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Abstract 

It is pre-eminent that equality of spectra is realized when the two given operators are unitarily equivalent 

or similar but not when they are almost similar. Also, projections which are 𝛼-almost similar, 

demonstrate that under certain conditions, they not only have equal spectra but also equal approximate 

point spectra. Though almost similarity property has been studied mostly, there is still gap in literature 

linking it directly to commuting condition for partial isometries, θ-operators and posinormal operators. 

This paper exhibits some primary results of such nature on the above mentioned classes of operators. 
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Introduction 

In this paper, complete normed linear space is denoted 𝐻 while 𝔅(𝐻) denotes the Banach 

algebra of bounded linear operators on 𝐻. 𝒜 and ℬ denotes operators on 𝔅(𝐻). According to 

Jibril (1996), two operators 𝒜, ℬ ∈ 𝔅(𝐻) are said to be almost similar, denoted as  𝒜 ~
𝑎.𝑠 ℬ if 

it exists an invertible operator 𝒩 such that 𝒜∗𝒜 = 𝒩−1ℬ∗ℬ𝒩 and 𝒜∗ + 𝒜 = 𝒩−1(ℬ∗ +
ℬ)𝒩 hold. This property has been extensively researched on and variety of results 

demonstrated.  

An operator 𝒜 ∈ 𝔅(𝐻) is said to be: 

 Self-adjoint (hermitian) if 𝒜∗ = 𝒜 

 Isometry if 𝒜∗𝒜 = 𝐼 

 Partially Isometric if 𝒜𝒜∗𝒜 = 𝒜 

 Coisometry if 𝒜𝒜∗ = 𝐼 

 Unitary if 𝒜∗𝒜 = 𝒜𝒜∗ = 𝐼 

 Orthogonal projection if 𝒜2 = 𝐼 

 Posinormal if 𝒜𝒜∗ = 𝒜∗𝑃𝒜, for 𝑃 ≥ 0 

 θ-operator (𝒜 ∈ θ) if [𝒜∗𝒜, 𝒜∗ + 𝒜] = 0 i.e 𝒜∗𝒜 and 𝒜∗ + 𝒜 commute.  

 

Main Results  

Theorem 

Let 𝒜, ℬ ∈ 𝔅(𝐻) such that 𝒜 ~
𝑎.𝑠 ℬ. If 𝒜2 is a partial isometry and ℬ is self-adjoint, then ℬ2 is 

also partially isometric.  

 

Proof 

Since 𝒜2 is a partial isometry, we have 𝒜2 = 𝒜2𝒜∗2𝒜2 and by projection property, we also 

have that 𝒜𝒜∗ = 𝒜𝒜 = 𝒜2.  

𝒜 ~
𝑎.𝑠 ℬ, implies there exists an invertible operator 𝒩 such that 

 

ℬ∗ℬ = 𝒩−1𝒜∗𝒜𝒩 − − − − − − − − − − − − − − − − − − − − − − − − − − − (1)  
and 

ℬ∗ + ℬ = 𝒩−1(𝒜∗ + 𝒜)𝒩 − − − − − − − − − − − − − − − − − − − − − − − (2) 
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From 𝒜𝒜∗ = 𝒜𝒜 = 𝒜2, then (1) becomes, 

 

ℬ∗ℬ = 𝒩−1𝒜2𝒩.  

 

Consequently, ℬ∗ℬ = ℬ2 and thus, ℬ2 = 𝒩−1𝒜2𝒩. It follows that, ℬ2 = ℬ2ℬ∗2ℬ2, which is equivalent to ℬ2 − ℬ2ℬ∗2ℬ2 = 0  

ℬ2(1 − ℬ∗2ℬ2) = 0.  
 

Implying that ℬ∗2ℬ2 = 1, or ℬ∗ℬ = 1 

Using (2), it follows that, (ℬ∗ + ℬ)2 = ℬ∗2+2ℬ2 + ℬ2 = 4ℬ2. 

Hence, ℬ2 is a partial isometry as claimed.  

 

Lemma  

If an operator ℬ ∈ 𝔅(𝐻) is normal, it is also a θ-operator. 

 

Proof  

Assuming ℬ is normal, then ℬ = ℬℬ∗ℬ. From the property of θ-operator, now we have  ℬ∗ℬ = ℬ∗ℬ(ℬ∗ + ℬ) = ℬ∗ℬℬ∗ +
ℬ∗ℬℬ − − − − − − − − − − − − − − − − − − − − − − − − − − − (3) 

 

Again, 

 
(ℬ∗ + ℬ)ℬ∗ℬ = ℬ∗ℬ∗ℬ + ℬℬ∗ℬ − − − − − − − − − − − − − − − − − − − − − − − − (4) 

 

From R.H.S of equation(3), we have 

 ℬ∗ℬℬ∗ + ℬ∗ℬℬ = ℬ∗ℬ∗ℬ + ℬ∗ℬℬ 

= ℬ∗2
ℬ + ℬ∗ℬ2 (since ℬ and ℬ∗ commute)  

= ℬ∗2
ℬ + ℬℬ∗ℬ,  

 

Which is similar to the R.H.S of equation (4).  

Therefore, every normal operator is a θ-operator.  

 

Theorem  

Let 𝒜, ℬ ∈ 𝔅(𝐻). If 𝒜 is unitarily equivalent to ℬ, denoted by 𝒜 ℬ= 
~  and 𝒜 is a 

θ-operator, then so is ℬ. 

 

Proof: Since 𝒜 is unitarily equivalent to ℬ, there exist a unitary operator 𝒰, such that  

𝒜𝒰 = ℬ𝒰. i.e, 𝒜 = 𝒰∗ℬ𝒰 and 𝒜∗ = 𝒰∗ℬ∗𝒰.  

Thus,  

(𝒜∗𝒜) = (𝒰∗ℬ∗𝒰)(𝒰∗ℬ𝒰) 

= 𝒰∗ℬ∗𝒰𝒰∗ℬ𝒰 

= 𝒰∗ℬ∗ℬ𝑈 

= 𝒰∗ℬ∗𝒰ℬ 

= 𝒰∗𝒰(ℬ∗ℬ), But 𝒰∗𝒰 = 𝐼,  

 

hence, 

 

(𝒜∗𝒜) = ℬ∗ℬ − − − − − − − − − − − − − − − − − (5)  

 

And 

 

(𝒜∗ + 𝒜) = 𝒰∗ℬ∗𝒰 + 𝒰∗ℬ𝒰 

= 𝒰∗𝒰ℬ∗ + 𝒰∗𝒰ℬ 

 = 𝒰∗𝒰(ℬ∗ + ℬ).  

 

Hence, 

 

𝒜∗ + 𝒜 = ℬ∗ + ℬ − − − − − − − − − − − − − − (6) 

 

Again, 𝒜∗𝒜(𝒜∗ + 𝒜) = 𝒜∗𝒜𝒜∗ + 𝒜∗𝒜𝒜 

= 𝒰∗ℬ∗𝒰𝒰∗ℬ𝒰𝒰∗ℬ∗𝒰 + 𝒰∗ℬ∗𝒰𝒰∗ℬ𝒰𝒰∗ℬ𝒰 

= 𝒰∗ℬ∗ℬℬ∗𝒰 + 𝒰∗ℬ∗ℬℬ𝒰 

= 𝒰∗𝒰ℬ∗ℬℬ∗ + 𝒰∗𝒰ℬ∗ℬℬ 

= 𝒰∗𝒰(ℬ∗ + ℬ) − − − − − − − − − − − − − − − − − − − − − (7)  

And 

 

http://www.mathsjournal.com/


 

~88~ 

International Journal of Statistics and Applied Mathematics http://www.mathsjournal.com 
 

(𝒜∗ + 𝒜)𝒜∗𝒜 = 𝒜∗𝒜∗𝒜 + 𝒜𝒜∗𝒜 

= 𝒰∗ℬ∗𝒰𝒰∗ℬ∗𝒰𝒰∗ℬ𝒰 + 𝒰∗ℬ𝒰𝒰∗ℬ∗𝒰𝒰∗ℬ𝒰 

= 𝒰∗ℬ∗ℬ∗ℬ𝒰 + 𝒰∗ℬℬ∗ℬ𝒰  

= 𝒰∗ℬ∗𝒰 + 𝒰∗ℬ𝒰 

= 𝒰∗𝒰(ℬ∗ + ℬ) − − − − − − − − − − − − − − − − − − − − − −(8) 

 

From (5) and (6) and comparing the R.H.S of equation (7) and the R.H.S of equation  

(8), they are equal. Hence, 𝒯 is also a θ-operator?  

 

Proposition  

If two unitary operators 𝒜, ℬ ∈ 𝔅(𝐻) are such that 𝒜  ~
𝑎.𝑠 ℬ and 𝒜 is a θ-operator, then ℬ is also a θ-operator. 

 

Proof 

 𝒜  ~
𝑎.𝑠 ℬ Implies that, an invertible operator 𝒩 exists such that 

 

𝒜∗𝒜 = 𝒩−1ℬ∗ℬ𝒩 − − − − − − − − − − − − − − − − − − − − − − − − − − − − − (9)  
 

and 

 

𝒜∗ + 𝒜 = 𝒩−1(ℬ∗ + ℬ)𝒩 − − − − − − − − − − − − − − − − − − − − − − − − − (10) 

 

From (9), we have 

𝒜 = 𝒜𝒩−1ℬ∗ℬ𝒩 

= 𝒜𝒩−1𝒩ℬ∗ℬ 

= 𝒜ℬ∗ℬ and thus,  𝒜∗ = (𝒜ℬ∗ℬ)∗ = ℬ∗ℬ𝒜∗. 

 

Applying the property of θ-operator, we have; 

 𝒜∗𝒜 = ℬ∗ℬ𝒜∗𝒜ℬ∗ℬ = ℬ∗ℬℬ∗ℬ = (ℬ∗ℬ)2 = ℬ∗ℬ (Projection property). Also, 

𝒩−1(ℬ∗ + ℬ)𝒩 = 𝒜∗ + 𝒜 = ℬ∗ℬ𝒜∗ + 𝒜ℬ∗ℬ. But 𝒜 = 
~ ℬ, then it implies there exists a unitary operator, 𝒰, such that 𝒜 =

𝒰∗ℬ𝒰 and 𝒜∗ = 𝒰∗ℬ∗𝒰. 

Thus, 𝒜∗ + 𝒜 = ℬ∗ℬ𝒜∗ + 𝒜ℬ∗ℬ 

= ℬ∗ℬ𝒰∗ℬ∗𝒰 + 𝒰∗ℬ𝒰ℬ∗ℬ 

= ℬ∗ℬℬ∗𝒰∗𝒰 + 𝒰∗𝒰ℬℬ∗ℬ 

= ℬ∗ℬℬ∗ + ℬℬ∗ℬ 

= ℬ∗ℬ(ℬ∗ + ℬℬ), but ℬ∗ℬ = 𝐼, thus  

= ℬ∗ + ℬ. 
 

This shows that ℬ is also a θ-operator.  

 

Remark 

 If 𝒜, ℬ ∈ 𝔅(𝐻) are such that 𝒜  ~
𝑎.𝑠 ℬ and if 𝒜 is normal then ℬ is also normal since normal operators are contained in θ-

operators.  

 

Theorem. 

Let 𝒜, ℬ ∈ 𝔅(𝐻). If 𝒜  ~
𝑎.𝑠 ℬ and 𝒜 is posinormal, then ℬ is also posinormal. 

 

Proof 

Since 𝒜 is posinormal, it implies that, 𝒜𝒜∗ = 𝒜∗𝑃𝒜, where 𝑃 is an interrupter. Also, since 𝒜  ~
𝑎.𝑠 ℬ, then there exist an 

invertible operator 𝒩 such that ℬ∗ℬ = 𝒩−1𝒜∗𝒜𝒩 and  ℬ∗ + ℬ = 𝒩−1(𝒜∗ + 𝒜)𝒩. 
Assuming 𝒜 is an isometry, then from 𝒜𝒜∗ = 𝒜∗𝑃𝒜, we have 𝒜 = 𝒜∗𝑃𝒜𝒜 and therefore, 𝒜∗ = (𝒜∗𝑃𝒜𝒜)∗ = 𝒜∗𝒜∗𝑃∗𝒜.  

 

Hence,  

ℬ∗ℬ = 𝒩−1𝒜∗𝒜∗𝑃∗𝒜𝒜∗𝑃𝒜𝒜𝒩  
= 𝒩−1𝒜∗𝒜∗𝑃∗𝑃𝒜𝒜𝒩  
= 𝒩−1𝒜∗𝒜∗𝒜𝒜𝒩 

= 𝒩−1𝒜∗𝒜𝒩 and 

ℬ∗ + ℬ = 𝒩−1(𝒜∗𝒜∗𝑃∗𝒜 + 𝒜∗𝑃𝒜𝒜)𝒩. 
= 𝒩−1(𝒜∗𝒜∗𝒜𝑃∗ + 𝑃𝒜∗𝒜𝒜)𝒩. 
= 𝒩−1𝒜∗𝒜(𝒜∗𝑃∗ + 𝑃𝒜)𝒩. 
= 𝒩−1(𝒜∗𝑃∗ + 𝑃𝒜)𝒩, but 𝑃 ≥ 0,  

thus we have 

= 𝒩−1(𝒜∗ + 𝒜)𝒩, 
 

Since the posinormality of 𝒜 justifies the almost similarity property with ℬ and vice versa, then ℬ is posinormal. Hence, any 

posinormal operators which are similar and unitarily equivalent are also almost similar.  
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