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Inmany regions of theworld, populations of largewildlife have beendisplaced
by livestock, and this may change the functioning of aquatic ecosystems owing
to significant differences in the quantity and quality of their dung. We devel-
oped a model for estimating loading rates of organic matter (dung) by cattle
for comparison with estimated rates for hippopotamus in the Mara River,
Kenya.We then conducted a replicatedmesocosm experiment to measure eco-
system effects of nutrient and carbon inputs associated with dung from
livestock (cattle) versus large wildlife (hippopotamus). Our loading model
shows that per capita dung input by cattle is lower than for hippos, but total
dung inputs by cattle constitute a significant portion of loading from large her-
bivores owing to the large numbers of cattle on the landscape. Cattle dung
transfers higher amounts of limiting nutrients, major ions and dissolved
organic carbon to aquatic ecosystems relative tohippodung, andgross primary
productionandmicrobialbiomasswerehigher in cattledung treatments than in
hippo dung treatments. Our results demonstrate that different forms of animal
dungmay influence aquatic ecosystems in fundamentally differentwayswhen
introduced into aquatic ecosystems as a terrestrially derived resource subsidy.

1. Introduction
The transferoforganicmatter fromterrestrial toaquatic environmentshasoftenbeen
understood tobedominatedby litterfall andhydrologic transfersduring stormsand
precipitation events [1,2]. However, it is increasingly recognized that largemamma-
lian herbivores (LMH) can be major agents of transfer of terrestrial organic matter
and nutrients into aquatic ecosystems [3,4]. While rates vary widely over broad
spatial and temporal scales and depend on the characteristics of the animal vector
and the recipient ecosystem [5,6], the amount can be significant, especially for
low-order streams in rangelands and pastoralist areas [3,7,8].

Terrestrial and aquatic ecosystems in many African savannah landscapes
are intricately linked via the vectoring role that LMH play in transferring
large amounts of resources from terrestrial to aquatic ecosystems [9,10]. Path-
ways of organic matter and nutrient input into aquatic ecosystems by LMH
include egestion and excretion during migrations and watering [11], facilitation
of soil erosion [9] and drowning during water crossings [4]. A prominent
example is the common hippopotamus (Hippopotamus amphibius, hereafter
hippo), which migrates daily between savannah grasslands, where it forages,
and aquatic ecosystems where it rests and much of its defaecation occurs
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[12]. Resource subsidies from hippos alter primary production
and secondary production, most prominently through direct
consumption by bacteria, invertebrates and fish [13–15], and
influence whole river oxygen dynamics, biogeochemistry and
community composition [7,8,16].

The expansion of human settlements, crop farming and
conversion of forests and savannah grasslands to pasture
for livestock production have contributed to the loss of
large populations of wild LMH around the world [17–19].
In many African savannahs, large populations of wild herbi-
vores still dominate the biomass of conservation areas [20,21].
However, even in these regions, wild LMH are declining con-
currently with increases in livestock such as cattle, goats and
sheep [18,22]. In most areas where livestock have replaced
wildlife on the landscape, their influence on aquatic systems
has often been seen as negative, with research focusing on
habitat degradation, nutrient and organic matter loading
and microbial contamination [3,23]. However, livestock may
take over some of the ecological roles historically filled by
wild LMH, thereby maintaining the functionally important
linkage of riverine ecosystems to their surrounding terrestrial
landscapes. The degree to which ecosystem effects of this
functional linkage from livestock are similar to those from
wild herbivores depends in part on the similarity of the
resource subsidies they transport.

Ruminants such as cattle and sheep have a relatively
efficient digestive system compared with non-ruminants
such as hippos and horses, and this difference in digestion
produces smaller faecal particle sizes in ruminants [24,25].
Non-ruminants, such as hippos, have longer mean retention
times than ruminants, which enhances nutrient extraction
from ingesta, leading to a greater ratio of C to nutrients,
reflecting relatively lower quality of their dung (electronic
supplementary material, table S1). Ruminants also forage
on a broader selection of plant species compared with non-
ruminants [26,27], and by so doing they ingest a wider
variety of metabolites and chemicals [28], which may result
in differences in the chemical composition of dung and its
leachate, and consequently its effect on ecosystem processes.

Differences in particle size and composition are likely to
influence the way in which dung inputs from ruminants
and non-ruminants influence aquatic ecosystems. Dung com-
prising large particles with a high ratio of C to nutrients, as
expected from non-ruminants such as hippos (electronic sup-
plementary material, table S2), is qualitatively similar to the
seasonal input of leaf litter to aquatic ecosystems in temperate
forests [15,29]. These inputs are expected to deposit in the
benthos as relatively refractory material that increases ecosys-
tem respiration and is incorporated into the detrital food web.
Dung comprising small particles that are relatively high in
nutrients, as expected from ruminants such as cattle, is
expected to remain suspended in the water column, which
could decrease light penetration, but also be more likely to
increase both water column and benthic primary production
[30]. Furthermore, the addition of nutrient-rich ruminant
dung from cattle to aquatic ecosystems already receiving
large inputs of carbon-rich non-ruminant dung from hippos
may lead to interactions between the two subsidies in
decomposition rates and ecosystem effects [31]. The incre-
mental displacement of wild herbivore populations by
livestock raises the question of how this change may impact
the transfer of nutrients and organic matter into inland
waters and the ensuing ecosystem responses.
The Mara River and its seasonal tributaries in the Maasai
Mara National Reserve (MMNR) in Kenya host more than
4000 hippos [32]. There are also over 250 000 cattle in commu-
nal lands adjoining the MMNR, where livestock coexist with
wildlife [33]. This distribution results in a displacement pat-
tern with hippo areas inside the reserve, mixed hippo and
livestock areas outside the reserve and only livestock grazing
areas further away from the reserve [34]. This overlapping
distribution of livestock and wildlife raises the question of
how aquatic ecosystems will respond to the displacement
of wild LMH by livestock as agents of resource transfer
from terrestrial to aquatic environments.

Here, we characterize the particle size and stoichiometry of
cattle and hippo dung, estimate the loading of organic matter
by cattle and hippos into theMara River and conduct an exper-
iment in recirculating experimental stream mesocosms to test
the impacts of these different inputs on the function of aquatic
ecosystems. Previous research has already shown that the
quantity of inputs by LMH has substantial impacts on
the aquatic ecosystem [15,16]. For our experiment, we used a
replacement design to compare ecosystem effects of cattle
dung and hippo dung both independently and
in combination with one another. We measured the effects of
both hippo and cattle dung on nutrients, dissolved
organic carbon (DOC) quantity and quality, gross primary pro-
duction (GPP) and ecosystem respiration (ER). We
hypothesized that cattle dung inputs would lead to higher
nutrient concentrations and increased GPP, while hippo dung
inputs would lead to higher concentration of DOC and
increased ER. Furthermore, we hypothesized that these par-
ameters may change nonlinearly along a gradient of low to
high subsidy quality––that is, from a system dominated by
hippo dung to one dominated by cattle dung––depending on
the strength of the interaction between the high C and high
nutrient inputs. We further hypothesized that cattle dung
would lead to a more diverse DOC composition given the
broad foraging strategy of cattle compared with hippos.
2. Material and methods
(a) Characteristics of cattle and hippo dung
Macro- and micronutrient composition of cattle and hippopota-
mus faecal samples were analysed at the Leibniz Institute for
Zoo and Wildlife Research, Berlin, Germany. Before analysis,
dried samples were ground to a particle size of about 1 mm.
For C and N, samples were weighed and analysed on an elemen-
tal analyser (Hekatech, Thermo Finnigan). For P, samples were
weighed, ashed in a muffle furnace at 550°C and then digested
before analysis on an inductively coupled plasma optical emis-
sion spectrometer (ICP-OES) (PerkinElmer, Ueberlingen,
Germany). Crude protein was calculated as 6.25 ×N [35]. Carbo-
hydrates (sucrose, D-glucose, D-fructose and starch) were
analysed using commercial enzymatic test kits from R-Biopharm
(Darmstadt, Germany). For mineral analysis (Ca, Mg, Fe, K),
samples weremicrowave digested and analysed by a PerkinElmer
ICP-OES.

(b) Livestock versus hippopotamus loading rates of
organic matter

We developed a model to estimate cattle loading rates of organic
matter (dung) into the Mara River (electronic supplementary
material §S1) and compared results with existing estimates of
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loading rates for hippos in the river extracted from Subalusky
et al. [12]. We used literature to estimate daily dry matter
intake (DMI) of zebu cattle, and the proportion of organic
matter (OM) egested or excreted. We estimated cattle loading
rates of OM as a fraction of time spent in the river, and we mul-
tiplied the per capita loading rate by the cattle population to get
the total loading rates for all cattle. We then compared the load-
ing of cattle and hippopotamus dung in two areas of the Mara
River where their distributions overlap.

(c) Experimental mesocosms
We used experimental stream mesocosms constructed out of
PVC canvas measuring 4.2 m long and 19 cm wide [15]. Water
was recirculated in each mesocosm by paddlewheels affixed to
a shaft that was powered by a motor, with each of three shafts
handling six streams (electronic supplementary material §S2).
We had three replicates for each of six dung treatments in a repla-
cement design ranging from 100% hippo dung to 100% cattle
dung with 20% increments of replacement (electronic sup-
plementary material, figure S1). This approach allowed us to
test for potential interactive effects between dung types, recog-
nizable by nonlinear responses to the dung treatment gradient.
Treatments were randomly distributed among mesocosms,
with a replicate of each treatment in each of the three blocks. A
total of 120 g (wet weight, 1.7 g l−1) of dung was distributed in
each mesocosm once at the beginning of the experiment in
order to study ecosystem responses arising from differences in
dung quality due to nutrient leaching and mineralization rates.

To accelerate biofilm growth, mesocosms were inoculated
with periphyton scraped off rocks from the Amala River, a tribu-
tary of the Mara upstream of wildlife. Each mesocosm was lined
with six unglazed ceramic tiles that were used for weekly
sampling of biofilms. Each week, one tile from each mesocosm
was destructively sampled without replacement for analysis of
ash-free dry mass (AFDM).

(d) Water sampling and analysis
We collected water samples weekly, including day 1, for analysis
of ammonium (NHþ

4 ), soluble reactive phosphorus (SRP), total
phosphorus (TP), nitrite (NO�

2 ), nitrate (NO�
3 ), total suspended

solids (TSS), particulate organic matter (POM), dissolved organic
carbon (DOC) concentration and composition, and chlorophyll a
(Chl-a). Further details on analysis of nutrients and DOC, Chl-a,
TSS and POM concentrations are available in electronic
supplementary material §S3.

We characterizedDOCbyabsorbance and fluorescence analyses,
which provide proxies forDOC source and/or biological availability
[36,37]. To characterize DOC, we used parallel factor analysis (PAR-
AFAC) to decompose 349 excitation–emission matrices (EEMs) into
fluorescent components [38], and size-exclusion chromatography
(SEC) [39], which separates three size fractions: humic substances
(HS), high molecular weight non-humic substances (HMWS) and
low molecular weight substances (LMWS). Further details on
collection and analysis of DOC composition data are available in
the electronic supplementary material §S4.

(e) Metabolism
In eachmesocosm, we recorded dissolved oxygen (DO) andwater
temperature every 1 min for six weeks with MiniDOT loggers
(PME, Vista, CA, USA). Light intensity (0 to 320 000 lux) was
recorded with HOBO Pendant Temperature/Light Data Loggers
(UA-002-64; Onset, Bourne, MA, USA). We then estimated GPP
and ER from diel changes of DO, temperature and irradiance
using an inverse modelling procedure that included tempera-
ture-dependent ER, light-dependent GPP and reaeration [40];
details are provided in electronic supplementary material §S5.
( f ) Data analysis
We used linear mixed effect models (LMEMs) to test the effect of
dung treatment on response variables DOC, Chl-a, AFDM, TSS,
POM, SRP, NHþ

4 , NO�
2 and NO�

3 with the lme function in the
‘nlme’ package [41] in R [42]. LMEMs were used after residuals
displayed linear responses to dung treatment. LMEMs included
dung treatment (six levels) and time (week 0 to 6) as fixed effects
and block as a random effect. We also included an interaction of
dung treatment with time to test for differences in the temporal
dynamics of responses. Response variables were log-transformed
when appropriate to meet normality assumptions. We ran a sep-
arate model for each variable and computed marginal R2 (R2

m,
variance explained by fixed factors) and conditional R2 (R2

c , var-
iance explained by the entire model, i.e. by fixed and random
factors) coefficients with the r.squaredGLMM function in the
MUMIN package [42].

To test the effect of cattle dung on ecosystem respiration, or
production, we fitted a three-parameter sigmoid Gompertz
model [43], given by

Y(t) ¼ K � e�lag�e�rate�t
,

to daily GPP and ER for each dung treatment (i.e. with data
pooled across three streams) and separately for each replicate
stream; this yielded estimates for the upper asymptote (K),
growth rate (rate) and a dimensionless parameter for location
along the time axis (lag), which shifts the graph to the left or
right and is related to the time taken to reach the upper asymp-
tote (maximum GPP or ER), with high values indicating faster
progression towards maximum GPP or ER. Y(t) is the expected
value (GPP or ER) as a function of time (days since start of the
experiment) and t is time in days. These parameter estimates
were then regressed against dung treatment (% cattle dung)
using general additive mixed modelling (GAMM) to avoid
strong assumptions about potential relationships. GAMMs
were built using penalized cubic regression splines with degrees
of freedom automatically identified based on the generalized
cross-validation score (GCV). Further, to investigate weekly
changes in ecosystem metabolism (GPP, ER, GPP/ER and net
ecosystem production (NEP)), weekly means for each stream
were computed (total six weeks). We then tested for differences
among dung treatments using GAMMs [44], and included
dung treatment as a fixed effect and block as a random effect.
GAMMs were fitted using the R package mgcv [45].

Principal component analysis (PCA) was used for dimension
reduction of DOC quality data (absorbance- and fluorescence-
derived indices FIX, β/α, humification index (HIX); PARAFAC
components C1 to C7; SEC results HMWS (in %), HS (in %),
LMWS (in %)). While optical indices and SEC results are
expressed as ratios or percentages and thus describe composition
with little or no influence of DOC quantity, PARAFAC com-
ponents were used in the form of quantitatively reliable
absolute fluorescence intensities. All variables were scaled to
zero mean and unit s.d. prior to use in PCA. Statistical analyses
were performed with R version 3.3.1 [42] using the packages
vegan [46], sem [47] and deSolve [48].
3. Results
(a) Characteristics of cattle and hippo dung
Cattle dung had lower C : N : P ratio than hippo dung (elec-
tronic supplementary material, table S3). C : N : P was
155.2 : 5.1 : 1.0 for cattle dung and 261.4 : 7.6 : 1.0 for hippo
dung (electronic supplementary material, table S3); per unit
C, cattle dung was thus richer in N and P than hippo dung
by 13 and 69%, respectively. Further, cattle dung was
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enriched in the micronutrients Ca, Fe, K and Mg by 3.6–31%
(electronic supplementary material, table S3).

(b) Loading rates of organic matter by cattle and
hippopotamus

We estimated that cattle spend 10 min in the Mara River or
tributaries per day, and each on average loads 22.3 g DM
(86.6 g wet mass) (kg body mass)−1day−1 into the river (elec-
tronic supplementary material §S1). Thus, an average animal
(265 kg) defaecates 12.5 kg faeces (wet mass) every day, and
0.0866 kg (0.70% of daily defaecation) goes into the Mara
River. In comparison, an average hippo (1500 kg) defaecates
17.4 kg faeces (wet mass) every day, and 8.7 kg (50%) goes
into the Mara River [12].

Using cattle population estimates [22,33,49], we estimated
the total daily loading was 1157 kg faeces into the Mara River
inside the MMNR, 2599 kg outside the MMNR and 7364 kg
along the Talek River. Within the MMNR, livestock loading
is only around 6% of loading due to cattle and hippopotamus
because cattle are not supposed to be grazed in the reserve,
but illegal grazing of a small number of cattle nevertheless
occurs. Outside the MMNR, where the Maasai pastoralists
keep large numbers of cattle, loading by cattle along the
Mara and Talek rivers increases to nearly 16 and 57%,
respectively, of the total organic matter loading due to
cattle and hippopotamus. These loading rates are based on
the assumption that all cattle within either the Mara or
Talek sub-catchment visited the river for watering or cross-
ing at least once per day. However, some cattle may use
water pans for their water needs during certain portions
of the year.

(c) Nutrients
Dung treatment had a significant effect on nutrient concen-
trations, with a significant increase in SRP, ammonium,
nitrite and nitrate with increasing proportion of cattle dung
(table 1; electronic supplementary material, figure S2).
There was also a significant effect of time on nutrient concen-
trations, reflecting different rates of leaching, uptake and
retention in biomass (table 1). Notably, there was a greater
than 90 and 56% reduction in SRP and ammonia, respectively,
within the first two weeks across all treatments (electronic
supplementary material, figure S3a,b). Similarly, nitrite sig-
nificantly declined after the second week, while nitrate
increased (electronic supplementary material, figure S3c,d;
table 1).

(d) Organic matter and biomass
Dung treatment had a significant effect on organic matter
(DOC and POM), TSS, water column Chl-a and biomass of
biofilms (AFDM) (table 1). There was a linear increase in
these variables from low to high proportion of cattle dung
(electronic supplementary material, figure S4; table 1). DOC
concentration was considerably higher with the presence of
cattle dung through the entire experiment (electronic sup-
plementary material, figure S4a). There was also a
significant effect of time on these variables (table 1). DOC
concentrations increased by greater than 50% over the exper-
imental period (electronic supplementary material, figure
S4a), and Chl-a, AFDM, TSS and POM increased by
greater than 100% (electronic supplementary material,
figure S4b–e). Further, we observed that the smaller particles
of cattle dung [24,25] remained suspended in water while
those from hippo dung sank to the bottom, which was
reflected by higher TSS and POM in the water column with
higher proportions of cattle dung (electronic supplementary
material, figure S4d,e).

(e) DOC composition
The PARAFAC model consisted of seven components
(electronic supplementary material §S4, table S4 and figures
S5 and S6): four humic-like, one reduced humic-like and
two protein-like fluorescence components. The first two
PCA axes explained 32.5 and 27.0% of the total variance,
respectively, and efficiently depicted treatment differences
and development of DOC composition throughout the exper-
imental time (figure 3). The 100% cattle treatment was clearly
separated from all other treatments and furthest from the
100% hippo treatment, in particular along PC1. By contrast,
PC2 was more important for capturing temporal changes,
but also contributed to definition of distinct treatment-
specific DOC composition at the experiment start. At the
start of the experiment, all dung treatments produced DOC
with the highest share of low molecular weight substances
and rich in aromatic structures and humic substances indica-
tive of leaching from plant material (figure 3a,b). DOC from
cattle dung was more fluorescent and humic compared
with hippo dung, which, by contrast, had seemingly fresher
DOC with relatively N-deficient high molecular weight sub-
stances (figure 3a,b). Over the duration of the experiment
DOC composition in all dung treatments changed in parallel
towards a common endpoint of higher concentrations of less
fluorescent, less humic and less aromatic DOC (figure 3a,b).
High molecular weight substances with high C : N, likely
carbohydrates from primary production, became more
important towards the end of the experiment. Notably,
DOC in the 100% cattle dung treatment experienced a
strong and long-lasting phase of humic fluorescence buildup
before rejoining the other treatments0 trend. In an effort to
quantify overall compositional dynamics, we summed Eucli-
dean path lengths from the start to the end of the experiment
in the multivariate space described by all PCs. While the 0
and 20% cattle dung treatments here resulted in DOC with
minimal turnover, the 60% cattle treatment had the highest
compositional turnover of DOC (figure 3c). This suggests
the sum of two processes––leaching from the dung and auto-
chthonous production––cause very dynamic DOC in
treatments with a higher proportion of cattle dung.

( f ) Ecosystem metabolism
Dung treatment strongly influenced temporal trends in GPP
and ER (electronic supplementary material §S5). There was
a significant effect of dung treatment on the maximum pro-
duction value (K) and the rate of increase in GPP; as the
proportion of cattle dung increased, GPP increased slower
but reached a higher maximum (figure 1a,b). GPP increase
also started later with less cattle dung (figure 1d ), but this
lag effect was insignificant owing to excessively high par-
ameter estimates for two streams (0% cattle dung) that had
poor data coverage in the first two weeks. Notably, while
maximum GPP increased linearly with dung treatment, the
rate of increase and the lag changed nonlinearly with dung
treatment and suggested stronger changes when even only
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a small fraction of hippo dung was replaced by cattle dung.
Because of the use of different theta values for temperature
dependence of ER in metabolism models [50–52], we used
a higher modelled value of 1.1085 since our attempts to use
a common value of 1.045 [53] were unsuccessful. We sub-
sequently performed a sensitivity analysis to compare
results of using both theta values on the findings, and con-
cluded that the response in GPP and ER to dung treatment
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remained unchanged (electronic supplementary material,
figures S7–S9).

Dung treatment did not significantly affect K, rate and lag
of ER (figure 1e–h), though there was the suggestion of some
nonlinear trends in response to dung treatment. Replacing
20–60% of hippo dung with cattle dung slightly increased
the maximum rate of respiration, but the streams with 80%
cattle dung had exceptionally low maximum ER (figure 1e,f ).
The rate of increase in respiration and the lag parameter
showed distinctly nonlinear but insignificant trends, with
lowest values at intermediate dung replacement (figure 1g,h).
Our analysis of Gompertz parameters did not account for the
blocking factor in our experimental design, but separately com-
puted general additive mixed models did not identify a
significant effect of block on any Gompertz parameter of GPP
or ER (data not shown).

Using weekly averages of GPP and ER in GAMMs with a
smoother for dung treatment interacting with time, and
accounting for blocks as a random factor, we found a signifi-
cant weekly increase in GPP with increasing proportion of
cattle dung (figure 2). There was also a significant interaction
between the dung treatment smoother and time (electronic
supplementary material §S6, table S5), further indicating
that the positive effect of cattle dung on GPP increased
with time. We also found a significant main effect of dung
treatment on weekly means of ER and a significant inter-
action between dung treatment and time (electronic
supplementary material, table S5). GAMMs did not identify
a significant effect of block on GPP or ER (electronic sup-
plementary material, table S5). Most streams were
heterotrophic during the first week, after which they were
all autotrophic, with NEP peaking at week 4 (28 days;
figure 2a,d ).
4. Discussion
Our results show that replacing hippo dung with cattle dung
produces different responses in aquatic ecosystems. The
smaller particle sizes and higher quality (lower C : N : P
ratio) of cattle dung compared with hippo dung appeared
to promote increased leaching of nutrients and increased
assimilation [54,55]. Indeed, cattle dung stimulated higher
primary production in both the benthos and water column
compared with hippo dung, although the rate of increase in
GPP was nonlinear (figure 1c). Cattle dung also increased
biofilm biomass in the water column, which is a cumulative
measure of both microbial and algal production. However,
there were no dung treatment effects on the fitted sigmoid
parameters of ER. Hippo dung, which was composed of
larger particles, tended to sink to the bottom of the streams
and reduce benthic production, suggesting it may do the
same in aquatic systems, especially during low flows
[13,15,16]. By contrast, cattle dung tended to remain sus-
pended or dissolve, and in aquatic systems, it may become
dispersed by river discharge into a larger area, creating
potentially more widespread and diffuse effects. Because
light is one of the key determinants controlling production
and composition of periphyton or algae in aquatic ecosystems
[56], it is likely that cattle dung more strongly stimulated the
autotrophic component (algae) of periphyton while hippos
stimulated the heterotrophic component (bacteria/fungi),
which led to higher GPP per unit biomass of periphyton
among cattle dung treatments.

Although we used a theta value (1.1085) which is differ-
ent from the typical value (1.045) that is commonly used in
modelling GPP and ER (electronic supplementary material
§S4), the conclusion reached that cattle dung stimulated
higher GGP values than hippo dung remains unchanged.
This is because the trends and trajectory of change in both
GPP and ER are the same for both theta values (electronic
supplementary material, figures S7–S9). Moreover, ER,
which is more temperature sensitive than GPP [50,51], did
not respond to dung treatment, irrespecive of the theta
value used. This is intriguing and suggests different drivers
for GPP and ER in the experiment. This can be explained
by a lack of coupling between GPP and ER, which explains
the increasing concentration of DOC and microbial biomass
in cattle dung-dominated treatments over time. Thus, it is
likely that increased ER from heterotrophs in the hippo
dung treatment was offset by the increased autotrophic res-
piration in the cattle treatments. If there was any coupling
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of GPP and ER, some variation in ER would have occurred,
because a proportion of ER is autotrophic respiration [57,58].

There were also effects of dung treatment and treatment
by time interactions in the composition of DOC. In streams
that received higher proportions of cattle dung relative to
hippo dung, DOC displayed a strong increase in diversity
over time, moving from a dominance of allochthonous
DOC, through a dominance of microbially produced DOC,
to finally a dominance of autochthonously produced DOC
from primary production (figure 3). DOC in cattle dung treat-
ments also showed a higher contribution of humic-like
components associated with microbial activity and high frac-
tions of a fulvic acid-like component of higher plant material
origin (electronic supplementary material §S6). The difference
in DOC composition between hippo dung and cattle dung
could be due to differences in digestion efficiency between
cattle and hippos [24]; it may also result from cattle foraging
on a wider selection of plants and thus encountering a wider
variety of metabolites and chemicals than hippos [26,27]. The
strong response of GPP to dung treatment left a strong
imprint on DOC [40]. For instance, as GPP peaked over
time, DOC concentration increased in concert, and compo-
sition shifted from predominantly allochthonous towards
increasingly autochthonous.

While we recognize that inputs by hippos and cattle
likely vary in quantity across time and space, which impacts
how they affect river ecosystem function, this study specifi-
cally focused on comparing the impact of input quality
from these two large herbivores. Although there are no
data for African savannahs showing rates of OM and nutri-
ent loading by livestock into rivers, preliminary findings
from the Mara River show that 10–15% of cattle that visit
watering points defaecate and/or urinate in the river (J.
Iteba 2019, unpublished data). Our model for estimating
dung inputs by cattle show that only a small fraction of
daily dung production by cattle is deposited directly into
the river, compared with 50% of hippo dung. However,
owing to variation in cattle and hippo numbers across the
landscape, cattle inputs can range from around 6 to 57%
of total organic matter loading due to cattle and hippos (elec-
tronic supplementary material, table S1). Our estimates of both
hippo and livestock loading have some uncertainty around
them that could be improved with more detailed knowledge
of animal time budgets and population sizes. For example,
cattle numbers in the basin can more than double in the
dry season, when livestock are herded in for increased
forage [49], suggesting our estimates for cattle loading are
conservative. Although the majority of cattle dung is depos-
ited outside the river, some proportion of it likely enters
aquatic systems during large rainfall events. Furthermore, it
is likely that the trend towards increasing populations of
cattle and other livestock, such as goats and sheep, is likely
to continue.

This research increases our knowledge about how
resource subsidies from cattle may influence aquatic ecosys-
tem function and highlights similarities and differences
between subsidies transported by cattle versus hippos. Simi-
lar to other LMH such as hippos and ungulates [9,12], cattle
can create biogeochemical hotspots through congregation
and egestion. However, cattle subsidies are more likely to
increase nutrient concentrations and stimulate primary pro-
duction in recipient aquatic ecosystems, which could have
pronounced bottom-up effects on food webs. In addition,
other aspects of cattle behaviour may have pronounced eco-
system effects. The development of cattle footpaths can
channel water and nutrients from terrestrial to aquatic
environments. Large herds of cattle visit watering points
during the dry season and concentrate in riparian areas,
where they deposit dung and urine, which may contribute
substantially to nutrient flux at a time when low water
runoff limits fluxes by hydrological vectors. Dung and
urine deposited around waterholes also enrich the soil and
vegetation, and this enrichment could increase fluxes of
organic matter for aquatic consumers during inundation
and/or litterfall.
5. Conclusion
Here we show that cattle and hippo dung have contrasting
effects on aquatic ecosystem function, likely caused by
differences in faecal particle size and stoichiometry of
major elements (C : N : P ratio). Increasing inputs of cattle
dung led to higher GPP and a more complex and diverse
DOC composition. By contrast, hippo dung reduced benthic
primary production and led to a delayed response in GPP,
which is consistent with whole-river observations [16,59].
In landscapes where livestock are displacing hippos, these
differences may lead to substantial changes in aquatic eco-
system structure and function. Taken collectively, our
results expand the current understanding of the role
played by large mammalian herbivores in the functioning
of aquatic ecosystems in African savannahs. However,
they also emphasize the species-specific nature of many
of these ecological roles and suggest that species introduc-
tions and/or rewilding efforts seeking to replace extinct
species with modern analogues may have unintended
outcomes [60,61]. Our results highlight the need for more
research on the ecological consequences of introduced
large herbivores and replacement of native populations by
anthropogenic change.
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