

studied the dynamics of the immune system and the drug sensitive wild-type HIV variant. 

Their study focused on the transient and steady state behaviour of the mathematical 

model to assess the effects of time delay on the stability of the periodic oscillations. The 

study showed that among the parameters which affects the management of HIV virus at 

very low levels, time delay and drug efficacy were the major contributors of stability 

condition. They also observed that since the lifespan of infected cell cannot be stretched 

beyond a certain limit. The minimum time delay before the infected cell become 

productive is given by the maximum lifespan of the cell is maximum and in this range of 

time delay, the drug efficacy was effective within an interval of 50% and 70%. Studies 

done by (Olaniyi, Okosun, Adesanya, & Areo, 2018) used a non-autonomous system of 

ordinary differential equations that incorporated four control methods of liver and blood 

stage therapies, mosquito reduction technique by personal protection using treated 

mosquito nets and the use of insecticide sprays to study the dynamics of malaria 

transmission between two interacting populations. The authors used Lyapunov methods 

to analyze the global dynamics of the system. Model analysis was performed by the use 

of the Pontryagin’s Maximum principle coupled with numerical simulation. The results 

of their study revealed that combination of the four control methods may be adopted to 

prevent the spread of malaria in the population. The authors further showed that effective 

control of malaria transmission in the community depends largely on the value of the 
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basic reproduction number (𝑅0) and therefore recommended that efforts be made to 

reduce the value of 𝑅0 to less than one.  

The study conducted by (Titus, Robert, Omulimi, & Jeptanui, 2016) to investigate the n-

patch metapopulation model using SIR-HIV epidemic model in a one dimensional 

nearest neighbour coupling lattice showed that the basic reproduction number was a 

function of the coupling strength and affected the stability characteristics of the 

equilibrium points. The authors showed that the disease free equilibrium was 

asymptotically stable regardless of the value of the coupling strength but the endemic 

equilibrium point depends on the value of the coupling strength. It was however shown 

that the endemic equilibrium point could be eliminated by reducing the coupling strength 

to less than the critical value of 𝑘 = 0.15. Modeling results further showed that 

restriction of movement of infected individuals is key to the control of the disease 

because lower values of coupling strength results to lower values of 𝑅0. (Colizza & 

Vespignani, 2008) investigated the behaviour of infectious diseases in metapopulation 

characterized by heterogeneous connectivity and mobility patterns. They derived the 

basic reaction–diffusion equations that describe the metapopulation system at the 

mechanistic level and obtained the early stage dynamic approximation for the 

subpopulation invasion dynamics. The authors showed that along with the usual single 

population epidemic threshold, the metapopulation network exhibits a global threshold 

for the subpopulation invasion and obtained an explicit analytic expression for the 

invasion threshold that determines the minimum number of individuals traveling among 

subpopulations in order to have the infection of a macroscopic number of subpopulations. 

The invasion threshold was found to be a function of factors such as the basic 
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reproductive number, the infectious period and the mobility process and decreases with 

increasing network heterogeneity.  

(Wanjau, Titus, & Isaac, 2019) studied the SIRS metapopulation model with vital 

dynamics. The author described a new approach to study various control strategies of 

compartmental disease transmission models. The method was based on the construction 

of alternative next generation matrices and made use of the type reproduction number and 

the target reproduction number. Each alternative next generation matrix was designed for 

a specified control strategy. Using this technique it was possible to understand the 

dependence of the disease transmission on targeted parameters even in high-dimensional 

models where the relations are usually complex. 

(Sharma, 2014b) studied the effect of poverty and media coverage on the transmission of 

infectious diseases using numerical simulation. He found out that in life every individual 

usually takes preventive measures to protect themselves from infection as soon as the 

infected individuals are reported by media coverage thereby reducing the transmission 

rate, his research however showed that media coverage has very little effect on the 

transmission rate of infectious diseases to the population living below poverty line due to 

little access to media tools. He further observed that the unique disease free equilibrium 

follows global asymptotic stability if 𝑅0 <  1 but when 𝑅0 > 1, the endemic equilibrium 

is asymptotically stable. 

Studies done by (Rahman & Zou, 2012) investigated the dynamics of a vector-borne 

disease containing latency and non-linear incidence rates. They assumed that the 

population of vectors at a time t is proportional to the population of the infectious hosts 

and used the saturating incidence rate functions. They formulated a mathematical model 
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to describe the dynamics of a vector-borne disease with two-strains and with latency 

delays. They determined the global dynamics by selecting suitable Lyapunov functional. 

They showed that when 𝑅0 < 1 then the disease dies out but when 𝑅0 > 1 then the 

disease will persist in one or both the strains will become endemic. 

In their study to investigate how the rate of exponential rise of the Ebola Virus Disease 

(EVD) had changed over the outbreak period, (Towers et al., 2014) used the EVD data in 

Guinea, Liberia and Sierra Leone and used the negative binomial likelihood fit to account 

for over dispersion in the data. The results of their analysis showed that the value of the 

effective basic reproduction number rose at the time when the disease spread to densely 

populated regions of Guinea and Liberia. The authors further observed that the enforced 

quarantine measures were not effective in the control of the Ebola virus disease. (Rivers 

et al., 2014) on the other hand used data for the Ebola virus disease from Liberia and 

Guinea to parameterize a mathematical model for the disease. The authors used the model 

to predict the future progression of the disease and also to determine the efficacy of 

various intervention methods. 

The analysis of their model showed that improved infection control and an increase in 

contact tracing could have a significant impact on the spread of the epidemic. They 

however noted that the two intervention methods were not sufficient in the control of the 

epidemic. The authors recommended a long time commitment of resources in the fight 

against the Ebola virus disease. 

(Obabiyi & Onifade, 2017; Okuonghae & Okuonghae, 2006) developed a mathematical 

model for a Lassa fever with three compartments of susceptible humans (S), infected 

humans (I) and the rodents carrying the virus (V) and incorporated infection contact rates. 
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They obtained the basic reproduction number (𝑅0) and established conditions for local 

stability of both the disease free and endemic equilibria. (Bawa, Abdulrahman, Jimoh, & 

Adabara, 2013) extended the work of (Okuonghae & Okuonghae, 2006) by developing a 

mathematical model with five compartments of susceptible humans (SH), infected 

humans (IH), infant reservoirs (IR), adult reservoirs (AR) and the Lassa virus in the 

environment (V). 

The authors also incorporated the demographic factors, disease induced deaths, human to 

human contact rate (1), rodent-to-human contact rate (2) and infection contact rate (3). 

Their model results showed that Lassa fever could be controlled if the basic reproduction 

number (𝑅0) was less than one regardless of the initial population profile.  

(Dumrongpokaphan, Kaewkheaw, & Ouncharoen, 2010) studied the SIR epidemic model 

with and constant immigration rate and a population size which was variable. He derived 

the sufficient conditions on model parameters under which the equilibrium points of the 

system were locally or globally asymptotically stable. If the disease free equilibrium 

(DFE) is stable, then the disease will not invade the population. On the contrary, if the 

endemic equilibrium point is stable, then the number of infectious individuals will remain 

constant which means that the transmission rate would be equal to the recovery rate. 

Consequently the prevention program can be instituted efficiently. 

Research done by (Ullah, Zaman, & Islam, 2014) investigated the stability of the general 

SIR epidemic model of infectious disease. The authors showed that the local dynamic of 

the general SIR model is determined by the basic reproduction number (𝑅0). They used 

the Lyapunov theory to show that disease free equilibrium is globally asymptotically 
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stable when R0 Ç 1 while the endemic  equilibrium is locally asymptotically stable when 

R0 less than1. 

Potential spread of H1N1 influenza was studied by (Flahault, Vergu, & Boëlle, 2009) and 

used several values of the reproduction number and generation interval to model the 

potential spread of influenza A (H1N1) virus across a network of 52 cities while also 

attempting to predict the effect of vaccination program. Their research showed that the 

attack rate was 46% when the basic reproduction number was 1.5 and the generation 

interval of 2 days while a basic reproduction number of 2.2 with a generation interval of 

3.1 days resulted to an attack rate of 77%. They concluded that a mass vaccination 

program of the disease with reproduction number of 1.5 resulting in 50% of the 

population being vaccinated and starting at most 6 months after the start of the epidemic 

could reduce the total number of cases by 91% while a similar vaccination program with 

a basic reproduction number of 2.2 would reduce the number of cases by approximately 

44%.  

(Agrawal, 2014) used a four-compartmental model of susceptible, exposed, infectious 

and recovered individuals with limited resources for treatment. The treatment rate of 

infected members of the population was assumed to be proportional to the number of 

patients provided that the number of patients does not exceed the treatment capacity. 

When the threshold treatment capacity was exceeded, the rate of treatment was assumed 

to be a constant. The analysis of the model showed that the treatment rate would lead to 

the existence of multiple endemic equilibrium states. The results of the model analysis 

showed that when 𝑅0 ≤  1, there exist no positive equilibrium and the DFE is globally 

asymptotically stable thus the disease dies out. However, an endemic equilibrium 𝑋𝑒 
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exist, where 𝑋𝑒 ∈  (𝑆 𝐸 𝐼 𝑅 ) when 1 ≤ 𝑅0 ≤ 𝑃0 for some 𝑃0 which is globally 

asymptotically stable. Two more endemic equilibria 𝑋0 and 𝑋𝑒  were found to exist when 

𝑅0  >  𝑃1 and 𝑅0  <  𝑃2 respectively. The two equilibrium points were found to be locally 

asymptotically stable. 

The object of the study by (Allen, 2008) was to compare the dynamics of deterministic 

and stochastic SIR and SIS epidemic models for an infectious disease. For stochastic 

model, the authors obtained the ultimate disease extinction criteria that were not a 

function of the basic reproduction number. However, when the time to extinction of the 

disease was long, the authors found that there existed a quasi-stationary probability 

distribution and that the mean of this distribution agreed with the endemic equilibrium 

state for a deterministic model whenever the basic reproduction number exceeded unity. 

The study by (Fierro, 2010) designed to study the similarities between the deterministic 

and the stochastic mathematical models for infectious diseases showed that the results for 

the two models differed significantly for small populations of about 10 individuals. 

However, for larger populations with more than 1,000 individuals, the author showed that 

the results obtained by the use of deterministic model were consistent with the results 

obtained by the use of a stochastic model. For a novel infectious disease with unknown 

parameter values, (Brauer, 2017) recommended the use of a deterministic model to model 

the outbreak. The analysis of the deterministic model showed results which were 

consistent with stochastic models presented by (Halloran et al., 2008). 

Although spatially separated populations have been studied widely in the past, the 

analysis of the control strategies has received little attention. In general, it is difficult to 

understand the effect of human movement on the disease transmission without a formal 
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mathematical structure. Further, pathogens responsible for the transmission of infectious 

diseases often mutate to produce two or more strains of the same pathogen. The 

management strategy for multiple strains of an infectious disease in a metapopulation 

setup is a challenging task and yet studies on the management of multiple strains in a 

metapopulation setup has not been documented. The goal of mathematical modeling of 

infectious diseases is to determine the parameters necessary to reduce the value of the 

basic reproduction number to less than one by changing the model parameters. In many 

models however, the complexity of the expression for the basic reproduction number 

makes such analysis difficult. In homogeneous populations, the basic reproduction 

number gives the strength of the control measure needed to control the epidemic provided 

that all model parameters accommodate change. However, in many cases limitations exist 

because some of the model parameters may not accommodate change. The object of this 

study is to address the research gap in previous work by presenting a mathematical model 

of infectious disease in a metapopulation setup with both migration and random 

movement of individuals between patches and also a model that incorporates the 

mutation of the pathogen. The study computes the target reproduction number which is a 

measure of the strength of the control measure required to reduce the basic reproduction 

number to less than one. 

 

2.5 Coupling and Synchronization 

Mathematical modeling of infectious diseases and analytic techniques have given great 

insights into the study of the evolution and control of epidemics (Allen, Brauer, Van den 

Driessche, & Wu, 2008). The occurrence of most epidemics is seasonal and therefore 

periodic. Infectious diseases can be therefore be modeled as biological oscillators using 
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differential equations (Keeling & Rohani, 2011; Murray, 2007; Olsen, Truty, & Schaffer, 

1988; Strogatz & Mirollo, 1990). Many interesting dynamics occur in the study of 

oscillators, but most interesting phenomena, physically significant is the stability and 

robustness of oscillators under perturbation (Wasike & Rotich, 2007). In this regard, the 

epidemic focused in this study is HIV/AIDS. The World Health Organization (WHO) 

report of 2004 states that, AIDS has been a problem for the last four decades since it was 

first reported and labeled as AIDS (Control & Prevention, 2006). According to (Abu-

Radded, 2007). It was estimated that over 33 million people were living with HIV, most 

of whom are unaware of their HIV status, and as a result, unknowingly contribute to the 

spread of the infection (WHO, 2008). The epidemic has disproportionately affected 

people residing in areas of the world that have fewer resources to combat the disease. The 

(WHO, 2008) further estimated that there were 2.7 million people who were newly 

infected with HIV in 2007 and greater than 95% of these new infections occurred among 

persons residing in Low and Middle Income Countries. Sub-Saharan Africa accounts for 

an estimated 22 million cases of HIV/AIDS and has an estimated prevalence of 5% in 

adults ages 15-49. In these Low and Middle Income Countries, (WHO, 2008) says that 

the HIV/AIDS epidemic has often over-burdened the under-resourced health care 

infrastructure. In Kenya for example, the worst affected community is the Fisherfolk as 

compared to the other populations (Kamali et al., 2016; Kissling et al., 2005; 

Olowosegun et al., 2013; Tanzarn & Bishop-Sambrook, 2003; Woodhead, Abernethy, 

Szaboova, & Turner, 2018). Surveys conducted since 1992 in ten low or middle-income 

countries in Africa, Asia and Latin America revealed that HIV/AIDS prevalence among 

fishers or fishing communities are between 4 and 14 times higher than the National 
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average prevalence rate for adults aged 15-49 (Béné & Merten, 2008; Huang, 2002). 

These considerable rates of HIV/AIDS infection place Fisherfolks among groups that are 

more usually identified as being at high risk (Allison & Seeley, 2004; Awuonda, 2003; 

Duwal et al., 2015; Olowosegun et al., 2013). It is for this reason that this study focuses 

on dynamics of HIV/AIDS among the Fisherfolk community around Lake Victoria 

Kenya, as a problem of coupled metapopulation patches, stability and robustness under 

small disease parameter perturbation.  

 

2.6 Summary and Knowledge Gap 

In this chapter, a review of related research studies in terms of the scope and 

methodology was explored. These include research on mathematical model formulation 

of communicable diseases, together with the analysis of the model stability around the 

fixed points, and their stability. Also, the sensitivity of the model parameters on the 

reproductive ratio 𝑅0 was reviewed. This sensitivity analysis helps in analyzing the 

significance of the model parameters on the effect of the basic reproductive ratio. 

Additional review was made on the formulation of a linear programming model, for the 

purpose of studying evaluating the optimality of disease control intervention strategies, 

like treatment, public health educational campaign, and isolation. An extension was made 

on coupling dynamics of identical oscillators representing adjacent independent 

population patches, and studying the dynamics which arise as a result of All-to-All 

coupling topology. These included the study of the existence of synchronization 

manifold, its stability and robustness under small perturbation. 

There are several research studies that have been carried out on epidemiological 

mathematics, model formulation, coupling, synchronization, stability and robustness, of 
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diffusively coupled lattice oscillators, together with optimization studies, but most of 

these studies have been done independently, and none has integrated the distinct areas in 

one study. In this research study, the various analytic methods are put together on a 

mathematical model that is original, and not used before in previous studies.    
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction  

This chapter gives details of the methods used in this research. The research design is 

described under the following subheadings; model formulation, model flow chart, model 

assumptions, variables and parameters, and model analytic and numerical methods. 

 

3.2. Model Formulation 

HIV/AIDS as described in chapter two, has been in existence for more than 4 decades, 

and numerous studies and mathematical models have been formulated, to describe the 

dynamics of HIV/AIDS under different scenarios. In this study, the dynamics of HIV 

epidemic as a vector borne disease is investigated. 

Most commonly known diseases transmitted by vector include Malaria, with anopheles 

mosquito being the vector. Other vectored transmissions include rodents for Bubonic 

plaque, tsetse flies for Trypanosomiasis, snails for bilharzia, just to mention but a few. 

Fisherfolk is here used as a special transmission vector. This is because Fisherfolk has 

been known to have uniquely high prevalence of HIV, and because of their barter trade 

behavior of having sex for fish, it can be compared to a vector, which transmits disease as 

it feeds. Apart from being a vector, the transmission also occurs between the vectors and 

also between the rest of the population. 

The dynamics of infectious diseases is generally studied using compartmental model. 

Here, the human population is categorized into distinct groups, each with similar disease 

characteristics. In the initial case, the entire populations is considered initially susceptible 
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(𝑁 =  𝑆), and once one individual is exposed to the virus, he or she becomes infected and 

able to infect others, here referred to as infective (𝐼). The disease will then progress 

towards full blown AIDS (𝐴), unless therapeutic intervention is taken. A new 

compartment of those who seek medication, will have low levels of viral load, and less 

infective, thus labeled as treated class (𝑇). This gives four compartments, 𝑁 = 𝑆 + 𝐼 +

𝑇 + 𝐴 thus we employ a 𝑆𝐼𝑇𝐴 − 𝑆𝐼𝑇𝐴  paradigm. 

The mathematical model here used represents the flow rates of individuals from one 

compartment to the other. The flow is assumed to be instantaneous and all depends on the 

time elapsed, thus we use ordinary differential equations to represent the rate of change 

or the flux, from one level to the other. A system of 8 differential equations was 

formulated, each representing the dynamics of the population of each of the eight 

compartments. The underlying condition is that, the total population is conserved, so that 

the only changes in the entire population is due to demographic factors, death and births. 

It is assumed here that the entire population is homogeneous, so that all the members of 

one compartment have the same characteristics in terms of the disease progression. It is 

also assumed that all the individuals prescribe to the same cultural beliefs and therefore 

act in the same way. 

3.3 Model Assumptions 

For the purpose of studying the dynamics of HIV/AIDS with Fisherfolk as a vector, it is 

inevitable to make assumptions for the purpose of plausible model formulation and 

analysis. It is hereby assumed that the Fisherfolk population is strongly coupled, that all 

the members have common and distinct characteristics from the rest of the members. The 

new members of Fisherfolk are recruited from the rest of the community members, and 
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also fall back to the community and at determined rate. They are also assumed to spend 

most of the time in the lake fishing, away from the others and thus considered as a 

separate community from the rest of the people. The transmission dynamics between the 

compartments will be described by probabilities assigned to the chances of interaction 

sufficient to transmit HIV disease, and the probabilities describing the chances of getting 

treatment, natural and accelerated mortality rates due to infection, together with the 

probabilities associated with interacting with the vectors. It is also assumed that, the rate 

of transfer from one compartment to the other is described by parameters, which can be 

determined from data available, or calculated from the previous experiences. 

Further assumptions made include the fact that once an individual is infected, he or she 

becomes infective immediately. The provision of window period or the delay between 

infection and being infective is assumed. The rest of the transfer terms are also assumed 

to be instantaneous, so that once infected, one progresses immediately to AIDS class or 

seek treatment, or die. The passage of time between one event and the other is assumed. 

This can be improved using difference equations, with a unit time change equivalent to 

the amount of time enough to cause changes. But it should be noted here that, the 

qualitative characteristics of the model, like eigenvalues, eigenvectors, stability among 

others remains the same. 

Additionally, it is also assumed that environmental, psychological and biological factors 

cannot interfere with the value of parameters used in the model. For example, the force of 

infection 𝛽 remains constant whether many individuals are sick or no one is sick. The 

only factors considered here to be affecting the dynamics is public health education and 

treatment. All the other factors are assumed to have no significant contribution. 
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In the model, it is also assumed that, no other unique characteristics are evidenced. That 

is, apart from the mentioned classes, of Susceptible, Infective, Treated and AIDS, there is 

no other class of people with unique characteristics. This assumption is made so as to 

monitor the population changes in the said classes only. 

It should also be noted that, contributions of other opportunistic diseases or underlying 

factors like lifestyle diseases or hereditary diseases like diabetes, hepatitis, cancer, acute 

pneumonia, among others, which are known to accelerate the progression of HIV status 

to AIDS are also assumed. This is the extent to which the term homogeneity of 

individuals reaches. 

3.4 Model Flow Chart 

Considering compartmental modeling, the SITA paradigm is illustrated by the flowchart 

shown in Figure 3.1. The compartments represent the subset of the population, and the 

arrows show the flow of population into or out of a compartment, with the flow rate 

parameters indicated. 

From the law of conservation of mass, it is here assumed that the total population is split 

into two groups; the normal population and the Fisherfolk population, denoted by 𝑁 and 

𝑁𝑣 respectively. Due to disease prognostic characteristics, each category is subdivided 

into four subgroups, Susceptible, Infective, Treated and AIDS classes denoted by 𝑆𝐼𝑇𝐴 

for the normal population and 𝑆𝑣𝐼𝑣𝑇𝑣𝐴𝑣 for the vector Fisherfolk community. Thus, the 

total population will be given as; 

𝑁 = 𝑆 + 𝐼 + 𝑇 + 𝐴;        𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣 + 𝑇𝑣 + 𝐴𝑣 
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Each of the subgroups, also referred to as compartments are affected by factors which 

either adds or reduces the number of individuals in each compartment. Some of these 

dynamics leads to the transfer of individuals from one compartment, to the other. For 

simplicity, Figure 3.1 below shows briefly the flow dynamics of the two subgroups, and 

how the vector population augments the disease prevalence among the normal 

population. 

 

Figure 3.1 Flow chart showing interactions between members of different 

compartments 

The detailed graph with more compartments and respective parameters and their meaning 

are outlined in chapter four. In this chapter, all the infected class (𝐼, 𝑇, 𝐴) is lumped 

together, because all contribute proportionately to new transmission of disease to the 

susceptible. The crossed arrows with probabilities 𝜙, 𝜙𝑣 denote crossed infection by the 

vector population to the normal population and vise-versa. 
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3.5. Model Analysis 

Let 𝑋 = 𝑋(𝑆, 𝐼, 𝑇, 𝐴) where 𝑆(𝑡) is a function of time 𝑡 denoting susceptible population, 

𝐼(𝑡) denoting the infective population, 𝑇(𝑡) denotes the treated class and 𝐴(𝑡) the AIDS 

class, with 𝑋′ =
𝑑𝑋

𝑑𝑡
 representing (𝑆′, 𝐼′, 𝑇′, 𝐴′). To show the dependence on time, the 

model is represented by the function  𝐺(𝑋, 𝑡), thus, the model under study will be of the 

form; 

𝑋′ = 𝐺(𝑋, 𝑡)       (3.1) 

where, the function 𝐺(𝑋, 𝑡) describes the dynamics involved in infection of new 

members, transfer of infected to treated class, and to AIDS classes together with the 

coupling configuration and the interaction dynamics.  The function 𝐺(𝑋, 𝑡) can be split 

into three, that is, 

𝐺(𝑋, 𝑡) = 𝑓(𝑋, 𝑡) + 𝑔(𝑋, 𝑡) + 𝑀(𝑋, 𝑡)    (3.2) 

Where 𝑓(𝑋, 𝑡) describes the new infections, 𝑔(𝑋, 𝑡) describes the other transfer terms and 

𝑀(𝑋, 𝑡) represents the coupling configuration between the Fisherfolk and the rest of the 

community members. 

3.6. Fixed Point Analysis 

Without loss of qualitative characteristics of the model, the nature of the dynamics of the 

model in Equation (3.1) are studied using a linearized function about the equilibrium 

points. Equilibrium is the point where the characteristics of a system changes. It is also 

called the turning point or the critical points. There are usually two types of equilibrium 

points of disease models, namely; disease free equilibrium (DFE) and endemic 

equilibrium point (EEP). DFE is the point where the entire population is susceptible, and 
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nobody is infected or has ever been infected by the disease. The entire population 𝑁 

equals to the number of susceptibles 𝑆 and the number of individuals in the other 

compartments is zero (𝐼, 𝑇, 𝐴) = (0, 0, 0). EEP is the type of equilibrium point where an 

infected individual has been introduced to a purely susceptible population, and thus there 

are non-zero population of infectives, treated and AIDS cases. In this case, the disease 

coexist in the population, and therefore the entire population 𝑁 = 𝑆 + 𝐼 + 𝑇 + 𝐴, where 

𝐼 ≥ 0, 𝑇 ≥ 0, 𝐴 ≥ 0. 

Equilibrium points are computed by evaluating the points where the derivative of the 

model equations equal to zero. Equating the right hand side of the model in equation (3.1) 

to zero and evaluating, to obtain the equilibrium points �̅� the equation 𝐺(�̅�, 𝑡) = 0 is 

solved. Using the model equation (3.1), two equilibrium points DFE and EEP were 

evaluated as discussed in the next subsection. 

3.6.1. Disease Free Equilibrium (DFE) 

Sometimes, instead of studying the stability of a system in the entire domain, without loss 

of generality, the stability of dynamics around the fixed point is enough to give a picture 

of the entire system. The equilibrium in absence of the disease called DFE, is defined as, 

𝐺(�̅�0, 𝑡) = 0̃       (3.3) 

Where �̅�0 = (𝑆0, 𝐼0, 𝑇0, 𝐴0) = (𝑁, 0, 0, 0) denoting the state when the infected, treated, 

and AIDS compartments are empty and everybody 𝑁 = 𝑆 + 𝐼 + 𝑇 + 𝐴 is susceptible. 

3.6.2. Endemic Equilibrium Point (EEP) 

The other existing equilibrium point, where the disease exists in the population is the 

Endemic equilibrium point. This is defined as 
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𝐺(�̅�𝑒, 𝑡) = 0̃       (3.4) 

Where �̅�𝑒 = (𝑆𝑒, 𝐼𝑒 , 𝑇𝑒 , 𝐴𝑒) ≠ (0, 0, 0, 0). The subscript 𝑋𝑒 denotes the endemic 

equilibrium point and 𝑋0 is the disease free equilibrium point. This is a point when each 

compartment has non zero population, because of the progress and the existence of the 

disease amongst the population. 

3.6.3 Stability of the Equilibrium Points 

Apart from the model existence and well boundedness, it is necessary to study its’ 

stability, with respect to perturbation. The model stability depends on the nature of the 

spectral values around the fixed point. Stability is determined by the eigenvalues of 

community matrix obtained by evaluating the Jacobian of the system, evaluated at the 

fixed point. 

𝑀 =
𝜕𝐺(𝑋,𝑡)

𝜕𝑋
|
𝑋𝑖
  𝑖 = 0, 𝑒      (3.5) 

Let the spectrum of the matrix 𝑀 be defined as 

|𝑀| = 𝜆𝑗 , 𝑗 = 1, 2, 3, … , 𝑛 

Then the system (3.1) is classified as stable, unstable or can’t be determined at the 

equilibrium point as follows; 

𝑈𝑛𝑠𝑡𝑎𝑏𝑙𝑒
𝑆𝑡𝑎𝑏𝑙𝑒

𝑈𝑛𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑
}    𝑖𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, {

𝜆𝑖 > 0
𝜆𝑖 < 0
𝜆𝑖 = 0

 

If the nature of eigenvalues are zero, the stability of the system can be determined using 

Lyapunov type numbers (eigenvalue functionals), or using the Poincare map (describing 
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the proximity of periodic solutions to each other after one period), if the solution is 

periodic. 

3.7. Reproductive Ratio 𝑹𝟎 

The condition on the dominant spectral radius max 𝜆𝑖  yields a very important parameter 

denoted by 𝑅0. It is used to describe the rate at which new infectives are created from one 

primary infective, introduced into a purely susceptible population. It therefore measures 

the velocity at which the disease is spreading.  

If 𝑅0 ≤ 1, the disease will die off, if 𝑅0 = 1, the disease remains persistent, unless 

intervention is taken. If 𝑅0 > 1, the pandemic will persist in the population and become 

epidemic, and the disease coexist in the population.  

Using the method of next generation matrix as proposed by (Diekmann & Hesterbeek, 

2003; Van Den Driesche & Watmought, 2003), the value of the reproductive ratio will be 

determined as, 

𝑅0 = 𝜌(𝐹𝑉
−1)     (3.6) 

Where 𝐹 =
𝜕𝑓(𝑋,𝑡)

𝜕𝑋
|
𝑋𝑖
𝑖 = 0, 𝑒 and 𝑉 =

𝜕𝑔(𝑋,𝑡)

𝜕𝑋
|
𝑋𝑖
𝑖 = 0, 𝑒. The value of 𝑅0 will always be 

equal to the condition on the dominant eigenvalue, for the matrix 𝑀 to be stable. 

3.8 Positivity and Boundedness 

The necessary and sufficient condition for a model to be well posed is the requirement on 

the  solution of equation (3.1) to be positive and bounded. Since the model (3.1) describes 

human population dynamics, the variables 𝑆(𝑡), 𝐼(𝑡), 𝑇(𝑡) and 𝐴(𝑡) need to remain 
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positive and bounded for all time 𝑡 ≥ 0. We require that for all initial values in ℝ0, the 

solutions 𝑋(𝑡) remains in ℝ0+, that is, ℝ0+ is positively invariant. 

Boundedness is a condition which requires that solutions have lower and upper bounds. 

In this case, for all future time 𝑡 ≥ 0, we require that 𝑋(𝑡) ∈ (0,∞]. 

This argument is valid if we can find the solution of the form 

𝑋(𝑡) = 𝑋0𝑒
𝐺(𝑋(𝑡),𝑡);   𝑡 ≥ 0, 0 ≤ 𝑋 < ∞ 

3.9 Sensitivity Analysis 

Sensitivity analysis of variables and parameters used in the model helps in revealing the 

key variables or parameters which significantly affect the spread or control of the 

epidemic. Using the method proposed by (Perumal & Gunawan, 2011), sensitivity of 

parameters to reproductive ratio 𝑅0 were computed as; 

𝑝𝑖|𝑅0 =
𝜕𝑅0
𝜕𝑝𝑖

1

𝑅0
,   𝑖 = 1, 2, 3, … 

where 𝑝𝑖 denotes parameter 𝑖 = 1, 2, 3, … and 𝑝𝑖|𝑅0 means sensitivity of parameter 𝑝𝑖 on 

the reproductive ratio 𝑅0. Once sensitivity is done, insignificant parameters will be 

lumped together, while sensitive ones are varied to determine their threshold values. 

These parameters account for intervention strategies, coupling strength, stability, and 

robustness of the model. 

3.10 Coupling configurations 

Basing on the location and area of operation of the Fisherfolk, with respect to the rest of 

the community, the following coupling configuration lattice will be more appropriate. 
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In the diagram of Figure 3.2, the arrows shows diffusive coupling of one lattice point to 

the other, and circles represent the unique groupings of human population. 

3.10.1. Coupling and Coupling Configuration 

 

Biological oscillators are common in real life situation, where a system behaves in a non-

constant state, displaying a repetitive pattern. This is mostly due to coupled action and 

reaction forces which act with an aim of bringing equilibrium. 

When oscillators are represented using differential equations, the repetitive behavior is 

represented by non-constant derivative with respect to time 𝑡. Coupling of oscillators 

involve placing them in proximity so as to allow them transmit a signal to one another. 

The most common coupling configuration include nearest neighbour and all-to-all 

presented in one, two or three dimensional Bravais lattice. 

Consider the case where there are identical oscillators, with the dynamics of each 

described by equation (3.1), which is presented again in equation (3.7) for the purpose of 

emphasizing the number of oscillators. 

Fisherfolk 

Siaya 

FisherFolk 

Busia 

FisherFolk 

Homabay 

FisherFolk 

Kisumu 

Figure 3.2 All-to-all Coupling Configuration in a Bravais 

Lattice. Source: Author 



74 

 

 

 

𝑋𝑗
′ = 𝐺𝑗(𝑋𝑗, 𝑡);   𝑗 = 1, 2, 3, … , 𝑛   (3.7) 

Suppose that for each 𝑗, there exist a compact set which is invariant under the flow 

defined by the solution to equation (3.1), and the 𝜔 limit set of each of (3.1) belongs to 

this set (Strogatz & Mirollo, 1990). Coupling these subsystems with linear terms, one 

obtains 

𝑋,= 𝐴(𝑘)𝑋 + 𝐺(𝑋, 𝑡)     (3.8) 

Where 𝐴(𝑘) is a real symmetric matrix depending upon the parameter 𝑘 ∈ ℝ𝑑 

representing the coupling strength, and 𝐴(𝑘) the coupling matrix. 

3.10.2  Nearest Neighbour Coupling 

 

In everyday life, coupled oscillators influences each other through transmission of signal 

from one oscillator to the other. The common coupling configurations include nearest 

neighbour and all to all. 

The choice of coupling function 𝐴(𝑘) in Equation (1.4) is defined as 𝐴(𝑘) − 𝑘Δ1⊗ 𝐼𝑁 , 

where 𝑘 ≥ 0 is the coupling strength parameret and 𝐼𝑁 is the 𝑁 −dimensional identity 

matrix, while Δ represents symmetric nearest neighbour diffusive coupling on one 

dimensional Bravais lattice with Neumann boundary conditions, given by; 

Δ1 =

(

  
 

−1 1 0 0 … 0 0 0
1 −2 1 0 … 0 0 0
0 1 −2 1 … 0 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 0 … 1 −2 1
0 0 0 0 … 0 1 −1)

  
 
∈ ℝ𝑛×𝑛 
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Here, the elements of the matrix describes the number of signals in and out of the 

adjacent oscillators in the arrangement. The fist loses one and gains one signal from the 

next oscillator, while the second losses two and gains on from the fisrt oscillator, and 

another from the third oscillator, and so forth. 

3.10.3 All-to-all Coupling Configuration 

 

On the other hand, the coupling parameter 𝐴(𝑘) in equation (1.4) for an all-to-all 

coupling configuration in a one dimensional Bravais lattice is chosen to be 𝐴(𝑘) =

𝑘Δ𝐴⊗ 𝐼𝑁, where like in the first case, ⊗ is the Knonecker product and Δ1 is an all-to-all 

coupling matrix defined as 

ΔA =

(

 
 
 

−(𝑛 − 1) 1 1 … 1 1
1 −(𝑛 − 1) 1 … 1 1
1 1 −(𝑛 − 1) … 1 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 1 1 … −(𝑛 − 1) 1

1 1 1 … 1 −(𝑛 − 1))

 
 
 

∈ ℝ𝑛×𝑛 

The analysis on the system equation (3.8) will be done to determine the existence of a 

compact global attractor 𝐴𝑘 for each 𝑘. Conditions on the value of the coupling strength 

𝑘, will be determined to guarantee synchronization. Further analysis of perturbed system 

will be done to determine cases of robustness or oscillator death (Jack H., 1997).  

Other coupling configurations like one-to-many, many-to-one, small world, random, and 

all-to-all will be considered. 
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3.11. Synchronization 

In general, synchronization of coupled systems means that systems which previously had 

different patterns of behavior begin to behave in the same way and simultaneously so that 

the difference in their dynamics is zero. 

In mathematical models, one considers an oscillator represented by 𝑧𝑖 whose dynamics 

are governed by; 

�̇�𝑖 = 𝑔(𝑧𝑖) 

where the dot denotes the derivative with respect to time 𝑡. Suppose the oscillators are 

coupled by some function 𝐴(𝑘) depending on the parameter 𝑘 for the coupling strength. 

Then the connection topology is represented by the equation (1.4) reproduced as 

�̇� = 𝐴(𝑘)𝑧 + 𝑓(𝑧) 

where  𝑓(𝑧) = (𝑔(𝑧1), 𝑔(𝑧2),… , 𝑔(𝑧𝑛)). 

Suppose for Equation (1.4), there is a compact global attractor 𝒜𝑘 for every 𝑘 > 0 which 

is invariant under the flow defined by Equation (1.3) which contains the 𝜔 −limit sets of 

the oscillator. The coupled system (1.4) is synchronized if there exist a smooth invariant 

manifold 

ℳ1 ≔ {𝑧 ∈ ℝ𝑛𝑑: 𝑧𝑖 = 𝑧𝑖+1 ≠ 0, 𝑖 = 1, 2, 3, 4, … , 𝑛} 

Synchronization is experienced if 𝑧 belongs to the attractor 𝒜𝑘 so that the difference 

𝑧𝑗(𝑡) − 𝑧𝑗+1(𝑡) → 0 as 𝑡 → ∞ for all 1 ≤ 𝑗 ≤ 𝑛 − 1. 
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3.12 Stability and Persistence 

It is not sufficient to study synchronization per-se. It is pertinent to study synchronization 

together with the stability and persistence of the synchronization manifold. 

Stability relates to the attractivity of the manifold, linearized about the invariant 

manifold ℳ1. This is determined by the sign of generalized Lyapunov exponents. 

Persistence is a measure of robustness or the ability of the manifold to be insensitive to 

small perturbations. A necessary and sufficient condition for synchronization and 

persistence of invariant manifold is normal hyperbolicity. A manifold is normally 

hyperbolic if, under the dynamics linearized about the invariant manifold, the growth rate 

of vectors transverse to the manifold dominates the growth rates of vectors tangent to the 

manifold. 

The rate of contraction or growth of vectors in the direction normal to the manifold ℳ 

and the ratio of the exponential rate of contraction or growth of vectors normal versus 

vectors transverse to the manifold are measured using Lyapunov exponents; namely 𝛼 

and 𝛽 respectively, defined as; 

𝛼(𝑧0) = lim
𝑛→∞

1

𝑡
ln‖Φ𝑠(𝑡; 𝑧0)‖ 

𝛽(𝑧0) = lim
𝑡→∞

ln‖Φ𝑠(𝑡; 𝑧0)‖

ln𝑚 ‖Φ𝑐(𝑡; 𝑧0)‖
 

Where for a linear operator 𝐿, 𝑚(𝐿) ≔ min(|𝐿𝑥||𝑥| = 1, 𝑥 ∈ 𝒟(𝐿)) and Φ𝑐(𝑡; 𝑧0) is the 

linearization of the flow parallel to the manifold while Φ𝑠(𝑡; 𝑧0) is the linearization of the 

flow normal to the manifold. 
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3.13 Analysis of Transversal and Tangential Flows 

In order to study stability of an invariant manifold, coordinate transformation is made to 

take care of transversal and tangential flows. Consider the transformation 

𝑧 = 𝑦𝑒 + �̃�𝑤, 𝑤 = (𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛−1)
𝑇 , 𝑤 ∈ ℝ𝑛𝑑−𝑑, 𝑦 ∈ ℝ𝑑   

𝑤𝑗 = 𝑧𝑗 − 𝑧𝑗+1, 1 ≤ 𝑗 ≤ 𝑛 − 1 

𝑦 =
1

𝑛
∑𝑧𝑗

𝑛

𝑗=1

 

Where 𝑒 = (1, 1, 1, 1, … , 1)𝑇 ∈ ℝ𝑛𝑑 is th generalized eigenvector and 𝑒𝑗 is the 𝑗𝑡ℎ 

column of an 𝑛 × 𝑛  identity matrix, while �̃� = (�̃�1, �̃̃�2, �̃�3, … , �̃�𝑛−1) and 

�̃�𝑗 =∑𝑒𝑖 −
𝑗

𝑛
𝑒

𝑗

𝑖=1

 

For a nearest neighbour coupling of 4 oscillators, the transformation is given by 

𝑒 = (

1
1
1
1

) , �̃� =
1

4
(

3 2 1
−1 2 1
−1 −2 1
−1 −2 −3

) 

Using this transformation, the system of four 2-dimensional oscillators will be defined by 

the equation 

(

𝑧1̇(𝑡)
𝑧2̇(𝑡)
𝑧3̇(𝑡)
𝑧4̇(𝑡)

) = 𝑘(

−1 1 0 0
1 −2 1 0
0 1 −2 1
0 0 1 −1

)⊗ (
1 0
0 1

)(

𝑧1(𝑡)
𝑧2(𝑡)
𝑧3(𝑡)
𝑧4(𝑡)

) +

(

 
 

𝑔(𝑧1(𝑡))

𝑔(𝑧2(𝑡))

𝑔(𝑧3(𝑡))

𝑔(𝑧4(𝑡)))
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Where the identity matrix 𝐼2 is a 2 × 2 matrix due to the existence of two unique 

metapopulations; the normal and the Fisherfolk populations. Clearly, the eigenvalues of 

the coupling matrix are given by 

𝜆𝑠 = −2 − 2 cos
𝑠𝜋

4
,   𝑠 = 1,2,3,4 

each occurring twice. Note that for 𝑠 = 4,  𝜆4 = 0. The existence of zero eigenvalue 

shows that the corresponding eigenvector is 𝑒 = (1, 1, 1, 1) which spans the diagonal 

in ℝ𝑛𝑑. This eigenspace forms the invariant manifold. 

Using the transformation, one obtains the system 

(

𝑤1̇(𝑡)

𝑤2̇(𝑡)

𝑤3̇(𝑡)
) = 𝑘 (

−2 1 0
1 −2 1
0 1 −2

)⊗ (
1 0
0 1

)(

𝑤1(𝑡)

𝑤2(𝑡)

𝑤3(𝑡)
) + (

𝑔(𝑧1(𝑡)) − 𝑔(𝑧2(𝑡))

𝑔(𝑧2(𝑡)) − 𝑔(𝑧3(𝑡))

𝑔(𝑧3(𝑡)) − 𝑔(𝑧4(𝑡))

)

�̇�(𝑡) =
1

4
{𝑔(𝑧1(𝑡)) + 𝑔(𝑧2(𝑡)) + 𝑔(𝑧3(𝑡)) + 𝑔(𝑧4(𝑡))}

 

The first equation describes motion transverse to the manifold ℳ = {𝑧| 𝑧1 = 𝑧2 = 𝑧3 =

𝑧4} while the second equation describes motion tangential to the manifold ℳ. 

3.14. Optimization 

The endeavor of modeling infectious diseases is to ultimately understand its dynamics 

and possibly control the pandemic. The spread of infectious diseases can be controlled 

either through prevention or treatment. Some of the preventive measures include 

vaccination, quarantine, public health education, or restricted movement among others. In 

the model under study, the set of equations governing the disease dynamics can be 

modified to include a control parameter 𝑢𝑖(𝑡);   𝑖 = 1,2 which is a function of time. In 
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this study, the control measure of public health education campaign is denoted by 𝑢1(𝑡) 

and treatment denoted by 𝑢2(𝑡). Here, public health campaign refers to any form of 

education which changes the living styles and cultures of Fisherfolk so that they are 

moved from the high risk of infection compartment to low risk compartment. The 

methods under consideration include awareness, use of contraceptives for example 

condom, being faithful, having one partner, abstain from using sex for cultural practices, 

drop of beliefs that having sex before fishing brings success, change in mode of dressing 

and fishing styles among others (Kissling et al., 2005). All these are combined as a set of 

measures which reduces the rate of transmission of HIV among the Fisherfolk and also 

across the entire community. The other set of control using chemotherapy is denoted by 

𝑢2(𝑡). These include use of ARVs among PLWHA and treatment of opportunistic 

diseases among the newly infected people and use of emergency pills when on suspicion 

of exposure, among others.  

In order to simulate the effect of controls on the system of equations in (3.1), a control 

variable 𝑈 = (𝑢1(𝑡), 𝑢2(𝑡)) is introduced as the control variable and obtain the following 

system. 

 𝑋′ = 𝐺(𝑋, 𝑈, 𝑡)      (3.10) 

where 𝑈 ≔ (𝑢1(𝑡), 𝑢2(𝑡)) denotes the set of control measures which satisfy the 

condition 0 ≤ 𝑈 ≤ 1  𝑎. 𝑒.  𝑡 ∈ [0, 𝑇] where 𝑇 is some final time  0 ≤ 𝑇 ≤ +∞. In this 

study, we consider a linear 𝐿1 cost function, which is more appropriate for problems with 

biological and biomedical background (Schättler, Ledzewicz, & Maurer, 2014). Optimal 
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control is defined  in the form similar to Lagrange formulation (Lenhart & Workman, 

2007) as; 

 

𝑚𝑎𝑥 𝐽(𝑋, 𝑈, 𝑡) = ∫ 𝑓(𝑋, 𝑈, 𝑡)𝑑𝑡
𝑇

0

𝑠. 𝑡.  𝑋′ = 𝐺(𝑋, 𝑈, 𝑡)
 0 ≤ 𝑈(𝑡) ≤ 1

 𝑋(0) = 𝑋0

     (3.11) 

With the function 𝑓(. ) being a continuous and differentiable function. Define the 

Hamiltonian function of equation (3.11) as 

 𝐻(𝑋, 𝑈, 𝑡, 𝜆) = 𝑓(𝑋, 𝑈, 𝑡) + 𝜆(𝐺(𝑋, 𝑈, 𝑡))     (3.11) 

Then using Pontryagin’s Maximum principle (Pontryagin, 1987; Sharomi & Malik, 

2017), which is the 20
th

 century novel results used to append the differential equations as 

constraints to the objective functional, equation (3.11) is analyzed for optimality 

condition and the associated state. This principle converts the efforts of finding controls 

of maximizing objective function subject to the set of ordinary differential equations as 

constraints, to a simpler and straightforward of optimizing the Hamiltonian. 

Since it is tedious and difficult, almost impossible to find analytic solution to the optimal 

control problem, the numerical solution of equation (3.11) is obtained using the inbuilt 

Runge-Kutta of order 4 – 5 method in MATLAB. 
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CHAPTER FOUR 

RESULTS AND DUSCUSSION 

4.1 Introduction  

In this chapter, a specific model is formulated using differential equations, and the 

analysis discussed in chapter three is re-evaluated numerically. Data collected from the 

study area is then used to simulate the results following the analytic discussion is chapter 

three. Graphs are then plotted to depict the simulated results and for visual interpretation. 

This chapter is divided into three sections, namely; the model formulation and analysis, 

model optimization and graphical simulation of the model. 

 

4.2 Model flow chart 

From the general model flow chart in Figure 3.1, the parameters accounting for the 

transmissions across each compartment are placed as shown in Figure 4.1. The 

parameters and variables are all positive in the open octagonal domain ℝ+ =

{𝑆 ≥ 0, 𝐼 ≥ 0, ≥ 0, 𝐴 ≥ 0, 𝑆𝑣 ≥ 0, 𝐼𝑣 ≥ 0, 𝑇𝑣 ≥ 0, 𝐴𝑣 ≥ 0} with positive initial conditions 

𝑆(0) = 𝑆0 ≥ 0, 𝐼(0) = 𝐼𝑜 ≥ 0, 𝑇(0) = 𝑇0  ≥ 0, 𝐴(0) = 𝐴0(0) = 𝐴𝑣0 ≥ 0, 𝑆𝑣(0) =

𝑆𝑣0 ≥ 0, 𝐼𝑣(0) = 𝐼𝑣0 ≥ 0, 𝑇𝑣(0) = 𝑇𝑣0 ≥ 0, 𝐴𝑣(0) = 𝐴𝑣0 ≥ 0.  

The Fisherfolk is considered as high risk group of people, who interact freely with the 

general masses. Since their HIV prevalence is over 14%, infectivity amongst themselves 

is negligible, but infection transmission across to other individuals is so high. This is the 

reason why they are considered as HIV human vectors in the community. Through 

intervention strategies however, transfer of individuals from the high risk to low risk 

compartments is witnessed, despite the continued attachment to traditional occupation of 

fishing. 
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Figure 4.1.  Model Flow chart showing SITA-SITA compartments for the normal 

community and the Fisherfolk 

 

4.3 Model Description and Equations  

From the model flow chart in figure 4.1 above, we note the following; There are two sets 

of population, namely; the normal population and the Fisherfolk population. The Normal 

population is subdivided into four disease subgroups, Susceptible, Infected, Treated and 

AIDS case. These subgroups are also witnessed in the Fisherfolk subpopulation. The 

recruitment rate of individuals into the susceptible population is constant, described by 

the parameter 𝜆. From this group, population may transfer from the normal to the 

Fisherfolk through a constant parameter 𝑎 and  𝑎𝑣 respectively. These parameters are 

denotes transmission probability, and are always positive but less than one.. Natural death 

in each class is denoted by  𝜇, and it is uniform in all the classes. Accelerated death rate 

due to the disease or due to AIDS status are represented by the parameter  𝜂 for the 
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normal population and 𝜂𝑣 for the Fisherfolk population. Individuals in the susceptible 

class are moved to the infected class through a force of infection denoted by 𝛽 and 𝛽𝑣. 

These values are not equal, and it is considered here that there is a higher probability for a 

Fisherfolk to infect a normal population than vice versa, so it is here taken 𝛽𝑣 ≥ 𝛽. The 

interaction and the contribution of infection by the infected class, the treatment class and 

the AIDS class is not uniform, and it is modified by the parameters 𝜙, 𝜓 and 𝜃 

respectively. It should therefore be noted that, the probability of a normal susceptible 

population to be infected by a treated individual in the fisherfolk population is defined as 

𝜓𝛽𝑣𝑆𝑇𝑣. The rest are equally defined. An infected individual seeks treatment, and 

therefore classified under treatment class at a rate 𝜏 and progress to AIDS class, due to 

ineffective treatment at a rate 𝛿. It should also be noted that individuals in the treatment 

class and those in AIDS class have the capacity of infecting the susceptible. It also 

happens that before an individual seeks treatment, they can progress to AIDS class at a 

rate 𝜔, however, those in AIDS class still go back seeking treatment at a rate 𝜌. With 

these descriptions, and together with the assumptions stated above, we can formulate a 

system of differential equations  representing the model flow chart using eight ordinary 

differential equations to obtain,  

 

𝑆′ = 𝛼𝑣 − 𝛼 + 𝜆 − 𝛽𝑆𝐼 − 𝛽𝑣𝜙𝑆𝐼𝑣 − 𝜇𝑆

𝐼′ = 𝛽𝑆𝐼 + 𝛽𝑣𝑆𝑣𝐼𝜙𝑣 − 𝜇𝐼 − 𝜏𝐼

𝑇′ = 𝜏𝐼 − 𝜇𝑇 − 𝛿𝑇

𝐴′ = 𝛿𝑇 − (𝜇 + 𝜂)𝐴

𝑆𝑣
′ = 𝛼 − 𝛼𝑣 + 𝜆 − 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝛽𝑣𝑆𝑣𝜙𝑣𝐼 − 𝜇𝑆𝑣
𝐼𝑣
′ = 𝛽𝑣𝑆𝑣𝐼𝑣 + 𝛽𝜙𝑆𝐼𝑣 − (𝜇 + 𝜏)𝐼𝑣
𝑇𝑣
′ = 𝜏𝐼𝑣 − (𝜇 +  𝛿)𝑇𝑣

𝐴𝑣
′ = 𝛿𝑇𝑣 − (𝜇 + 𝜂)𝐴𝑣

     (4.1) 

where:  



85 

 

 

 

𝛽 is the force of infection, with 𝛽𝑣 being the vector folk infection rate. 

𝜆 is the natural recruitment rate to the susceptible group. 𝜆𝑣 is the corresponding 

recruitment rate to the vector folk group 

𝜇 natural death rate. It is here assumed to be equal in all compartments 

𝜃 is the modification parameter accounting for the difference in the infection rate by the 

infected class.  

𝜓 is the modification parameter accounting for the difference in the infection rate by the 

treated class. 

𝜙 is the modification parameter accounting for the difference in the infection rate by the 

AIDS class. 

𝜏 is the rate at which infected class seek treatment. This comes either after a HIV test or 

at the onset of AIDS, or when opportunistic diseases symptoms occur. 

𝛿 is the proportion of those under treatment, who will not be cured and therefore progress 

to AIDS class 

𝜌 is the rate at which AIDS and PLWHA seeks treatment. Note that the treatment class is 

also referred to as PLWHA. 

𝜔 is the rate at which infected individuals progress to AIDS class without seeking 

treatment 

𝜂 is the accelerated death rate due to opportunistic diseases or AIDS 
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4.4 Stability of the System 

In order to determine the stability of the system in equation (4.1), the characteristic 

equation and the characteristic roots are evaluated. In order to study the qualitative 

dynamics of the system, the behavioral dynamics locally around the fixed points are 

evaluated to give a general picture. Stability of the system is determined by the sign of 

the eigenvalues around a fixed point. Fixed points were described earlier as the set of 

points which satisfy the differential equation 
𝑑�̅�

𝑑𝑡
= 0, thus they are determined by 

equating the right hand side of system 4.1 to zero, and evaluate the fixed points. The 

system is stable if the eigenvalues of a linearized system about the fixed point are all 

negative, and unstable if positive. The stability of the system is undetermined from the 

nature of eigenvalues if some of them equals to zero. This will call for other methods, 

which include the use of Lyapunov exponents.  

4.5 Equilibrium Points 

There are two sets of fixed points; disease free equilibrium (𝐷𝐹𝐸) and endemic 

equilibrium points (𝐸𝐸𝑃).  

4.5.1. Disease Free Equilibrium (DFE) 

 

DFE occurs in absence of disease. This is realized before the onset of the disease, or 

when everybody has been healed or cured and thus the number of individuals in the 

infective class, treatment class or AIDS class is zero. In this case, since the entire 

population is 𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑇(𝑡) + 𝐴(𝑡), it means that at DFE, 𝑁(𝑡) = 𝑆(𝑡).  

The disease free equilibrium point (DFE) is defined as; 
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 𝐷𝐹𝐸 = (𝑆0, 𝐼0, 𝑇0, 𝐴0, 𝑆𝑣
0, 𝐼𝑣

0, 𝑇𝑣
0, 𝐴𝑣

0) = {
𝜆

𝜇
, 0, 0, 0,

𝜆𝑣

𝜇
, 0, 0, 0}   (4.2) 

4.5.2 Endemic Equilibrium Point (EEP) 

This is the alternative equilibrium point realized in presence of the disease. In this case, 

all the compartments are not empty, and the equilibrium point is defined as; 

 𝐸𝐸𝑃 ≔ (𝑆𝑒 , 𝐼𝑒 , 𝑇𝑒 , 𝐴𝑒 , 𝑆𝑣
𝑒 , 𝐼𝑣

𝑒 , 𝑇𝑣
𝑒 , 𝐴𝑣

𝑒)     (4.3) 

Where the values of the endemic equilibrium points is computed and given below.  

The computation of the equilibrium point is evaluated by equating system (4.1) to zero 

and solving for equation (4.3). In this case, the equilibrium points obtained are defined as,  

𝑆𝑒 =
(1 − 𝜙𝑣)(𝜇 + 𝜏)

𝛽(1 − 𝜙𝜙𝑣)
, 𝐼𝑒 =

𝜆(𝛽𝑣 − 𝜎𝜙𝛽) − 𝜇𝜎(𝛽𝑣 − 𝜙𝛽)𝑆𝑣
𝑒

𝜎𝛽𝛽𝑣(1 − 𝜙𝜙𝑣)𝑆𝑣
𝑒 , 𝑇𝑒 =

𝜏𝐼𝑒

(𝜇 + 𝛿)
,   𝐴𝑒

=
𝜏𝛿𝐼𝑒

(𝜇 + 𝛿)(𝜇 + 𝜂)
 

𝑆𝑣
𝑒 =

(1 − 𝜙)(𝜇 + 𝜏)

𝛽𝑣(1 − 𝜙𝜙𝑣)
, 𝐼𝑣
𝑒 =

𝜆(𝜎𝛽 − 𝜙𝑣𝛽𝑣) − 𝜇𝜎(𝛽 − 𝜙𝑣𝛽𝑣)𝑆𝑣
𝑒

𝜎𝛽𝛽𝑣(1 − 𝜙𝜙𝑣)𝑆𝑣
𝑒 , 𝑇𝑣

𝑒 =
𝜏𝐼𝑣
𝑒

(𝜇 + 𝛿)
,   𝐴𝑣

𝑒

=
𝜏𝛿𝐼𝑣

𝑒

(𝜇 + 𝛿)(𝜇 + 𝜂)
 

with 𝜎 =
𝛽𝑣(1−𝜙𝑣)

𝛽(1−𝜃)
 

Stability of system (4.1) is determined by examining the sign of the eigenvalues of 

community matrix, also called stability matrix, linearized about the fixed points. 

Linearization matrix 𝑀 is defined as; 



88 

 

 

 

𝑀 =

(

 
 
 
 
 
 

−𝑎11 −𝛽𝑆 0 0 0 −𝛽𝑆𝜙 0 0
𝛽𝐼 𝑎22 0 0 𝛽𝑣𝐼𝜙𝑣 0 0 0
0 𝜏 −𝑎33 0 0 0 0 0
0 0 𝛿 −𝑎44 0 0 0 0
0 −𝛽𝑣𝑆𝑣𝜙𝑣 0 0 −𝑎55 −𝛽𝑣𝑆𝑣 0 0

𝛽𝜙𝐼𝑣 0 0 0 𝛽𝑣𝐼𝑣 𝑎66 0 0
0 0 0 0 0 𝜏 −𝑎77 0
0 0 0 0 0 0 𝛿 −𝑎88)

 
 
 
 
 
 

 

where 𝑎11 = 𝛽𝐼 + (𝛽𝜙𝐼𝑣) + 𝜇,    𝑎22 = 𝛽𝑆 + 𝛽𝑣𝑆𝑣𝜙𝑣 − 𝜇 − 𝜏,   𝑎33 = 𝑎77 = (𝜇 + 𝛿),

  𝑎44 = 𝑎88 = (𝜇 + 𝜂),   𝑎55 = 𝛽𝑣𝐼𝑣 + 𝛽𝑣𝜙𝑣𝐼 + 𝜇, and   𝑎66 = 𝛽𝑣𝑆𝑣 + 𝛽𝑆𝜙 − 𝜇 − 𝜏 

4.5.3 Stability of Disease Free Equilibrium (DFE) point 

 

Stability at DFE is determined by substituting DFE into the stability matrix 𝑀. Using the 

values in equation (4.2), where in absence of the disease, stability matrix becomes;  

𝑀|𝐷𝐹𝐸

=

(

 
 
 
 
 
 
 
 
−𝜇 −𝛽

𝜆

𝜇
0 0 0 −𝛽𝜙

𝜆

𝜇
0 0

0 𝑎22 0 0 0 0 0 0

0 𝜏 −(𝜇 + 𝛿) 0 0 0 0 0

0 0 𝛿 −(𝜇 + 𝜂) 0 0 0 0

0 −𝛽𝑣𝜙𝑣
𝜆

𝜇
0 0 −𝜇 −𝛽𝑣

𝜆

𝜇
0 0

0 0 0 0 0 𝑎66 0 0

0 0 0 0 0 𝜏 −(𝜇 + 𝛿) 0

0 0 0 0 0 0 𝛿 −(𝜇 + 𝜂))

 
 
 
 
 
 
 
 

 

Where 𝑎22 = (𝛽 + 𝛽𝑣𝜙𝑣)
𝜆

𝜇
 , 𝑎66 = (𝛽𝑣 + 𝛽𝜙)

𝜆

𝜇
, Stability of DFE is determined by the 

nature of the characteristic roots of matrix 𝑀|𝐷𝐹𝐸 which yields the roots;  

Λ1 = −μ, Λ2 = (𝛽 + 𝜙𝑣𝛽𝑣)
𝜆

𝜇
− (𝜇 + 𝜏), Λ3 = −(𝜇 + 𝛿), Λ4 = −(𝜇 + 𝜂),    Λ5 = −𝜇,

Λ6 = (𝛽𝑣 + 𝜙𝛽)
𝜆

𝜇
− (𝜇 + 𝜏𝑣), Λ7 = −(μ + δv), Λ8 = −(𝜇 + 𝜂). Note that all 

eigenvalues Λ𝑠, 𝑠 = 1,3,4,5,7,8 are clearly negative. The only non-negative eigenvalues 
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are Λ2 and Λ6. In order to guarantee stability, it is required that Λ2, Λ6 are also negative. 

This is satisfied if the following conditions are fulfilled. 

From Λ2, negativity is obtained if the condition below is satisfied; that is 

 
(𝛽+𝜙𝑣𝛽𝑣)𝜆

𝜇(𝜇+𝜏)
< 1 ≔ 𝑅0𝑣      (4.4a) 

While from Λ6, the condition for negativity is given by; 

  
(𝛽𝑣+𝜙𝛽)𝜆

𝜇(𝜇+𝜏𝑣)
< 1 ≔ 𝑅0𝑛      (4.4b) 

The conditions in equation (4.4a) and equation (4.4b) are called the basic reproductive 

ratio. It is a measure of the ratio of newly infected individuals over those transferred by 

other terms. The dimensionless parameter represents the proportion of the infected 

individuals due to introduction of one infective into a purely susceptible population. If the 

ratio is greater than one, the disease replaces itself, and thus remains persistent in the 

community. This is because it means one infected individual is able to infect more than 

one other susceptible in its lifetime, thus the disease spreads.  If the ratio is less than one, 

the disease will die off with time. This is because the infected individual cannot be able 

to replace itself. 

We say that the equilibrium point DFE is stable if condition (4.4) is satisfied. 

4.5.4 Stability of Endemic Equilibrium Point (EEP) 

 

The analysis of the stability of EEP is determined by aligning linearization matrix about 

the EEP point in equation (4.3).  An equilibrium point is stable if all the eigenvalues of a 

linearized matrix (about the fixed point) have the value lying on the left side of the 
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imaginary axis. That is, the value of the real part is less than zero. The linearization 

matrix about the EEP is given by; 

𝑀𝐸𝐸𝑃 =

(

 
 
 
 
 
 

−𝑎11 −𝛽𝑆𝑒 0 0 0 −𝛽𝑆𝑒𝜙 0 0
𝛽𝐼𝑒 𝑎22 0 0 𝛽𝑣𝐼

𝑒𝜙𝑣 0 0 0
0 𝜏 −𝑎33 0 0 0 0 0
0 0 𝛿 −𝑎44 0 0 0 0
0 −𝛽𝑣𝑆𝑣

𝑒𝜙𝑣 0 0 −𝑎55 −𝛽𝑣𝑆𝑣
𝑒 0 0

𝛽𝜙𝐼𝑣
𝑒 0 0 0 𝛽𝑣𝐼𝑣

𝑒 𝑎66 0 0
0 0 0 0 0 𝜏 −𝑎77 0
0 0 0 0 0 0 𝛿 −𝑎88)

 
 
 
 
 
 

 

where  𝑎11 = 𝛽𝐼
𝑒 − 𝛽𝜙𝐼𝑣

𝑒 + 𝜇, 𝑎22 = 𝛽𝑆
𝑒 + 𝛽𝑣𝑆𝑣

𝑒𝜙𝑣 − 𝜇 − 𝜏,  𝑎33 = (𝜇 + 𝛿),  𝑎44 =

(𝜇 + 𝜂),  𝑎55 = 𝛽𝑣𝐼𝑣
𝑒 + 𝛽𝑣𝜙𝑣𝐼

𝑒 + 𝜇, and   𝑎66 = 𝛽𝑣𝐼𝑣
𝑒 + 𝛽𝑆𝑒𝜙 − 𝜇 − 𝜏, 𝑎77 = (𝜇 + 𝛿) 

and 𝑎88 = (𝜇 + 𝜂) with the equilibrium points being given in equation (4.3), and for 

convenience repeated below. 

The equilibrium points stated in equation (4.3) are defined by; 

(𝑆𝑒 , 𝐼𝑒 , 𝑇𝑒 , 𝐴𝑒 , 𝑆𝑣
𝑒 , 𝐼𝑣

𝑒 , 𝑇𝑣
𝑒 , 𝐴𝑣

𝑒) equals to; 

𝑆𝑒 =
(1−𝜙𝑣)(𝜇+𝜏)

𝛽(1−𝜙𝜙𝑣)
 ,  𝐼𝑒 =

𝜆(𝛽𝑣−𝜎𝜙𝛽)−𝜇𝜎(𝛽𝑣−𝜙𝛽)𝑆𝑣
𝑒

𝜎𝛽𝛽𝑣(1−𝜙𝜙𝑣)𝑆𝑣
𝑒 ,   𝑇𝑒 =

𝜏𝐼𝑒

(𝜇+𝛿)
,    𝐴𝑒 =

𝜏𝛿𝐼𝑒

(𝜇+𝛿)(𝜇+𝜂)
,  𝑆𝑣

𝑒 =

(1−𝜙)(𝜇+𝜏)

𝛽𝑣(1−𝜙𝜙𝑣)
,   𝐼𝑣

𝑒 =
𝜆(𝜎𝛽−𝜙𝑣𝛽𝑣)−𝜇𝜎(𝛽−𝜙𝑣𝛽𝑣)𝑆𝑣

𝑒

𝜎𝛽𝛽𝑣(1−𝜙𝜙𝑣)𝑆𝑣
𝑒 ,   𝑇𝑣

𝑒 =
𝜏𝐼𝑣
𝑒

(𝜇+𝛿)
,   and   𝐴𝑣

𝑒 =
𝜏𝛿𝐼𝑣

𝑒

(𝜇+𝛿)(𝜇+𝜂)
 

where 𝜎 =
𝛽𝑣(1−𝜙𝑣)

𝛽(1−𝜃)
.  The sign of these eigenvalues will be used to determine stability of 

the endemic equilibrium point (EEP). Stability of this equilibrium point is determined by 

the nature of the eigenvalues of matrix 𝑀𝐸𝐸𝑃 above. Without loss of qualitative 

characteristics, we can assume homogeneity of the normal and the Fisherfolk population 

and analyze stability of a system of four equations. Here, it is assumed that 𝑆(𝑡) = 𝑆𝑣(𝑡), 

and due to the same human nature, the biological procedures like infectivity, progression 
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to AIDS class, treatment rate and the rest are equal, thus considering a system of four 

equations, we analyzed stability conditions and showed that the eigenvalues Λ𝑖  𝑖 =

1, 2, 3, 4, 5, 6, 7, 8  are; 

Λ1 = −
𝛽(𝐼𝑒 − 𝑆𝑒)(1 + 𝜙) − 2𝜇 − 𝜏

2

−
[𝛽2(𝐼𝑒 − 𝑆𝑒)2(1 + 𝜙)2 − 2𝛽𝜏(1 + 𝜙)(𝐼𝑒 + 𝑆𝑒) + 𝜏2]

1
2

2
 

Λ2 −
𝛽(𝐼𝑒 − 𝑆𝑒)(1 + 𝜙) − 2𝜇 − 𝜏

2
+
[𝛽2(𝐼𝑒 − 𝑆𝑒)2(1 + 𝜙)2 − 2𝛽𝜏(1 + 𝜙)(𝐼𝑒 + 𝑆𝑒) + 𝜏2]

1
2

2
 

Λ3 = −(𝜇 + 𝛿), Λ4 = −(𝜇 + 𝜂) 

Λ5 = −
1

2
[𝛽(𝐼𝑒 − 𝑆𝑒)(1 + 𝜙) − 2𝜇 − 𝜏] −

1

2
[𝛽2(𝐼𝑒 − 𝑆𝑒)2(1 + 𝜙)2 + 16𝛽2𝜙𝐼𝑒𝑆𝑒 −

2𝛽𝜏(1 + 𝜙)(𝐼𝑒 + 𝑆𝑒) + 𝜏2]
1

2 ,   Λ6 = −
1

2
[𝛽(𝐼𝑒 − 𝑆𝑒)(1 + 𝜙) − 2𝜇 − 𝜏] +

1

2
[𝛽2(𝐼𝑒 − 𝑆𝑒)2(1 + 𝜙)2 + 16𝛽2𝜙𝐼𝑒𝑆𝑒 − 2𝛽𝜏(1 + 𝜙)(𝐼𝑒 + 𝑆𝑒) + 𝜏2]

1

2,  Λ7 =

−(𝜇 + 𝛿), Λ8 = −(𝜇 + 𝜂) 

Clearly, some eigenvalues Λ𝑠, 𝑠 = 3,4,7,8 are negative since all the parameters are 

positive, and the rest Λ𝑠, 𝑠 = 1,2,5,6  require additional conditions to determine their 

sign. 

The condition for the rest of the eigenvalues to be negative is if 𝑆𝑒 − 𝐼𝑒 ≥ 0. This is 

naturally expected, unless the pandemic sweeps every susceptible individual, and thus it 

is declared that the EEP is stable. 
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4.6 Positivity and Boundedness of Solutions 

When dealing with biological models, it is necessary to show that the solutions fall within 

the feasible space. Solutions are feasible if they are always positive and bounded.  

Positivity and boundedness is proven for every solution of equations in system (4.1). 

Beginning with equation one, we show that from 

𝑆′ = 𝜆 − 𝛽𝑆𝐼 − 𝛽𝑣𝜙𝑆𝐼𝑣 − 𝜇𝑆;  𝜆 > 0 

�̇� ≤ −𝛽𝑆𝐼 − 𝛽𝑣𝜙𝑆𝐼𝑣 − 𝜇𝑆 ≤ −(𝛽𝐼 + 𝜙𝐼𝑣 + 𝜇)𝑆 

Let 𝛽𝐼 + 𝜙𝐼𝑣 + 𝜇 = 𝐴, then 

�̇� ≤ −𝐴𝑆 ⟹
�̇�

𝑆
≤ −𝐴.  

Integrating both sides gives 𝑙𝑛𝑆(𝑡) ≤ −𝐴𝑡 + 𝑐 ⟹ 𝑆(𝑡) ≤ 𝑆0𝑒
−𝐴𝑡  where  𝑆0 = 𝑒

𝑐.  

Clearly, the solution of equation one of system (4.1) 𝑆(𝑡) ≤ 𝑆0𝑒
−𝐴𝑡 is bounded for all 

𝑡 ≥ 0 and positive. 

Similarly, the analysis of equation two yields 

𝐼′ = 𝛽𝑆𝐼 + 𝛽𝑣𝑆𝑣𝐼𝜙𝑣 − 𝜇𝐼 − 𝜏𝐼 = (𝛽𝑆 + 𝛽𝑣𝑆𝑣𝜙𝑣 − 𝜇 − 𝜏)𝐼 

Let 𝐵 = 𝛽𝑆 + 𝛽𝑣𝑆𝑣𝜙𝑣 − 𝜇 − 𝜏,  then  𝐼′ = 𝐵𝐼 ⟹ 𝐼(𝑡) = 𝐼0𝑒
𝐵𝑡 

For boundedness, we require that  𝐵 < 0 ⟹ 𝛽𝑆 + 𝛽𝑣𝑆𝑣𝜙𝑣 − 𝜇 − 𝜏 < 0 

Positivity is guaranteed if the condition 𝛽𝑆 + 𝛽𝑣𝑆𝑣𝜙𝑣 < 𝜇 + 𝜏. At the fixed points, this 

condition is equivalent to equation (4.4a), and therefore the solution is always positive 

and bounded whenever 𝑅0𝑖 < 1,   𝑖 = 𝑣, 𝑛. 

The third equation on treatment class is given by 𝑇′ = 𝜏𝐼 − 𝜇𝑇 − 𝛿𝑇 which reduces to 

�̇� ≤ −(𝜇 + 𝛿)𝑇  

Solving this gives 𝑇(𝑡) ≤ 𝑇0𝑒
−(𝜇+𝛿)𝑡 which is positive and bounded for all 0 ≤ 𝑡 ≤ ∞+. 

The fourth equation on  
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𝑑𝐴

𝑑𝑡
= 𝛿𝑇 − (𝜇 + 𝜂)𝐴 

�̇� ≤ −(𝜇 + 𝜂)𝐴 

Solving, gives 𝐴(𝑡) ≤ 𝐴0𝑒
−(𝜇+𝜂)𝑡 which is positive and bounded for all 0 ≤ 𝑡 ≤ ∞+. 

The set of equations representing the vector population can be analyzed in the same way 

to obtain 

𝑆𝑣
′ = 𝜆 − 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝛽𝑣𝑆𝑣𝜙𝑣𝐼 − 𝜇𝑆𝑣 

𝑆𝑣
′ ≤ −(𝛽𝑣𝐼𝑣 + 𝛽𝑣𝑆𝑣𝜙𝑣𝐼 + 𝜇)𝑆𝑣 with  𝑆𝑣(𝑡) ≤ 𝑆𝑣0𝑒

−(𝛽𝑣𝐼𝑣+𝛽𝑣𝑆𝑣𝜙𝑣𝐼+𝜇)𝑡 which is positive 

and bounded.  

The infective equation 
𝑑𝐼𝑣

𝑑𝑡
= 𝛽𝑣𝑆𝑣𝐼𝑣 + 𝛽𝜙𝑆𝐼𝑣 − (𝜇 + 𝜏)𝐼𝑣 yields the solution  

𝐼𝑣(𝑡) ≤ 𝐼𝑣0𝑒
−(𝛽𝑣𝑆𝑣+𝛽𝜙𝑆−(𝜇+𝜏))𝑡 

Which is always positive and bounded whenever  𝛽𝑣𝑆𝑣 + 𝛽𝜙𝑆 < (𝜇 + 𝜏)or whenever 

𝑅0𝑛 < 1. 

The third equation on treatment class yields  
𝑑𝑇𝑣

𝑑𝑡
= 𝜏𝐼𝑣 − (𝜇 +  𝛿)𝑇𝑣 or 𝑇�̇�(𝑡) ≤

−(𝜇 + 𝛿)𝑇𝑣. 

Solving, gives 𝑇𝑣(𝑡) ≤ 𝑇𝑣0𝑒
−(𝜇+𝛿)𝑡 which is positive and bounded for all positive time 𝑡. 

Lastly, the eighth equation on AIDS class is analyzed as 
𝑑𝐴𝑣

𝑑𝑡
= 𝛿𝑇𝑣 − (𝜇 + 𝜂)𝐴𝑣 or  

𝐴�̇�(𝑡) ≤ −(𝜇 + 𝜂)𝐴𝑣. Solving, gives 𝐴𝑣(𝑡) ≤ 𝐴𝑣0𝑒
−(𝜇+𝛿)𝑡 which is positive and 

bounded. 
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Clearly, system (4.1) is positive and bounded on the interval [0,   ∞+] for all positive time 

𝑡 ∈ [0, ∞+]. 

4.7. Sensitivity 

Due to the presence of many parameters in the system, it is necessary to determine the 

sensitivity of parameters, so as to focus on the study of those that make significant 

change whenever they are varied. Suppose the perturbation parameters are represented by 

letter 𝑃, say 𝑃𝑖 , 𝑖 = 1,2,3,4,… Their sensitivity is defined as 

 
1

𝑃𝑖

𝜕𝑅0

𝜕𝑃𝑖
= [0 , 1]       (4.5) 

The sensitivity of the parameters 𝜇, 𝜏, 𝜙, 𝜙𝑣 , 𝛽, 𝛽𝑣, 𝜆 with respect to the reproductive ratio 

𝑅0 is evaluated, to check which of them can significantly create a big change. Here, the 

reproductive ratio is defined as; 

𝑅01 =
(𝛽+𝛽𝑣𝜙𝑣)𝜆

𝜇(𝜇+𝜏)
  and  𝑅02 =

(𝛽𝑣+𝛽𝜙)𝜆

𝜇(𝜇+𝜏)
  for the property that 𝜏 =  𝜏𝑣. Then, the following 

are sensitivity ratios of various parameters. 

Sensitivity of 𝛽 on 𝑅01 =
1

𝛽

(𝜕𝑅01)

𝜕𝛽
=

1

𝛽
(

𝜆

𝜇(𝜇+𝜏)
)  

Sensitivity of 𝛽 on 𝑅02 =
1

𝛽

𝜕𝑅02
𝜕𝛽

=
1

𝛽
(

𝜙𝜆

𝜇(𝜇+𝜏)
)   

Sensitivity of 𝛽𝑣 on 𝑅01 = 
1

𝛽𝑣

𝜕𝑅01
𝜕𝛽𝑣

=
1

𝛽𝑣
(

𝜙𝑣𝜆

𝜇(𝜇+𝜏)
)   

Sensitivity of 𝛽𝑣 on 𝑅02 = 
1

𝛽𝑣

𝜕𝑅02
𝜕𝛽𝑣

=
1

𝛽𝑣
(

𝜆

𝜇(𝜇+𝜏)
)   

Sensitivity of 𝜙 on 𝑅01 = 
1

𝜙

𝜕𝑅01
𝜕𝜙

=
1

𝜙
(0) = 0 
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Sensitivity of 𝜙 on 𝑅02 = 
1

𝜙

𝜕𝑅02
𝜕𝜙

=
1

𝜙
(

𝛽𝜆

𝜇(𝜇+𝜏)
) 

Sensitivity of 𝜙𝑣 on 𝑅01 = 
1

𝜙𝑣

𝜕𝑅01
𝜕𝜙𝑣

=
1

𝜙𝑣
(

𝛽𝑣𝜆

𝜇(𝜇+𝜏)
) 

Sensitivity of 𝜙𝑣 on 𝑅02 =  0 

Sensitivity of 𝜆 on 𝑅01 = 
1

𝜆

𝜕𝑅01
𝜕𝜆

=
1

𝜆
(
(𝛽+𝛽𝑣𝜙𝑣)

𝜇(𝜇+𝜏)
) 

Sensitivity of 𝜆 on 𝑅02 = 
1

𝜆

𝜕𝑅02
𝜕𝜆

=
1

𝜆
(
(𝛽𝑣+𝛽𝜙)

𝜇(𝜇+𝜏)
) 

Sensitivity of 𝜏 on 𝑅01 = 
1

𝜏

𝜕𝑅01
𝜕𝜏

=
−𝜆(𝛽+𝛽𝑣𝜙𝑣)

𝜇2(𝜇+𝜏)2
 

Sensitivity of 𝜏 on 𝑅02 = 
1

𝜏

𝜕𝑅02
𝜕𝜏

=
−𝜆(𝛽𝑣+𝛽𝜙)

𝜇2(𝜇+𝜏)2
 

Sensitivity of 𝜇 on 𝑅01 = 
1

𝜇

𝜕𝑅01
𝜕𝜇

=
−𝜆(𝛽+𝛽𝑣𝜙𝑣)(2𝜇+𝜏)

𝜇3(𝜇+𝜏)2
 

Sensitivity of 𝜇 on 𝑅02 = 
1

𝜇

𝜕𝑅02
𝜕𝜇

=
−𝜆(𝛽𝑣+𝛽𝜙)(2𝜇+𝜏)

𝜇3(𝜇+𝜏)2
 

4.8 Optimization and Control 

In this study, we analyze public health educational campaign denoted by the net transfer 

rates of susceptible between the two categories 𝑢𝐸(𝑡) = 𝛼(𝑡) − 𝛼𝑣(𝑡) and treatment 

𝑢𝑇(𝑡) = 𝜏(𝑡) + 𝜌(𝑡) of the system (4.1),where 0 ≤ 𝑈 ≤ 1, with the objective of 

minimizing treatment cost and reducing the number of infectives.  

4.8.1 Public Health Educational Campaign and Treatment 

 

Through public health educational campaigns, susceptible individuals become aware and 

become cautious and therefore avoid high risk behaviours, which expose them to 
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contracting HIV. Those already infected will also avoid careless behaviours which can 

potentially infect others, and take treatment so as to avoid progressing to AIDS class. The 

variable 0 ≤ 𝑢𝐸(𝑡) ≤ 1 represents the proportion of those effectively transformed to low 

risk class, while the variable 0 ≤ 𝑢𝑇(𝑡) ≤ 1 denotes the proportion of individuals treated, 

so that they don’t progress to PLWHA and also reduce the virus load and infectivity.  

In order to analyze the potential effect of control strategies, this study forcused on the 

control of the vector population using a system of two equations, the susceptible 𝑆(𝑡) and 

the infected class 𝐼(𝑡) as shown in equation 4.6. 

 

𝑆𝑣
′ = 𝜆 − 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝜇𝑆𝑣 − 𝑢𝐸(𝑡)
  
𝐼𝑣
′ = 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝜇𝐼𝑣 − 𝑢𝑇(𝑡)𝐼𝑣

      (4.6) 

The set of equations in (4.6) represent the high risk population, responsible for the high 

transmission of HIV, and the control of the pandemic among this population is as good as 

controlling the disease in the entire population. Notice also that control parameters are 

introduced in terms of 𝑈 = (𝑢𝑇 , 𝑢𝐸) in all the affected equations. 

In this model, the AIDS class is ignored because HIV is irreversible, and once someone 

has developed AIDS, their fate is either death or long live treatment commonly called 

PLWHA. This is catered for in equation (4.6) as mortality due to HIV and the transfer 

due to treatment respectively. It is therefore considered that the total population 𝑁(𝑡) =

𝑆(𝑡) + 𝐼(𝑡).   

From system (4.6), the number of treated individuals is monitored and the number of 

individuals transformed due to public health education, who are now low risk to HIV is 

also monitored by the equations  𝑇𝑣
′ = 𝑢𝑇(𝑡)𝐼𝑣 and 𝑆𝑣

′ = 𝑢𝐸(𝑡)𝑆𝑣 respectively. 
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4.8.2 Optimal Control Problem Model 

 

In order to account for the control of the disease both through public health education and 

treatment, optimal control problem of two variables is modelled using equation 4.7. With 

this in mind, and considering a linear cost functional, the optimal control problem will be 

of the form 

 max 𝐽(𝑋, 𝑈, 𝑡) = ∫ (𝐴1𝐼(𝑡) + 𝐴2𝑆(𝑡) + 𝐴3𝑢𝐸(𝑡) + 𝐴4𝑢𝑇(𝑡))
𝑇

0
𝑑𝑡 − 𝐵1𝐼(𝑇) − 𝐵2𝑆(𝑇) 

          (4.7) 

where     (𝐴𝑖 , 𝐵𝑖 > 0, 𝑖 = 1,2, … ) subject to the constraints in equation (4.1) together with 

their positivity and boundedness conditions 0 ≤ 𝑈 ≤ 1. Here, 𝐴1, 𝐴2, 𝐴3 and 𝐴4 are 

linear constants used to balance the units and measurement as well as indicating the 

amount of effort on the type of intervention strategy applied. In this study, the constants 

will be assumed to be 𝐴1 = 𝐴2 = 𝐴3 = 𝐴4 = 𝐵1 = 𝐵2 = 1. 

Maximization of the objective function of the optimal problem in equation 4.7 can be 

expressed as; 

max
0≤𝑈≤1

𝐽(𝑈), 

Subject to the constraints: 

𝑆𝑣
′ = 𝜆 − 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝜇𝑆𝑣 − 𝑢𝐸(𝑡)𝑆𝑣, 𝐼(0) = 1,
  
𝐼𝑣
′ = 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝜇𝐼𝑣 − 𝑢𝑇(𝑡)𝐼𝑣,   𝑆(0) = 𝑁,

 

and: 

0 ≤ 𝑢𝑇 ≤ 1,   0 ≤ 𝑢𝐸 ≤ 1 



98 

 

 

 

Applying Pontryagin principle in (Di Liddo, 2016), the Hamiltonian 𝐻 is defined by: 

𝐻(𝐼, 𝑆, 𝑈, 𝜆) = 𝜆1(𝑡)𝐼(𝑡, 𝑢𝑇) + 𝜆2𝑆(𝑡, 𝑢𝐸) − 𝐼 − 𝑆 

which in explicit form, the Hamiltonian is defined as 

𝐻 = −𝐼 − 𝑆 − 𝑈 + 𝜆1(𝜆 − 𝛽𝑣𝑆𝑣𝐼𝑣 − 𝜇𝑆𝑣 − 𝑢𝐸(𝑡)𝑆𝑣) + 𝜆2(𝛽𝑣𝑆𝑣𝐼𝑣 − 𝜇𝐼𝑣 − 𝑢𝑇(𝑡)𝐼𝑣)         

   (4.8) 

There are several cost functions that can be employed in analyzing the optimal control. 

These include linear and quadratic state dependent or independent cost functions, as used 

in many literature (see for instance (Francis, 2004), (Buonomo & Vargas-De-León, 

2014), (Jung, Iwami, Takeuchi, & Jo, 2009), (Jana, Haldar, & Kar, 2016)). These cost 

functions are independent on the number of treated people, and thus making it unsuitable. 

For the purpose of this study, a blowing up cost function 𝑈 =
�̂�𝑝𝑢𝐼

�̂�−𝑝𝑢𝐼
  is chosen since it 

accommodates the characteristics of the number of people treated and the total cost if all 

people are treated (Di Liddo, 2016). The cost function 𝑈 can be expressed for both public 

health educational campaigns and treatment as; 

                                    𝑢𝐸(𝑡) =
�̂�𝑝𝑢𝑆𝑣

(�̂�−𝑝𝑢𝐸𝑆𝑣)2
     (4.9a) 

And 

                                    𝑢𝑇(𝑡) =
�̂�𝑝𝑢𝐼𝑣

(�̂�−𝑝𝑢𝐸𝐼𝑣)2
     (4.9b) 



99 

 

 

 

Using the blowing up cost functions presented in equation (4.9) on the objective function 

in equation (4.7) together with the Hamiltonian in equation (4.8), the adjoin condition for 

equation (4.8) is obtained to be of the form 

                             

𝜆1
′ (𝑡) = −

𝜕𝐻

𝜕𝐼
= 1 + 𝜆1𝛽𝑣𝑆𝑣 − 𝜆2𝛽𝑣𝑆𝑣 + 𝜇 + 𝑢𝑇(𝑡)

  

𝜆2
′ (𝑡) = −

𝜕𝐻

𝜕𝑆
= 1 − 𝜆1𝛽𝑣𝐼𝑣 + 𝜇 + 𝑢𝐸(𝑡) − 𝜆2𝛽𝑣𝐼𝑣

   (4.10) 

And the transversality conditions given by 

                                 

𝜆1(𝑇) = 1 + (𝜆1 − 𝜆2)𝛽𝑣𝑁 + 𝜇 + 𝑢𝑇(𝑇)
  

𝜆2(𝑇) = 1 + 𝜇 + 𝑢𝐸(𝑇)
    (4.11) 

And the optimality conditions given by 

                                

𝜕𝐻

𝜕𝑢𝐸
= (−

�̂�2𝑝

(�̂�−𝑝𝑢𝐸𝑆𝑣)2
− 𝜆1) 𝑆𝑣

  
𝜕𝐻

𝜕𝑢𝑇
= (−

�̂�2𝑝

(�̂�−𝑝𝑢𝑇𝐼𝑣)2
− 𝜆2) 𝐼𝑣

     (4.12) 

Equating equation (4.12) to zero and solving for the cost function 𝑈 gives the solutions 

                                     �̂�𝐸 =
�̂�−√

�̂�2𝑝

−𝜆1

𝑝𝑆𝑣
,   and     �̂�𝑇 =

�̂�−√
�̂�2𝑝

−𝜆2

𝑝𝐼𝑣
,    

From the Pontryagin maximum principle, the blowing up cost function is expressed as; 

𝑢𝐸(𝑡) =

{
 
 

 
 
0 𝑖𝑓 𝜆1 ≥ 0
  

�̂�𝐸 𝑖𝑓 𝜆1 ≥ 0        𝑎𝑛𝑑 0 ≤ 𝑢 ̂𝐸(𝑡) ≤ 1
  
1 𝑖𝑓 𝜆1 ≥ 0        𝑎𝑛𝑑  �̂�𝐸 ≥ 1

    (4.13) 
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𝑢𝑇(𝑡) =

{
 
 

 
 

0 𝑖𝑓 𝜆2 ≥ 0
  

�̂�𝑇(𝑡) 𝑖𝑓 𝜆2 ≥ 0        𝑎𝑛𝑑 0 ≤ 𝑢 ̂𝑇(𝑡) ≤ 1
  
1 𝑖𝑓 𝜆2 ≥ 0        𝑎𝑛𝑑  �̂�𝑇 ≥ 1

    (4.14) 

4.9 Simulation and Numerical Results 

Numerical solutions verify analytic solutions and graphically depict the specific picture 

of a particular zone or area. In this section, numerical results are presented using data 

collected from Kisumu, Homabay, Siaya and Busia fishing sites. Table 1 summarizes the 

parameter values as per the data collected. 
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Table 1: Parameter values from data collected from Samia, Kisumu, Homabay and 

Mbita. 

No Symbol Description Value 

1 𝜆 Recruitment rate of normal community 0.7 

2 𝜆𝑣 Recruitment rate of individuals into the Fisherfolk 0.9 

3 𝜇 Natural death rate 0.00124 

4 𝛽 Probability of infectivity given sufficient contact 0.00033 

5 𝛽𝑣 Probability of infectivity by Fisherfolk community 0.00133 

6 𝑐 Number of sexual partners or contact rate of normal 

population 

0.18624 

7 𝑐𝑣 Number of sexual partners or contact rate of Fisherfolk 

population 

0.20835 

7 𝜏 Rate of seeking treatment by HIV infected patients 0.024 

8 𝜏𝑣 Rate of seeking treatment by Fisherfolk HIV patients 0.021 

9 𝜎 Progression rate of HIV patients to AIDS status 0.023 

10 𝜎𝑣 Fisherfolk Progression rate of HIV patients to AIDS status 0.032 

11 𝜂 Accelerated death rate due to HIV/AIDS 0.00124 

 

The parameters in Table 1 were computed from population data available. Using the 

parameter values in Table 1. above, the following HIV/AIDS dynamics of the normal 

population and the Fisherfolk population are obtained. 
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Figure 4.2 HIV/AIDS dynamics in Lake Victoria region for the Normal and the 

Fisherfolk Population in absence of control. 

 

In Figure 4.2, the dynamics of HIV/AIDS in absence of control strategies and with full 

interaction of the normal population and the Fisherfolk is depicted. It is noted that from 

the onset of HIV pandemic, both the normal population and the Fisherfolk are affected. 

After the first quarter, wild dynamics gently begin to vanish so that by one year, the 

dynamics begin to settle and steady state is achieved after two years (700 days).  

With the consideration of Fisherfolk as HIV vector, the parameters representing the 

interaction between the two communities can be controlled, and when 𝑐𝑣 and 𝜙𝑣 are 

adjusted to zero, the dynamics of the new system is as shown in Figure 4.3. 

(a) (b) 
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Figure 4.3. HIV/AIDS dynamics among normal and fisherfolk communities with no 

interaction. 

The disease dynamics of the Fisherfolk community are prolonged and intensified, while 

the normal population experience improved health status, with lesser infectivity and 

accelerated achievement of a higher steady state. 

4.10 Coupling and Synchronization of Coupled Oscillators 

In this section, the concept of allowing independent oscillators to influence each other 

was considered. Here, identical oscillators are all allowed to influence each other, so that 

the action of one, leads to a proportional reaction of all the other 𝑛 − 1 oscillators. It was 

studied in a view that, the independent oscillations may be influenced so that in future 

time, all the oscillators behave in the same way. This phenomenon is called 

synchronization. Various forms of coupling configurations discussed before includes 

nearest neighbour coupling, ring coupling, one to many coupling and all-to-all coupling. 

The latter is further analyzed in this study. 

(a) (b) 
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4.10.1 All-to-All Coupling Topology 

 

Diffusive coupling is an arrangement, where oscillators are allowed to influence each 

other (Wasike & Rotich, 2007). In terms of the biological oscillators under study, the 

periodic dynamics of HIV/AIDS pandemic in four distinct population patches around 

Lake Victoria are interacting through people entering and leaving each patch, together 

with interacting in the markets and common fishing grounds. The interaction referred to 

here is the relationship which leads to unprotected sexual intercourse. The level of 

interaction which leads to sexual relationship, significant to cause transfer of disease is 

here considered. All-to-all coupling, also called global coupling is represented 

geometrically as in Figure 4.1 (Heagy, Carroll, & Pecora, 1994). Each terminal point 

represents an oscillator, while the arrows joining the oscillators represent bidirectional 

coupling where oscillators are allowed to influence each other simultaneously. 

 

Figure 4.4. All-to-All Coupling configuration 

Each oscillator is represented by a system of ordinary differential equations, denoting a 

dissipative system of four variables, described by the second set of four differential equations in 

equation (4.1),  describing the dynamics of Susceptible, Infective, Treated and AIDS cases of 

Fisherfolk. Using the notation of 𝑍𝑖 , 𝑖 = 𝑘, 𝑠, ℎ, 𝑏 (Kisumu, Siaya, Homabay and Busia) to 

Z1 

Z
4
 Z

3
 

Z
2
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represent the fours oscilators, we derive the system of coupled oscillators as in equation (3.8)  

given by 

(

𝑧1̇(𝑡)
𝑧2̇(𝑡)

𝑧3̇(𝑡)
𝑧4̇(𝑡)

) = 𝑘(

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

)⊗ (𝐼4)(

𝑧1
𝑧2
𝑧3
𝑧4

)+

(

 
 

𝑔1(𝑧1)

𝑔2(𝑧2)

𝑔3(𝑧3)

𝑔4(𝑧4))

 
 

  (4.15) 

where the matrices are given in detail as; 

 kΔ⊗ 𝐼4 = 𝑘(

−3𝐼4 𝐼4 𝐼4 𝐼4
𝐼4 −3𝐼4 𝐼4 𝐼4
𝐼4 𝐼4 −3𝐼4 𝐼4
𝐼4 𝐼4 𝐼4 −3𝐼4

)   (4.16) 

and  

 

 𝑧�̇�(𝑡) =

(

 
 

�̇�𝑖(𝑡)

𝐼�̇�(𝑡)

�̇�𝑖(𝑡)

�̇�𝑖(𝑡))

 
 
=

(

 

𝜆𝑆𝑖 − 𝑐𝛽𝜙𝑆𝑖𝐼𝑖 − 𝜇𝑆𝑖

𝑐𝛽𝜙𝑆𝑖𝐼𝑖 − (𝜇 + 𝜏 + 𝜔)𝐼𝑖
𝜏𝐼𝑖 − (𝜇 + 𝛿)𝑇𝑖 + 𝜌𝐴𝑖

𝛿𝑇𝑖 − (𝜉 + 𝜎 + 𝜌)𝐴𝑖 + 𝜔𝐼𝑖)

    (4.17) 

where the subscripts 𝑖 = 𝑘, ℎ, 𝑠, 𝑏 for Kisumu, Homabay, Siaya and Busia respectively. In 

compact vector form, equation (4.19) is expressed equivalent to equation (1.4) as; 

 �̇� = 𝑘(Δ⊗ 𝐼4)𝑍 + 𝐺(𝑍)     (4.18) 

where 𝑍 and 𝐺(𝑍) are defined in equation (1.4) above. The coupled system (4.18) is said 

to be synchronized, if there exist a manifold 

ℳ ≔ {𝑍 ∈ ℝ𝑛𝑑: 𝑧𝑖 = 𝑧𝑖+1 ≠ 0, 𝑖 = 𝑘, 𝑠, ℎ, 𝑏} 

That is, there exist an invariant attractor 𝒜𝑘∀ 𝑘 > 0 invariant under the flow defined by 

equation (1.13) which contains the 𝜔- limit set of the oscillator, so that the difference 

𝑧𝑖(𝑡) − 𝑧𝑖+𝑖(𝑡) → 0 as 𝑡 → ∞, ∀ 𝑖. 
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4.10.2 Construction of Synchronization manifold 

 

Synchronization manifold ℳ ≔ (𝑍 ∈ ℝ𝑛𝑑: 𝑧𝑖 = 𝑧𝑖+1 ≠ 0, 𝑖 = 1, 2, 3, … , 𝑛 − 1} is 

always guaranteed when identical oscillators are coupled, and thus the diagonal is 

invariant (Sun, Bollt, & Nishikawa, 2009). The task at hand is therefore to show that one 

of the eigenvalues of the coupling topology matrix Δ is 𝜆0 = 0 and the corresponding 

generalized eigenvector spans the diagonal in ℝ𝑛𝑑 while the other eigenvalues 𝜆𝑠, 𝑠 =

1, 2, . . , 𝑛 − 2 are bounded to the left side of the imaginary axis. 

Clearly, the eigenvalues of the matrix 𝜎(Δ) 

Δ = (

−3 1 1 1
1 −3 1 1
1 1 −3 1
1 1 1 −3

) 

are; 𝜆0 = 0 and 𝜆𝑠 = −𝑛𝑠, 𝑠 = 1, 2, 3, … 𝑛 − 1, with the corresponding generalized 

eigenvectors as; 𝑣0 ≔ (1, 1, 1, 1, … ,1) ∈ ℝ𝑑 which spans the diagonal and the other 

eigenvectors are; 

𝑣𝑖 ≔ [(−1,1,0,0,… ,0), (−1,0,1,0,0, … ,0), (−1,0,0,1,0, … ,0),… , (−1,0,0, … ,0,1)].  

  

The existence of a global attractor, (the diagonal) in a bounded set 𝑈 ∈ ℝ𝑛𝑑, we define a 

transformation, that splits the system into transverse flow and tangential flow to the 

manifold. Consider the transformation in (Wasike & Rotich, 2007) defined below. 

𝑧 = 𝑦𝑒 + �̃�𝑤,𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑛−1)
𝑇 , 𝑤 ∈ ℝ𝑛𝑑−𝑑 , 𝑦 ∈ ℝ𝑑 

 

𝑤𝑗 = 𝑧𝑗 − 𝑧𝑗+1 , 1 ≤ 𝑗 ≤ 𝑛 − 1,
 

𝑦 =
1

𝑛
∑ 𝑧𝑗 ,
𝑛
𝑗=1

    (4.19) 
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where 𝑒𝑗 is the 𝑗𝑡ℎ column of an 𝑛 × 𝑛 identity matrix and �̃� = ∑ (𝑒𝑖 −
𝑗

𝑛
𝑒)

𝑗
𝑖 , with 

�̃� = (�̃�1, �̃�2, … , �̃�𝑛−1). The set 𝑒 , �̃�𝑗 is an orthogonal basis for ℝ𝑛. 

Using transformation (4.19) in equation (4.18), yields  

 

�̇� = 𝑘(Δ1⊗ 𝐼𝑑)𝑤 + 𝐹(𝑤, 𝑦)
 

�̇� =
1

𝑛
∑ 𝑔(𝑧𝑗)
𝑛
𝑗=1

    (4.20) 

 

where 𝐹(𝑤, 𝑦) = (𝐹1(𝑤, 𝑦), 𝐹2(𝑤, 𝑦), 𝐹3(𝑤, 𝑦)) with 𝐹𝑖(𝑤, 𝑦) = 𝑔(𝑧𝑖) − 𝑔(𝑧𝑖+1),   1 ≤

𝑖 ≤ 𝑛 − 1 and the matrix Δ1 is given by Δ1 = −𝑘𝑛𝐼𝑛⊗ 𝐼𝑑. 

The first equation in (4.20) describes the dynamics transverse to the synchronization 

manifold, and the second equation describes the dynamics tangential to the 

synchronization manifold.  

4.10.3 Stability of the Synchronization Manifold 

 

Synchronization means the deviations 𝑧𝑖 − 𝑧𝑖+1 as 𝑡 → ∞ dies out, that means the 

solution of the first equation in (4.20) is expected to be exponentially stable, the property 

that 𝑤 = 0 (Josic, 2000). This research is interested in local synchronization, and thus the 

fundamental matrix solution Φ(𝑡; 𝑧0), 𝑧0 ∈ ℳ of the linearization of equation (4.18) 

about ℳ defined as �̇� = 𝐴(𝑧(𝑡; 𝑧0))𝑍 is considered.  

Let  

Φ(𝑡; 𝑧0) = Φ𝑐(𝑡; 𝑧0) ⊕ Φ𝑠(𝑡; 𝑧0); 

be the invariant splitting where Φ𝑐(𝑡; 𝑧0) and Φ𝑠(𝑡; 𝑧0) are restrictions of Φ(𝑡; 𝑧0) of the 

tangent bundle vector 𝑇𝑧0ℳ to the manifold at 𝑧0 and 𝑁𝑧0  bundle of vectors normal to the 

manifold at 𝑧0. 
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Linearizing equation (4.20) along the solution (0, 𝑦0(𝑡)) on the manifold ℳ yields 

 (
�̇�
�̇�
) = (

𝑘(Δ1⊗ 𝐼4 + 𝐼3⊗𝐷𝑧𝑔(𝑦0(𝑡)) 0

0 𝐷𝑧𝑔(𝑦0(𝑡))
) (
𝑤
𝑦)  (4.21) 

Whose solution is of the form 

𝑤(𝑡) = Φ𝑠(𝑡; 𝑧0) ≈ 𝑒
(𝑘𝜆𝜁+𝜆𝑖)𝑡, 𝜁 = 1, 2, 3, 𝑖 = 1, 2, 3

 
𝑦(𝑡) = Φ𝑐(𝑡; 𝑡0) ≈ 𝑒

𝜆𝑡

    (4.22) 

The invariant manifold ℳ is attracting and stable if the maximum of 𝑘(𝜆𝜁 + 𝜆𝑖) is less 

than zero. In our case, max(𝜆𝜁) = −4𝑘 and max(𝜆𝑖) = 1.6361, thus the generalized 

Lyapunov exponent 

𝛼(𝑧0) = max(𝑘𝜆𝜁 + 𝜆𝑖) = −4𝑘 + 1.6361 

Giving the optimal coupling strength 𝑘0 = 0.409025 

If 𝛼(𝑧0) < 0, it is required for persistence that β(𝑧0) < 1, that is 

𝛽(𝑧0) ≔ lim
t→∞

𝑠𝑢𝑝 
ln‖Φ𝑠(𝑡, 𝑧0)‖

ln𝑚(Φ𝑐(𝑡, 𝑧0))
< 1 

From calculation, the value of 𝛽(𝑧0) obtained is 𝛽(𝑧0) = 0.1993 < 1 as required. 

 

4.11 Coupling of Oscillators 

All-to-All coupling configuration described in section 3.9 is presented for four oscillators 

each of dimension four, making a system of sixteen ordinary differential equations, in 

equation 4.23(a-d). Consider the choice of �̇�(𝑡) = 𝑔(𝑧(𝑡)) defined in equation (4.1)  for 

Kisumu (k), Homabay (h), Siaya (s) and Busia (b) as; 

 �̇�𝑘(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑘 − 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − 𝜇𝑆𝑘

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − (𝜇 + 𝜏 + 𝜔)𝐼𝑘

𝑇�̇� = 𝜏𝐼𝑘 − (𝜎 + 𝛿)𝑇𝑘 + 𝜌𝐴𝑘
𝐴�̇� = 𝛿𝑇𝑘 − (𝜉 + 𝜎 + 𝜌)𝐴𝑘 + 𝜔𝐼𝑘]

 
 
 
 

     (4.23a) 
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 �̇�ℎ(𝑡) =

[
 
 
 
 
𝑆ℎ̇ = 𝜆𝑆ℎ − 𝑐𝛽𝜙𝑆ℎ𝐼ℎ − 𝜇𝑆ℎ

𝐼ℎ̇ = 𝑐𝛽𝜙𝑆ℎ𝐼ℎ − (𝜇 + 𝜏 + 𝜔)𝐼ℎ

𝑇ℎ̇ = 𝜏𝐼ℎ − (𝜎 + 𝛿)𝑇ℎ + 𝜌𝐴ℎ
𝐴ℎ̇ = 𝛿𝑇ℎ − (𝜉 + 𝜎 + 𝜌)𝐴ℎ + 𝜔𝐼ℎ]

 
 
 
 

     (4.23b) 

 �̇�𝑠(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑠 − 𝑐𝛽𝜙𝑆𝑠𝐼𝑠 − 𝜇𝑆𝑠

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑘𝐼𝑘 − (𝜇 + 𝜏 + 𝜔)𝐼𝑠

𝑇�̇� = 𝜏𝐼𝑠 − (𝜎 + 𝛿)𝑇𝑠 + 𝜌𝐴𝑠
𝐴�̇� = 𝛿𝑇𝑠 − (𝜉 + 𝜎 + 𝜌)𝐴𝑠 + 𝜔𝐼𝑠]

 
 
 
 

     (4.23c) 

 �̇�𝑏(𝑡) =

[
 
 
 
 
𝑆�̇� = 𝜆𝑆𝑏 − 𝑐𝛽𝜙𝑆𝑏𝐼𝑏 − 𝜇𝑆𝑏

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑏𝐼𝑏 − (𝜇 + 𝜏 + 𝜔)𝐼𝑏

𝑇�̇� = 𝜏𝐼𝑏 − (𝜎 + 𝛿)𝑇𝑏 + 𝜌𝐴𝑏
𝐴�̇� = 𝛿𝑇𝑏 − (𝜉 + 𝜎 + 𝜌)𝐴𝑏 + 𝜔𝐼𝑏]

 
 
 
 

     (4.23d) 

Coupling equations (4.23a-d) as described in equation (4.15), and transforming to a form 

similar to equation (4.20), yields the system which satisfies the criteria for 

synchronization and persistence. 

4.12 Graphical presentation of Coupled Oscillators 

In order to represent graphically the dynamics of HIV/AIDS in the four patches, namely 

Kisumu, Busia, Siaya and Homabay, the following data collected from the study area are 

presented in Table 2 below. Some data were approximated within plausible range. 
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Table 2. Parameter values of data collected from Siaya, Kisumu, Homabay and 

Busia. 

No Symbol Description Value 

1 𝜆 Recruitment rate of normal community 0.01385 

2 𝜇 Natural death rate 0.00124 

3 𝛽 Probability of infectivity given sufficient contact 0.00033 

4 𝜙 Modification parameter describing sexual interaction 

probability 

0.00177 

5 𝑐 Contact rate of susceptible with infective, sufficient to 

transmit HIV 

0.18624 

6 𝜏 Progression rate of Treatment class to HIV patients 0.24 

7 𝜎 Progression rate of HIV patients to AIDS status 0.023 

8 𝜂 Accelerated death rate due to HIV/AIDS 0.00124 

9 𝛿 Accelerated death rate due to HIV infection, while on 

treatment 

0.00496 

10 𝜌 Rate of seeking treatment by AIDS class 0.00354 

11 𝜔 Direct progression to AIDS class from the time of infection 0.003218 

12 𝑝 Perturbation multiplier 0.01 

13 𝑘 Coupling strength [0 , 1] 

14 𝜉 Accelerated death rate due to full blown AIDS status 0.00321 

Parameters presented in Table 2 were collected and computed from the secondary data 

from Kisumu regional  Kenya Population and Census office. 

The fourth order Runge-Kutta numerical algorithm inbuilt in MATLAB is used to 

evaluate the trajectories of system 4.23 with initial conditions (𝑆0, 𝐼0, 𝑇0, 𝐴0) =

(300, 0.1, 0.01, 0.01). The dynamics of system (4.23) are shown in the subsequent 

figures. Figure 4.4 and subsequent figures will have (a) Top left – shows  the orbit where 

we pick the initial conditions, (b) Top right – shows  the invariant manifold or the 

diagonal, (c) Bottom left – shows  the four graphs representing the dynamics of each 

class of disease dynamics, and (d) Bottom right – shows  the differences of each 

oscillator versus time.  
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Clearly, the first graph (a) shows existence or periodic orbit, which is the characteristic of 

an oscillator, meaning that the solutions of the system is periodic. This is evidenced in all 

the four equations of the SITA model. Notice the smooth diagonal and absence of 

deviations from the synchronization manifold as depicted in figure (b) and (d) 

respectively. 

4.13 Perturbation and Coupling Strength 

In biological oscillators under study, perturbation is considered here as the small changes 

that arise due to changes in the intensity of interaction, for example changes in market 

forces, shift of fish populations, change in tidal waves, among others which contributes to 

more or less interaction of the Fisherfolk in the four population patches. Now adding a 

small perturbation of  𝑝 ≪ 1 to uncoupled system (𝑘 = 0) yields the system (4.24) below.  

 

𝑆�̇� = 𝜆𝑆𝑖 − 𝑐𝛽𝜙𝑆𝑖𝐼𝑖 − 𝜇𝑆𝑖 + 𝑘(−3𝑆𝑖 + ∑ 𝑆𝑗𝑗 ) + 𝑝(𝑎𝑖1)𝑆𝑖

𝐼�̇� = 𝑐𝛽𝜙𝑆𝑖𝐼𝑖 − (𝜇 + 𝜏 + 𝜔)𝐼𝑖 + 𝑘(−3𝐼𝑖 + ∑ 𝐼𝑗𝑗 ) + 𝑝(𝑎𝑖2)𝐼𝑖

𝑇�̇� = 𝜏𝐼𝑖 − (𝜎 + 𝛿)𝑇𝑖 + 𝜌𝐴𝑖 + 𝑘(−3𝑇𝑖 + ∑ 𝑇𝑗𝑗 ) + 𝑝(𝑎𝑖3)𝑇𝑖

𝐴𝑖̇ = 𝛿𝑇𝑖 − (𝜉 + 𝜎 + 𝜌)𝐴𝑖 + 𝜔𝐼𝑖 + 𝑘(−3𝐴𝑖 + ∑ 𝐴𝑗𝑗 ) + 𝑝(𝑎𝑖4)𝐴𝑖

   (4.24) 

Where the index 𝑖 = 𝑘, 𝑠, 𝑏, ℎ denotes the metapopulations of Kisumu, Siaya, Busia and 

Homabay respectively, while the elements 𝑎𝑖𝑗 𝑖 = 𝑘, 𝑠, 𝑏, ℎ;   𝑗 = 1,2, 3, 4 represents 

various values of perturbation parameter 𝑎𝑖𝑗 ∈ ℝ. Equation (4.24) is equivalent to; 

𝑍�̇� = 𝑘(Δ⊗ 𝐼4)𝑍𝑖 + 𝐺(𝑍𝑖) + 𝑝(𝑍𝑖) 

Simulations are run with various values of the coupling strength 𝑘 ≥ 0 for the purpose of 

achieving the threshold coupling strength which eliminates all deviations from the 

diagonal.  

With small perturbation, it is noted that there is a loss of synchronization manifold (the 

diagonal) and deviations in the dynamics as shown in Figure 4.5 (a, b, d). As the coupling 
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strength is increased gradually, it is found that the chaotic behavior is lost and 

synchronization is achieved again. This is achieved at 𝑘 ≥ 1.1137 as seen in Figure 4.6 

below. 

 

  

Figure 4.4 HIV/AIDS interaction dynamics of Coupled Oscillators with k=0,p=0. 

Figure 4.4 describes the dynamics of the population without coupling. It is noted that 

Figure 4.4 (a) portrays periodic solutions which tends to a specific limit set, as it is seen 

in Figure 4.4 (c) with time evolution. Figure 4.4(b) describes the diagonal, which in this 

case is the synchronization manifold, and figure 4.4(d) describes the deviations in the 

(a) (b) 

(c) (d) 
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synchronization manifold. Clearly, the synchronization manifold is stable and there are 

no deviations.  

In the next figure 4.5. perturbation is introduced, with a unit coupling strength, to 

determine the effect on the stability of synchronization manifold and deviations om the 

manifold. Figure 4.5 is similar to Figure 4.4 but it is noted that the periodic solutions are 

perturbed, and also the diagonal is slightly perturbed. The perturbation is evidenced by 

the deviations in figure 4.4(d). 

 

Figure 4.5 HIV/AIDS interaction dynamics of Coupled Oscillators with k=0,p=1. 

 

The analysis of the effect of coupling strength is depicted in Figure 4.6. Various values of 

the coupling strength 𝑘 are simulated and at 𝑘 = 1.1137, it is noted that stability of the 
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synchronization manifold is achieved, and the deviations is very minimal. Here, the value 

of perturbation constant 𝑝 ≠ 0 is positive but small 𝑝 ≪ 1. The 𝜔-limit set is seen in 

figure 4.6 (a) 

And the synchronization manifold in figure 4.6 (b) is stable as seen by insignificant 

deviations in figure 4.6 (d). All the deviations which were seen in Figure 4.5 (d) have 

died off  at a minimum value of 12% coupling strength. This indicates that at any 

coupling more that 12%, the disease dynamics in the four coupled metapopulations is 

synchronized and behaves the same way. 

 

Figure 4.6 HIV/AIDS interaction dynamics of coupled oscillators with k=1.1137, p ≠ 0 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1. Conclusion 

From the results obtained a Mathematical model was formulated, and analyzed for 

positivity and boundedness of solutions. It was established that all solutions are bound to 

the domain Φ ∈ ℝ𝑛𝑑 , 𝑛, 𝑑 > 0. This facilitated further analysis of equilibrium points 

DFE and EEP, which were obtained and determined that DFE was stable if the 

reproductive ratio 𝑅0 < 1. For 𝑅0 ≥ 1, a new equilibrium is born that is; EEP, which is 

periodic. EEP yields an oscillatory behavior of results, which are further analyzed. The 

analysis of periodic solutions is the sensitivity to control parameters. It was found that 

control factors such as educational campaigns, public health efforts, treatment and use of 

ABC are all significant, and their optimality condition evaluated. The study monitored 

the number of treated individuals and the number of the transformed individuals due to 

public health education, who are now low risk to HIV by the equations  𝑇𝑣
′ = 𝑢𝑇(𝑡)𝐼𝑣 and 

𝑆𝑣
′ = 𝑢𝐸(𝑡)𝑆𝑣 respectively. For the purpose of this study, a blowing up cost function 𝑈 =

�̂�𝑝𝑢𝐼

�̂�−𝑝𝑢𝐼
  is chosen since it accommodates the characteristics of the number of people treated 

and the total cost if all people are treated. The study looks at transversality conditions 

given by equations (4.11) and optimality conditions given by equations (4.12) and 

blowing up cost function in equations (4.13) and (4.14). The criteria on optimality 

condition obtained in equation (4.13) and (4.14) showed that the minimum Education 

campaign and treatment using ARV to reduce HIV/AIDS incidences and spread among 

the fisher-folk and the neighbouring population was 𝑢𝑇 = 0.34 and 𝑢𝐸 = 0.47 

repsectively. 
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Further analysis of the model showed the existence of oscillating solutions. These were 

then placed into independent patches and coupled. The coupling configuration used was 

All-to-all topology, which was analyzed for the existence of synchronization manifold, 

stability and robustness under small perturbation.  

It was found that the coupled system remains stable under small perturbation if the 

coupling strength is 𝑘0 ≥ 1.1137. This is interpreted to mean that approximately 12% of 

the population should be allowed to interact. This translates to about 50 sexual 

interactions significant to transmit HIV, in a population of about 400 individuals. 

Numerical solutions were also carried using MATLAB which generated results using 4
th

-

order Runge-Kutta Scheme. It generated the required graphs. It looked at 2 scenarios: 

HIV/AIDS dynamics in Lake Victoria region for the Normal and the Fisherfolk 

Population in absence of control and HIV/AIDS dynamics among normal and fisherfolk 

communities with no interaction. The numerical results agree with the analytical results. 

The values of minimum treatment control strategy of 𝑢𝑇(𝑡) = 0.34 and that of 

educational public health campaign of 𝑢𝐸(𝑡) = 0.47 indicates that it requires more effort 

to offer education campaign than treatment, but considering the cost of the two strategies, 

a decision can be easily made. Suppose it is assumed that the cost of treatment is one and 

a third that of public health campaign, then the best strategy would still be treatment at 

𝑢𝑇(𝑡)𝐶 = 0.34 ∗ 1
1

3
= 0.44 lesser than public health campaign of 𝑢𝐸(𝑡) = 0.47. 

5.2. Recommendation 

The following recommendations are made from the study. Following the scope and the 

assumptions of the study, it is recommended that; 
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Education and treatment play a very important role in reducing the spread of HIV 

between the Fisherfolk and the normal population. The government should allocate more 

funds to the ministry of Health and the affected counties; that is, Kisumu, Homabay, 

Siaya and Busia counties in control of HIV/AIDS. Also the strategy of economically 

empowering the women who practice sex-for-fish trade in other trades should also be 

looked at. Other campaign strategies like distribution of free condoms, free testing, 

provision of controlled markets and fishing timings, as well as treatment services of 

PLWHA will synergize to bring better results. 

More research on HIV/AIDS among Fisherfolk and the normal population should be 

done on coupling in other counties like Baringo, Turkana and other counties in Kenya 

where fishing is a source of livelihood.  
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APPENDICES 

Appendix I: MATLAB CODES FOR MODEL SIMULATION 
function SITA_Coupled_model 
tf = 2000; 
tspan = [0,tf]; 
%IC = [S;  I;   T;   A] 
IC = [97; 0.1;  0.01;  0.01; 99; 0.01;  0.01;  0.01]; 

  
sol = ode45(@sita,tspan,IC); 
t = linspace(0,tf,1000); 

  
S = deval(sol,t,1); 
I = deval(sol,t,2); 
T = deval(sol,t,3); 
A = deval(sol,t,4); 
S2 = deval(sol,t,5); 
I2 = deval(sol,t,6); 
T2 = deval(sol,t,7); 
A2 = deval(sol,t,8); 

 
%---------------------------------------------------------- 
figure 

  
subplot(2,2,1); 
plot(S,T,A2,I,A,I,A2,I2,... 
   'LineWidth',1,'MarkerSize',2) 
title('Orbit around Initiial Conditions'); 
xlabel('Popn of AIDS cases') 
ylabel('Popn of Infectives') 
legend('(S, T)','(A_2, I)','(A, I)','(A_2, I_2)') 
grid,hold on; 

  
subplot(2,2,2); 
plot(A,A2,'r',I,I2,'b',T,T2,'c',... 
    'LineWidth',1,'MarkerSize',2) 
title('Invariant Manifold or the Diagonal'); 
xlabel('Z_1') 
ylabel('Z_2') 
legend('AIDS cases','Infected Cases','Treated Cases') 
grid,hold on; 

  
subplot(2,2,3); 
plot(t,S,t,I,t,T,t,A,... 
    'LineWidth',1,'MarkerSize',2) 
title('Patch Epidemic Dynamics'); 
xlabel('Time in Days') 
ylabel('S, I, T, A Sub-Pops') 
legend('Susceptible','Infectives','AIDS','Treated') 
grid,hold on; 

  
subplot(2,2,4); 
plot(t,S-S3,t,I-I2, t,T4-T2,t,A3-A2,'-dm',... 
    'LineWidth',1,'MarkerSize',2) 



127 

 

 

 

title('Graph of the Deviations'); 
xlabel('Time in Days') 
ylabel('Diff in Sub-Pops') 
legend('I-I_2','T-T_2','A - A_2') 
grid,hold on; 

  

  
%------------------------------------------------------------ 
function dv = sita(~,v) 
dv = zeros(16,1); 
%Parameters 
mu = 0.00124; %  Death rate due to the disease 
lambdav = 0.325;% Testing rate 

  
deltav = 0.01524; 
%phi = 0.20835; phiv = 0.157; 
phiv = 1.2; 
k = 0.00653; % Coupling strength     
cv = 1.2; 
betav = 0.00033; %  Force of infection 
tauv = 0.04; 
etav = 0.00154; 

  
%----------------------------------------------- 
%S_h = dv(1); S_l = dv(2)  E = dv(3);  I = dv(4); R = dv(5); Q = dv(6);  

J = dv(7);  H = dv(8);  D = dv(9); 

  
%equations 
dv(1) = lambdav - cv*betav*phiv*v(1)*v(2) - mu*v(1); 
dv(2) = cv*betav*phiv*v(1)*v(2) - (tauv + mu)*v(2); 
dv(3) = tauv*v(2) - (mu + deltav)*v(3); 
dv(4) = deltav*v(3) - (mu + etav)*v(4); 

  
dv(5) = lambdav - cv*betav*phiv*v(5)*v(6) - mu*v(5); 
dv(6) = cv*betav*phiv*v(5)*v(6) - (tauv + mu)*v(6); 
dv(7) = tauv*v(6) - (mu + deltav)*v(7); 
dv(8) = deltav*v(7) - (mu + etav)*v(8); 
%----------------------------------------------- 
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Appendix II. MATLAB Code for Model Coupling Simulation 
function SITA_Coupled_model 
tf = 2000; 
tspan = [0,tf]; 
%IC = [S;  I;   T;   A] 
IC = [97; 0.1;  0.01;  0.01; 99; 0.01;  0.01;  0.01; 97; 0.1;  0.01;  

0.01; 99; 0.1;  0.01;  0.01]; 

  
sol = ode45(@sita,tspan,IC); 
t = linspace(0,tf,1000); 

  
S = deval(sol,t,1); 
I = deval(sol,t,2); 
T = deval(sol,t,3); 
A = deval(sol,t,4); 
S2 = deval(sol,t,5); 
I2 = deval(sol,t,6); 
T2 = deval(sol,t,7); 
A2 = deval(sol,t,8); 
S3 = deval(sol,t,9); 
I3 = deval(sol,t,10); 
T3 = deval(sol,t,11); 
A3 = deval(sol,t,12); 
S4 = deval(sol,t,13); 
I4 = deval(sol,t,14); 
T4 = deval(sol,t,15); 
A4 = deval(sol,t,16); 
  

%---------------------------------------------------------- 
figure 

  
subplot(2,2,1); 
plot(S,T,A2,I,A,I,A2,I2,... 
   'LineWidth',1,'MarkerSize',2) 
title('Orbit around Initiial Conditions'); 
xlabel('Popn of AIDS cases') 
ylabel('Popn of Infectives') 
legend('(S, T)','(A_2, I)','(A, I)','(A_2, I_2)') 
grid,hold on; 
  

subplot(2,2,2); 
plot(A,A2,'r',I,I2,'b',T,T2,'c',... 
    'LineWidth',1,'MarkerSize',2) 
title('Invariant Manifold or the Diagonal'); 
xlabel('Z_1') 
ylabel('Z_2') 
legend('AIDS cases','Infected Cases','Treated Cases') 
grid,hold on; 

  
subplot(2,2,3); 
plot(t,S,t,I,t,T,t,A,... 
    'LineWidth',1,'MarkerSize',2) 
title('Patch Epidemic Dynamics'); 
xlabel('Time in Days') 
ylabel('S, I, T, A Sub-Pops') 
legend('Susceptible','Infectives','AIDS','Treated') 
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grid,hold on; 

  
subplot(2,2,4); 
plot(t,S-S3,t,I-I2, t,T4-T2,t,A3-A2,'-dm',... 
    'LineWidth',1,'MarkerSize',2) 
title('Graph of the Deviations'); 
xlabel('Time in Days') 
ylabel('Diff in Sub-Pops') 
legend('I-I_2','T-T_2','A - A_2') 
grid,hold on; 

  

  
%------------------------------------------------------------ 
function dv = sita(~,v) 
dv = zeros(16,1); 
%Parameters 
mu = 0.00124; %  Death rate due to the disease 
lambdav = 0.325;% Testing rate 

  
deltav = 0.01524; 
%phi = 0.20835; phiv = 0.157; 
phiv = 1.2; 
k = 0.00653; % Coupling strength     
cv = 1.2; 
betav = 0.00033; %  Force of infection 
tauv = 0.04; 
etav = 0.00154; 

  
%----------------------------------------------- 
%S_h = dv(1); S_l = dv(2)  E = dv(3);  I = dv(4); R = dv(5); Q = dv(6);  

J = dv(7);  H = dv(8);  D = dv(9); 

  
%equations 
dv(1) = lambdav - cv*betav*phiv*v(1)*v(2) - mu*v(1) + k*(v(5) + v(9) + 

v(13) - 3*v(1)); 
dv(2) = cv*betav*phiv*v(1)*v(2) - (tauv + mu)*v(2) + k*(v(6) + v(10) + 

v(14) - 3*v(2)); 
dv(3) = tauv*v(2) - (mu + deltav)*v(3) + k*(v(7) + v(11) + v(15) - 

3*v(3)); 
dv(4) = deltav*v(3) - (mu + etav)*v(4) + k*(v(8) + v(12) + v(16) - 

3*v(4)); 

  
dv(5) = lambdav - cv*betav*phiv*v(5)*v(6) - mu*v(5) + k*(v(1) + v(9) + 

v(13) - 3*v(5)); 
dv(6) = cv*betav*phiv*v(5)*v(6) - (tauv + mu)*v(6) + k*(-3*v(6) + v(10) 

+ v(14) + v(2)); 
dv(7) = tauv*v(6) - (mu + deltav)*v(7) + k*(-3*v(7) + v(11) + v(15) + 

v(3)); 
dv(8) = deltav*v(7) - (mu + etav)*v(8) + k*(v(4) + v(12) + v(16) - 

3*v(8)); 
  

dv(9) = lambdav - cv*betav*phiv*v(9)*v(10) - mu*v(9) + k*(v(1) + v(5) + 

v(13) - 3*v(9)); 
dv(10) = cv*betav*phiv*v(9)*v(10) - (tauv + mu)*v(10) + k*(v(2) +v(6) + 

v(14) - 3*v(10)); 
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dv(11) = tauv*v(10) - (mu + deltav)*v(11) + k*(v(3) + v(7) + v(15) - 

3*v(11)); 
dv(12) = deltav*v(11) - (mu + etav)*v(12) + k*(v(4) + v(8) + v(16) - 

3*v(12)); 
  

dv(13) = lambdav - cv*betav*phiv*v(13)*v(14) - mu*v(13) + k*(v(1) + 

v(5) + v(9) - 3*v(13)); 
dv(14) = cv*betav*phiv*v(13)*v(14) - (tauv + mu)*v(14) + k*(v(2) + v(6) 

+ v(10) - 3*v(14)); 
dv(15) = tauv*v(14) - (mu + deltav)*v(15) + k*(v(3) + v(7) + v(11)- 

3*v(15)); 
dv(16) = deltav*v(15) - (mu + etav)*v(16) + k*(v(4) + v(8) + v(12) - 

3*v(16)); 

  
%----------------------------------------------- 
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Appendix III. MATLAB Code for Model Perturbation Simulation 
 

function SITA_model2_Coupled 
% clear all 
tf = 3000; 
tspan = [0,tf]; 
%IC = [Sk;  Ik;   Tk;   Ak; Ss;  Is;   Ts;   As; Sh;  Ih;   Th;   Ah; 

Sb;  Ib;   Tb;   Ab] 
IC = [300; 0.01;  0.01;  0.01; 300; 0.01;  0.01;  0.01; 300; 0.01;  

0.01;  0.01; 300; 0.01;  0.01;  0.01]; 

  
sol = ode45(@sita2,tspan,IC); 
t = linspace(2000,tf,10000); 

  
Sk = deval(sol,t,1); %v1 
Ik = deval(sol,t,2); %v2 
Tk = deval(sol,t,3); %v3 
Ak = deval(sol,t,4); %v4 
Ss = deval(sol,t,5); %v5 
Is = deval(sol,t,6); %v6 
Ts = deval(sol,t,7); %v7 
As = deval(sol,t,8); %v8 
Sh = deval(sol,t,9); %v9 
Ih = deval(sol,t,10); %v10 
Th = deval(sol,t,11); %v11 
Ah = deval(sol,t,12); %v12 
Sb = deval(sol,t,13); %v13 
Ib = deval(sol,t,14); %v14 
Tb = deval(sol,t,15); %v15 
Ab = deval(sol,t,16); %v16 

  
%---------------------------------------------------------- 
figure % Dynamics 
plot(t,Sk,'-b',t,Ih,'-r',t,Ts,'-g',t,Ab,'-m',... 
    'LineWidth',2,'MarkerSize',2) 
title('SITA Model Dynamics'); 
xlabel('Time t') 
ylabel('Sub-Populations (in 1,000)') 
legend('Susceptible','Infected','Treated', 'AIDS');grid,hold on; 

  
figure % Orbit 
subplot(2,2,1) 
plot(Sh,Ah,'b') 
title('SITA Model (S, A) Orbit'); 
xlabel('Susceptibles') 
ylabel('AIDS Cases') 
subplot(2,2,2) 
plot(Ik,Ak,'r') 
title('SITA Model (I, A) Orbit'); 
xlabel('Infectives') 
ylabel('AIDS Case') 
subplot(2,2,3) 
plot(Tb,Ib,'m') 
title('SITA Model (T, I) Orbit'); 
xlabel('Treated Cases') 



132 

 

 

 

ylabel('Infectives') 
subplot(2,2,4) 
plot(Ss,Ts,'g') 
title('SITA Model (S, T) Orbit'); 
xlabel('Susceptibles') 
ylabel('Treated Cases') 

  

  
figure % Diagonal 
subplot(2,2,1) 
plot(Ss,Sb,'b') 
title('SITA Model Diagonal (S)'); 
xlabel('Susceptibles S_s') 
ylabel('Susceptibles S_b') 
subplot(2,2,2) 
plot(Ik,Is,'r') 
title('SITA Model Diagonal (I)'); 
xlabel('Infectives I_k') 
ylabel('Infectives I_s') 
subplot(2,2,3) 
plot(Ts,Tk,'g') 
title('SITA Model Diagonal (T)'); 
xlabel('Treated Cases T_b') 
ylabel('Treated Cases T_k') 
subplot(2,2,4) 
plot(Ak,As,'m') 
title('SITA Model (Diagonal (A)'); 
xlabel('AIDS Cases A_h') 
ylabel('AIDS Cases A_b') 

  
figure % Deviations 
subplot(2,2,1) 
plot(t,Sh-Sb,'b') 
title('SITA Model Deviations (S)'); 
xlabel('Time t') 
ylabel('Susceptible Dev S_s - S_b') 
subplot(2,2,2) 
plot(t,Ik-Ib,'r') 
title('SITA Model Deviations (I)'); 
xlabel('Time t') 
ylabel('Infective Deviations I_k - I_s') 
subplot(2,2,3) 
plot(t,Th-Tb,'g') 
title('SITA Model Deviations (T)'); 
xlabel('Time t') 
ylabel('Treated Deviations T_h - T_b') 
subplot(2,2,4) 
plot(t,Ah-Ab,'m') 
title('SITA Model Deviations (A)'); 
xlabel('Time t') 
ylabel('AIDS Deviations A_h - A_b') 

  
%------------------------------------------------------------ 
function dv = sita2(~,v) 
dv = zeros(16,1); 
%Parameters 
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mu = 0.00124; %  Natural Death rate due to the disease 
lambda = 0.01385; % Recruitment rate 
delta = 0.023; % Progression rate of Treatment class to AIDS 
beta = 0.00033;  %  Force of infection 
tau = 0.24;    % Rate of seeking and obtaining effective treatment 
rho = 0.00354;  % Rate of seeking treatment of AIDS class 
omga = 0.003218;  % Direct progression to AIDS class 
sig = 0.00496;  % Accelerated death rate due to the disease 
mu1 = 0.00321; 
k = 1.11357;  % Coupling strength 
p = 0;%.0001;  % Perturbation parameter 
p0 = 0.01;  % Perturbation parameter 
p1 = 0;%.0001;  % Perturbation parameter 
p2 = 0;%.0001;  % Perturbation parameter 
p3 = 0;%.0001;  % Perturbation parameter 
  

%----------------------------------------------- 
%S_h = dv(1); S_l = dv(2)  E = dv(3);  I = dv(4); R = dv(5); Q = dv(6);  

J = dv(7);  H = dv(8);  D = dv(9); 

  
%equations 
dv(1) = lambda*v(1) - beta*v(1)*v(2) - mu*v(1) + k*(v(5) + v(9) + v(13) 

- 3*v(1)) + p*(0.01*v(1)); 
dv(2) = beta*v(1)*v(2) - (tau + mu1 + omga)*v(2) + k*(v(6) + v(10) + 

v(14) - 3*v(2))  + p0*(-0.001*v(2)); 
dv(3) = tau*v(2) - (sig + delta)*v(3) + rho*v(4) + k*(v(7) + v(11) + 

v(15) - 3*v(3)) + p0*(0.005*v(3)); 
dv(4) = delta*v(3) - (mu1 + sig + rho)*v(4) + omga*v(2) + k*(v(8) + 

v(12) + v(16) - 3*v(4)) + p0*(0.0021*v(4)); 
  

dv(5) = lambda*v(5) - beta*v(5)*v(6) - mu*v(5) + k*(v(1) + v(9) + v(13) 

- 3*v(5)) + p0*(-0.002*v(5)); 
dv(6) = beta*v(5)*v(6) - (tau + mu1 + omga)*v(6) + k*(-3*v(6) + v(10) + 

v(14) + v(2))  + p0*(0.015*v(6)); 
dv(7) = tau*v(6) - (sig + delta)*v(7) + rho*v(8) + k*(-3*v(7) + v(11) + 

v(15) + v(3)) + p0*(-0.0015*v(7)); 
dv(8) = delta*v(7) - (mu1 + sig + rho)*v(8) + omga*v(6) + k*(v(4) + 

v(12) + v(16) - 3*v(8)) + p1*(0.003*v(8)); 
  

dv(9) = lambda*v(9) - beta*v(9)*v(10) - mu*v(9) + k*(v(1) + v(5) + 

v(13) - 3*v(9)) + p0*(0.0013*v(9)); 
dv(10) = beta*v(9)*v(10) - (tau + mu1 + omga)*v(10) + k*(v(2) +v(6) + 

v(14) - 3*v(10))  + p2*(- 0.005*v(10)); 
dv(11) = tau*v(10) - (sig + delta)*v(11) + rho*v(12) + k*(v(3) + v(7) + 

v(15) - 3*v(11)) + p0*(0.00125*v(11)); 
dv(12) = delta*v(11) - (mu1 + sig + rho)*v(12) + omga*v(12) + k*(v(4) + 

v(8) + v(16) - 3*v(12)) + p0*(0.0021*v(12)); 
  

dv(13) = lambda*v(13) - beta*v(13)*v(14) - mu*v(13) + k*(v(1) + v(5) + 

v(9) - 3*v(13)) + p0*(0.0017*v(13)); 
dv(14) = beta*v(13)*v(14) - (tau + mu1 + omga)*v(14) + k*(v(2) + v(6) + 

v(10) - 3*v(14))  + p0*(0.00525*v(14)); 
dv(15) = tau*v(14) - (sig + delta)*v(15) + rho*v(16) + k*(v(3) + v(7) + 

v(11)- 3*v(15)) + p0*(0.002*v(15)); 
dv(16) = delta*v(15) - (mu1 + sig + rho)*v(16) + omga*v(16) + k*(v(4) + 

v(8) + v(12) - 3*v(16)) + p0*(0.0017*v(16)); 
%----------------------------------------------- 
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Appendix IV: MATLAB code for Parameter Elasticity Computation 
 

function SITA_parameter_Elasticity 

  
%Parameters 
mu = 0.00124; muv = 0.00124;%  Death rate due to the disease 
lambda = 2; lambdav = 2;% Testing rate 

  
delta = 0.023; deltav = 0.02304; 
phi = 0;%0.022;  
phiv = 0; %0.02205; 
beta = 0.00033; betav = 0.00033; %  Force of infection 
theta = 0.021; thetav  = 0.02103; 
tau = 0.024; tauv = 0.02405; 
psi = 0.0214; psiv = 0.0215; 
al = 0;   alv = 0; 
k1 = 0.25;   k2 = 0.25; 
rho = 0.03;  rhov = 0.03; 
omga = 0.00218;   omgav = 0.00218; 
eta = 0.0124;  etav = 0.0124; 

  
figure 
for beta = 0:0.01:1 
R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,1) 
plot(beta,R0,'r*',beta,R0v,'b*','MarkerSize',2); hold on 
legend('Effects of \beta on R_0', 'Efects of \beta on R_0v') 
title('Elasticity of \beta on Reproductive Ratio'); 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
end 

  
hold on 

  
for betav = 0:0.01:1 
  R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,2) 
plot(betav,R0,'r*',betav,R0v,'b*','MarkerSize',2); hold on 
legend('Effects of \beta_v on R_0', 'Efects of \beta_v on R_0v') 
title('Elasticity of \beta_v on Reproductive Ratio'); 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
end 

  
hold on 
for phi = 0:0.01:1 
  R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,3) 
plot(phi,R0,'r*',phi,R0v,'b*','MarkerSize',2); hold on   
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title('Elasticity of \phi on Reproductive Ratio'); 
legend('Effects of \phi on R_0', 'Efects of \phi on R_0v') 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
end 
hold on 

  
for phiv = 0:0.01:1 
  R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,4) 
plot(phiv,R0,'r*',phiv,R0v,'b*','MarkerSize',2); hold on  
title('Elasticity of \phi_v on Reproductive Ratio'); 
legend('Effects of \phi_v on R_0', 'Efects of \phi_v on R_0v') 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
end 

  
for lambda = 0:0.01:1 
R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,5) 
plot(lambda,R0,'r*',lambda,R0v,'bo','MarkerSize',2); hold on 
legend('Effects of \lambda on R_0', 'Efects of \lambda on R_0v') 
title('Elasticity of \lambda on Reproductive Ratio'); 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
end 

  
hold on 

  
for mu = 0:0.01:1 
  R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,6) 
plot(mu,R0,'r*',mu,R0v,'bo','MarkerSize',2); hold on 
legend('Effects of \mu on R_0', 'Efects of \mu on R_0v') 
title('Elasticity of \mu on Reproductive Ratio'); 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
end 

  
for tau = 0:0.01:1 
R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,7) 
plot(tau,R0,'r*',tau,R0v,'b*','MarkerSize',2); hold on 
legend('Effects of \tau on R_0', 'Efects of \tau on R_0v') 
title('Elasticity of \tau on Reproductive Ratio'); 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
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end 

  
hold on 
for tauv = 0:0.01:1 
  R0 = (beta + phiv*betav)*lambda/(mu*(mu + tau)); 
R0v = (betav + phi*beta)*lambda/(mu*(mu + tauv)); 

  
subplot(4,2,8) 
plot(tauv,R0,'r*',tauv,R0v,'b*','MarkerSize',2); hold on 
legend('Effects of \tau_v on R_0', 'Efects of \tau_v on R_0v') 
title('Elasticity of \tau_v on Reproductive Ratio'); 
xlabel('Value of Parameter') 
ylabel('Reproductive Ratio') 
end 
%---------------------------------------------------------- 
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Appendix V: MATLAB code for Eigenvalue and Inverse Computation 
 

function symbolicSITA_EEP 
syms a b m t q 
A = [-a*(1+q)-m -b 0 -b*q; a b*(1+q)-m-t a*q 0;0 -b*q -a*(1+q)-m -b;a*q 

0 a b*(1+q)-m-t]; 
A 
D = eig(A) 
B=[-2 3 0 4;5 1 6 0;0 4 -2 3;6 0 5 1] 
d=eig(B) 
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Appendix VI: Similarity Report 

 

 


