# **International Journal of Mathematics and Computer Research**

ISSN: 2320-7167

Volume 12 Issue 01 January 2024, Page no. – 3991-3995 Index Copernicus ICV: 57.55, Impact Factor: 7.362

DOI: 10.47191/ijmcr/v12i1.09



# On The Norm of Finite Length Elementary Operator in Tensor Product of C\*-Algebras

# Peter Guchu Muiruri<sup>1</sup>, Denis Njue King'ang'i<sup>2</sup>, Sammy Musundi Wabomba<sup>3</sup>

<sup>1,3</sup> Department of Physical Sciences, Chuka University, Chuka, Kenya

<sup>2</sup> Department of Mathematics and Computer Science, University of Eldoret, Eldoret, Kenya

| ARTICLE INFO          | ABSTRACT                                                                                            |  |
|-----------------------|-----------------------------------------------------------------------------------------------------|--|
| Published Online:     | Many properties of Elementary operators, including spectrum, numerical ranges, compactness, rank,   |  |
| 30 January 2024       | and norm have been studied in depth and some results have been obtained. However, little has been   |  |
|                       | done in determining the norm of finite length elementary operator in tensor product of C*-algebras. |  |
|                       | The norm of basic elementary operator in tensor product of C*-algebras have been determined and     |  |
|                       | results obtained. This paper determines the norm of finite length elementary operator in a te       |  |
|                       | product of C*-algebras. More precisely, the bounds of the norm of finite length elementary operator |  |
|                       | in a tensor product of C*-algebras are investigated. The paper employs the techniques of tensor     |  |
| Corresponding Author: | products and finite rank operators to express the norm of an elementary operator in terms of its    |  |
| Peter Guchu Muiruri   | coefficient operators.                                                                              |  |
|                       |                                                                                                     |  |

KEYWORDS: Finite Length Elementary Operator, Finite Rank Operator, Tensor Product and C\*-algebras

# I. INTRODUCTION

Let  $H \otimes K$  be tensor product of complex Hilbert spaces Hand K, and  $B(H \otimes K)$  be the set of bounded linear operators on  $H \otimes K$ . Let  $A \otimes B, C \otimes D$  being fixed elements of  $B(H \otimes K)$ , where  $A, C \in B(H)$ , the set of bounded linear operators on H and  $B, D \in B(K)$ , the set of bounded linear operators on K. Then we have the following definitions:-

An elementary operator,  $T_n : B(H \otimes K) \rightarrow B(H \otimes K)$ , is defined as;

 $T_n(X \otimes Y) = \sum_{i=1}^n A_i \otimes B_i(X \otimes Y)C_i \otimes D_i, \forall X \otimes II.$  $Y \in B(H \otimes K)$ 

When n = 1 we obtain the basic elementary operator,  $M_{H \otimes K} : B(H \otimes K) \to B(H \otimes K)$ , defined as;

 $M_{H \otimes K}(X \otimes Y) = A \otimes B(X \otimes Y)C \otimes D, \forall X \otimes Y \in B(H \otimes K).$ 

When n = 2 then we obtain an elementary operator of length two which is defined by;

 $T_2(X \otimes Y) = A_1 \otimes B_1(X \otimes Y)C_1 \otimes D_1 + A_2 \otimes B_2(X \otimes Y)C_2 \otimes D_2,$ 

#### $\forall X \bigotimes Y \in B(H \bigotimes K).$

The Jordan elementary operator,  $U_{H\otimes K}$ : B(H \otimes K)  $\rightarrow$  B(H  $\otimes$ K), is defined as;

# $\begin{array}{l} U_{H\otimes K}(X\,\otimes\,Y\,)=\,A\,\otimes\,B(X\,\otimes\,Y\,)C\,\otimes\,D\,+\\ C\,\otimes\,D(X\,\otimes\,Y\,)A\,\otimes\,B,\forall X\,\otimes\,Y\,\in\,B(H\,\otimes\,K) \end{array}$

This paper discusses the norm of elementary operator. In section II it reviews the norm of elementary operator in general C\*-algebra and in section III it looks at the norm of elementary operator in tensor product of C\*-algebras before embarking on the main result on the norm of finite length elementary operator in tensor product of C\*-algebras in section IV.

#### Norm of elementary operator in general C\*-algebra

Previous studies have shown the determination of norm of elementary operator in C\*-algebras, JB\*-algebra, standard operator algebra, cartan factor, prime C\*-algebra, twodimensional complex Hilbert space and tensor product. Different researchers have been attracted to the study of the norm of elementary operator in C\*-algebra due to the wide range of applications of C\*-algebras. Timoney (2001) determined the norm of basic elementary operator in C\*algebra and obtained the following result;

Theorem 2.1 :( Timoney, 2001)

Let  $\vartheta$  be C\*-algebra, then  $\parallel M_{A,B} \parallel = sup\{\parallel M_{A,B}(U) \parallel : U \in U(\vartheta)\} = sup\{\parallel AUB \parallel : U \in U(\vartheta)\}$ 

where  $U(\vartheta)$  denotes the set of unitaries in  $\vartheta$ .

Timoney (2001) created the basis for determining the upper bound of the norm of finite length elementary operator in tensor product of  $C^*$ -algebra.

Okelo and Agure (2011) used the finite rank operators to determine the norm of the basic elementary operator in C\*-algebra and proved Lemma 2.2 below.

#### Lemma 2.2: (Okelo and Agure, 2011).

Let H be a Hilbert space, B(H) the algebra of bounded linear operators on H. If  $M_{A,B} : B(H) \to B(H)$  is defined by  $M_{A,B}(X) = AXB, \forall X \in B(H)$  where A and B are fixed in B(H) then  $|| M_{A,B}(X) || = || A || || B ||$ , with || X || = 1 where  $X(x) = x, \forall$  unit vectors  $x \in H$ .

King'ang'i et al. (2014) extended the work of Okelo and Agure (2011) and determined the norm of elementary operator of length two for finite-dimensional separable Hilbert space  $W \in B(H)$  with || W || = 1 and W(x) = xfor all unit vectors  $x \in H$  and proved theorem 2.3;

#### Theorem 2.3: (King'ang'i et al., 2014).

Let *H* be a complex Hilbert space and B(H) be algebra of all bounded linear operators on *H*. Let  $E_2$  be the elementary operator on B(H). If for an operator  $W \in B(H)$  with || W || = 1, we have W(x) = x with all unit vectors  $x \in H$ , then  $|| E_2 || = \sum_{i=1}^{2} || A_i || || B_i ||$ .

King'ang'i (2017) employed the concept of the maximal numerical range of A\*B relative to S to determine the lower bound of the norm of an elementary operator of length two and solved theorem 2.4 ;

#### Theorem 2.4: (King'ang'i, 2017).

Let  $E_2$  be an elementary operator of length two on B(H). Then

$$|| E_2 || \ge Sup_{\lambda \in W_B(A^*B)} || || B_1 || A_1 + \frac{\bar{\lambda}}{|| B_1 ||} A_2 ||.$$

King'ang'i (2017) also determined the conditions under which the norm of an elementary operator of length two is expressible in terms of the norms of its coefficients operators by proving Corollary 2.5;

# Corollary 2.5: (King'ang'i, 2017).

Let *H* be a complex Hilbert space and  $A_i, B_i$  be bounded linear operators on *H* for i = 1, 2. Let  $0 \in W_{B_1}(B_1^*B_2) \cup W_{B_2}(B_1^*B_2)$ . Then

 $|| E_2 || \ge || A_1 || || B_1 ||$ , where  $E_2$  is the elementary operator of length two.

# Theorem 2.6: (King'ang'i, 2017).

Let *H* be a complex Hilbert space and  $A_i, B_i$  be bounded linear operators on *H* for i = 1, 2. Let  $E_2$  be an elementary operator of length two. If  $||A_1||||A_2|| \in W_{A_1}(A_2A_1^*)$  and  $||B_1||||B_2|| \in W_{B_2}(B_1^*B_2)$  then

 $|| E_2 || = \sum_{i=1}^2 || A_i || || B_i ||.$ 

Kawira et al. (2018) extended the work of King'ang'i et al. (2014) to finite length and determined the norm of an elementary operator of an arbitrary length in a C\*-algebra using finite rank operators and proved theorem 2.7;

#### Theorem 2.7: (Kawira et al., 2018).

Let *H* be complex Hilbert spaces and B(H) be the algebra of bounded linear operators on *H*. Let  $E_n$  be elementary operator on B(H). If  $\forall X \in B(H)$  with ||X|| = 1, we have X(f) = f for all unit vector  $f \in H$  then  $||E_n|| = \sum_{i=1}^n ||A_i|| ||B_i||, n \in \mathbb{N}$ .

Kawira et al. (2018) is very important for the methodology of determining the norm of finite length elementary operator in tensor product of  $C^*$ -algebras.

# Norm of elementary operator in tensor product of C\*algebras

Muiruri et al. (2018) determined the norm of basic elementary operator in a tensor product of C\*-algebras using the finite rank operator and properties of tensor product and proved the following theorem 3.1;

# Theorem 3.1: (Muiruri et al., 2018).

Let *H* and *K* be complex Hilbert spaces and  $B(H \otimes K)$  be the set of bounded linear operators on  $H \otimes K$ . Then

 $\forall X \otimes Y \in B(H \otimes K)$  with  $|| X \otimes Y || = 1$ , we have  $|| M_{A \otimes B, C \otimes D} || = || A || || B || || C || || D ||$ , where A, C and B, D are fixed elements in B(H) and B(K) respectively.

As a consequence of the above Muiruri et al. (2018) related the norm of basic elementary operator in tensor product and the usual norm in this elementary operator in C\*-algebra and arrived at the corollary 3.2 below;

#### Corollary 3.2: (Muiruri et al., 2018).

Let *H* and *K* be complex Hilbert spaces and  $B(H \otimes K)$  be the set of bounded linear operators on  $H \otimes K$ . Then

Then

 $\forall X \otimes Y \in B(H \otimes K)$  with  $|| X \otimes Y || = 1$ , we have  $|| M_{A \otimes B, C \otimes D} || = || M_{A,C} || || M_{B,D} ||$ , where  $M_{A,C}$  and  $M_{B,D}$ are basic elementary operators in B(H) and B(K)respectively.

Then Daniel et al. (2022) used the stampli's maximal numerical range to determine the norm of basic elementary operator in a tensor product and they obtained the following theorem 3.3;

Theorem 3.3: (Daniel et al., 2022).

Let *H* and *K* be Hilbert spaces and let  $M_{A \otimes B, C \otimes D}$  be basic elementary operator on  $B(H \otimes K)$  the set of complex Hilbert space  $H \otimes K$ . If  $\forall U \otimes V \in B(H \otimes K)$  with  $\parallel U \otimes V \parallel = 1$ ,  $A, C \in B(H), B, D \in B(K)$  $\zeta \in W_0(C), \xi \in W_0(D)$  then we have  $\parallel M_{A \otimes B, C \otimes D} \setminus B(H \otimes K) \parallel =$  $Sup_{\zeta \in W_0(C)} Sup_{\xi \in W_0(D)} \{|\zeta| \|\xi| \parallel A \| \| B \| \}$ 

Finally, Daniel et al., (2023) determined the bounds of the norm of elementary operator of length two in tensor product using the Stampli's maximal numerical range and obtained theorem 3.4;

# Theorem 3.4: (Daniel et al., (2023).

Let *H* and *K* be Hilbert spaces and let  $M_{2A \otimes B, C \otimes D}$  be basic elementary operator on  $B(H \otimes K)$  the set of complex Hilbert space  $H \otimes K$ . If  $\forall U \otimes V \in B(H \otimes K)$  with  $\parallel U \otimes V \parallel = 1$ ,  $A_i, C_i \in B(H), B_i, D_i \in B(K)$  $\zeta_i \in W_0(C_i), \xi_i \in W_0(D_i)$  then we have  $\parallel M_{2A \otimes B, C \otimes D} \setminus B(H \otimes K) \parallel =$  $Sup_{\zeta_i \in W_0(C_i)} Sup_{\xi_i \in W_0(D_i)} \{|\zeta_i| ||\xi_i| \parallel A_i \parallel \parallel B_i \parallel\}$ 

# IV. NORM OF FINITE LENGTH ELEMENTARY OPERATOR IN TENSOR PRODUCT OF C\*-ALGEBRAS

In this section, as our main result, we investigate the bounds of the norm of an elementary operator of finite length in a tensor product of C\*-algebras using the concept of finite rank operator and properties of tensor product of C\*algebras

# Theorem 4.1

If *H* and *K* are complex Hilbert spaces and  $B(H \otimes K)$ , the set of bounded linear operator on  $H \otimes K$ . If

 $\forall X \otimes Y \in B(H \otimes K) \text{ and } \parallel X \otimes Y \parallel = 1 \text{ then};$ 

$$|| T_n || = \sum_{i=1}^{n} || A_i || || B_i || || C_i || || D_i ||$$

, where  $T_n$  is the Elementary operator of finite length as defined earlier and  $A_i, C_i \in B(H)$  and  $B_i, D_i \in B(K)$ .

Proof

By definition  $\| T_n \setminus B(H \otimes K) \| = \sup \{ \| T_n(X \otimes Y) \| : \forall X \otimes Y \in B(H \otimes K), \| X \otimes Y \| = 1 \}.$ 

Therefore we have;

 $\parallel T_n \setminus B(H \otimes K) \parallel \geq \parallel T_n(X \otimes Y) \parallel, \qquad \forall X \otimes Y \in B(H \otimes K), \parallel X \otimes Y \parallel = 1$ 

Thus, ∀ε≥0

```
 \| T_n \setminus B(H \otimes K) \| -\varepsilon < \| T_n(X \otimes Y) \| \quad \forall X \otimes Y \in B(H \otimes K), \| X \otimes Y \| = 1 
 \| T_n \setminus B(H \otimes K) \| -\varepsilon < \| \sum_{i=1}^n A_i \otimes B_i(X \otimes Y) C_i \otimes D_i \| =
```

 $\|A_1 \otimes B_1(X \otimes Y) C_1 \otimes D_1 + A_2 \otimes B_2(X \otimes Y) C_2 \otimes D_2 + \dots + A_n \otimes B_n(X \otimes Y) C_n \otimes D_n \|$ From properties of tensor product of operators we have  $A_i \otimes B_i(X \otimes Y) = A_i X \otimes B_i Y$   $\begin{array}{ll} \text{Therefore} & \text{we} & \text{have;} \\ \parallel T_n \setminus B(H \otimes K) \parallel -\varepsilon < \parallel A_1 X C_1 \otimes B_1 Y D_1 + A_2 X C_2 \otimes B_2 Y D_2 + \cdots + \\ A_n X C_n \otimes B_n Y D_n \parallel \end{array}$ 

by triangular inequality, Therefore. we have:  $|| T_n \setminus B(H \otimes K) || -\varepsilon \le || A_1 X C_1 \otimes B_1 Y D_1 || + || A_2 X C_2 \otimes B_2 Y D_2 || + \dots + ||$  $A_n X C_n \otimes B_n Y D_n \parallel$ Also using the tensor product property that  $|| A_i X \otimes B_i Y || = || A_i X || || B_i Y ||$ Thus have; we  $|| T_n \setminus B(H \otimes K) || -\varepsilon < || A_1 X C_1 || || B_1 Y D_1 || + || A_2 X C_2 || || B_2 Y D_2 ||$  $+ \dots + || A_n X C_n || || B_n Y D_n ||$ Since  $\varepsilon \ge 0$  was arbitrarily taken then  $|| T_n \setminus B(H \otimes K) || \le || A_1 X C_1 || || B_1 Y D_1 || + || A_2 X C_2 || || B_2 Y D_2 || + \cdots$  $+ \parallel A_n X C_n \parallel \parallel B_n Y D_n \parallel$ (4.1)Since:  $|| A_i X C_i || \le || A_i || || X || || C_i || = || A_i || || C_i || since || X || = 1$ Thus  $|| A_i X C_i || \le || A_i || || C_i ||$ Likewise;  $|| B_i Y D_i || \le || B_i || || D_i ||$ Apply above to equation (4.1) we have  $|| T_n || \le \sum_{i=1}^n || A_i || || B_i || || C_i || || D_i ||$ (4.2)Conversely, let  $(e \otimes f)$  be unit vector in  $H \otimes K$  where  $e \in H$ and  $f \in K$  then  $|| T_n(X \otimes Y)(e \otimes f) || \le || T_n(X \otimes Y) || || (e \otimes f) ||$  $\leq ||T_n|| ||(X \otimes Y)|| ||(e \otimes f)|| = ||T_n|| ||X||| ||Y||||e||||f||$ This implies that:  $||T_n|| \ge ||T_n(X \otimes Y)(e \otimes f)|| =$  $|| \{A_1 \otimes B_1(X \otimes Y)C_1 \otimes D_1 + A_2 \otimes B_2(X \otimes Y)C_2 \otimes D_2$  $+ \dots + A_n \otimes B_n(X \otimes Y)C_n \otimes D_n\}(e \otimes f) \parallel$  $= \|A_1 \otimes B_1(X \otimes Y)C_1 \otimes D_1(e \otimes f) + A_2 \otimes B_2(X \otimes Y)C_2 \otimes D_2(e \otimes f) + \dots +$  $A_n \otimes B_n(X \otimes Y) C_n \otimes D_n(e \otimes f) \parallel$  $= \parallel A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f + \dots + A_n X C_n e \otimes B_n Y D_n f \parallel$  $||T_{\tau}|| \geq$  $|| A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f + \dots + A_n X C_n e \otimes B_n Y D_n f ||$ Thus if we square both sides:  $||T_{-}||^{2} >$  $|| A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f + \dots + A_n X C_n e \otimes B_n Y D_n f ||^2$ 

```
 = \langle A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f + \dots + A_n X C_n e \otimes B_n Y D_n f, \\ A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f + \dots + A_n X C_n e \otimes B_n Y D_n f \rangle \\ \|T_n\| \ge \langle A_1 X C_1 e \otimes B_1 Y D_1 f, A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f \\ + \dots + A_n X C_n e \otimes B_n Y D_n f \rangle + \\ \langle A_2 X C_2 e \otimes B_2 Y D_2 f, A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f + \dots + \\ A_n X C_n e \otimes B_n Y D_n f \rangle
```

```
\begin{split} &+ \dots + \langle A_n X C_n e \otimes B_n Y D_n f, A_1 X C_1 e \otimes B_1 Y D_1 f + A_2 X C_2 e \otimes B_2 Y D_2 f \\ &+ \dots + A_n X C_n e \otimes B_n Y D_n f \rangle \\ &= \langle A_1 X C_1 e \otimes B_1 Y D_1 f, A_2 X C_1 e \otimes B_1 Y D_1 f \rangle + \\ \langle A_1 X C_1 e \otimes B_1 Y D_1 f, A_2 X C_2 e \otimes B_2 Y D_2 f \rangle + \dots \\ &+ \langle A_1 X C_1 e \otimes B_1 Y D_1 f, A_n X C_n e \otimes B_n Y D_n f \rangle \\ &+ \langle A_2 X C_2 e \otimes B_2 Y D_2 f, A_n X C_1 e \otimes B_1 Y D_1 f \rangle \\ &+ \langle A_2 X C_2 e \otimes B_2 Y D_2 f, A_n X C_n e \otimes B_n Y D_n f \rangle \\ &+ \langle A_2 X C_2 e \otimes B_2 Y D_2 f, A_n X C_n e \otimes B_n Y D_n f \rangle + \dots + \\ \langle A_n X C_n e \otimes B_n Y D_n f, A_n X C_n e \otimes B_n Y D_n f \rangle + \dots + \\ \end{split}
```

$$\begin{split} & (A_n X C_n e \otimes B_n Y D_n f, A_n X C_n e \otimes B_n Y D_n f) + \dots + \\ & (A_n X C_n e \otimes B_n Y D_n f, A_n X C_n e \otimes B_n Y D_n f) \\ & \text{Since } (X_1 \otimes Y_1, X_2 \otimes Y_2) = (X_1, X_2) (Y_1, Y_2) \text{ we have:} \\ & = (A_1 X C_1 e, A_1 X C_2 e) (B_1 Y D_1 f, B_1 Y D_1 f) + \\ & (A_1 X C_1 e, A_n X C_n e) (B_1 Y D_1 f, B_1 Y D_1 f) + (A_2 X C_2 e, A_1 X C_1 e) \\ & (B_2 Y D_2 f, B_1 Y D_1 f) + (A_2 X C_2 e, A_2 X C_2 e) (B_2 Y D_2 f, B_2 Y D_2 f) + \dots + \\ & (A_1 X C_1 e, A_n X C_n e) (B_1 Y D_1 f, B_1 Y D_1 f) + (A_n X C_n e, A_2 X C_2 e) (B_n Y D_n f, B_2 Y D_2 f) \\ & + \dots + \\ & (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_1 f) + (A_n X C_n e, A_2 X C_2 e) (B_n Y D_n f, B_2 Y D_2 f) \\ & + \dots + \\ & (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_n Y D_n f) \\ & = \parallel A_1 X C_1 e \parallel^2 \parallel B_1 Y D_1 f \parallel^2 + (A_1 X C_1 e, A_1 X C_1 e) (B_1 Y D_1 f, B_2 Y D_2 f) + \dots \\ & + (A_n X C_n e, A_n X C_n e) (B_1 Y D_1 f, B_n Y D_n f) \\ & + (A_n X C_n e, A_n X C_n e) (B_1 Y D_1 f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_1 Y D_1 f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_1 Y D_1 f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_1 Y D_1 f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_1 f) \\ & + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f, B_1 Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) (B_n Y D_n f) \\ & + \dots + (A_n X C_n e, A_n X C_n e) \\ & + (A_n Y O_n f, B_n Y O_n f) \\ & + \dots + \|A_n X C_n e\|^1 \| B_n Y O_n f\|^2 \\ & + \dots + \|A_n X C_n e\|$$

 $= \sup\{|u_i(e)| \mid y \mid : e \in H, || e \mid \le 1\}$ 

$$\begin{split} &= \sup\{|u_i(e)| : e \in H, \|e\| \le 1\} = |u_i(e)| \\ &\text{That is } \|A_i\| = |u_i(e)| \ \forall \ e \in H \ \text{with} \|e\| = 1 \ i = 1, 2, ..., n \\ &\text{Likewise, the norm of} \ C_i \ \text{is } \|C_i\| = |v_i(e)| \ \forall \ e \in H \ \text{with} \\ \|e\| = 1 \ i = 1, 2, ..., n \\ &\text{From 3.2 above then:} \\ \|A_1 X C_1 e\|^2 = \|(u_1 \otimes y) X (v_1 \otimes z) e\|^2 \end{split}$$

 $= \| (u_1 \otimes y) X v_1(e) z \|^2$ 

 $= || v_1(e)(u_1 \otimes y)X(z) ||^2$ 

$$= |v_1(e)|^2 || (u_1 \otimes y) X(z) ||^2$$

 $= |v_1(e)|^2 || u_1(X(z))y ||^2$ 

$$= |v_1(e)|^2 |u_1(X(z))|^2 ||y||^2$$

$$= |v_1(e)|^2 |u_1(X(z))|^2 = ||A_1||^2 ||C_1||^2$$
  
Thus  
$$||A_1XC_1e||^2 = ||A_1||^2 ||C_1||^2$$

Thus using the same concept also:

$$\frac{\| B_1 Y D_1 f \|^2 = \| B_1 \|^2 \| D_1 \|^2}{3994}$$

$$\| A_2 X C_2 e \|^2 = \| A_2 \|^2 \| C_2 \|^2$$
(4.6)

$$\| B_2 Y D_2 f \|^2 = \| B_2 \|^2 \| D_2 \|^2$$
(4.7)

$$\|A_n X C_n e\|^2 = \|A_n\|^2 \|C_n\|^2$$
(4.8)

$$\| B_n Y D_n f \|^2 = \| B_n \|^2 \| D_n \|^2$$
(4.9)  
Also:

 $\begin{array}{l} \langle A_1 X C_1 e, A_2 X C_2 e \rangle = \\ \langle (u_1 \otimes y) X (v_1 \otimes z) e, (u_2 \otimes y) X (v_2 \otimes z) e \rangle \\ = \langle (u_1 \otimes y) X v_1 (e) z, (u_2 \otimes y) X v_2 (e) z \rangle \end{array}$ 

 $= \langle v_1(e)(u_1 \otimes y) X_Z, v_2(e)(u_2 \otimes y) X_Z \rangle$ 

=  $(v_1(e)u_1(X(z))y, v_2(e)u_2(X(z))y)$ 

$$= v_1(e)u_1(X(z))v_2(e)u_2(X(z))\langle y, y \rangle$$
  

$$= v_1(e)u_1(X(z))v_2(e)u_2(X(z))$$
  
Since  $v_1(e), u_1(X(z)), v_2(e)$  and  $u_2(X(z))$  are all positive real numbers, we have:  

$$v_1(e) = |v_1(e)| = ||C_1||, u_1(X(z)) = |u_1(X(z))| = ||A_1||,$$
  

$$v_2(e) = |v_2(e)| = ||C_2|| \text{ and }$$
  

$$u_2(X(z)) = |u_2(X(z))| = ||A_2||$$
  
Thus we have  

$$\langle A_1XC_1e, A_2XC_2e \rangle = v_1(e)u_1(X(z))v_2(e)u_2(X(z)) = ||C_1|||A_1|||C_2|||A_2||$$

Since the norms of  $A_i$  and  $C_i$  for i = 1, 2, ..., n are scalars then :

 $\langle A_1 X C_1 e, A_2 X C_2 e \rangle = ||A_1|| ||A_2|| ||C_1|| ||C_2$  (4.10) Hence using the same concept as above then:

$$\begin{array}{ll} \langle B_1 Y D_1 f, B_2 Y D_2 f \rangle = \parallel B_1 \parallel \parallel B_2 \parallel \parallel D_1 \parallel \parallel D_2 \parallel & (4.11) \\ \text{It} & \text{then} & \text{follows} & \text{that} \\ \langle A_2 X C_2 e, A_1 X C_1 e \rangle = & \\ \langle (u_2 \otimes y) X (v_2 \otimes z) e, (u_1 \otimes y) X (v_1 \otimes z) e \rangle \end{array}$$

$$= \langle (u_2 \otimes y) X v_2(e) z, (u_1 \otimes y) X v_1(e) z \rangle$$
$$= \langle v_2(e) (u_2 \otimes y) X z, v_1(e) (u_1 \otimes y) X z \rangle$$
$$= \langle v_2(e) u_2 (X(z)) y, v_1(e) u_1 (X(z)) y \rangle$$

$$= v_2(e)u_2(X(z))v_1(e)u_1(X(z))\langle y,y\rangle$$

$$= v_2(e) u_2 (X(z)) v_1(e) u_1 (X(z)) = \parallel C_2 \parallel \parallel A_2 \parallel \parallel C_1 \parallel \parallel A_1 \parallel$$

(4.5)

(4.4)

Since the norms of  $A_i$  and  $C_i$  for i = 1, 2, ..., n are scalars then :

 $\langle A_2 X C_2 \boldsymbol{e}, A_1 X C_1 \boldsymbol{e} \rangle = \parallel A_1 \parallel \parallel A_2 \parallel \parallel C_1 \parallel \parallel C_2 \parallel$ (4.12)

Thus using the same concept then:

| $ \langle B_2 Y D_2 f, B_1 Y D_1 f \rangle = \parallel B_1 \parallel \parallel B_2 \parallel \parallel D_1 \parallel \parallel D_2 \parallel $                                                                                                 | (4.13) |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|
| $ \langle B_1 Y D_1 f, B_n Y D_n f \rangle = \parallel B_1 \parallel \parallel B_n \parallel \parallel D_1 \parallel \parallel D_n \parallel $                                                                                                 | (4.14) |  |
| $\langle B_2 Y D_2 f, B_n Y D_n f \rangle = \parallel B_2 \parallel \parallel B_n \parallel \parallel D_2 \parallel \parallel D_n \parallel$                                                                                                   | (4.15) |  |
| $\langle B_n Y D_n f, B_1 Y D_1 f \rangle =    B_1       B_n       D_1       D_n   $                                                                                                                                                           | (4.16) |  |
| $\langle B_n Y D_n f, B_1 Y D_1 f \rangle = \parallel B_1 \parallel \parallel B_n \parallel \parallel D_1 \parallel \parallel D_n \parallel$                                                                                                   | (4.17) |  |
| $\langle A_1 X C_1 e, A_n X C_n e \rangle = \parallel A_1 \parallel \parallel A_n \parallel \parallel C_1 \parallel \parallel C_n \parallel$                                                                                                   | (4.18) |  |
| $(A_2 X C_2 e, A_n X C_n e) =   A_2    A_n     C_2    C_n  $                                                                                                                                                                                   | (4.19) |  |
| $\langle A_n X C_n e, A_1 X C_1 e \rangle =    A_1       A_n       C_1       C_n   $                                                                                                                                                           | (4.20) |  |
| $\langle A_n X C_n e, A_2 X C_2 e \rangle =   A_2    A_n     C_2    C_n  $                                                                                                                                                                     | (4.21) |  |
| Thus substituting equations (4.4) to (4.21) in (4.3) the $\ T_n\ ^2 \ge \ A_1\ ^2 \ B_1\ ^2 \ C_1\ ^2 \ D_1\ ^2 +$                                                                                                                             | en     |  |
| $\parallel A_{1} \parallel \parallel B_{1} \parallel \parallel C_{1} \parallel \parallel D_{1} \parallel \parallel A_{2} \parallel \parallel B_{2} \parallel \parallel C_{2} \parallel \parallel D_{2} \parallel$                              |        |  |
| $+ \cdots + \parallel A_1 \parallel \parallel B_1 \parallel \parallel C_1 \parallel \parallel D_1 \parallel \parallel A_n \parallel \parallel B_n \parallel \parallel C_n \parallel \parallel D_n \parallel +$                                 |        |  |
| $\parallel A_{1} \parallel \parallel B_{1} \parallel \parallel C_{1} \parallel \parallel D_{1} \parallel \parallel A_{2} \parallel \parallel B_{2} \parallel \parallel C_{2} \parallel \parallel D_{2} \parallel$                              |        |  |
| + $  A_{z}  ^{2}  B_{z}  ^{2}  C_{z}  ^{2}  D_{z}  ^{2}+\dots+$                                                                                                                                                                                |        |  |
| $\parallel A_{z} \parallel \parallel B_{z} \parallel \parallel C_{z} \parallel \parallel D_{z} \parallel \parallel A_{n} \parallel \parallel B_{n} \parallel \parallel C_{n} \parallel \parallel D_{n} \parallel + \dots +$                    |        |  |
| $\parallel A_1 \parallel \parallel B_1 \parallel \parallel C_1 \parallel \parallel D_1 \parallel \parallel A_n \parallel \parallel B_n \parallel \parallel C_n \parallel \parallel D_n \parallel +$                                            |        |  |
| $\parallel A_{2} \parallel \parallel B_{2} \parallel \parallel C_{2} \parallel \parallel D_{2} \parallel \parallel A_{n} \parallel \parallel B_{n} \parallel \parallel C_{n} \parallel \parallel D_{n} \parallel$                              |        |  |
| $+ \dots +    A_n   ^2    B_n   ^2    C_n   ^2    D_n   ^2$                                                                                                                                                                                    |        |  |
| This implies that:                                                                                                                                                                                                                             |        |  |
| $\parallel T_{2} \parallel^{2} \geq \{A_{1} \parallel \parallel B_{1} \parallel \parallel C_{1} \parallel \parallel D_{1} \parallel + \parallel A_{2} \parallel \parallel B_{2} \parallel \parallel C_{2} \parallel \parallel D_{2} \parallel$ |        |  |
| $+ \dots +    A_n       B_n       C_n       D_n    \}^2$                                                                                                                                                                                       |        |  |
| Thus obtaining square root in both sides:                                                                                                                                                                                                      |        |  |
| $\parallel T_2 \parallel \geq \parallel A_1 \parallel \parallel B_1 \parallel \parallel C_1 \parallel \parallel D_1 \parallel + \parallel A_2 \parallel \parallel B_2 \parallel \parallel C_2 \parallel$                                       |        |  |
| $D_2 \parallel + \dots + \parallel A_n \parallel \parallel B_n \parallel \parallel C_n \parallel \parallel D_n \parallel$                                                                                                                      |        |  |
| Finally, it's clear that:                                                                                                                                                                                                                      |        |  |
| $\parallel T_n \parallel \geq \sum_{i=1}^n \parallel A_i \parallel \parallel B_i \parallel \parallel C_i \parallel \parallel D_i \parallel$                                                                                                    | (4.22) |  |
| From (4.2) and (4.22)                                                                                                                                                                                                                          | then   |  |
| $   T_n \setminus B(H \otimes K)    = \sum_{i=1}^n    A_i       B_i       C_i       D_i   $                                                                                                                                                    |        |  |

# RECOMMENDATIONS

From the above main result an attempt can be made in solving the norm of finite length elementary operator in tensor product of C\*-algebras using a different methodology of Stampli's maximal numerical range.

# ACKNOWLEDGEMENT

I wish to thank my wife Angela and kids, Lucy and Addilyn, for their unwavering support for this study and also my co-authors for their unending guidance.

# REFERENCES

 Daniel, B., Musundi, S., and Ndungu, K. (2022). *Application of Maximal Numerical Range on Norm of Basic Elementary Operator in a Tensor Product.* Journal of Progressive Research in Mathematics, 19(1) :73-81.

- Daniel, B., Musundi, S., and Ndungu, K. (2023). Application of Maximal Numerical Range on Norm of Elementary Operator of length Two in a Tensor Product. International Journal of Mathematics and Computer Research, 11:3837-3842.
- Kawira, E., Denis, N., and Sammy, W. (2018). On Norm of Elementary Operator of finite length in a C\*algebra. Journal of Progressive Research in Mathematics, 14 :2282-2288.
- 4. King'ang'i, D. (2017). *On Norm of Elementary Operator of length two*. International Journal of Science and Innovation Mathematics Research, 5 :34-38.
- 5. King'ang'i, D., Agure, J., and Nyamwala, F. (2014). *On Norm of Elementary Operator* .Advance in Pure Mathematics, 4(2014) :309-316.
- Muiruri, P., Denis, N., and Sammy, W. (2018). On Norm of Basic Elementary Operator in a Tensor Product. International Journal of Science and Innovation Mathematics Research, 6(6) :15-22.
- Okelo, N., and Agure, J. (2011). A two Sided Multiplication Operator Norm. General Mathematics Notes, 2 :18-23.
- 8. Timoney, R. (2001). *Norm of Elementary Operator*. Bulletin of the Irish Mathematical Society, 46 :13-17