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ABSTRACT. African catfish, Clarias gariepinus, is an important species in aquaculture and fisheries 
in Kenya. Mitochondrial D-loop control region was used to determine genetic variation and population 
structure in samples of C. gariepinus from 10 sites including five natural populations (Lakes Victoria 
(LVG), Kanyaboli (LKG), Turkana (LTA), Baringo (LBA) and Jipe (LJP), and five farms (Sangoro 
Aquaculture Center (SAN), Sagana Aquaculture Centre (SAG), University of Eldoret Fish Farm (UoE), 
Kibos Fish Farm (KIB), and Wakhungu Fish Farm (WKU)) in Kenya. Similarly, samples from eight 
localities (four natural populations: LVG/LKG, LTA, LBA, and four farmed: SAN, SAG, KIB, UoE) 
were genotyped using six microsatellite DNA loci. For the D-loop control region, samples from natural 
sites exhibited higher numbers of haplotypes and haplotype diversities compared to farmed samples, 
and 88.2% of haplotypes were private. All except LJP and LTA shared haplotypes, and the highest 
number of shared haplotypes (8) was detected in KIB. The 68 haplotypes we found in 268 individuals 
grouped into five phylogenetic clades: LVG/LKG, LTA, LBA, LJP and SAG. Haplotypes of farmed 
C. gariepinus mostly have haplotypes typical of LVG/LKG, and some shared haplotypes of the LBA 
population. Microsatellite analysis showed farmed samples have higher numbers of alleles than natural 
samples, but higher observed and expected heterozygosity levels were found in samples of natural 
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populations. Fifteen pair-wise comparisons had significantly different FST values. All samples were in 
Hardy-Weinberg equilibrium. Samples from the eight localities grouped into four genetic clusters (LVG/
LKG, LTA, LBA and SAG), indicating genetically distinct populations, which should be considered for 
aquaculture and conservation. 
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Introduction

The African catfish, Clarias gariepinus (Burchell, 1822), is an important species for aquaculture in the 
tropics. In Kenya, the species is second only to Nile tilapia Oreochromis niloticus (Linnaeus, 1758), 
as a fin fish aquaculture species. There have been recent efforts to increase C. gariepinus aquaculture 
for higher food production (Rasowo et al. 2008; ChepkiRui-Boit et al. 2011; Musa et al. 2012), 
and to provide bait for use in the Lake Victoria Nile perch, Lates niloticus (Linnaeus, 1758), long line 
fishery activities (MaChaRia et al. 2005; BaRasa et al. 2014). In natural ecosystems, the species is an 
important predator in food webs (GoudswaaRd & witte 1997). The species has high fecundity, grows 
fast, even at high stocking densities, utilizes a wide range of food items, and tolerates a wide range of 
environmental conditions (BRuton 1988). These traits have facilitated the translocation of C. gariepinus 
to many countries outside its natural range, especially to Thailand, Malaysia and the Netherlands, where 
they have been introduced for aquaculture (nazia et al., 2010), and new strains such as the Dutch strain 
developed (CaMBRay & van deR waal 2006; anene & tianxianG 2007).

A total of 3 million bait samples are required daily by fishermen on the Kenyan side of Lake Victoria, 
for use in the L. niloticus long line fishery activities (FisheRies FRaMe suRvey 2006). Of the total daily 
supply of live bait to fishermen, however, only 41% are catfish fry (MkuMBo & Mlaponi 2007), with 
the rest being haplochromines, Rastrineobola argentae (Pellegrin, 1904), Schilbe (Linnaeus, 1758) and 
Labeo (Boulenger, 1901) species (ChitaMweBwa et al. 2009). Of the five species exploited as bait for 
L. niloticus, artificial propagation techniques are in place only for C. gariepinus, with the rest being 
harvested exclusively from natural populations. However, of the total supply of C. gariepinus fry for 
use as bait, only 2% comes from fish farms and hatcheries (ChitaMweBwa et al. 2009), with the rest 
being sourced from natural populations. Exploitation of natural populations of fish species in the Lake 
Victoria basin for bait, in addition to being fished for food by local communities, exacerbates pressure 
on fish stocks whose populations dramatically declined due to L. niloticus predation (witte et al. 1992), 
and hampers the recovery of indigenous fish stocks in the lake (MkuMBo & Mlaponi 2007). The need 
to promote artificial propagation of C. gariepinus in hatcheries for bait as a strategy to conserve the 
indigenous fish species of the Lake Victoria basin, as well as increase income for farmers, has long been 
recognized (kauFMan & oChuMBa 1993; MkuMBo & Mlaponi 2007; ChitaMweBwa et al. 2009; 
BaRasa et al. 2014).

Low survival of fry of Clarias is a major handicap in the expansion of aquaculture of the species in 
Africa (suleM et al. 2006), because it causes a shortage of seeding stock for ponds and also for use as 
bait. Poor diets for larval catfish (suleM et al. 2006; nyina-waMwiza et al. 2010; ChepkiRui-Boit 
et al. 2011; Musa et al. 2012), cannibalism among batches of catfish siblings (suleM et al. 2006), 
presence of predators in catfish fry nursery units (suleM et al. 2006; nyina-waMwiza et al. 2010), 
and poor quality brood stock of mixed ancestry (BaRasa et al. 2014) are reported to potentially reduce 
the survival of fry of C. gariepinus. 
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In artificial propagation of C. gariepinus, a male brooder is sacrificed for milt to fertilize the eggs 
(hoGendooRn & visMans 1980). Although some hatcheries use a commercial synthetic ovaprim 
hormone to stimulate ovulation, most prefer using fish pituitary to obtain a natural hormone (de GRaaF 
et al. 1995), because of the possible impact of ovaprim on the environment. Therefore, hatcheries 
frequently collect male brooders from natural populations to provide milt and the pituitary hormone 
(BaRasa et al. 2014), and when brood stock size declines, additional brooders are collected from natural 
populations or other hatcheries. These sources of brood stock may be unrelated to the original source, 
and the aquatic habitats may be in different drainage basins. Similarly, female brooders are re-used for 
propagation, which potentially causes inbreeding. 

Mixed ancestry of source populations poses risks to animal populations, including fish (MCCleland & 
naish 2007), via outbreeding depression, where offspring show reduced fitness. Out-breeding depression 
by inter-population hybridization introduces nonlocal alleles, creates phenotypes intermediate between 
the parents (hatField & sChluteR 1999), and reduced fitness is observed in the F1 or F2 generation 
(huFF et al. 2011). These genetic factors, together with poor husbandry practices at hatcheries, may play 
a significant role in reducing the survival of fry and juveniles of C. gariepinus, especially in countries 
where strict regulations on inter-basin translocation of fish are absent or not enforced. Lower survival, 
growth, or fecundity may therefore be expressed in juveniles from brooders of C. gariepinus of mixed 
genetic origin, or those maintained under a poor feeding regime (izquieRdo et al. 2001). 

On the other hand, out-breeding increases population genetic variation, which may be an important 
factor influencing fitness traits in some fish species (knaepkens et al. 2002), and persistence of a 
fish species in the habitat (poliCansky & MaGnuson 1998). Research on genetic diversity of fish 
populations is applied in genetic improvement programmes, to develop a suitable base population 
(ponzoni et al. 2009), a need already reported for C. gariepinus (ponzoni & nGuyen 2008). Similarly, 
research on genetic diversity is used to monitor and manage stocks, and identify quantitative trait loci for 
commercially important traits in fish breeding (koCheR et al. 1998). Maintenance of genetic variation 
within and among populations is an important goal in management and conservation of biodiversity 
(allendoRF & waples 1996). 

Natural fish populations often outperform domesticated populations (eknath et al. 1993) under culture, 
possibly due to inbreeding depression in domesticated populations (koCheR et al. 1998; teiCheRt-
CoddinGton & sMitheRMan 1988), related to lower genetic variation (popoola et al. 2014). Since 
out-breeding can also negatively affect population fitness, the use of catfish populations of higher genetic 
variation and purity as brood stock may help increase fry production at hatcheries through higher survival, 
and contribute to higher income and food availability among farmers, and also reduce exploitation 
pressure on natural populations of catfish in Kenya. To assess genetic variation and structure in natural 
and farmed populations of C. gariepinus, mitochondrial D-loop region and nuclear microsatellite DNA 
markers were used to determine genetic variation and population structure in both natural and farmed 
populations of C. gariepinus in Kenya. The control region has a high rate of base substitution and 
changes in the genome are accumulated here faster, making the region suitable for addressing questions 
of population genetic variation (MeyeR 1994). Similarly, microsatellite markers are highly polymorphic, 
abundant, short sized and repetitive arrays and are conserved between species and families, and hence 
offer a higher resolution in inferring genetic variation among populations (waldBieseR et al. 2001; 
CunninGhaM & MeGhen 2001).

Material and methods

Study sites and sample collection

We collected samples of C. gariepinus from 10 different sites in Kenya. The 10 sites comprised five 
lakes or natural habitats (Lakes Victoria (LVG), Kanyaboli (LKG), Turkana (LTA), Baringo (LBA) and 
Jipe (LJP)) and five farms (Sangoro Aquaculture Center (SAN), Sagana Aquaculture Center (SAG), 
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University of Eldoret Fish Farm (UoE), Wakhungu Fish Farm (WKU), and Kibos Fish Farm (KIB)) as 
shown in Table 1 and Fig.1. On the other hand, the nuclear microsatellite DNA marker analysis involved 
samples of C. gariepinus from four natural populations (LVG, LKG, LTA and LBA) and four farms 
(SAN, SAG, UoE and KIB). The sample sizes and sequence accession numbers (publicly available 
in GenBank) of the fish samples are shown in Table 1. Fish samples were collected from lakes by gill 

Figure 1 – Map of Kenya showing sampling sites for 10 populations of C. gariepinus (Burchell, 1822). 
Natural populations were collected from Lakes Victoria (LVG), Kanyaboli (LKG), Turkana (LTA), 
Baringo (LBA) and Jipe (LJP), represented on the map in light blue colour. Farmed populations were 
collected from fish farms SAN, SAG, UoE, KIB and WKU, represented by a star in deep blue colour.
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netting, hook and line, and traps, while seine netting was used at fish farms to catch brooders kept in 
earthen ponds. Species were identified using identification keys for field studies (witte & van densen 
1995). Fin clips were collected as the source of DNA, and immediately preserved in 95% ethanol in 
cryovials until laboratory genetic studies were done. All the farms sampled sourced their brood stock 
in the early 1990s, with no records of replacement of original stocks. Actual numbers of brood stock at 
each is unknown, and some of the farms retain a portion of their offspring from propagation to augment 
brood stock sizes, and none practices selective breeding.

DNA extraction

Genomic DNA was extracted from approximately 25 mg of fin clip tissue using the Invitrogen 
PureLink genomic DNA mini kit (cat no. K1820-02), according to the manufacturer’s instructions. 
The purity and concentration of eluted DNA was determined by spectrophotometry using a Nanodrop 
2000-Spectrophotometer (Thermo Scientific). Extracted DNA was stored at -20°C until required for 
further analysis.

Mitochondrial DNA analysis 

DNA samples from 268 samples of C. gariepinus from 10 sites were PCR amplified in 
a thermal cycler (ABI 9700) using a pair of mitochondrial D-loop primers (forwards 
primer: L16473 5′-CTAAAAGCATCGGTCTTGTAATCC-3′; reverse primer: H355 5′- 
CCTGAAATGAGGAGGAACCAGATG- 3′ (NAZIA et al., 2010). PCR reactions were done using 
AccuPower PCR PreMix (Bioneer South Korea), in a 20 μl volume containing 10 μM each of forward and 
reverse primers, and 50ng DNA. PCR conditions were as described by nazia et al. (2010). The success 
of the PCR reaction was confirmed by 2.0% agarose gel electrophoresis of PCR products. PCR products 
were purified by ethanol precipitation (uthiCe & Benzie 2003; BaRasa et al. 2014). Precipitated DNA 
was washed once with 70% ethanol, air dried for 20 minutes, re-suspended in 20 μl distilled water and 
stored at -20°C. The reverse primer H355 was used to sequence the PCR product of the D-loop region. 
The BigDye terminator premix sequencing kit (cat no. 4336911 from ABI Life Technologies) was used 
for sequencing reactions, following the manufacturer’s protocol. Products of the sequence reaction 

TABLE 1

Sampling sites, coordinates of sampling sites, sample sizes and GenBank accession numbers of sequences 
for 268 samples of C. gariepinus (Burchell, 1822) collected from 10 different localities (five natural and 
five farms) in Kenya. 

Site Population 
Code Coordinates Sample 

size
GenBank sequence 
accession numbers

Lake Victoria LVG 34°38′ E, 0°21′ S 24 KC594181-KC594205
Lake Kanyaboli LKG 00°04′30′′ N, 

34°09′36′′ E
27 KC594206-KC594232

Lake Turkana LTA 3°37′ N, 36°0′ E 28 KJ814254-KJ814281
Lake Baringo LBA 0°38′ N, 36°05′ E 24 KJ814282-KJ814305

Lake Jipe LJP 3°35′ S, 37°45′ E 32 KJ814306-KJ8143037
Sangoro Aquaculture Centre SAN 0°30′ N, 0°45′ E 30 KJ814338-KJ814367
Sagana Aquaculture Centre SAG 0°39′ S, 37°12′ E 23 KJ814368-KJ814390

University of Eldoret Fish Farm UoE 0°57′ N, 35°30′ E 29 KJ814391-KJ814419
Kibos Fish Farm KIB 0°04′ S, 4°48′ E 26 KJ722140-KJ722165

Wakhungu Fish Farm WKU 0° 30′ N, 0° 00′ E 25 KJ814420-KJ814444
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were cleaned by precipitation in absolute alcohol, re-suspended in Hi DiTM Formamide, and BigDye 
terminator premix, and run on the ABI 3730xl Genetic Analyzer with a capillary length of 50 cm. 

Microsatellite DNA analysis

Genotyping at six loci was done on amplified products from 160 samples of C. gariepinus from eight 
sampling sites (LVG, LKG, LTA, LBA, SAN, SAG, UoE and KIB; LJP and WKU were not included) 
in Kenya. DNA was extracted as described above in the mtDNA study, its purity and concentration 
quantified on Nanodrop 2000 spectrophotometer (Thermo Scientific), and PCR amplified. Of the six 
microsatellite markers (Table 4), four (Cga1, Cga3, Cga9, Cga10) were developed by GalBuseRa 
et al. (1996), while two (Cba2, Cba19) were developed by yue et al. (2003). For the four markers 
(Cga1, Cga9, Cga10 and Cba2), PCR reaction was carried out in 12.5 µl reaction volume, comprising 
of 0.625 µl each of forward and reverse primers (reconstituted to 10 pmoles/µl each), 4 µl of distilled 
water, 6.25 µl of 2× Kapa2G™ Robust HotStart Ready mix, and 1 µl of template DNA sample.

The PCR reaction mixes for Cga3 and Cba19 were similar as for above, except 3 µl water and 1 µl of 
25 mM magnesium chloride and 3.5 µl water and 1 µl of 25 mM magnesium chloride were used for 
Cga3 and Cba19 respectively. For Cga3 and Cga10, samples were amplified at an annealing temperature 
of 60°C while for Cga1 and Cga9, annealing temperature was 56°C and 65°C respectively. Initial 
denaturation of samples was done for 3 minutes at 95°C, followed by 35 cycles of amplification each at 
95°C for 15 seconds, 15 seconds of annealing, 15 seconds at 72°C, with a final  primer extension step 
of 10 minutes at 72°C. For Cba2 and 19, the cycling conditions were an initial denaturation at 94°C for 
3 minutes, followed by 35 cycles of amplification at 94°C for 30 seconds, primer annealing at 56°C for 
30 seconds, and primer extension at 72°C for 1 minute, with final primer extension step of 5 minutes 
at 72°C. 3 µl of each PCR product was electrophoresed on a 2% agarose gel, to confirm the success of 
PCR amplification.

PCR products were prepared for analysis as follows: each reaction consisted of 9.25 µl of Hi-Di 
Formamide, 0.25 µl of Genescan-500 LIZ size standard and 0.5 µl PCR sample. The mix was heated at 
95°C for 3 minutes, then chilled immediately on ice and analyzed on the ABI 3730xl Genetic Analyzer 
(Applied Biosystems). 

Mitochondrial DNA data analysis

DNA sequences were trimmed, assembled and aligned in CLC main Work bench (version 6.7.2, Inqaba 
Biotech). Duplicate haplotypes were identified using DnaSP (version 5) (liBRado & Rozas 2009). 
Genetic diversity within populations was determined as number of distinct haplotypes, haplotype 
frequencies and nucleotide diversities, using DnaSP and ARLEQUIN (version 3.5) (exCoFFieR et al. 
2005). ARLEQUIN (version 3.5) was also used to determine genetic differentiation between groups, 
expressed as FST (wRiGht 1965). A maximum likelihood tree (with C. liocephalus as an outgroup) 
was drawn using MEGA (taMuRa et al. 2007), with 1,000 bootstrap repeats. Modeltest 3.7 (posada & 
CRandall 1998) was used to choose the most likely model of evolution for the Clarias mtDNA data 
set. A Minimum Spanning Network showing the relationship between haplotypes was drawn using 
Network 4.56, with a median joining approach (Bandelt et al. 1999).

Microsatellite DNA data analysis

Fragments were scored using GENE MARKER version 2.6.3 for size and number of alleles at loci. Mean 
observed heterozygosity and expected heterozygosity were determined in Microsatellite Toolkit version 
3.1.1 (paRk 2001). Mean number of private alleles and effective alleles were computed in ARLEQUIN 
version 3.5 (exCoFFieR et al. 2005). Deviations from Hardy Weinberg expectations were tested using 
GenAlEx (version 6.502) (peakall & sMouse 2012). The number of clusters in the samples was 
determined by the Bayesian clustering algorithm implemented in the program STRUCTURE version 
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2.3.4 (pRitChaRd et al. 2000), under an admixture model with correlated allele frequencies. The program 
was run with a burn-in period of 10,000 and 100,000 Monte Carlo simulations. The number of K was 
tested for K= 2 to 7 (i.e., the presumed number of populations or clusters in the samples), and for each 
of these K values, 10 runs were made. STRUCTURE HARVESTER (web version 0.6.94) (eaRl & von 
holdt 2012) was used to compute the number of genetic clusters in the samples. This was inferred from 
the distribution of delta K (∆K), an ad hoc statistic based on the rate of change in the log probability of 
data between successive K values (evanno et al. 2005). The actual K value most suitable for the data 
set is the modal value of the ∆K distribution (evanno et al. 2005). Identity of particular populations 
making up the genetic clusters revealed by STRUCTURE HARVESTER was determined by a series of 
eight (representing the eight sampling sites) runs in STRUCTURE and STRUCTURE HARVESTER, 
excluding samples from one site for each run. The membership coefficient of each of the eight pre-
defined populations in each of the genetic clusters was determined as an average of outputs of ancestry 
proportions generated by STRUCTURE.

Results

Catfish genetic diversity inferred from mitochondrial D-loop DNA sequences

Nucleotide diversity ranged from 0.006 to 0.067, with LKG, LBA and WKU having the lowest value of 
0.006, while SAG had the highest value of 0.067 (Table 2). Therefore among the five natural populations 
of catfish, nucleotide diversity was lowest in LBA, and highest in LJP, but highest in SAG for the 
farmed populations. The number of haplotypes ranged from seven to 14 for the 10 populations, with 
LVG and SAG having the highest among natural and farmed populations respectively. LBA and LTA 
had the lowest number of haplotypes with eight each among the samples of natural populations, while 
WKU and UoE had the lowest number with seven each among samples from the farms (Table 2). Of 
the total number of haplotypes, all populations except LTA and LJP shared haplotypes. A total of eight 
haplotypes were shared among populations. This therefore left each of the populations with a number of 
singletons (private haplotypes), totalling 88.2% of the haplotypes, with LJP having the highest number 
at 12 (haplotypes H-18 to 29), while KIB and WKU had a single private haplotype each (H-7 and H-68 
respectively). Therefore, with the exception of SAG, all the farmed populations had a lower number 
of singletons than natural populations (Table 2). Haplotype 2 was the most frequent, appearing in 76 
individuals of the LVG group. 

The diversity of haplotypes (h) was consistent with the number of haplotypes, where populations with 
a higher number of haplotypes also had a higher diversity of haplotypes. However, LJP which had 
the third highest number of haplotypes had the lowest haplotype diversity. Haplotype diversity values 
ranged from 0.679 to 0.941, with SAG reporting the highest haplotype diversity (Table 2). The D-loop 
region in the populations segregated at a total of 386 polymorphic sites, with LJP having the highest with 
161sites, while for the rest of the populations, the sites ranged from 11 to 112 (Table 2). 

Pairwise comparisons for FST values among populations revealed significant differentiation in 38 
out of 45 comparisons (Table 3). Among the natural populations, LVG, LTA, LBA and LJP were all 
differentiated (p≤0.001). However, LVG and LKG were not significantly differentiated (p≥0.01), but 
LKG was differentiated from LTA, LBA and LJP (p≤0.001). Among the farmed populations, SAG-
SAN, SAG-WKU, SAG-UoE and KIB-SAG pairwise comparisons were significantly different 
(p≤0.001), (Table 3), showing the possibility of SAG having been sourced from a site different from 
that of other farms, or a combination of sites. Similarly, WKU-SAN and WKU-UoE were significantly 
different at p≤0.01, while KIB-UoE and SAN-UoE were significantly different at p≤0.05. Pair-wise FST 
comparisons between natural and farmed C. gariepinus showed all farmed populations were significantly 
differentiated (p≤0.01) from LTA, LBA and LJP. This differentiation in populations, where LVG, LTA, 
LBA, LJP and SAG show significantly different values of FST when compared with each other, or with 
samples from fish farms, is also clearly reflected in phylogenetic relationships (Figs 2–3). In both the 



112

Belg. J. Zool. 147 (2): 105–127 (2017)

Maximum likelihood tree (Fig. 2) and the minimum spanning networks for haplotypes (Fig. 3), the 
samples clustered into five clades: LVG/LKG, LTA, LBA, LJP and SAG. 

Catfish genetic diversity inferred from Microsatellite DNA markers

The mean number of alleles per locus (Na) was generally moderate in C. gariepinus populations, ranging 
from 3.80±0.84 in LBA to 10.83±3.66 in SAN. The mean observed heterozygosity (HO) ranged from 
0.465±0.054 in LBA to 0.795±0.037 in SAN (Table 5). Similarly, values for expected heterozygosity 
(HE), ranged from 0.582±0.045 in LBA to 0.839±0.049 in LVG, and were slightly higher than HO 
values. However, AMOVA analysis showed that variation in the populations was mainly attributed to 
individuals, with 96.72% of the variation in samples of C. gariepinus. Variation among individuals 
within populations was 7.49%, while variation among populations was minimal. 

TABLE 2

Genetic diversity values for the 268 samples of C. gariepinus (Burchell, 1822) collected from 10 different 
sampling sites in Kenya (five natural and five farms), as inferred from 427 base pairs of mtDNA D-loop 
control region sequences. Π is the nucleotide diversity, while h is the haplotype diversity. 

Population LVG LKG LTA LBA LJP SAN SAG WKU UoE KIB
Sample 24 27 28 24 32 30 23 25 29 26
Π 0.009 0.006 0.009 0.006 0.037 0.006 0.067 .006 .009 0.009
No of haplotypes 13 10 8 8 12 9 14 7 7 9
h 0.813 0.745 0.791 0.794 0.679 0.766 0.941 0.72 0.732 0.812
Shared haplotypes 6 5 0 1  0 5 4 6 4 8
Singletons 7 5 8 7 12 4 10 1 3 1
Polymorphic sites 21 18 12 16 161 12 112 11 12 11

TABLE 3

FST pair wise comparisons of 268 samples of C. gariepinus (Burchell, 1822) from 10 different sampling 
localities in Kenya, based on 427 bp of mitochondrial D-loop control region sequences. Values in bold 
are significantly different. A total of 38 of 45 pair wise comparisons are significantly different. 

LVG LKG LTA LBA LJP SAN SAG WKU UoE KIB
LVG 0.000
LKG 0.014 0.000
LTA 0.853*** 0.877*** 0.000
LBA 0.534*** 0.652*** 0.870*** 0.000
LJP 0.957*** 0.959*** 0.959*** 0.958*** 0.000
SAN 0.011 0.000 0.883*** 0.660*** 0.962*** 0.000
SAG 0.253*** 0.281*** 0.393*** 0.337*** 0.921*** 0.290*** 0.000
WKU 0.058* 0.155** 0.870*** 0.562*** 0.958*** 0.163** 0.275*** 0.000
UoE 0.019 0.092** 0.847*** 0.483*** 0.959*** 0.087* 0.253*** 0.058** 0.000
KIB 0.040 0.141** 0.851*** 0.410*** 0.957*** 0.153 0.268*** 0.043 0.069* 0.0
*p≤0.05, **p≤0.01, ***p≤0.001
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Figure 2 – Maximum likelihood tree for 68 haplotypes of 268 samples of C. gariepinus (Burchell, 
1822) from 10 different sampling sites in Kenya. Five clusters are discerned, consisting of LVG/LKG, 
LJP, LBA, LTA and SAG. The label is borrowed from the median network (Fig. 3). Numbers at nodes 
indicate confidence levels, based on 1,000 bootstrap iterations. Nodes without numbers have confidence 
levels less than 50%. The LVG/LKG cluster groups LVG and LKG, and farmed samples UoE, KIB, 
SAN and SAG. LTA cluster has samples from SAG. The LBA cluster comprises samples from UoE and 
WKU. C. liocephalus is the outgroup.
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Figure 3 – Minimum spanning network showing mutational relationships between 68 haplotypes from 
268 individuals of C. gariepinus (Burchell, 1822) from 10 different sampling sites in Kenya. Size of 
circle is proportional to the frequency of haplotypes. The small black dots denote mutational steps, with 
a single dot denoting one mutational step. Five clusters are discerned, consisting of four natural (LVG/
LKG, LTA, LBA and LJP) and one farmed population (SAG). Samples from farms group in to LVG and 
LBA clusters.

TABLE 4

Microsatellite primer sequences with nucleotides, range of allele size, dye colour and reference for the 
six loci used to genotype 160 samples of C. gariepinus (Burchell, 1822) from eight different sampling 
localities (four natural and four farms) in Kenya. 

Primer Nucleotides Size range Dye colour Reference

CGA01 5′ GGC TAA AAG AAC CCT GTC TG 3′
3′ TAC AGC GTC GAT AAG CCA GG 5′

92–104 Green GalBuseRa et al. 1996

CGA03 5′ CAC TTC TTA CAT TTG TGC CC 3′
3′ ACC TGT ATT GAT TTC TTG CC 5′

142–168 Blue GalBuseRa et al. 1996

CGA09 5′ CGT CCA CTT CCC CTA GAG CG 3′
3′ CCA GCT GCA TTA CCA TAC ATG 5′

180–196 Green GalBuseRa et al. 1996

CGA10 5′ GCT GTA GCA AAA ATG CAG ATG C 3′
3′ TCT CCA GAG ATC TAG GCT GTC C 5′

102–138 Green GalBuseRa et al. 1996

CBA02 5′ GCC CTG CGA ACA TCT CCA 3′
3′ TGG CTC CAG CAC TCA CAA 5′

176–190 Yellow yue et al. 2003

CBA19 5′ CAG GGC TAA ATT ACC CAT AAT CA 3′
3′ GGC ATG TGT TAT AAC ATG TGA GG 5′

215–255 Green yue et al. 2003
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All the populations had private alleles, i.e., alleles restricted or specific to a particular population. 
The number of private alleles ranged from 5.47±0.87 in LKG to 5.91±0.67 in KIB. The coefficient of 
inbreeding (FIS) was significantly different (p≤0.05) in LKG and three farmed populations UoE, KIB 
and SAG, but when adjusted for Bonferroni correction, only LKG and two farmed populations (UoE and 
KIB) were significantly different (p≤0.01) (Table 5). 

None of the fish populations showed significant deviations of genotypic frequencies from those 
expected under HWE at all six loci. However, deviation was observed only in LBA at locus Cga9, and 
LVG at locus Cga3, with a significantly different p-value (p≤ 0.05) for Chi-square. After Bonferroni 
correction, both loci were significantly different (p≤0.01), but the difference was not significant at the 
lower confidence level (p≥0.001). Locus Cba2 for LBA was left out of the analysis for this population 
because it was monomorphic (Table 6). 

FST values were significantly different (p ≤ 0.01) in 15 out of 28 pairwise comparisons (Table 7). Of 
these, LVG-LTA and LVG-LBA comparisons were highly significant (p≤ 0.001). Most of the significantly 
different pairwise comparisons were between samples of natural populations from different sites, and 
between natural and farmed samples. 

From the STRUCTURE HARVESTER, samples grouped into four genetic clusters (Figs 4–5), with the 
first three clusters being LVG/LKG, LTA, and LBA. The fourth cluster was deduced as SAG. Samples 
from the LVG pre-defined population constituted the highest proportion of the LVG/LKG cluster at 
0.4483 (Table 8). Similarly, samples from the LBA gene pool constituted the highest proportion of 
the LBA cluster, with a membership coefficient of 0.9748, while SAG samples dominated in the SAG 
cluster with a membership coefficient of 0.6219. Likewise, the LTA gene pool constituted the highest 
proportion of the LTA cluster, with a membership coefficient of 0.8241. SAN, UoE and KIB shared the 
highest proportion of membership with the LVG cluster (0.5385 to 0.7092) (Table 8). 

TABLE 5

Level of genetic diversity (Na is the number of alleles; Ho is the observed heterozygosity; and H
e
 is 

the expected heterozygosity) in C. gariepinus (Burchell, 1822) sampled from eight different localities 
in Kenya and genotyped at six microsatellite loci. F

is
 values in bold are significantly different. Data is 

based on 160 fish samples from eight sampling sites (four natural and four farmed). 

Population  N Na HO HE
No. of private 

alleles
No. of effective 

alleles 
Coefficient of 

inbreeding (FIS)

LVG 23 8.0±3.5 0.79±0.05 0.839±0.05 5.86±0.79 6.66± 0.32 -0.614

LKG 20 8.17±3.31 0.72±0.05 0.827±0.05 5.47±0.87 6.35± 0.32 0.112*

LTA 20 8.00±2.68   0.74±0.05 0.824±0.04 5.53±1.11 6.66± 0.40 0.266

LBA 18 3.80±0.84 0.465±0.05 0.582±0.05 5.75±0.43 6.35± 0.61 0.198

SAN 20 10.83±3.66 0.795±0.04 0.835±0.04 5.50±0.78  5.79± 0.84  0.016

SAG 20 7.67±2.73 0.55±0.05 0.758±0.04 5.55±0.62  6.66± 0.32 0.250**

UoE 20 8.83±2.56 0.737±0.04 0.820±0.04 5.61±0.56  6.66± 0.61  0.095*

KIB 20 9.67±2.88 0.699±0.05 0.846±0.04 5.91±0.67   6.66± 0.32 0.069*
*p≤0.01;  **p≤0.05
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Figure 4 – Graphical representation of results from STRUCTURE, using STRUCTURE HARVESTER. 
K is the most likely number of genetic clusters into which the samples group, representing the genetic 
population structure. The actual K for the data set is inferred as the modal value of the delta K 
distribution. Delta K is an ad hoc statistic that shows the rate of change in the log probability of data 
between successive K values being tested. The 160 samples of C. gariepinus (Burchell, 1822) from eight 
different sites in Kenya most likely represent four genetic clusters. Samples of LJP and WKU were not 
included in the genotyping.

TABLE 6

P-values for HWE for 160 samples of C. gariepinus (Burchell, 1822) from eight sampling sites (four fish 
farms and four natural habitats) in Kenya, genotyped at six loci. Values in bold are significantly different 
at p ≤0.01 and 0.05. 

Population Locus
Cga1 Cga3 Cga9 Cga10 Cba2 Cba19

LVG 0.366  0.003  0.411  0.366  0.451 0.015  
LKG 0.064  0.116  0.014  0.423  0.317  0.711
LTA 0.058 0.127 0.042 0.029 0.258 0.637
LBA 0.013  0.563  0.010  0.348  – 0.651
SAN 0.579  0.246  0.015  0.023  0.821  0.033
SAG 0.026  0.270  0.014  0.015  0.057  0.140
UoE 0.015  0.763  0.016  0.883  0.546  0.474
KIB 0.077  0.954  0.020  0.170  0.166  0.135  



117

BARASA J.E. et al., Genetic diversity in African catfish

Discussion

Mitochondrial DNA 

The nucleotide diversity of the catfish populations was low, while haplotype diversity was high, but 
comparable to values reported by other studies (Roodt-wildinG et al. 2010, nazia et al. 2010). This 
shows that genetic variation in the populations could be accounted for by within population variation, 
which was comparatively higher than values reported for populations of C. macrocephalus from 
Malaysia (nazia et al. 2010), whose nucleotide and haplotype diversities were 0.003 in all the three 
populations and 0.657 to 0.765 respectively. However, haplotype and nucleotide diversities in the current 

Figure 5 – STRUCTURE bar plot of 160 individuals of C. gariepinus (Burchell, 1822) from eight 
different sampling sites in Kenya, genotyped at six microsatellite loci. Each vertical bar represents an 
individual, and each colour represents a probability that the individual is assigned to each genetic cluster 
identified (K=4), using the admixture proportion, qi, from the output of the STRUCTURE software. 
LVG is the Lake Victoria, LTA the Lake Turkana, LBA is the Lake Baringo, while SAG is the Sagana 
Fish Farm populations of C. gariepinus. 

TABLE 7

Pair wise FST values for 160 samples of C. gariepinus (Burchell, 1822) from eight different sampling 
localities (four natural and four farmed) in Kenya, genotyped at six loci. Values in bold are significantly 
different. A total of 15 out of 28 pair wise comparisons are significantly different.  

LVG LKG LTA LBA SAN SAG UoE KIB
LVG 0.000
LKG 0.247 0.000
LTA 0.071** 0.172 0.000
LBA 0.000** 0.018* 0.243* 0.000
SAN 0.187 0.089 0.189 0.253* 0.000
SAG 0.227 0.159 0.163* 0.290* 0.077* 0.000
UoE 0.206 0.112 0.152* 0.267* 0.033* 0.092* 0.000
KIB 0.115 0.083 0.095* 0.210* 0.029 0.088 0.040* 0.000

*p≤0.01; **p≤0.001
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study were similar to values reported for populations of C. gariepinus from South Africa, which ranged 
from 0.838±0.030 to 0.904±0.019 and 0.006±0.003 to 0.008±0.040 respectively (Roodt-wildinG et 
al. 2010). The presence of shared haplotypes is attributed to gene flow among the populations, and this 
was restricted to farmed populations (SAN, UoE, SAG, KIB and WKU), which were mainly sourced 
from Lake Victoria, or from other fish farms that initially collected their brood stock from Lake Victoria. 
Human translocation of fish populations across drainage basins (nazia et al. 2010) for aquaculture is 
common, especially in Clarias aquaculture that frequently depends on collection of males from natural 
populations to provide the pituitary hormone and milt during artificial propagation at hatcheries (BaRasa 
et al. 2014), and when fish escape, this could lead to gene flow and homogeneity of geographically 
isolated populations of the species. However, SAG formed a distinct cluster of its own, unlike samples 
from the rest of the fish farms, which grouped into LVG and LBA. This finding, together with SAG 
reporting the highest number of haplotypes, and haplotype and nucleotide diversities among the 10 
sampling sites seem to suggest that farmed catfish at Sagana Aquaculture Centre were sourced from 
multiple sites, including LVG. However, most of these sites seem not to have been sampled by this 
study, and could include rivers and farms around the Mount Kenya region. and Sagana Aquaculture 
Centre. A combination of genetically distinct stocks is reported to increase genetic variation in farmed 
C. gariepinus (van deR Bank et al. 1992; Grobler et al. 1997). 

However, samples of SAG appeared in the LVG/LKG and LBA cluster. This could be attributed to 
human-assisted translocation of the population for aquaculture, especially in the late 1990s and early 
2000s, when the farm was the main source of fish seeds (O. niloticus and C. gariepinus) in Kenya after 
a rehabilitation and refurbishment of the hatchery in the mid 1990s. At the same time the Aquaculture/
Collaborative Research Support Programme project was initiated at the SAG Centre and on-farm trials 
of fish growth in western Kenya were undertaken, using seeds from the Centre (nGuGi et al. 2003). 
Similarly, seeds of C. gariepinus from the Centre were transported and stocked in farmers’ ponds in 
Uasin Gishu county (BARASA, personal observation), before the UoE fish farm in the county was 
established. From these ponds, the fish were distributed widely in the region, and could be the source of 
SAG in the LVG and LBA clusters. 

In addition, farmed populations, except SAG, had lower haplotype diversities than natural populations. 
This could be attributed to genetic drift, which caused a reduction in gene frequencies in the samples. 
Generally, the number of brooders maintained at most small scale farms of C. gariepinus is low, which 
declines further because of cannibalism among the fish (suleM et al. 2006) and the sacrifice of male 

TABLE 8

Proportion of membership of each pre-defined population in each of the four genetic clusters (K=4). 
STRUCTURE was run with 10,000 Burn-in period and 100,000 Monte Carlo simulations.

Pre-defined population Inferred genetic cluster Sample size
LVG/LKG LBA SAG LTA

LVG 0,4482 0,04 0,069 0,4429 23
LKG 0,7592 0,0094 0,0538 0,1776 20
LTA 0,0733 0,0561 0,0466 0,8241 19
LBA 0,0099 0,9748 0,0052 0,0101 18
SAN 0,5385 0,0119 0,0239 0,4257 20
SAG 0,2339 0,038 0,6219 0,1062 20
UoE 0,5873 0,0131 0,0131 0,3865 20
KIB 0,7092 0,011 0,0138 0,266 20
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brooders for milt and the pituitary hormone (de GRaaF et al. 1995). These factors also cause an 
imbalanced sex ratio among brood stock and increase genetic drift in populations (allendoRF 1986; 
vRijenhoek 1998). 

Of the five natural populations sampled, LKG and LJP had the lowest haplotype diversities. Both lakes 
are small and isolated (L. Kanyaboli is 10.5 km2, L. Jipe 30 km2, L. Baringo 130 km2, L. Turkana 
7,000 km2, while L. Victoria is 69,000 km2 in surface area), and higher fishing pressure, especially in 
the LKG population (aloo 2003), could have reduced its genetic diversity, through fishing mortality 
(van deR walt et al. 1993). Small and isolated populations also suffer lower genetic diversities due 
to genetic drift that results from founder effects and lower effective population sizes (FRanklin & 
FRankhaRM 1998). Although the haplotype diversities in LVG, LTA, LBA and LJP were comparable, 
ranging from 0.679 to 0.813, LVG had a slightly higher diversity, which was expected, because of its 
larger population size. 

On the other hand, the high number of private haplotypes in the populations could be attributed to the 
rapid rate of evolution of the mitochondrial D-loop region as a marker for population genetic structure 
(MeyeR 1994). Changes in the genome are captured by the mitochondrial region because its effective 
population size is four-fold lower than the nuclear genome (tRiantaFyllidis et al. 1999). This leads 
to private haplotypes in populations, even in populations that are under genetic drift, as reported in 
C. gariepinus of the satellite lakes of Yala swamp, Kenya (BaRasa et al. 2016) and siluroid catfishes of 
Europe (tRiantaFyllidis et al. 1999). 

High differentiation was noted among populations, which could be due to geographic isolation of the 
main populations. According to Beadle (1974) and Giddelo et al. (2002), rifting caused the elevation 
of Lake Victoria on to an uplifted plateau (1,000 m), separating it from the connectivity with the western 
rift. Although both lakes Baringo and Turkana are in the old eastern or Gregory rift, Lake Turkana 
and the Omo River were separated from the Nile River system less than 10,000 years ago (duMont 
1986), when the Kanguen river became affected by tectonic uplifting (Beadle 1974). This disrupted the 
connectivity of Lakes Turkana and Victoria, and Turkana and Baringo. The geographical separation of 
the water masses could have led to high differentiation of populations of C. gariepinus, which was also 
reported by Roodt-wildinG et al. (2010) and Giddelo et al. (2002). 

These natural populations of C. gariepinus therefore represent important genetic resources that could 
be harnessed for intensive aquaculture programmes for higher food security and incomes among fish 
farmers. In addition, these genetically differentiated populations represent important biodiversity 
resources or genetic diversity that should be conserved.

Microsatellite DNA

The populations were generally in HWE, since no population showed a deviation from HW at all loci. 
A departure from HW equilibria was observed only at locus Cba9 for LBA and LVG at locus Cga3, 
showing a heterozygote deficit, attributed to small sample sizes. Significantly higher values of FIS 
(p≤0.01) observed in LKG, SAG, UoE and KIB could be attributed to loss of heterozygosity due to 
small population size. Although the exact number of brooders used at the hatcheries is unknown due 
to poor record keeping, maintaining lower numbers of brood stock is common at hatcheries for C. 
gariepinus (such as SAG, SAN, UoE and KIB), where certain females are selected and re-used in 
artificial propagation. Although the size of a fish population is not entirely a function of the habitat size, 
numbers of C. gariepinus inhabiting Lake Kanyaboli may be comparatively smaller than the populations 
in other lakes. The smaller size of LKG therefore, coupled with overfishing (aloo 2003) that leads to 
fishing mortality, may cause loss of heterozygosity in LKG. Insignificant values of FIS in LVG, LTA 
and LBA show that inbreeding was absent in these populations, which was expected because of the 
larger size of the water masses, and therefore a comparatively higher population size than LKG and 
farmed populations. Total landings of C. gariepinus in 2013 were 2368, 61, 26 and 38 metric tons 
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for Lakes Victoria, Turkana, Baringo and Kanyaboli respectively (state depaRtMent oF FisheRies 
2013), although the dynamics influencing fish production at each of the lakes differ. A larger watermass 
provides more spawning grounds, reducing inbreeding in fish (CastRiC et al. 2002).

Generally, higher genetic variation in natural than in farmed fish populations is common, as reported in 
the Indian major carp Catla catla (hansen et al. 2006; alaM & islaM 2005), and the Atlantic salmon, 
Salmo salar (noRRis et al. 1999). These studies demonstrated the potential impacts of domestication on 
genetic variability in fish, which occurs by inbreeding that decreases the fitness of populations (hansen 
et al. 2006), fixation of deleterious alleles or due to absence of variation at loci showing over-dominance 
(hedRiCk & kalinowski 2000).

In this study however, all farmed populations except SAG had higher mean number of alleles than 
natural populations. Artificial propagation of C. gariepinus at hatcheries involves collection of males 
from wild habitats to provide milt for egg fertilization, and the pituitary gland for induced breeding. This 
introduces novel alleles, increasing the mean number of alleles without increasing heterozygosity in the 
fish stocks at the hatcheries, a practice widely used to increase genetic variation after several generations 
of repeated breeding of the same brooders (van deR Bank et al. 1992; hedRiCk & kalinowski 2000; 
waChiRaChaikaRn et al. 2009; sukManoMon et al. 2012). 

However, among the natural populations, the lower number of alleles of LBA could be attributed to 
a recent colonization of the lake by C. gariepinus, after the lake witnessed frequent drying during the 
Holocene (veRsChuRen et al. 2000), especially given its shallow depth (maximum depth 2.1 m) and 
a small surface area of 130 km2 (Beadle 1974; BesseM et al. 2008). Empirical evidence shows that 
Lake Baringo was completely dry about 200 years ago (BesseM et al. 2008). This implies that the 
evolutionary age of a fish lineage influences genetic variation. Lower genetic variation is reported in 
fish with recent colonization history than in older and more stable lineages (BaRluenGa & MeyeR 
2010). Although both LTA and LBA are located in the eastern Rift, LTA showed a higher mean number 
of alleles and therefore higher genetic variation than LBA, because of a historical connectivity with the 
Western Nile (duMont 1986). Rifting cut off this connectivity, but LTA population retained the higher 
genetic diversity extant in C. gariepinus of the Nile system, but LBA was seeded by the Kanguen River 
after re-filling in the late Holocene (duMont 1986; BesseM et al. 2008). 

On the other hand, LVG, LKG and LTA showed a uniform number of alleles and HE, which were much 
higher than for LBA. This could be a result of historical connectivity of L. Victoria to the western arm 
of the rift, sharing ichthyofauna with Lakes Kyoga, Albert and George before it was uplifted to 1,000 
m by tectonic uplifting (Beadle 1974). This uplifting occurred in the Miocene (6 million years before 
present), and disconnected Lake Victoria from this historical connectivity to the western rift (paRtRidGe 
et al. 1995), but the population of C. gariepinus retained the higher genetic variability of the Nile system. 
This diversity in genetic variability could have been maintained by the large size of the Lake Victoria 
water mass (and therefore the large size of the LVG population) (BaRasa et al. 2014), despite predation 
of LVG population of C. gariepinus by the exotic L. niloticus (GoudswaaRd & witte 1997). The 
historical connectivity of LVG and LTA to the western arm of the rift could also account for comparable 
genetic diversities between the two populations of C. gariepinus.

The number of alleles and HE among natural catfish populations showed minimal variation (apart 
from LBA), while both the number of alleles (Na) and HE varied strongly among farmed populations. 
This is consistent with the results of hansen et al. (2006), where strong variation in both Na and HE 
among farmed fish samples occurs due to genetic drift in samples, related to breeding practices, such as 
sacrificing male brooders for milt and pituitary, and re-use of selected females in artificial propagation 
of C. gariepinus at hatcheries. 

A total of four genetic clusters were inferred from the data, comprising the LVG/LKG, LTA, LBA and 
SAG populations. Of the four populations, SAG was the only farmed population forming a distinct 
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genetic cluster, which is also evident in the maximum likelihood tree (Fig. 2) and median spanning 
network (Fig. 3). This reflects a high divergence of the SAG population, which could be attributed to the 
possibility of multiple sources of the C. gariepinus in use at the farm. Identity of the populations making 
up the four genetic clusters was supported by membership coefficients, with only LVG, LTA, LBA 
and SAG comprising high memberships of respective samples from pre-defined populations (0.4483 
to 0.9748). Overall, both markers have shown a clear distinction between the natural populations. The 
mitochondrial D-loop control region revealed a higher among-population genetic variation than did 
microsatellite markers, which were more informative for variation within populations. 

Conclusions

In conclusion, a combination of the high resolution microsatellite markers and the rapidly evolving 
D-loop control region in this study has established high extant genetic variation in natural populations 
of C. gariepinus compared to farmed populations in Kenya. LVG/LKG, LTA, LBA, LJP and SAG are 
significantly different, at both markers, and therefore constitute important catfish genetic resources that 
could be exploited for higher aquaculture production in Kenya. For instance, the populations could be 
used in selective breeding or genetic improvement programmes to develop a base population with several 
gene pools. These populations should therefore be managed separately, and inter basin translocation of 
the populations should be avoided in order to maintain the genetic distinctness of each. A high number 
of haplotypes in the study samples were private, indicating uniqueness, which could be conserved 
by avoiding translocation of natural populations of C. gariepinus across drainage basins. However, 
Kapkuikui area of Lake Baringo drainage with intensive aquaculture activities (ndiwa et al. 2016), 
has been recently stocked with C. gariepinus from Dominion Farms Limited (BaRasa et al. 2016), a 
multinational company reclaiming the Yala swamp, which hosts Lake Kanyaboli, for commercial food 
production. The translocation could erode the genetic distinctness of C. gariepinus of Lake Baringo.

Maintaining a high number of brooders at hatcheries, and sound brood stock husbandry through better 
feeding regimes may prevent loss of genetic variation in farmed C. gariepinus. Reducing exploitation 
pressure on natural populations will help to maintain within-population genetic variation in populations 
of lower genetic variation such as LBA. Habitat destruction should also be avoided, to prevent negative 
impacts on populations. Unfortunately, Lake Baringo has recently been infested with the exotic water 
hyacinth, Eichorrnia crassipes (BARASA, personal observation), thought to have been translocated by 
fishermen relocating with their fishing nets from Lake Victoria, in search better fishing opportunities. 
Development of aquaculture in Africa has resulted from identification and improvement of natural 
genetic resources through marker-assisted selection (lind et al. 2012), and our findings provide support 
for the need to protect Kenya’s natural fish genetic resources and reservoirs of genetic diversity.
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