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ABSTRACT 

A modified phenomenological formula for the ground state binding energy in the region of light 

nuclei is proposed. Since binding energy is proportional to the volume of a nuclide, the new formula 

contains a volume term proportional to the mass number A and expresses asymmetry energy and 

coulomb repulsion energy between protons in a much simpler form than the way it is presented in the 

liquid drop model. The formula is used to calculate nuclear binding energy using three terms only, 

namely mass number A, neutron number, N and atomic number, Z. The correspondence with the 

conventional Liquid drop model and with the experimental results is highly satisfactory for light nuclei. 

Considering a set of 60 light nuclei for 𝐴 ≤ 55, the formula yields root mean square deviation of 0.541 

MeV, with respect to experimental values. This is better than conventional Liquid drop model which 

gives a root mean square deviation of 3.485 MeV over the same range of nuclei. The value of 𝑓 is 

comparatively smaller for even-odd nuclei when compared to the corresponding even-even nuclei. Thus 

even-even nuclei are more strongly bound than odd-odd or even-odd nuclei making them more stable.  
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1.  INTRODUCTION 

 

Nuclear binding energy formulation is a necessary step towards the proper understanding 

of the nature of atomic nucleus and its properties. Over the years a lot of effort has been made 

towards developing a standard model for obtaining ground state binding energy of a nucleus or 

its mass equivalent. One of the early fundamental nuclear models was the liquid drop model 

(LDM). This model which was first presented by Carl Friedrich Von Weizsäcker, [1] and later 

developed by Niels Bohr and John Archibald Wheeler was based upon the characteristics of the 

liquid drops [2, 3]. The liquid drop model succeeded in explaining some of the nuclear 

properties, such as mass parabola, correct binding energy for 200 stable and many unstable 

nuclei. The famous semi-empirical mass formula for nuclear binding energy is given as; 

 

𝐵(𝐴, 𝑍) = 𝑎𝑣𝐴 − 𝑎𝑠𝐴
2/3 − 𝑎𝑐𝑍(𝑍 − 1)𝐴

−
1

3 − 𝑎𝑎(𝑁 − 𝑍)
2𝐴−1 ± 𝛿 +ɳ                            (1) 

 

where A is the mass number, Z- proton number, N- neutron number; the constants 𝑎𝑣= 15.77 

MeV, 𝑎𝑠=18.34 MeV, 𝑎𝑐= 0.71MeV, 𝑎𝑎 = 28.1 MeV, 𝛿 and ɳ are parameters. 

However this model fails to predict other properties of nuclei such as, the magic numbers 

and nuclear magnetic moments. 

Nuclear shell model is another well-established model proposed in the last century. In 

this model, the existence of harmonic oscillator potential along with spin-orbit coupling 

between nucleons is used to calculate the energy levels of a finite nuclear system [4-6]. The 

most successful achievement of the nuclear shell model was the explanation of magic numbers 

and nuclear magnetic moments. However this model was unable to gain much success in the 

calculation of nuclear binding energy.  

There are other models in literature that have been presented to explain some other aspects 

of nuclei, like Alpha-Particle Model of Nuclei, Duflo and Zuker mass formula, Skyrme-HFB 

and Finite Range Droplet Model (FRDM) [7-9].  

The nuclear mass models belong to two distinct categories namely; a) the microscopic 

models and b) the microscopic- macroscopic models. Microscopic approaches usually utilize 

mean field theories such as SkyrmeHartree-Fock or relativistic mean field approaches to 

calculate the mean field calculation. Microscopic-macroscopic methods usually use the liquid 

drop model (LDM) as the macroscopic part of the prescription and introduce different 

corrections based on microscopic models [10]. Fully microscopic approaches are yet to reach 

the accuracy achieved by microscopic-macroscopic mass formulas.  

In this paper an improved phenomenological formula is developed for the ground state 

binding energy in the region of light nuclei. The formula is an improvement of integrated 

nuclear model, which is based on the quark model of nuclei and depends on three parameters 

only, namely A, N and Z. 

 

 

2.  PHENOMENOLOGICAL FORMALISM  
 

In general, nuclear ground state energies of a system can be obtained from the general 

solutions of the many body problem by use of the many body Hamiltonian. This is not possible 

since the exact form of the Hamiltonian is not known. Therefore for any practical application, 

approximations, assumptions or models have been introduced.Alternately, instead of 
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introducing models or assumptions, Bao, et al. [11] proposeda formula based on the mass 

differences between any two neighboring nuclides.  

For two neighboring nuclides, say of masses 𝑀(𝑍,𝑁) and 𝑀(𝑍0, 𝑁0) or the nuclear 

binding energy 𝐵(𝑍,𝑁) and 𝐵(𝑍0, 𝑁0) the mass difference or the nuclear binding energy 

difference can be expanded in power series in terms of ∆𝑍 = 𝑍 − 𝑍0and ∆𝑁 = 𝑁 − 𝑁0 and the 

formula for nuclear binding energy can be written as; 

 

𝐵(𝑍, 𝑁) = 𝐵(𝑍0, 𝑁0) + ∆𝑍
𝜕𝐵

𝜕𝑁
+ ∆𝑁

𝜕𝐵

𝜕𝑍
+
(∆𝑍)2

2!

𝜕𝐵

𝜕𝑍
+
(∆𝑁)2

2!

𝜕𝐵

𝜕𝑁
+ ∆𝑍∆𝑁

𝜕

𝜕𝑍
(
𝜕𝐵

𝜕𝑁
) +⋯      (2) 

 

The second and higher terms do not contribute much to the value of 𝐵(𝑍,𝑁), hence only 

the linear terms in the binding energy, may be considered for the purpose of calculations. 

It is to be emphasized that the nucleon asymmetry (𝑁 ≠ 𝑍) term is proportional to 
(𝑁−𝑍)2

𝐴
 

and Coulomb term is proportional to 𝑍2𝐴
−1

3⁄  . These can be approximated as proportional to  
𝑁2−𝑍2

3𝑍
, [12, 13]. 

 

The nuclear binding energy formula can then be written as;  

 

𝐵(𝑁, 𝑍) = (𝐴 − (
(𝑁2−𝑍2)+𝛿0(𝑁−𝑍)

3𝑍
+ 𝛼))

𝑀𝑁𝐶
2

100
;    5 < 𝐴 ≤ 55                     (3) 

 

where 𝑀𝑁𝐶
2 = 938 𝑀𝑒𝑉 ; the mass of a nucleon and 𝛿0 stand for nuclear beta-stability line 

condition and is defined as; 

𝛿0(𝑁 − 𝑍) = {
0 𝑓𝑜𝑟𝑁 ≠ 𝑍
𝐴 𝑓𝑜𝑟𝑁 = 𝑍

            And         𝛼 =

{
 
 

 
 
2.25 𝑓𝑜𝑟𝑁 − 𝑍 ≤ 1
1.75 𝑓𝑜𝑟 𝑁 − 𝑍 = 2
1.25 𝑓𝑜𝑟 𝑁 − 𝑍 = 3
0.65 𝑓𝑜𝑟 𝑁 − 𝑍 = 4
0      𝑓𝑜𝑟 𝑁 − 𝑍 = 5
−1     𝑓𝑜𝑟 𝑁 − 𝑍 ≥ 6

 

 

 

3.  DISCUSSION AND RESULTS 

 

Since binding energy is proportional to the volume of the nuclide [14, 15], the first term, 

in the formula represents the Volume term 

The term 
𝑁2−𝑍2

3𝑍
  represents a combined simpler form of asymmetry energy and Coulomb 

repulsion force between protons. 

In the present formula, some significant changes have been made namely; instead of the 

constant 3, as used in the nuclear binding energy formula in Integrated nuclear model (INM), a 

stability coefficient α is introduced that has a range between -1 to 2.25. The stability coefficient 

α, depends on the difference between the number of neutrons and protons in the nucleus of an 

atom. A closer look also reveals that for isotopic nuclei, the coefficient α is inversely 

proportional to the mass number A, just like in the INM. 
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Another significant change is in the nuclear stability line condition such that instead of,  

 

𝛿0(𝑁 − 𝑍) = {
0 𝑓𝑜𝑟𝑁 ≠ 𝑍
1 𝑓𝑜𝑟𝑁 = 𝑍

 

 

As, presented in INM, we now have 

 

𝛿0(𝑁 − 𝑍) = {
0 𝑓𝑜𝑟𝑁 ≠ 𝑍
𝐴 𝑓𝑜𝑟𝑁 = 𝑍

 

 

In this case, the value of A has been found to give better results than the constant 1 for 

light nuclei with N = Z. 

For A<5, the formula requires minor corrections namely; the adjusting coefficient, 𝛼 

simply changes to 1. 

In order to test the validity of the formula in equation (3), the binding energy of each 

nucleus is calculated for given Z and N numbers and then compared with values from the LDM 

and the experimental values.  

 

Table 1. Nuclear binding energy for light nuclei; 𝐴 ≤ 55, from the improved formula given 

by equation (3), LDM and experimental values. 

 

Nucleus A Z N 

B 

(LDM) 

(MeV) 

B/A 

(LDM) 

(MeV) 

B 

(Exp.) 

(MeV) 

B/A 

(Exp.) 

(MeV) 

B 

(Improved 

Formula) 

(MeV) 

B/A 

(Improved) 

(MeV) 

H 1 1 0 -26.461 -26.461 0 0 0 0 

H 2 1 1 -5.226 -2.6128 2.225 1.1125 3.127 1.5633 

H 3 1 2 1.832 0.6105 8.482 2.8273 9.380 3.1267 

He 3 2 1 0.353 0.1175 7.718 2.5727 18.760 6.2533 

He 4 2 2 21.945 5.4863 28.296 7.0740 21.887 5.4717 

Li 6 3 3 27.640 4.6067 31.994 5.3323 28.922 4.8203 

Li 7 3 4 38.384 5.4834 39.244 5.6063 37.259 5.3228 

Be 9 4 5 56.632 6.2924 58.165 6.4628 56.280 6.2533 

B 10 5 5 63.094 6.3094 64.751 6.4751 66.442 6.6442 

B 11 5 6 75.063 6.8239 76.205 6.9277 75.196 6.8360 

C 12 6 6 87.749 7.3124 92.162 7.6802 85.202 7.1001 
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C 13 6 7 93.629 7.2022 97.108 7.4699 94.061 7.2354 

N 14 7 7 99.661 7.1186 104.659 7.4756 103.962 7.4258 

N 15 7 8 112.280 7.4854 115.492 7.6995 112.895 7.5263 

O 16 8 8 123.714 7.7321 127.619 7.9762 122.722 7.6701 

O 17 8 9 130.974 7.7044 131.763 7.7508 131.712 7.7477 

O 18 8 10 141.250 7.8472 139.807 7.7671 138.355 7.6863 

F 19 9 10 149.678 7.8778 147.801 7.779 150.514 7.9218 

Ne 20 10 10 160.155 8.0078 160.645 8.0323 160.242 8.0121 

Ne 21 10 11 168.363 8.0173 167.406 7.9717 169.309 8.0623 

Ne 22 10 12 179.445 8.1566 177.77 8.0805 176.188 8.0085 

Na 23 11 12 188.009 8.1743 186.564 8.1114 188.097 8.1781 

Mg 24 12 12 196.686 8.1952 198.257 8.2607 197.762 8.2401 

Mg 25 12 13 205.599 8.2240 205.588 8.2235 206.881 8.2752 

Mg 26 12 14 217.267 8.3564 216.681 8.3339 213.916 8.2275 

Al 27 13 14 224.119 8.3007 224.952 8.3316 225.661 8.3578 

Si 28 14 14 233.089 8.3246 236.537 8.4478 235.282 8.4029 

Si 29 14 15 242.558 8.3641 245.011 8.4487 244.438 8.4289 

Si 30 14 16 254.675 8.4892 255.620 8.5207 251.585 8.3862 

P 31 15 16 260.905 8.4163 262.917 8.4812 263.213 8.4907 

S 32 16 16 269.232 8.4135 271.781 8.4932 272.802 8.5251 

S 33 16 17 279.154 8.4592 280.422 8.4976 281.986 8.5450 

S 34 16 18 291.632 8.5774 291.839 8.5835 289.217 8.5064 

S 36 16 20 309.137 8.5872 308.714 8.5754 303.443 8.4290 

Cl 35 17 18 297.298 8.4942 298.21 8.5203 300.758 8.5931 

Cl 37 17 20 317.675 8.5858 317.101 8.5703 314.920 8.5113 

Ar 36 18 18 305.028 8.4730 306.717 8.5199 310.322 8.6200 

Ar 38 18 20 328.107 8.6344 327.343 8.6143 326.824 8.6006 
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Ar 40 18 22 343.739 8.6685 343.811 8.5953 341.310 8.5328 

K 39 19 20 333.249 8.5449 333.724 8.5570 338.297 8.6743 

K 40 19 21 342.621 8.5655 341.524 8.5381 345.620 8.6405 

K 41 19 22 354.466 8.6455 351.619 8.5761 352.614 8.6003 

Ca 40 20 20 340.419 8.5105 342.052 8.5513 347.842 8.6960 

Ca 42 20 22 364.077 8.6685 361.896 8.6166 364.413 8.6765 

Ca 43 20 23 372.638 8.6660 369.829 8.6007 371.448 8.6383 

Ca 44 20 24 383.661 8.7197 380.96 8.6582 379.108 8.6161 

Ca 46 20 26 399.706 8.6893 398.769 8.6689 397.712 8.6459 

Sc 45 21 24 390.660 8.6813 387.848 8.6188 390.275 8.6728 

Ti 46 22 24 399.525 8.6853 398.193 8.6564 401.990 8.7389 

Ti 47 22 25 408.535 8.6922 407.073 8.6611 409.096 8.7042 

Ti 48 22 26 419.927 8.7485 418.7 8.7229 416.856 8.6845 

Ti 49 22 27 427.266 8.7197 426.842 8.7111 424.800 8.6694 

Ti 50 22 28 437.024 8.7405 437.781 8.7556 435.744 8.7149 

V 50 23 27 434.667 8.6934 434.794 8.6959 435.714 8.7143 

V 51 23 28 445.416 8.7337 445.845 8.7421 443.715 8.7003 

Cr 50 24 26 434.436 8.6887 435.049 8.7010 439.557 8.7911 

Cr 52 24 28 455.553 8.7607 456.349 8.7759 454.565 8.7416 

Cr 53 24 29 463.391 8.7432 464.289 8.7602 462.616 8.7286 

Cr 54 24 30 473.570 8.7698 474.008 8.7779 473.690 8.7720 

Mn 55 25 30 481.195 8.7490 482.075 8.765 481.507 8.7547 

 

 

With the aid of the improved formula, the nuclear binding energy can be calculated more 

accurately for all isotopes for light nuclei in the region 𝐴 ≤ 55 as shown in Table 1. 

As seen from the Table 1. Nuclear binding energies obtained from equation (3) are in 

good agreement with the existing experimental data and also with LDM values for light 

nuclides. The root mean square deviation for the binding energy per nucleon with respect to the 

experimental values for 𝐴 ≤ 55 is 0.541MeV. This is much better than the LDM, which gives 

a root mean square deviation of 3.485MeV for the same number of nuclides. 
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In order to confirm how well the improved formula can reproduce both experimental data 

and LDM data for nuclear binding energies, the comparison is also made graphically as shown 

in the following Figures 1 and 2. 

 

Figure 1. The Improved formula in comparison with the Experimental data of Nuclear 

binding energy per nucleon for mass number A ≤ 55 

 

 

Figure 2. The Improved formula in comparison with the LDM data of nuclear binding energy 

per nucleon for mass number A ≤ 55 
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In Figure 1, the blue curve shows the values of the binding energy per nucleon obtained 

from the experimental values, and the red curve indicate the phenomenological formula data. 

As seen in the figure, the improved formula can reproduce data that agrees well with 

experimental data. It is thus concluded that the improved formula is sufficiently valid 

In Figure 2, the blue curve shows the values of binding energy per nucleon obtained from 

the LDM data and the red curve indicate the phenomenological formula data. 

As seen also in the figure, the improved formula can reproduce values that agree well 

with the values from the Liquid Drop Model. Thus the improved formula is quite accurate. 

 

 

4.  BINDING ENERGY OF EVEN-EVEN, EVEN-ODD, AND ODD-EVEN NUCLEI. 
 

For a given isotope, the values of nuclear binding energy from the improved formula are 

calculated for even-even, even-odd, odd-even and odd-odd nuclei. The difference in binding 

energy between the isotopes is then studied. In this particular study we consider isotopes of 

Oxygen, Calcium and Molybdenum. The variation in binding energy per nucleon for the 

isotopes is then compared with experimental values and also with the values from the liquid 

drop model (LDM) 

 

Table 2. Nuclear binding energy for isotopes of Oxygen, Calcium and Molybdenum from the 

improved formula, LDM and experimental values. 

 

Nucleus A Z N 

B 

(LDM), 

MeV 

B/A 

(LDM), 

MeV 

B 

(EXP), 

MeV 

B/A 

(EXP), 

MeV 

B 

(MeV) 

(Improved 

formula) 

B/A 

(Improved 

formula) 

O 16 8 8 123.714 7.7321 127.619 7.9762 122.722 7.6701 

O 17 8 9 130.974 7.7044 130.974 7.7508 131.712 7.7477 

O 18 8 10 141.250 7.8472 139.807 7.7671 138.355 7.6863 

Ca 40 20 20 340.419 8.5105 342.052 8.5513 347.842 8.6960 

Ca 42 20 22 364.077 8.6685 361.896 8.6166 364.413 8.6567 

Ca 43 20 23 372.638 8.6660 369.829 8.6007 371.448 8.6383 

Ca 44 20 24 383.661 8.7196 380.960 8.6582 379.108 8.6161 

Ca 46 20 26 399.706 8.6893 398.769 8.6689 397.712 8.6459 

Mo 92 42 50 793.099 8.6206 796.508 8.6577 817.549 8.8864 

Mo 94 42 52 812.607 8.6448 814.256 8.6623 821.122 8.7353 

Mo 95 42 53 820.597 8.6379 821.625 8.6487 822.656 8.6598 

Mo 96 42 54 830.485 8.6509 830.779 8.6540 824.100 8.5844 
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Mo 97 42 55 837.710 8.6362 837.600 8.6351 825.366 8.5089 

Mo 98 42 56 846.834 8.6412 846.243 8.6351 826.482 8.4335 

Mo 100 42 58 861.747 8.6175 860.458 8.6046 828.269 8.2827 

 

 

From Table 2, it is observed that, the nuclear binding energy per nucleon for 𝑂8
17  (even-

odd nuclei) is less than that of 𝑂8
16  (even-even nuclei). The same result is also obtained for 𝐶𝑎20

42  

(even-even nuclei) and 𝐶𝑎20
43  (even-odd nuclei) nuclides. In Molybdenum, we have five even-

even nuclides and two even-odd nuclides.  

Even-even nuclides include 𝑀𝑜42
92 , 𝑀𝑜42

94 , 𝑀𝑜42
96 , 𝑀𝑜42

98  𝑎𝑛𝑑 𝑀𝑜42
100  while even-odd 

nuclides are 𝑀𝑜42
53  𝑎𝑛𝑑 𝑀𝑜42

55 .  

The nuclear binding energy per nucleon for 𝑀𝑜42
93  which is an even-odd nuclide is less 

than that of 𝑀𝑜42
92 , (even-even) nuclei. Similarly the same result is obtained for 𝑀𝑜42

94  and 𝑀𝑜42
95 . 

It should also be noted, the values of binding energy per nucleon for Molybdenum 

obtained from the improved formula are not accurate, since the improved formula only applies 

to nuclides, 𝐴 ≤ 55.  

Both protons and neutrons have an intrinsic angular momentum reflected in a quantity 

called spin. Both have spin ½, but the direction can either be up or down. When a nucleus has 

an even number of protons and an even number of neutrons, the spin up protons are able to pair 

off with the spin down neutrons. This makes the nucleus more tightly bound, increasing binding 

energy, hence more stable. For a nucleus, with oddness of either, Z or N or both, the spin up 

protons do not completely pair off with spin down neutrons. This therefore lowers nuclear 

binding energy, making odd nuclei generally less stable. The effect of such pairing is displayed 

in the values of the binding energies of different nuclei in Table 2. The odd-even or even-en 

nuclei display different magnitudes for the binding energy. 

 

 

5.  CONCLUSIONS 

 

An improved phenomenological formula has been proposed. The formula which is based 

on the Integrated Nuclear Model in the region of light nuclei contains a volume term 

proportional to the mass number, A. The formula also contains asymmetry energy and Coulomb 

repulsion between protons expressed in a combination form much simpler than the way it is 

presented in the liquid drop model. Unlike many derived global formulas with many parameters 

and several coefficients, the proposed formula calculates nuclear binding energy using three 

terms that depend only upon A, N and Z numbers only. The formula also has a single coefficient 

namely 𝛼 compared to LDM which has several coefficients. The rms deviation for 60 light 

nuclei, for 𝐴 ≤ 55 with respect to experimental values is 0.541 MeV, which is better than the 

LDM which gives an rms deviation of 3.485 MeV for the same number of nuclei. From the 

results, it is found that the formula predicts nuclear binding energies for light nuclei to a good 

degree of accuracy which is an indication of validity of the formula. 

Similar to LDM, deviations in this formula come from two extreme sides, the lightest 

nuclides and from the heaviest ones. For the heaviest ones the number of neutrons is much more 

than proton numbers, resulting in larger asymmetry. 
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Nuclear binding energy depends on evenness or oddness of its atomic number, Z neutron 

number, N and consequently their sum, the mass number, A. Oddness of either Z or N or both 

tends to lower binding energy, making odd nuclei generally less stable. 

In any mass or nuclear binding energy formulation, the theoretical calculations will be 

extremely sensitive to the choice of parameters used. Hence the binding energies and one- 

neutron, one-proton, two-neutron etc., separation energies will stringently depend on the choice 

of parameters. There is still no exact agreement as to whether n-p, n-n, or p-p is the predominant 

pairing inside the nucleus. Such pairing will certainly determine the magnitude the magnitude 

of binding energy. As the neutron or proton number becomes abnormally large in a nucleus, the 

so called drip-line is reached when the last neutron or proton has practically zero binding 

fractions. Such situations cannot be explained by the binding energy formula proposed by the 

various authors from time to time. For instance, when the mass or binding energy formula was 

proposed in the beginning, concepts like shell structure of nuclei, pairing types, laboratory 

production of nuclei with abnormally large neutron or proton numbers called designer nuclei, 

and the concept of drip-line was not known. Hence binding energies formula may have to be 

modified as new properties of nuclei are discovered experimentally from time to time. Recent 

studies indicate that the Coulomb law inside the nucleus needs to be modified since the size of 

the nucleus is very small. Hence the proximity of protons and high mass density can result in a 

modified Coulomb law and also there may be a new role for gravitational forces [16].  
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