EVALUATING FOREST SAMPLING SCHEMES FOR SELECTED NATURAL FOREST TYPES IN KENYA

By

Joseph Hitimana

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN FORESTRY [SILVICULTURE AND FOREST CONSERVATION] IN THE SCHOOL OF NATURAL RESOURCE MANAGEMENT UNIVERSITY OF ELDORET, KENYA

OCTOBER, 2019

DECLARATION

Declaration by the candidate

This thesis is my original work and has not been submitted for any academic award in any institution; and shall not be reproduced in part or full, or in any format without prior written permission from the author and/or University of Eldoret

Hitimana, Joseph	Signature:	Date:
FRW/DPHIL/001/01		

Declaration by Supervisors

This thesis has been submitted with our approval as University supervisors.

Prof. James Legilisho Kiyiapi	Signature:	Date:
University of Eldoret		
Prof. Balozi Kirongo Bekuta	Signature:	Date:
University of Eldoret		

DEDICATION

This thesis is graciously dedicated to my wife, children and parents, and to all friends of forest conservation.

ABSTRACT

This study determined and compared relative efficiency of commonly used sampling designs, intensities and plot sizes in assessing tropical natural forests. Relative efficiencies of random and systematic sampling designs with four plot sizes $(25, 50, 100 \text{ and } 400 \text{ m}^2)$ and varying intensities (5, 10, 20 and 30%) were investigated with reference to full-cover 1-ha inventory in selected forest types: tropical rain forest (TRF), moist lower montane forest (MMF) and dry woodland forest (DWF) in Kenya. We hypothesized an ecological gradient from dry woodland foresst through montane to tropical rain forests mirrored by biophysical characteristics; that different forest ecosystems require different sampling protocols; and that optimal sampling designs, intensities and plot sizes exist for different forest attributes. Fifty-six sampling schemes were generated for efficiency testing using computed statistics in R-software and actual field data. Sampling error and effort (time) were intergrated to measure efficiency of each sampling scheme in estimating selected attributes. The three forests formed a complexity gradient in composition, structure, diversity and slope. Different sampling schemes resulted in mixed outcome for tested attributes across the forest types. Efficient schemes for tree regeneration include SSH-10mx5m-5% with 80% efficiency in TRF, SSD-10mx10m-30% with 81% efficiency in MMF and SRS-10mx10m-30% with 90% efficiency in DWF. Schemes for forest density include SSV-20mx20m-20% with 98% efficiency in TRF, SSH-10mx10m-20% with 99% efficiency in MMF and SSV-10mx5m-30% with 92% efficiency in DWF. Quadratic mean diameter sampling schemes are SSH-20mx20m-20% with 94% efficiency in TRF, SRS-10mx10m-20% with 75% efficiency in MMF and SRS-10mx10m-20% with 90% efficiency in DWF. Basal area assessment requires 100% inventory of 1 ha plot, subdivided into 20 m x 20 m data compilation units. For species diversity assessment, most efficient sampling schemes include 30% SSH with any plot size between 5m x 5 m and 20 m x 20 m in TRF and 10% SSH with 10 m x 5 m or 10 m x 10 m plot sizes in DWF. In MMF, all sampling options underestimated actual number of species. Where low sampling intensities are efficient in capturing species richness per hectare, there is no need to spend money and time on higher intensities. To construct cumulative species-area curves, one hectare data recorded in 5 m x 5 m units were found enough across the three forest types. The 30% sampling intensity was significantly favorable for both TRF (SSH-5mx5m-30% and SSH-10mx5m-30%; $R^2 > 99\%$) and MMF (SSH-20mx20m-30%; R^2 =86%). Slope gradient influenced efficiency of sampling for regeneration and basal area in the montane forest. The suitability of tested sampling options varied among attributes and across forest types. As such, multiple resource inventories require integration of different sampling schemes to ensure efficiency.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ABSTRACT	iv
TABLE OF CONTENTS	V
LIST OF TABLES	X
LIST OF FIGURES	xii
ABBREVIATIONS AND ACRONYMS	xvi
ACKNOWLEDGEMENTS	xviii
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background	1
1.2 Research Problem	3
1.3 Justification of the Study	4
1.4 Significance of the Study	5
1.5 Objectives of the Study	6
1.5.1 General Objective	6
1.5.2 Specific Objectives	6
1.6 Hypotheses	6
1.7 Thesis Overview	6
CHAPTER TWO	8
LITERATURE REVIEW	8
2.1 Scope 8	
2.2 Diversity of Tropical Natural Forest Ecosystems	8
2.3 Forest Structural Complexity	11
2.4 Factors Controlling Forest Complexity	11
2.5 Complexity of Tropical Natural Forest Resource Assessment	14
2.5.1 Diversity of Forest Management Contexts	14

2.5.2 Traditional Timber Assessment Context	15
2.6 Evolution of Sampling Methods and Efficiency in Forest Inventories	16
2.6.1 Puropose and Evolution of Sampling in Forestry	16
2.6.2 Field-Based Inventory Methods and Experiences in Kenya	18
2.6.3 Uncertainty, Bias and Sampling Efficiency	20
2.6.4 Selecting Efficient Sampling Scheme	23
2.6.5 Plot Size	24
2.6.6 Plot Allocation	28
2.6.7 Multipurpose Forest Assessment	29
2.6.8 Integrated Forest Inventory	30
2.7 Assessing Components of a Natural Forest Ecosystem	32
2.8 Common Forest Parameters of Interest in Tropical Natural Forest Assessments	
2.9 Experiences and Limitations of Application of Sampling in Natural Forests	42
2.10 Demand for Quality Data in Forest Inventories	43
2.11 Summary of Knowledge Gaps	45

CHAPTER THREE	47
MATERIALS AND METHODS	47
3.1 Introduction	47
3.2 Study Area	
3.3. Study Sites	
3.3.1 Kakamega Rainforest	50
3.3.2 Mt Elgon Montane Forest	53
3.3.3 Loruk Dry Woodland	55
3.4 Field Methods	
3.4.1 Forest Unit of Reference	55
3.4.2. Field Work Organisation	57
3.4.3 Sampling Frames	59
3.4.4 Sampling	60
3.4.5 Designing and Actualization of Sampling Schemes	62
3.4.6 Assessed Forest Variables	63

3.4.7 Descriptive Analysis of the Forest Types Structure and Composition	65
3.4.8 Evaluation Tests for Sampling Efficiency	69

CHAPTER FOUR	76
RESULTS	76
4.1 Introduction	76
4.2. Characterisation of Studied Forest Types	76
4.2.1 Tree Species Composition, Relative Dominance and Similarity among the Forests	76
4.2.2 Species Dominance and Diversity in Studied Forest Types	83
4.2.3 Forest Structure Description	84
4.2.4 Recruitment characteristics in studied forests	94
4.3 Evaluation of Efficiency of Sampling Schemes in Tropical Natural Forests	98
4.3.1 Sampling Schemes for Tree Species Richness and Diversity	98
4.3.2 Sampling Schemes for Forest Regeneration Inventory	113
4.3.3 Sampling Schemes for Forest Density	119
4.3.4 Sampling Schemes for Basal Area	125
4.3.5 Sampling Schemes for Quadratic Mean Diameter	125
4.3.6 Influence of Slope Gradient on Sampling Schemes' Efficiency for Forest Attributes .	135

CHAPTER FIVE	.141
DISCUSSION	.141
5.1 General Context	. 141
5.2 Forest Vertical and Canopy Structure across Forest Types	. 142
5.3 Forest Composition and Taxonomic Balance	. 143
5.4 Species Dominance and Diversity	. 143
5.5 Forest Regeneration, Recruitment And Structural Stability	. 144
5.5.1 Regeneration and Recruitment	.144
5.5.2 Diameter Size Distribution Structure	.146
5.6 Forest Density Measures	. 147
5.7 Efficiency of Sampling Schemes	. 147
5.7.1 Sampling Schemes for Tree Species Richness and Diversity	.147

5.7.2 Sampling Schemes for Natural Forest Regeneration	148
5.7.3 Sampling Schemes for Number of Trees per Unit Area	149
5.7.4 Sampling Schemes for Natural Forest Basal Area and Quadratic Mean Diameter	149
5.7.5 Sampling Schemes for Natural Forest Attributes along a Slope Gradient	150
5.8. Summary of Findings	150
5.8.1 Tree Composition, Diversity, Structure and Recruitment of the Three Natural Forest	
Types	150
5.8.2 Efficiency of Sampling Schemes	152
5.8.3 Optimum Schemes, Plot Sizes and/or Sampling Intensities	155

CHAPTER SIX	158
CONCLUSIONS AND RECOMMENDATIONS	158
6.1. Conclusions	158
6.2 Recommendations	160
6.3 Suggestions for Future Research	161

EFERENCES163

APPENDICES	191
APPENDIX I: LOCATION, ELEVATION AND CLIMATE FEATURES OF THE	
FOREST STUDY SITES, KENYA	191
APPENDIX II: R CODES FOR CREATING VARIOUS PLOT SIZES	192
APPENDIX III: SAMPLING FRAMES FOR DIFFERENT PLOT SIZES	197
APPENDIX IV: SIMPLE RANDOM SAMPLING PROCESS IN R FOR DIFFERENT	
PLOT SIZES AND SAMPLING INTENSITIES	201
APPENDIX V: SYSTEMATIC SAMPLING PROCESS IN R FOR DIFFERENT PLOT	
SIZES AND SAMPLING INTENSITIES	207
APPENDIX VI: SAMPLES DRAWN FROM EACH FOREST TYPE USING	
DIFFERENT SAMPLING DESIGNS, PLOT SIZES AND 5% INTENSITY	217
APPENDIX VII: SAMPLES DRAWN FROM EACH FOREST TYPE USING	
DIFFERENT SAMPLING DESIGNS, PLOT SIZES AND 10% INTENSITY	219

APPENDIX VIII: SAMPLES DRAWN FROM EACH FOREST TYPE USING
DIFFERENT SAMPLING DESIGNS, PLOT SIZES AND 20% INTENSITY 221
APPENDIX IX: SAMPLES DRAWN FROM EACH FOREST TYPE USING
DIFFERENT SAMPLING DESIGNS, PLOT SIZES AND 30% INTENSITY 225
APPENDIX X: TREE SPECIES AND FAMILY COMPOSITION IN THREE FOREST
TYPES, KENYA
APPENDIX XI. SHARING OF TREE SPECIES AMONG THREE DIFFERENT
FOREST TYPES IN KENYA BASED ON THE ASSESSED ONE HECTARE
PLOT PER FOREST
APPENDIX XII. SHARING OF TREE GENERA AMONG THREE DIFFERENT
FOREST TYPES IN KENYA BASED ON THE ASSESSED ONE HECTARE
PLOT PER FOREST
APPENDIX XIII. SHARING OF TREE FAMILIES AMONG THREE DIFFERENT
FOREST TYPES IN KENYA BASED ON THE ASSESSED ONE HECTARE
PLOT PER FOREST
APPENDIX XIV: BIOPHYSICAL CHARACTERISATION OF VERTICAL
STRUCTURE AND TREE DIAMETER DISTRIBUTION FOR THE THREE
FOREST TYPES, KENYA
APPENDIX XV: SPECIES -AREA CURVE MODELS AND THEIR QUALITIES 240
APPENDIX XVI: INVENTORY COST AND SAMPLING ERRORS FOR TESTED
SCHEMES IN DIFFERENT FOREST TYPES

LIST OF TABLES

Table 1: Climatic conditions, canopy height and biomass carbon of selected world's
tropical* forests and woodlands
Table 2: Summary of common field inventory methods used for tree species diversity and
structure assessments in tropical forests19
Table 3: Commonly applied plot sizes in forest assessment studies
Table 4: Sampling frames (N) for different plot sizes and respective sample sizes for
varying sampling intensities62
Table 5: Sample sizes for different candidate sampling schemes64
Table 6: Checklist of variables assessed for overall forest characterization
Table 7: Reference treatment based on mean population variance of 100 % intensity74
Table 8: Species richness, evenness and diversity in the three forest types
Table 9: Most efficient sampling schemes for constructing species accumulation-area
curves in tropical forests
Table 10: Simple random sampling (SRS) outputs for number of seedlings per hectare
forest unit115
Table 11: Systematic sampling along horizontal transect (SSH) outputs for number of tree
seedlings per hectare forest unit116
Table 12: Systematic sampling along vertical transect (SSV) outputs for number of tree
seedlings per hectare forest unit117
Table 13: Simple random sampling (SRS) outputs for number of trees per hectare forest
unit121
Table 14: Systematic sampling along horizontal transect (SSH) outputs for number of
trees per hectare forest unit
Table 15: Systematic sampling along vertical transect (SSV) outputs for number of trees
per hectare forest unit123
Table 16: Simple random sampling (SRS) outputs for basal area per hectare (m ² ha ⁻¹)
forest unit
Table 17: Systematic sampling along horizontal transect (SSH) outputs for basal area per
hectare (m ² ha ⁻¹) forest unit

LIST OF FIGURES

Figure 1: Illustration of plot allocation patterns for simple random sampling (a), aligned
systematic sampling (b), unaligned systematic sampling (c), and systematic
cluster sampling (d)29
Figure 2: Location of Study Sites in Kenya49
Figure 3: Tropical rain forest top most canopy layer (A) and lowest canopy layer with
typicaly thick undergrowth (B) and buttressed huge tree stems (C) sizes,
Kakamega forest structure, Kenya52
Figure 4: Mt Elgon forest undergrowth and canopy characteristics in disturbed area,
Kenya54
Figure 5: Loruk Woodland Forest site (open low canopy vegetation with 65-40% cover)
with a typical tropical dryland forest physiognomy (A) and Tropical dry
woodland forest canopy structure in Loruk area (B), Baringo, Kenya56
Figure 6: Illustration of 100m x 100m forest unit of reference subdivided into 10 m x 10
m sampling plot units
Figure 7: Example of field arrangement for four hundred 5 m by 5 m subplots in the forest
(Horizontal: E-W; Vertical: N-S)
Figure 8: Illustrated three directional sampling options within a forest unit of reference
(horizontal, vertical and diagonal)61
Figure 9a: Forest tree species composition and dominance in the studied one hectare $-$
block in Kakamega Rainforest, Kenya78
Figure 9b: Forest tree species composition and dominance in the studied one hectare $-$
block in Mt Elgon Moist montane forest, Kenya79
Figure 9c: Forest tree species composition and dominance in the studied one hectare $-$
block in Loruk dry woodland forest, Kenya80
Figure 10a: Total number of families, genera and species per hectare in Kakamega
tropical rainforest, Mt Elgon moist montane forest and Loruk dry woodland
forest, Kenya80
Figure 10b: Similarity in composition among forest types in terms of tree species (A), tree
genera (B) and tree families (C), Kenya81

Figure 11a: Percent (%) Jaccard and Sorensen similarity indices indicating similarity levels between different forest types [in terms of family composition], Kenya.

Figure 11c: Percent (%) Jaccard and Sorensen similarity indices indicating similarity levels between different forest types [in terms of species composition], Kenya.

Figure 14: Diameter size distributions for studied forest types, Kenya90

- Figure 15: Forest types models versus UNO (1994) model of tropical forest stability92

Figure 17b: Recruitment patterns of trees (expressed in percent relative abundance of different tree development stages) in different tropical natural forest types in Kenya......96 Figure 18: Trend in regeneration and recruitment process in three natural forest types in Figure 19a: Sampling species richness with 5 m x 5 m plots (% species capture per sampling intensity and design).....100 Figure 19b: Sampling species richness with 10mx5m-plots (% species capture per sampling intensity and design).....101 Figure 19c: Sampling species richness with 10 m x 10 m plots (% species capture per sampling intensity and design).....102 Figure 19d: Sampling species richness with 20 m x 20 m plots (% species capture per Figure 20a: Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per-hectare based on 5 m x 5 m and 10 m x 5 m plot sizes, for two transect directions in Kakamega TRF, Kenya.106 Figure 20a (Cont.): Actual and estimated cumulative species -area curves up to 30% and 100% intensity data per-hectare based on 10 m x 10 m and 20 m x 20 m plot sizes, for two transect directions in Kakamega TRF, Kenya......107 Figure 20b: Actual and estimated cumulative species -area curves up to 30% and 100% intensity data per-hectare based on 5 m x 5 m and 10 m x 5 m plot sizes, for Figure 20b (Cont.): Actual and estimated cumulative species -area curves up to 30% and 100% intensity data per-hectare based on 10 m x 10 m and 20 m x 20 m plot sizes, for two transect directions in Mt Elgon MMF, Kenya......109 Figure 20c: Actual and estimated cumulative species -area curves up to 30% and 100% intensity data per-hectare based on 5 m x 5 m and 10 m x 5 m plot sizes, for Figure 20c (Cont.): Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per-hectare based on 10 m x 10m and 20 m x 20 m plot sizes, for two transect directions in Loruk DWF, Kenya.....111

- Figure 23: Sampling for forest density (no. trees ha⁻¹) under simple random sampling (SRS), systematic sampling horizontal (SSH) and vertical (SSV) in tropical rain forest (TRF), moist montane forest (MMF) and dry woodland (DWF), Kenya
- Figure 25: Sampling for forest basal area (m²ha⁻¹) under simple random sampling (SRS), systematic sampling horizontal (SSH) and vertical (SSV) in tropical rain forest (TRF), moist montane forest (MMF) and dry woodland (DWF), Kenya.......126
- Figure 27: Sampling schemes for quadratic mean diameter of trees in tropical rain forest (TRF), moist montane forest (MMF) and dry woodland (DWF)134Figure 28: Efficiency of sampling schemes for number of seedlings per hectare on slope
- Figure 29: Forest density (stems /ha) assessment on the gentle slope of montane forest 139
- Figure 30: Basal area assessment on slope in montane forest......140

ABBREVIATIONS AND ACRONYMS

Abbreviations

ALS	Airborne Laser Scanning
CBFP	The Congo Basin Forest Partenership
DAP	Digital Aerial Photogrammetry
DBH	Diameter at breast height
DWF	Dry Woodland Forest
GHGs	Green house gases
HSR	High Spatial Resolution
MMF	Moist Montane Forest
QMD	Quadratic mean diameter
REDD+	Reducing Emissions from Deforestation and Degradation
SCBD	Secretariat of the Convention on Biological Diversity
SLEEK	System for Land-Based Emission Estimation in Kenya
SRS	Simple Random Sampling
SS	Systematic Sampling
SSD	Systematic sampling along diagonal transect
SSH	Systematic sampling along horizontal transect
SSV	Systematic sampling along vertical transect
TLS	Terrestrial Laser Scanning
TRF	Tropical Rain Forest
VHSROSI	Very High Spatial Resolution Optical Satellite Imagery

Acronyms

CCI	Clinton Climate Initiative						
CMGGR	Committee On Managing Global Genetic Resources						
CSIRO	Commonwealth Scientific and Industrial Research Organization						
DRSRS	Directorate of Resource Surveys and Remote Sensing						
FAO	Food and Agriculture Organisation						
IPCC	Intergovernmental Panel on Climate Change						
KEFRI	Kenya Forestry Research Institute						
KFS	Kenya Forests Service						
MENR	Ministry of Environment and Natural Resources						
RCMRD	Regional Centre for Mapping of Resources for Development						
SOK	Survey of Kenya						
UNO	United Nations Organisation						

ACKNOWLEDGEMENTS

This fine work is a product of many efforts. I wish to thank African Forest Research Network for funding the project, under which field work was undertaken. I hereby thank the Principal investigators of the same project Prof J. Ole Kiyiapi of Kenya and Prof Eric Eboh of Nigeria who generously accommodated me in their project. I thank University of Eldoret Senate for the opportunity offered to me to pursue my doctoral studies in this institution. I acknowledge invaluable encouragement from the Dean of the School of NRM, Prof L. Etiegni, the Head of Department of Forestry and Wood Science and the various lecturers who shapened my research skills. I sincerely thank my supervisors for their academic prowness and patience that they invested in my success. I appreciate my employer, University of Kabianga, for releasing me during my studies. I also deeply acknowledge the social, moral and spiritual support received from my family members. I am very grateful to my field teams and local leaders in Kakamega, Mt Elgon and Loruk in Baringo, led by Festus Mutiso, who ensured smooth running of all field activities. I thank the GIS experts (Michael Maina and Sheila Aswani) and the Data Analyst using R-Software (Jean Victor Kwizera) for their valuable input. I thank all whom I could not mention by name but contributed to the success of this work. May the Almighty God bless you all!

CHAPTER ONE

INTRODUCTION

1.1 Background

Resource managers need accurate and timely quantitative resource information to make decisions wisely (Schreuder, Gregoire & Wood, 1993) at various levels: locally, nationally, regionally and internationally (Wong, Thornber & Baker, 2001). Given the scarcity of resources and the scale of the challenge, there is a need to maximize the efficiency of both sampling strategies and sampling units. Generally, there is substantial improvement in prediction accuracy from larger plots compared to smaller plots (Mauya, et al., 2015). Unfortunately, there is little information on the relative efficiency of different approaches to floristic assessment in tropical natural forests. In Kenya, for example, the need for accurate and comprehensive information on the national forest and tree resources is felt for implementation of the National Strategy for Reducing Emissions from Deforestation and Forest Degradation (REDD+).

The above REDD+ strategy focuses on protecting the remaining forest resources and enhancing forest carbon stocks to improve local livelihoods and biodiversity (Nduati et al., 2016). It requires a back up of environmentally and socially sustainable forest and land-use policies. A key limitation for successful implementation of the REDD+ strategy is lack of reliable methods for quantifying forest aboveground biomass (Herold & Skutsch, 2011; Shijo, Herold, Sunderlin & Verchot, 2013). In Kenya, a national technical guideline is being developed to act as framework of undertaking mapping of land use and land cover classification by use of remote sensing data. The guideline or manual will enable the country participate in monitoring and estimating land based GHG emissions by providing consistent, complete, and time-series land cover change information (Directorate of Resource Surveys and Remote Sensing [DRSRS] et al., 2019).

Globally, the loss of biodiversity on Earth is reported to be a major threat to ecosystems and human well-being (Groombridge & Jenkins, 2000; Millennium Ecosystem Assessment, 2005; Mulatu, Mora, Kooistra & Herold, 2017). While accurate and consistent information on forest area and forest area change are needed to halt the loss of biodiversity at global, continental and regional scales. Feld et al. (2009)

noted that existing policies have not yet adequately stimulated the development of comprehensive indicator systems suited to detect and measure the state and trends in biodiversity and their implication on ecosystem service provision. To close the critical information gaps, there is a need for a comprehensive and standardised design for sampling and data generation to permit comparisons across different areas and ecosystems. There is also a need to develop common monitoring schemes within and across habitats (Feld et al., 2009). For example, abiotic surrogate measures derived from remote sensing and spatial analyses must be validated in their linkage to the biota by ground truthing (Feld et al., 2009; Nilson et al., 2003). The need to integrate remote sensing and field data from either existing national inventories or collected independently is widely acknowledged (e.g. Chave et al., 2019; Lackmann, 2011).

Increasing interests in forest resources, their sustainable use and management have ignited international and national debates; major themes being forest degradation, rehabilitation and restoration of forest landscapes, climate change (mitigation and adaptation), carbon sinks and sequestration processes (Öztürk, Palta & Gökyer, 2018). Concerns are also expressed over the shrinking and fragmentation of forest areas (Ganivet & Bloomberg, 2019) in relation to loss of biological divesrity, species endemism, socioeconomic and governance issues in forestry and environment (Hitimana et al., 2011; Mullah, Otuoma & Kigomo, 2013). Global environmental concerns extend to desertification, agroforestry and tree domestication, water catchments, as well as management of all other tree resources outside forests including non-wood forest products (Wong et al., 2001). In the light of the aforementioned issues, there is an uprising paradigm shift in management and conservation of forest resources, from traditional timber orientation to multiple use forest management (Food and Agriculture Organisation [FAO], 2010; Schreuder et al., 1993). Multiple resource data are indeed required to support the current shift in the management and governance of the forest resources and landscapes. As observed by Wong et al. (2001), there is need of biometrically sound studies which, do not just collect quantitative information but uphold statistical principles that cover objectivity in selecting sampling design, number of sampling units used and independence of observations.

Tropical natural forests and woodland formations are uniquely more complex in their ecological diversity, management and conservation requirements than temperate forest ecosystems that are realitively simple formations and sufficiently studied (Oldfield & Newton, 2012). The dichotomy of ecological complexity of tropical ecosystems from lowland and upland rain forests through dry and humid montane forests to arid and semi-arid woodlands justifies the paucity of quantitative methods relating to studying these ecosytems and present a dilemma in adopting assessment methods developed for less complex temperate forests and / or forest plantations (Aldrich & Hamrick, 1998; Oldfield & Newton, 2012). Whereas some methods such as remote sensing are more or less universal and are applied across the globe without modification, field methods are, by contrast, situation-specific (Arellano, et al., 2016; Burkhart & Tome, 2012; Schreuder et al., 1993) and target population characteristics (Gillison & Brewer, 1985; Greenwood, 1996; Myers & Patil, 1995; Philip, 1994; Wong et al., 2001). They ideally require calibration and validation for suitability before they are adopted (Pretzsch, 2009; Weiskittel, Hann, Kershaw Jr. & Vanclay, 2011).

At forest ecosystem level, and in the context of climate change and biodiversity conservation challenges, there is also need to know and understand resource conditions and quality including the capacity of a forest to store carbon, regulate climate and sustain rich biodiversity (Hicks et al., 2014; Öztürk, et al., 2018). The global interests in tree conservation empasize on conserving threatened species and other components of biodiversity with actual or potential value to mankind (Groombridge & Jenkins, 2000; Njunge & Mugo, 2011; Oldfield & Newton, 2012). These species and other associated ecosystem components must be identified and evaluated through well designed and cost-effective studies.

1.2 Research Problem

Tropical natural forests and woodlands are of diverse complex types with lesser known and understood species mix and stand structure (Girma, 2012; Mulatu et al., 2017). These mixed species ecosystems are difficult to analyze and understand in their pristine state (Grainger, 1993; Lanly, 1997; Singh, 1993) due to lack of established, reliable and widely accepted designs for the assessment of tropical forest systems (Arellano et al., 2016). The existing sampling techniques in use have been developed in the context of ecosystems in temperate region which far much structurally simpler and less diverse than the complex mixed tropical natural forests. Tropical natural forests and/or woodlands are highly variable in composition, diversity, physical and dynamic structures (Hemp, 2006; Talbot et al., 2014). There is need for research on accurate and efficient forest sampling schemes to be used in inventory and resource assessment to collect data and generate knowledge for the support of sustainable management and conservation of tropical mixed natural forest ecosystems. This study sought to evaluate and determine field sampling schemes suitable for use across the diverse tropical natural forest types to accurately capture, quantify and describe multiple forest attributes of ecological and management significance while ensuring cost efficiency. The anticipated impact is to enhance assessment of tropical natural forest resources across the complex 'tropical rain forests, moist montane forests and dryland forests and woodlands' dichotomy using a consistent method.

1.3 Justification of the Study

Information on changes in forest resources is needed for policy decisions and for the purpose of strategic planning of forest management, rehabilitation or restoration at regional, national or local levels. Local level planning requires more detailed information on the quantities and location of forest resources. Forest degradation is best appreciated through its consequences within the ecosystem such as change in floristic composition, species diversity, forest regeneration and soil fertility (Grainger, 1993; Hitimana, Kiyiapi & Njunge, 2004; Serna, 1986). The scarcity of crucial data on the resources leads to high risk of making non-informed decisions (Schreuder et al., 1993; Wong et al., 2001) that compromises the ability to plan and enhance their sustainable use and renewability (Bellefontaine, Petit, Pain-Orcet, Deleporte & Bertault, 2002). Diversity of species and their distribution are influenced by a several factors such as climate, altitude or edaphic differences (Gentry, 1988a; Merganič, Merganičová, Marušák & Audolenská, 2012). Species' distributions and abundance are also fundamental to understanding patterns of communities and their relations to environmental conditions (Ludwig & Reynolds, 1988; McCune & Grace, 2002). There is not much detailed knowledge and understanding about the natural forest systems, their component species and how they interact (Matthews, 1989). The role of forests and trees in tropical regions is rapidly expanding as sources of a diverse range of products and environmental services, which demand better management and conservation initiatives. With the declining forest cover in most tropical countries including eastern africa (FAO, 2003), people are progressively turning more and more to trees in woodlands and other landscapes outside forests for tree products. Therefore the study of closed canopy forests is as important as that of open canopy forests and woodlands in their various forms. There is a need for standardized and efficient sampling methods to enhaance assessment of diverse tropical forests and woodland formations.

1.4 Significance of the Study

Through well designed sampling studies, it is possible to measure, model and manipulate linkages between a forest resource and associated factors (biophysical, social and economical) that control its temporal and spatial variability. This study was designed to test and identify reliable sampling schemes for use in characterising the prevailing conditions and values of tropical natural forests and dry woodlands. The impact of this research process and output is to avail necessary sampling tools for objective assessment of forest regeneration, recruitment, horizontal and vertical structure, tree biodiversity, relative dominance and forest density in terms of standing stems and basal area. Understanding and appreciating complex forests, tree characteristics and human x forest/tree interactions are prerequisites to the development and implementation of sustainable multi-resource management and conservation plans at different ecosystem, landscape, national and international levels.

This study is significant for Kenya National Forest Monitoring System by addressing reliability of temporal field-based datasets which are often problematic to collect in the proposed strata of Western Rain forests, Montane forests and Dryland forests (DRSRS et al., 2019). Internationally, the study supports data on use of sampling designs for different forest vegetation types and provides information about factors to consider in selecting sampling designs, plot sizes and sampling intensities.

1.5 Objectives of the Study

1.5.1 General Objective

The general objective of this study was to explore overall applicability of various sampling designs, intensities and plot sizes over different forest ecosystems and tropical woodlands.

1.5.2 Specific Objectives

The specific objectives were:

- To characterize and model on-per-hectare variation in forest structure, composition and tree species diversity in three selected tropical forest types (tropical rainforest, moist montane forest and dry woodland forest) in Kenya.
- To determine relative efficiency of sampling schemes in capturing tree species diversity, forest regeneration, stem density, basal area and quadratic mean diameter on-per-hectare basis within and across three natural forest types in Kenya.
- 3) To determine optimum plot sizes, sampling intensities and reliable sampling designs suitable for estimation of forest structure, composition and diversity attributes across the mixed tropical natural forest types in Kenya

1.6 Hypotheses

1) An ecological gradient exists from dry woodland forests through montane to tropical rain forests mirrored by biophysical characteristics, structure and species composition.

2) Different forest ecosystems require different sampling protocols.

3) Optimal sampling designs, intensities and plot sizes exist for different forest ecosystems.

1.7 Thesis Overview

This thesis has six separate but related chapters. The introduction chapter sets the stage for the research background, justification, study objectives and hypotheses.

Chapter 2 presents the review of literature. Chapter 3 covers the study area and field methods. Chapter 4 presents the results starting with description of studied forest units of reference in terms of composition, diversity and structure; followed by evaluation of relative efficiency of different sampling schemes (combination of sampling designs, plot sizes and sampling intensities) in different forest types. Sampled forest attributes are: species diversity / richness measures, regeneration and stand density measures. Results are discussed in Chapter 5. Finally, conclusions, recommendations and suggested future research are presented in Chapter 6.

CHAPTER TWO

LITERATURE REVIEW

2.1 Scope

This chapter contains an in-depth review of literature on the complexity nature of natural forest ecosystems in the tropics and of the diverse needs for their assessments. It covers the evolution of forest resource assessments from timber oriented studies to multiple use contexts of the contemporary world. Literature on the evolution of sampling methods, approaches of studying forest ecosystems, as well as on commonly assessed forest attributes is reviewed. The chapter continues with the review of experiences and limitations of applications of sampling designs to tropical natural forest systems leading to the context of this particular study. It ends with a summary of identified knowledge gaps and related research questions.

2.2 Diversity of Tropical Natural Forest Ecosystems

Globally, forests occupy 4.03 billion hectares (about 30% of total land area), make 75% of terrestrial gross primary production and 80% of total plant biomass (Pan, Birdsey, Phillips & Jackson, 2013). The amount of carbon stored in forest soils and biomass exceeds the amount existing in the atmosphere (Sullivan et al., 2017). Forests are defined and classified in many contexts as resources and organized ecological systems (Pan et al., 2013) comprising of living organisms (plant, animals and others), interacting with their physical, chemical, biological and social environments (Bolkin & Talbot, 1992; Jahn, 1982; Kent & Coker, 1992; Sharma, 1992). A continuous canopy of large trees at least 10 m tall usually distinguishes forests from other types of plant communities (Beentje, 1994). According to Food and Agriculture Organisation (FAO, 2010), a forest is a community of trees, shrubs, herbs and associated plants and organisms covering a surface area of at least 0.5 ha, with a tree canopy cover of 10 % or above. Trees are the main elements that govern multiple functions of forests that are beneficial to mankind (Tomlinson, 1983; Committee On Managing Global Genetic Resources [CMGGR], 1991). Tropical forest formations comprise of tropical rainforests, montane forests, and woodlands (Malhi, Adu-Bredu, Asare, Lewis & Mayaux, 2013). The tropical rainforest biome has four main characteristics: very high annual rainfall, high average temperatures, nutrient-poor soil, and high levels of biodiversity; and has unique combination of ecological, climatic and human interactions, experiencing high human pressure (Morris, 2010). Montane forests form the catchments of many rivers and their vegetation varies with altitude and rainfall. Those forests in high potential areas are characterized by thick undergrowth, and are under constant pressure of being exploited for wood and non-wood products (Hitimana et al., 2004; Hitimana, Kiyiapi, Njunge & Bargerei, 2010) as well as being converted into agricultural land usage. They are also rich in biodiversity and are good habitats for wildlife.

Beside closed canopy forests, other treed natural vegetation types in Kenya include dry woodland forests in the Arid and Semi-arid climate, characterized by high temperatures, erratic precipitation and moisture deficit, all affecting the vegetation type and growth behaviour (Bryan, 1994; Dangasuk, 1999; Kiruki, van der Zanden, Gikuma-Njuru & Verburg, 2017). The dry zone forests in Kenya are found in the dry areas which include dense savanna acacia forests. The dry woodlands include trees measuring 5 - 15 m high, with dwarf understorey. The dry sub-forest type also covers the dry forests on the hilltops and semi-arid savanna dry forests that developed under harsh climatic conditions and support grazing and browsing livestock and/or wildlife (Ministry of Environment and Natural Resources [MENR], 2016). Woodlands are open stands of trees at least 8 m tall and with a canopy cover of at least 40% (Beentje, 1994). Woodland sub-categories include wooded grasslands or savanna, that is, land covered with grass and other herbaceous species, with scattered or grouped trees and shrubs that cover 10 to 40% of the ground; bushlands (vegetation types with some grass and dominant woody plants having 3 to 7 m height and a canopy cover of at least 40%); and bushed grasslands that are characterized by dominant woody plants less than 6 m high (Beentje, 1994).

Reviewed literature on tropical dry forest and woodland ecosystems (e.g. Mayaux, et al., 2005; Muturi, 2012; Omondi, 2016) indicates that they cover about 40 % of tropical ecosystems globally; approximately 54 % of the African land cover (Ribeiro et al., 2013), and about 87 % of Kenya (Muturi, 2012). Generally, these ecosystems are in four categories: hyper arid, arid, semi-arid and sub-humid (Pauw, Göbel & Adam, 2000). According to Kiruki et al. (2017) review, these ecosystems' dynamics are poorly understood and their monitoring and modelling neglected (Gerhardt & Todd, 2009; Grainger, 1999) despite being central to the livelihoods of many millions of people in

Africa (Campbell, Costanza, Belt & Van Den, 2000; Kabubo-Mariara, 2013). They provide a range of ecosystem services including micro-climate regulation, soil conservation, flood control and carbon sequestration (Kalema, Witkowski, Erasmus & Mwavu, 2014; Syampungani, Chirwa, Akinnifesi, Sileshi & Ajayi, 2009).

Sustainable use, management and conservation of dry woodlands require knowledge and understanding of their composition, diversity, structure and regeneration (Kiruki et al., 2017; Mwavu & Witkowski, 2009; Worku, Teketay, Lemenih & Fetene, 2012) as well as threats they face such as fire, grazing and different forms of exploitation (Eshete, Sterck & Bongers, 2011). The dry forests and woodlands are found in regions receiving between 100-800 mm annual precipitations and experiencing dry seasons of about 4-7 months (Bullock, Mooney & Medina, 1995; Eshete et al., 2011). The area is severely affected by recurrent droughts, and erratic floods with serious rangeland deterioration, loss of livestock and forest degradation (Bryan, 1994; Chidumayo & Marunda, 2010).

In Kenya, the Land Cover Change Mapping Programme categorizes forest land into three categories, primarily based on remote sensing: Dense Forest (above 65% cover), Moderate Forest (40 % to < 65%) and Open Forest (15 % to < 40%). Under the National Forest Monitoring System [NFMS], the Intergovernmental Panel on Climate Change [IPCC] (2006) forestland land use class is used based on Kenya's definition of forests (MENR, 2016). Forestlands are areas occupied by forests and characterised by tree crown cover $\geq 15\%$, an area ≥ 0.5 ha and a tree height ≥ 2 m. It also includes areas managed for forestry where trees have not attained 2m height but with potential to do so, and areas that are temporarily destocked natural forests include mangrove forests, bamboo forests, dry land forests, montane forests and western rain forests.

Montane forests are those found in high altitude regions of Kenya (above 1,500 m); they include Mt Elgon blocks. They are the most extensive and are described as water towers due to their support to water catchments. These forests differ in species composition due to climate and altitude (Beentje, 1994). The western rain forests are those with characteristics of the Guineo-Congolean forests and include Kakamega forest. Trees are significantly taller and larger as compared to other forests of Kenya. The dryland forests are found in the arid and semi-arid regions of Kenya. The category also includes riverine forests in dry areas. Their carbon stocks may differ from that of other forests due to leaf shedding, elongated rooting systems and high specific wood density (DRSRS et al., 2019).

2.3 Forest Structural Complexity

Forests are documented to be the dominant terrestrial ecosystems on Earth and environmental factors control their structure and global distribution (e.g. Jucker et al. 2018). Natural forests and woodlands play major functions in supporting life (e.g. Hitimana et al., 2011). Natural forests are self-regulating system units (Brunig, 1983; CMGG, 1991; Bruenig, 1998), but their ideal structural model can be modified by localized environmental factors, biotic or abiotic, e.g., human activities, topography, soils and climate influence (Hett & Loucks, 1976; Brunig, 1983; Denslow, 1995). Generally, forests and tree resources are influenced by dynamic socio-economic and ecological contexts. Good knowledge of the structure, distribution and biomass of forests provides ecological insights and opportunities that guide sustainable forest management, enhanced forest conservation and provision of ecosystem services (Pan et al., 2013). Spatial distribution patterns of forests are increasingly discernible using new remote sensing systems, improved land-based forest inventory systems and global ecosystem modeling. Forest ecosystems are well known habitat to most species on Earth and source of diverse ecosystem goods and services for the well-being of humanity (SCBD, 2010). Globally, 17% of forests are in Africa with 95% being natural formations (Pan et al., 2013). Table 1 shows the extent and characterization of tropical natural forests climatic conditions and productivity.

2.4 Factors Controlling Forest Complexity

Factors influencing the complexity of patterns in forest associations and structure include adaptation of trees to aspects of geography, climate, climate change induced by anthropogenic greenhouse gases [GHGs] emmissions, topography, soil, environmental variation and disturbances (e.g., Holdridge, 1967; Whittaker 1975; IPCC 2007; Swanson et al., 2011; Walther, 2010). Complex mosaics of forest distribution and high landscape-scale diversity are created by varying types, scales, intensities and frequencies of disturbances. Global assessment results by FAO (2010) indicate that more than 60% of the world's forests are recovering from a past disturbance and 3% are disturbed annually through logging, fire, pests, or weather.

Documented evidence reveals upward movements of tree species and tree lines along elevational gradients in response to increased Earth warming (e.g., Beckage et al., 2008; Colwell, Brehm, Cardelus, Gilman & Longino, 2008; Kullman & O[•]berg, 2009; Malhi et al., 2010; Clark, Hurtado & Saatchi, 2015). Influence of climate change on forests may be through inducing high frequency and intensity of wildfires, windstorms or insect outbreaks, drought and heat stress increase in tree mortality, forest die-offs, decrease in forest productivity (Dale et al., 2001; Allen et al., 2010; Phillips et al., 2009). Understanding of the complexity of issues surrounding the health and sustainability of natural forests is critical for strategic interventions but it requires detailed field studies, guided by well-structured methods and procedures.

Forest biomes	Mean temperature	Total rainfall	Seasonality	Canopy height	Total biomass carbon	Existing forest
	$yr^{-1}(^{\circ}C)$	yr^{-1} (mm)		(m)	density (Mg C ha ⁻¹)	(M ha)
Tropical rainforest	~20−25°C	>1,500	No dry season	25-50	145 ± 53	1,354
Tropical dry forest	>15°C	500-1,500	5-8 dry months	5–20	53 ± 35	645
Tropical shrub lands	>15°C	200–500	8–11 dry months	3–15	71 ± 45	701
Tropical mountain systems	<18°C	700–2,000	0–11 dry months	3–35	124 ± 54	351

Table 1: Climatic conditions, canopy height and biomass carbon of selected world's tropical* forests and woodlands

*Tropical zone : $23.5^{\circ}N-23.5^{\circ}S$; all months without frost.

(Extracted from Table 1 in Pan et al., 2013)

Documented evidence shows upward movements of tree species and tree lines along elevational gradients in response to increased Earth warming (e.g., Beckage, Osborne, Gavin, Pucko, Siccama & Perkins, 2008; Colwell et al., 2008; Kullman & O[°]berg, 2009; Malhi et al., 2010; Clark et al., 2015). Influence of climate change on forests may be through inducing high frequency and intensity of wildfires, windstorms or insect outbreaks, drought and heat stress increase in tree mortality, forest die-offs, decrease in forest productivity (Dale et al., 2001; Allen et al., 2010; Phillips et al., 2009). Understanding of the complexity of issues surrounding the health and sustainability of natural forests is critical for strategic interventions but it requires detailed field studies, guided by well-structured methods and procedures.

2.5 Complexity of Tropical Natural Forest Resource Assessment

2.5.1 Diversity of Forest Management Contexts

Measurable elements of structural development and complexity of forests include stand ages, species diversity and variations in tree-size categories (Franklin et al., 2002). These attrbutes can be quantified using scores derived from multivariate analyses or remote sensing data to map forest structural complexity or interpret forest structural patterns within environmental contexts (McElhinny, Gibbons, Brack & Bauhus, 2005; Kane et al., 2011; Pasher & King 2011). Forest structure dynamics is a key to ecosystem stability and conservation; and should be analysed in relation to disturbances, primary production, mortality, biomass, and woody debris accumulation on spatial and temporal scales (Spies, 1998).

In the tropics, the diversity of data requirements for forest management is dictated by the existence of the many forest management options e.g intensive forest management with precision silviculture for timber production; management for non-wood products as the main focus; restoration of mining sites; forest management for environmental goods, services and values where multiple management strategies are integrated. Modelling for management of old-growth forest landscapes is also complicated (Bawa & Seidler, 1998). In tropical countries where natural forests are managed extensively for a range of goods and services including wood, recreation, biodiversity and other values or forests are managed on degraded land for only non-wood benefits such as environmental services including carbon sequestration, data

collection for management model development require many variables. In multiple use forestry, profitability is optimized by supplementing intensive timber production with non-wood products and services. For example, consider the understorey as complementary rather than competing vegetation. The complementary products and services place different demands on data and models.

2.5.2 Traditional Timber Assessment Context

Forest inventory is the systematic collection of data on the forestry resources within a given area (Schreuder et al., 1993). It allows assessment of the current status of the forest resources and lays the ground for analysis and planning for sustainable forest management. Forest inventory must be clearly defined, the focus of the data collection must be well articulated and respond to information needs of the users. All inventory operations follow four key steps: (i) definition of the inventory objectives and information desired; (ii) development of sampling design and methods; (iii) data collection from field surveys, remote sensing data analysis and other sources; and (iv) data analysis and publication of the results (Schreuder et al., 1993). Forest assessment protocols should clearly report on sampling design with adequate details on how sampling units (e.g. plots) are located, plot dimension, plot numbers, and enumeration techniques, describing where and how each sampling unit was assessed (Wong et al., 2001). Sampling techniques are applied to minimize the cost and time constraints associated with forest inventories (Nassiuma, 2000). Sampling refers to the process of selecting an assumed representative part or subset of an entire population of individual materials or organisms so that inferential statistics can be applied (Schreuder et al., 1993). Forest sampling is the process of selecting a representative sample of trees and obtaining the required estimates. The ultimate aim of sampling is to arrive at unbiased true estimates of population parameters; that is, to make correct inferences about the population. Sampling units are non-overlapping, that is, independent collections of elements from the population that cover the entire population (Nassiuma, 2000). Forest sampling is widely applied in forest inventory for a variety of purposes such as collecting data for forest trees and stands growth and yield modeling (Weiskittel et al., 2011), including evaluating site quality (Burkhart & Tome, 2012), biodiversity dynamics and carbon sink estimations. According to FAO (Wong et al., 2011), yield is the amount of product available and useful for harvest at a given point in time; or as the total biological potential of a species; and its assessment is by measuring product availability or quantifying the amount of a product that can be harvested from an area of a forest.

2.6 Evolution of Sampling Methods and Efficiency in Forest Inventories

2.6.1 Puropose and Evolution of Sampling in Forestry

The main purpose of national forest inventory is to estimate the present state and the changing trends of the natural forest resources. Additional purposes of forest inventory include measurement of volume, biomass, carbon stocks and characteristics of trees and stands including forest land area. In order for a nation to efficiently manage and preserve its natural resources using scientific methods, the detailed state of the resources and any changes that occur must be surveyed and analyzed periodically (Park et al., 2016). Multiple methods exist for the estimation of tree density from point-based sampling including distance based and area based approaches (Levine et al., 2017). Sampling schemes of increasing intensity have been simulated to estimate sampling error for forest density estimates in surveys (Levine et al., 2017).

Statistical sampling or sample survey refers to the collection of data in a scientifically acceptable manner, that is, the selection of a representative sample (Schreuder et al., 1993). A representative sample is generally the probabilistic with every unit in the population having a positive probability of selection and these probabilities are known and independent of the person taking the sample. A representative sample provides information of interest to the manager and gives a measure of its reliability, i.e. precision of parameter estimate (Brown, 2007). Assessment of the reliability of information is often as important as information itself. Cost of attaining reliable estimates may be greater than the funds available. The ideal technique for collecting data in natural resource surveys is to map in a statistically valid manner, which is usually expensive, but yields the most complete information about a population – how much and where for each variable. Collecting data using aerial photography and digital remote sensing is attractive to many because much resource information can be mapped and measured accurately at low cost. Pioneers in sample surveys are Kiaer in Norway and Wriht in the USA (Seng, 1951) but it is

Bowley (1906) who argued about the value of sampling and the need to include an error estimate when sampling is used (Schreuder et al., 1993). Bowley (1926) and Student (1908) demonstrated that under a normal distribution assumption, useful probability statements can be made about the estimates. Student and other early statisticians recognized multistage sampling and stratified sampling as strategies to achieve "most efficient estimation" (Neyman, 1934; Smith, 1976; Tschuprow, 1923).

Scientific methods in forestry were introduced in Europe 200 to 300 years ago (Schreuder et al., 1993). Site specific experience tables were used for the estimation of wood production. These experience tables evolved over time to present day yield tables and growth models (Schreuder et al., 1993). Classification of stand mean height based on species and typical site was introduced in the early 19th century following the realization that stand mean height at a given age was a practical measure of site productivity (Schreuder et al., 1993). National Forest Inventory in the USA was established by the McSweeney-McNary act in 1928. Survey interval used in the country is 5 years, consistent with survey intervals used in Japan and China.

White et al., (2016) reviewed the suitability of five remote sensing technologies used in forestry (ALS, TLS, DAP, HSR and VSROSI). Emerging new technologies may enable accessibility of some census data rather than sample data, but not all. Two emerging technologies illustrate the possibilities to obtain vast range of forest measurements: advanced remote sensing technologies and machine-based data collection (White et al., 2016), which collectively offer the possibility to work with census data, that is, measurements on every individual in the population rather than with samples. However, McRoberts, Tomppo and Naesset (2010) observed that although remotely sensed data are increasingly used to enhance inventories, they cannot completely replace ground data. Expanding inventories to address emerging demand issues such as sustainability and biodiversity requires information on variables such as deadwood, species types that are beyond operational efficiency of remote sensing technologies. Remotely sensed data are not currently sufficient for producing species-level estimates, particularly in tropical countries that have high number of tree species in their forest ecosystems. There is high reliance on unbiased estimates of certain attributes obtained from plots for tree or stand models. Those attributes are often sensitive to both plot configuration and size. For example, it is reported that circular shape are useful and accurate for larger plot sizes (Curtis & Marshall, 2005) but the boundaries are difficult to demarcate. Rectangular plots are useful if oriented to reduce variation within plots. Regardless of plot configuration, all plots require adequate buffer surrounding the plot's measurement area.

2.6.2 Field-Based Inventory Methods and Experiences in Kenya

Over the last decades, studies of tree species diversity in tropical forests have been increasingly standardized in order to allow comparison among research groups (Condit, 1995; Condit et al., 2002; Malhi et al., 2002; Ganivet and Bloomberg, 2019). However, there is a wide variation in field-based inventory methods commonly used worldwide in terms of plot shapes and sample area (Table 2). The review demonstrated that standardisation of sampling methods, sampling units and minimum diameter sizes has not been achieved worldwide; and continuing research efforts are required in this context.
		Area covered	Area inventoried	DBH min	Permane	Field effort (person-	
Method	Shape	(ha)	(ha)	(cm)	nt	days)	References
i) Gentry plot	2 x 50 m transects	2	0.1	2.5	No	7	Boyle, 1996, Phillips et al., 2003b, Phillips et al., 2003a)
ii) Whittaker plot	20 x 50 m transects	0.1	0.1	2.5	No	7	Campbell et al., (2002)
iii) Modified gentry plot	10 x 50 m transects	2	0.5	variable	No	8	Baraloto et al., (2011)
iv) 0.5 ha plot	50 x 100 m	0.5	0.5	2.5	Yes	15	Baraloto et al. (2012)
v) 1 ha plot	100 x 100 m	1	1	10	Yes	25	FAO (1981)
vi) Circular plot	30 m radius	0.28	0.28	10	Yes	5	Asner et al. (2010)
vii) 20-50 ha plot	500 x 500 m to	up to 52	up to 50	1	Yes	≥500	Condit (1995)
viii) 0.1 ha plot	20 x 50 m	0.1	0.1	2.5	No	5-20	Arellano et al. (2016)

Table 2: Summary of common field inventory methods used for tree species diversity and structure assessments in tropical forests

Source: Ganivet and Bloomberg (2019).

Muchiri et al. (2016) provides a summarized review of forest inventories in Kenya and reveals a gap in harmonisation of sampling schemes applied and, though useful information was generated, it cannot be compared with known level of certainty. The current national estimates of forest areas and mean volumes are mainly based on forest inventories carried out at different times, between the start of the 1990's during the compilation of Kenya Forestry Master Plan in 1994 (Wass, 1994) to the inventory of Mau Forest block in 2014 (Kinyanjui, Shisanya, Nyabuti, Waqo & Ojwala, 2014). According to Muchiri et al. (2016), past forest inventory work in Kenya include forest inventory and resource assessment projects accomplished during that period include Kenya Indigenous Forests Conservation project (KIFCON) in 1993, Mt Elgon Forest Mapping and Inventory in 1997, Forest inventory for indigenous forests in Arabuko Sokoke Forest reserve in 2001, Indigenous trees inventory and vegetation survey in Mt Elgon Reserve in 2001, Trees Inventory and Vegetation Survey in Mukogodo Landscape in 2005, Tree resources inventory of South Nandi forest reserve in 2005, Kenya forest plantations inventory in 2010 – 2012 and Kakamega Forest Mapping by Biota project in 2005. In all these projects, the applied sampling designs varied, revealing the need to conduct inventories based on a harmonized sound sampling design and data analysis. Harmonised inventory schemes will provide reliable and comparable information about Kenya's forest resources. Inaccuracy of information on forest resources in Kenya has also been reported in many reports (e.g., Cox et al., 1988). For biophysical forest resources assessment in Kenya, Muchiri et al. (2016) propose the use of double stratified two-phase systematic cluster sampling in which Kenya is stratified into four strata based on the county boundaries and the agro-ecological zones. The choice of the design was based on experiences of earlier practices from Kenya and elsewhere, and a pilot forest inventory done in five forest types in Kenya. However, the piloting adopted and used concentric sample plot sizes with no much knowledge about the suitability and precision level of the same sampling units.

2.6.3 Uncertainty, Bias and Sampling Efficiency

Precision (i.e. measure of how tightly sample estimates are clustered) and accuracy (i.e. measure of level of closeness of the estimates to the true population value) of inventory results are computed and some confidence put in the results (Wong et al., 2001; Jayaraman, 2000). Conventionally, precision of the results is measured by the sampling error or % uncertaitly according to Lackmann (2011). The precision is high when errors are small, and accuracy is high when the estimated average value is close to that of the whole population (Wong et al., 2001). Ideally, estimates from assessments should be both precise and accurate. Uncertainty is the lack of knowledge of the true value of a variable and is computed as a probabiliity density function characterizing the range and likelihood of possible values (Equation 1; Lackmann, 2011):

% Uncertainty =Sampling Error %=
$$\frac{\frac{1}{2} (95\%\text{Confidence interval width})}{\mu} x100$$

.....(Equation 1)

Where μ is the mean of the distribution. Sampling error (SE %) is the 95 percent confidence interval expressed as a percentage of the mean.

Quantitative measures of the uncertainty include random errors and bias. Bias is a systematic error and indicates lack of accuracy Random error describes a random variation below or above a mean value; it is inversely proportional to precision and. According to Morais and Schreuber (1997), sampling inventories should provide the statistical precision of estimated quantities within accepted limit. Often, inventories are designed to deliver a specific sampling error, typically 10 -20% and thus it is important to know how many sampling units to use e.g. number of plots. Large numbers of sampling units reduce the sampling error (Wong et al., 2001). In complex forests, precision levels of estimates of carbon stocks and carbon stock changes fall within ± 10 % of the mean at 95 % confidence and at a modest cost (Lackmann, 2011).

Uncertainty of the average, rather than the entire range of variability, is of most interest in forest inventories. However, variability is an inherent property of the system of nature and not of the analyst, and can only be reduced by sampling entire populations or by stratifying the area (Lackmann, 2011). Unbiased estimator of a parameter is efficient if its variance attains the Rao–Cramer lower bound (Hogg, McKean & Craig, 2012). The efficiency of an estimator is thus defined as the ratio of the Rao–Cramer lower bound to the actual variance of the unbiased estimator of the parameter (Strimbu, 2014).

Cielo-Filho, Gneri and Martins (2009) investigated sampling effort and factors influencing the precision of estimates of tree species abundance in a tropical forest stand of a semi-deciduous Atlantic forest in Brazil by adopting maximum allowed sampling error of 20% at 95% confidence level to estimate density, frequency, dominance, and importance value index for species with five or more adult individuals. Morais and Scheuber (1997) define density as the number of trees per unit area, measured by a count of stems in a plot. Density measurement is most useful in evaluating the need for future density control in a stand for yield optimisation or to maintain forest structural stability.

Phillips et al. (2003a) compared relative efficiency of two inventory protocols in the Amazon landscapes on the diversity, composition and structure of forests. The standard method involved a one-time census of all stems ≥ 10 cm diameter in an area of 1 ha (the 1 ha-method). The second method involved sampling all stems ≥ 2.5 cm diameter in ten 2×50 m (the 0.1-ha method). The 0.1-ha method sampled a larger part of the flora, because of the lower size cut-off. This method has been applied mostly in the Neotropics although ecological analyses have successfully used such data to model forest structure, diversity and composition at pantropical and global scales (Enquist & Niklas 2001; Gentry, 1993). A review by Phillips et al. (2003a) revealed that the main application of 0.1-ha samples (over 90%) and of 1-ha samples (over 50%) in forest inventories is about eco-floristic assessment. The applied crude inventory efficiency measure was the number of species recorded divided by the person-days in the field. Though 1-ha method captured more species, 0.1-ha inventories were substantially more efficient in terms of floristic data gained per effort invested. The crude inventory efficiency of 0.1-ha samples was three to four times that of 1-ha samples in some sites. Ethonobotany studies often rely on single 1ha plot. Originally, this size was arrived at using species-area curves but is now an accepted standard (Wong et al., 2001) to capture most of the flora of a region. However, these plots should be objectively established across the forest and in sufficient number to ensure they are of value for management purposes. Sub-sampling the 1-ha forest unit chosing appropriate sampling scheme would have advantage of carrying out detailed measurements and achieve statistically sound information, useful for extrapolations and predictions (modelling) in multistage and multiphase sampling schemes. Relatively complex protocols are required for sampling and assessment of multi-species and multipurpose inventories, typical for natural forests. Optimizing sampling designs in natural forest inventories poses methodological challenges. A sampling protocol covers plot size, plot shape, number of plots and spatial or temporal arrangement, i.e., sampling design (Wong et al., 2001).

Burkhart and Tome (2012) used model errors as a measure of precision or model bias in evaluating modelling efficiency or model performance. Bias refers to the deviation of the average model errors from zero and precision is the size of the model errors. The average model error (mean prediction error) is commonly applied to assess model bias while the mean squared error is used to assess model precision (Mauya et al., 2015). The relative root mean square error (RMSE %) is a good measure of how accurately the model predicts the response and is the most important criterion for fit if the main purpose of the model is prediction (Yoo, Im & Wagner, 2012).

Plots of observed versus predicted values have often been used to characterize bias and precision. Mean bias is the average difference between predicted and observed values. According to Husch, Beers and Kershaw (2003), sampling error is generally reduced by selecting an adequate sample size, sufficiently defining the population of interest and using appropriate sampling technique. According to Wong et al. (2001), deciding on how many plots are needed for an inventory is required. The sample size is critical for the management of sampling errors; the greater the size, the smaller the sampling error, and the more precise and potentially accurate the results will be. Generally, for forest inventory, the target error is taken as 10 - 20 percent of the mean. However, there is a non-linear relationship between the number of plots and the sampling error. The gains in precision reduce as the number of plots increase, following the law of diminishing returns (Nassiuma, 2000; Shiver & Borders, 1996; Sullivan et al., 2018; Wong et al., 2001). This relationship can be used to estimate the required sample size to achieve a specified sampling error. The cost of assessing elements in a plot is also needed where costefficiency is a concern.

2.6.4 Selecting Efficient Sampling Scheme

As reviewed by Grusu et al. (2016) about optimum plot and sample sizes for carbon stock and biodiversity estimation in tropical forests, sampling designs aiming to assess stand attributes must consider attribute variability (Kral et al., 2010). For example, there are considerable uncertainties about carbon stock estimation in tropical forests, mainly due to the scarce knowledge of the quantity and spatial distribution of forest biomass at the landscape level (Laumonier, Edin, Kannien & Munadar, 2010). When time and financial resources are limited, the precision of such surveys depends on the trade-off between using larger plots which have a lower per-plot variance and using a larger amount of smaller plots which tend to reduce the standard error of the mean (Evans & Viengkham, 2001). The choice of plot size and number of replicated plots deserves attention (Picard, Magnussen, Banak, Namkosserena & Yalibanda, 2010) in establishing a network of permanent sample plots (Alder & Synnott, 1992). It was found that using a 1ha permanent sample plot network is not cost-efficient. On the contrary, sampling smaller plots is more efficient, as variability decreases faster at smaller plot sizes. Also, the total area sampled to achieve a given precision in the estimation of the parameters is smaller at smaller plot sizes, despite the larger number of samples required. However, a lower number of bigger plots might be more cost-efficient due to reduced travel cost (Evans & Viengkham, 2001). The sample size determines the uncertainty in forest inventory (Student, 1908) as well as the cost of the estimate of the population. The number of sample plots depends on the desired level of precision in the results. For example, it was established that more variance in carbon stocks required more sample plots to achieve low uncertainty (Lackmann, 2011). According to Lackmann, forest stratification and cluster sampling also reduce the variability between plots, the required sampling size and the cost for a desired sampling error.

There is need to explore the efficacy of sub-sampling a large plot area, say the standard 1 ha, using smaller plots in order to reduce inventory cost, while also increasing accuracy and precision of parameter estimates resulting from relatively high concentration on measurements and observations within smaller plots (Freese, 1989; Jayaraman, 2000; Schreuder, Gregoire & Wood, 1993).

2.6.5 Plot Size

In forest inventory and modelling, the ideal plot size should normally be large enough to be representative of a stand and its inherent variability, but small enough to ensure high-quality measurements and the capability to be replicated across the landscapes (Weiskittel et al., 2011). Quantitatively, ideal plot size (in ha) ranges from 0.01 times the dominant height in metres to 1.0 ha. Larger plot sizes are required in naturally-regenerated, mixed species and uneven-aged stands due to their higher inherent variability (typical of tropical natural forests) as compared to planted, pure and even-aged stands (Weiskittel et al., 2011). Important considerations in selecting plot size for developing a growth model include the degree of plot permanence, whether modelling response to forest management is of interest and consistency.

Consistent plot size is preferred to minimise potential confounding effects of variable plot sizes. For example, growth model predictions are sensitive to plot size; and larger plot should be used if multiple measurements are intended (e.g. Permanent Sample Plots). Smaller plots are useful when a single measurement exercise is planned through use of temporal sample plots. Plot size should be based on the size of trees at the final and not at the initial measurement. For example, a plot size required to capture 50 trees in a plot ranges from 0.05 to nearly 0.45 ha as the quadratic mean diameter increased from 15 cm to 60 cm (Curtis & Marshall, 2005). Hernández-Stefanoni et al. (2018) studied effects of sample plot size (80, 400 and 1000 m²) and GPS location errors on aboveground biomass estimates from LiDAR in tropical dry forests. Accurate estimates of above ground biomass are required for monitoring carbon in tropical forests. Larger plots were found less affected by GPS location error and vegetation conditions, highlighting the importance of selecting an appropriate plot size for field forest inventories used to estimate biomass and /or stored carbon. Mauya et al. (2015) arrived at similar conclusion after studying effects of field plot size on accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. The prediction accuracy of the model improved as the plot size increased, from 200 to 3000 m^2 .

A 1-ha plot size has been adopted as a standard forest unit in several studies, mostly permanent sample plot to monitor forest dynamic structure, disturbances and/or growth (Holmes et al., 2002; Wong et al., 2001). Phillips et al. (2003a) described the "1 ha-method" and elaborated that one hectare inventories are used routinely and extensively by botanists. Collected quantitative floristic data are regularly used to infer major ecological pattern and process at local, regional and continental scales (Gentry 1988a;

Gentry 1988b; Pitman, Terborgh, Silman & Nunez, 1999; Ter Steege et al., 2000; Terborgh & Andresen, 1998). These samples are sometimes converted into long-term plots to monitor forest processes but this requires significant extra investment (Alder & Synnott, 1992).The plot size needs to be decided before calculating the required number of plots. As reported by Lackmann (2011), plot size is related to the number of trees, tree diameter and variance of carbon stocks among plots. For example, the plot size would usually vary between 100 m² for densely stocked stands with 1000 trees ha⁻¹ and 1000 m² for sparsely stocked stands. Table 3 shows recommended plot sizes for different tree sizes.

Diameter	Circular plot radius	Square plot
< 5 cm dbh	1 m	2 m x 2 m
5-20 cm dbh	4 m	7 m x 7 m
20-50 cm dbh	14 m	25 m x 25 m
\geq 50 cm dbh	20 m	35 m x 35 m

Table 3: Commonly applied plot sizes in forest assessment studies

Source: Lackmann (2011).

Commonly applied plot sizes in dry woodlands include those that were adopted by Kiruki et al. (2017) in Kitui drylands of Kenya. They applied 2 m x 5 m (10 m²) for regeneration count and 20 m x 50 m (1000 m²) for large trees and coppices in the Somalia-Masai Acacia-Commiphora deciduous bushland and thicket. The plot sizes were described as robust enough to capture essential information on woody plants. However, no evidence of robustness claim was provided. Regeneration was defined as individuals with diameter \leq 3cm at 30cm off the ground (i.e. stump diameter). Seedlings were woody plant less than 1.4m in height and stump diameter less than 3cm. For field-based inventories, Ganivet and Bloomberg (2019) recommended the use of small plots (e.g. 20 m × 50 m) for assessment of trees sized 10 cm DBH and above. The gap now remains for smaller individuals that represent the future conditions of a forest in terms of regeneration and recruitment.

By increasing the sample plot area, variation among plots can be reduced; permitting the use of small sample size at the same precision level (Freese, 1989; Lackmann, 2011; Grussu et al., 2016). However, Brown and Williams (2016) cautioned consumers of research ouputs that the single-plot sampling of plant species richness at a site may not provide any indication of variability across the site. Without multiple plots, it is impossible to determine the mean and variance of index values among plots, to examine whether the sample data are actually representative or not, and to characterize site variation in plant communities accurately (Magurran, 1988; Bourdaghs, Johnston, and Regal, 2006). However, Krebs (1989), Matthews, Tessene, Wiesbrook and Zercher (2005), and Bourdaghs et al. (2006) argued that increasing the area sampled has its own pitfalls. Strategies should be found to create multiple plots without increasing the sampled area. For example, one hectare single plot can be transformed into multiple sample plots by adopting 10 plots of 0.1 ha each. Some forest attributes such as species composition and richness are area-dependent. Increasing the size of the sampling area increases species richness estimates and other measures related to it e.g. mean coefficient of conservatism and floristic quality index. Species richness index is a measure of variety (Jayaraman, 2000), computed as shown in Equation 2. According to Schulz, Bechtold and Zarnoch (2009), there is need to balance between number and size of plots in vegetation inventories where the objectives combine estimates of abundance and species composition. Pilot studies are often used to optimize the plot configuration and sample size (Kenkel & Podani, 1991).

Species richness index = $\frac{s}{\sqrt{N}}$ (Equation 2)

where S = Number of species in a collection N = Number of individuals collected

The increase in the number of species in relation to the area covered (or to the number of individuals) can be expressed graphically by a species accumulation curve (Jayaraman, 2000). The relationship between number of species (S) and the area (A) covered can also be represented mathematically as shown in Equation 3.

 $S = aA^b$, (Equation 3)

with a and b being parameters to be estimated empirically using linear regression techniques, the data on area covered and the corresponding number of species recorded.

According to McCune and Grace (2002), the "many and small plots" scheme will yield accurate estimates of abundance for the most common species, but incomplete species lists. The "few and large plots" scheme results in a more complete species list but overestimates the abundance of rarer species. A sample design based on cluster plots (groups of subplots) is a tradeoff between the two approaches (Schulz et al., 2009).

2.6.6 Plot Allocation

Plots can be spatially distributed randomly or systematically. However systematic sampling is the most practiced in forestry due to logistical advantages despite some statistical weaknesses (Avery & Burkhart, 2015; Freese, 1989; Schreuder et al., 1993). Subjective choice of plot locations can be avoided by locating plots or clusters of plots randomly over the study area. Plots are systematically located in a regular pattern (e.g. Figure 1b-c) to ensure plots are evenly distributed over the area. It is advised to randomize the starting point of in the grid as well as the direction of the grid. Thereafter, sample plots are either located aligned (Figure 1b) or randomly placed unaligned within each cell of the grid (e.g. Figure 1c). In the systematic sampling method, plots may be organized into clusters (e.g. Figure 1d.) such that a cluster of plots is located in each distinct stratum.

Figure 1: Illustration of plot allocation patterns for simple random sampling (a), aligned systematic sampling (b), unaligned systematic sampling (c), and systematic cluster sampling (d). (Source: Lackmann, 2011).

Cluster sampling is cost-efficient due to overall reduction of travel distance between sample plots. Generally, with the same budget, more units are assessed through clusters than independent units, and this process may increase accuracy of the estimates. However, information gain from measuring a new unit in a cluster may be less than applying independent units as a result of high inter-units correlation within a cluster. To minimise such correlation, the distance between units in a cluster must be large enough, e.g., at least 250 - 300 m, depending on the stratum size.

2.6.7 Multipurpose Forest Assessment

While in the past forest inventories were primarily aimed at assessing timber availability, in recent years the forest is recognized as a complex ecosystem with several interactions among its elements or components including humans. A forest inventory is now commonly conceived as a multipurpose forest inventory with the contribution of expertise from different fields such as sampling theory, surveying, information technology, remote sensing, social science, mensuration and modelling to assess the multiple functions of forests and trees (Ohmann, Gregory & Roberts, 2014). The main purpose of a forest inventory is to determine the value (volume, quantity) of resources in an area as accurately as available time and money will permit. Reliable estimate of the forest area (maps, air photos, GIS databases), measurements of unbiased sample of the resources and otherwise determine the characteristics of the resource in question. In terms of scale, a wide range of needs, and therefore approaches, are possible. Global forest inventories are aimed at determining the extent and status of forest resources at the global level (i.e. FAO's Forest Resources Assessment being carried out since 1946 which also serves as mechanism for facilitating the harmonization of terminologies and definitions). Smaller areas inventories are usually driven by specific goals, often for forest planning and operations. They include regional inventories (portions of the country area); reconnaissance inventories (rough insights of forest resources in a limited area); diagnostic sampling to orient silviculture and forest management; exploitation surveys (focused at assessing harvestable timber availability and planning of harvest and logging operations); post-harvest inventories (to assess regrowth and damage caused by logging operations); forest health monitoring (often linked to salvage cuts operations) (Avery & Burkhart, 2015; Ohmann et al., 2012).

2.6.8 Integrated Forest Inventory

According to Schreuder et al. (1993), advantages of sampling include cost effectiveness (saving of resources: funds, time, manpower); it is cheaper and faster, more timely, than complete enumeration. There is reduced workload during data processing, leading to more precise and accurate estimates or measurements. According to Hyvönen et al. (2016), collecting data for developing tree volume and biomass models is very time consuming and expensive, and requires a lot of precise measurements; sampling operations up to along a tree provides a solution to this challenge. A general principle is to determine a sample of trees that is representative with respect to the entire population. Dealing with few individuals under the limitations of time and resources allow higher concentration in comparison with complete census. Savings resulting from sampling could also be used to buy better instruments and employ or train higher caliber personnel. Sampling is also used as a technique of quality control of field data collection. In some

instances, complete measurement or enumeration may be impossible or not feasible due to the characteristics of the population such as infinite population or very large population size. The sampling may target one, few or all tree species and a pre-determined number of trees by the selected species is obtained by the end of field data collection (e.g. Hyvönen et al., 2016). Sample trees for each species are obtained from varying climatic conditions and different agro-ecological zones. The characteristics used in selecting sampling of trees to ensure data are collected from a representative sample of the whole population are: Agro-ecological zone, Vegetation type, Forest stand characteristics: diameter distribution, age, density, species composition and management regime.

Askari, Saei and Rezaei (2013) also emphasized the imperative need of collecting appropriate qualitative and quantitative data necessary for proper management and planning and using reliable inventory methods. They evaluated various distance-based sampling methods to study of shrub density and spatial patterns of the shrubs over 53 hectare of forest reserve in Iran. The study revealed differences among distance sampling methods (nearest individual, nearest neighbor, second nearest neighbor, T-Square and compound in the 150×100 meter net). Student t-test analysis showed that two nearest neighbor and compound sampling methods were not different from the perfect inventory (real quantity).

Sist, Mazzei, Blanc and Rutishauser (2014) used one-ha-permanent sample plots as adequate unit of forest study to investigate the long term effect of reduced-impact logging on above-ground live biomass dynamics in the Eastern Amazon rainforest. According to Ganivet and Bloomberg (2019), there is a need for developing assessment tools to monitor fragmentation of tropical forests in order to conserve tree species diversity adequately. Several methods, including field-based and remote-sensing approaches are potentially useful to achieve this goal rapidly and cost-effectively. Combined use of field-based and remotely-sensed methods is becoming the ideal strategy whereby remotely sensed data are used to predict and map tree species diversity, stand structure, forest biomass and function at meso and large scales while ground-based field inventories provide accurate information at local scales for validating and calibrating data from remote sensing (Gonçalves, 2018; Pan et al., 2013; Seidel, Fleck, Leuschner & Hammett, 2011). Field measurements constraints of sampling and studying a small fraction of the global domain, and remote sensing limitations from varying sensor angles, atmospheric properties, physical constraints and technological changes (Pan et al., 2013) are best overcome by integrating both approaches. The positives of remote sensing, such as uniform measurements across the full domain, are combined with the strengths of field measurements in providing detailed measurements of tree biomass, species diversity, growth and mortality over time (Morales, 2012). For example, recent studies focusing on landscape scale and large-area estimates of forest biomass have succeeded in integrating LiDAR with field validation plots through allometric modelling of height-biomass relationships (e.g., Asner et al., 2012; Saatchi et al., 2011). Allometric relations exist between characteristics of two different plant organs, whereby, the first parameter is measurable and the second is the non-measurable (or difficult to measure) parameter of interest (Seidel et al., 2011). Plot based sampling studies are relevant in the context of enhancing the integrated strategy of forest inventory.

2.7 Assessing Components of a Natural Forest Ecosystem

The study of forest dynamics deals with the changes in forest structure and composition over time; including the response to anthropogenic and natural disturbances (Pretzsch, 2009). In analyzing and describing forest ecosystems, both the structure and composition are analysed. Typically, every forest stand is characterized by its tree species mixture and structure. Forest structure looks at forest organisation with trees being principal determinants of vertical and horizontal arrangements of the components of forest ecosystem (Bourgeron, 1983). Forest structure is both a product and driver of ecosystem processes and biological diversity. Important components of forest structure include live-tree sizes, vertical foliage distribution, and horizontal variation in canopy density and coarse woody debris. Examination of forest structure in terms of basal area and tree height heterogeneity revealed that forest productivity did not increase with diversity; instead, forest structure emerged as the key variable of productivity (Bohn & Huth, 2017). The optimal species distribution and forest structure indices explained obtained productivity values, with coefficient of determination between 70% and 95%. The study used small-scale forest stands of 400 m² wherein trees compete for light.

Forest vertical structure is the characteristic differentiation into distinct vegetation height layers (Bourgeron 1983, Whittaker, 1975). Canopy height distributions are commonly used in vertical structure analysis of forests. Stand canopy heights rather than individual tree heights are best indicators of the forest height profile. Shannon-Wiener's index of diversity is a quantitative measure of habitat diversity (Brower Zar & Von Ende, 1990; McManus & Pauly, 1990). The vertical habitat diversity has an application in biodiversity measurements and conservation. For example, vertical habitat diversity level and foliage density correlated positively with bird species diversity in forest ecosystems. Forest screening efficiency, which is the percentage of concealed skylight through the forest foliage, is reported to be inversely related to light intensity reaching undergrowth through forest canopy (Lowman, 1986). This is critical in shaping the nature and magnitude of understorey vegetation including forest regeneration. Screening efficiency is an indicator of the level of conopy cover and foliage density but not of the exact physical amount of light reaching the floor. The ecological significance of light screening includes its influence on the regeneration of suppressed seedlings (Connell, Tracey & Web, 1984). The frequency of gaps in terms of percentage of empty plots is often included in vertical forest structure as a measure of continuity of the distinct vegetation layers (Hitimana et al., 2004). Other forest attributes include forest horizontal structure as defined by the diameter size distribution of trees individually or as a community (Avery & Burkhart, 2015; Burkhart & Tome, 2012; Hitimana et al., 2004), the crowding of trees measured in numbers or basal area per unit area, and spatial distribution patterns of trees (Brower et al. 1990; Krebs, 1989). Tree diameter size distributions are often represented by stand curves as indicator of rates of recruitment, growth and mortality in the forest over time (Churski, 2006; Wang et al., 2009). Generally, the logarithm of the number of trees over diameter class becomes a straight line for regular recruitment and sufficient regeneration; and this characteristic implies a trend of decrease in number of individuals with increasing diameter size (Devis & Johnson, 1987). Fluctuating trend line indicates good but discontinuous regeneration over time which results in a wave-like recruitment of small individuals into the larger size classes (Poorter, Bongers, van Rompaey & de Klerk, 1996).

Forest stand curves for different forests or sites may differ in inclination as measured by the line slope towards larger size classes (Rollet, 1974). Forest structure and dynamics studies use a diversity of models, including Meyer (1952)'s negative exponential model (e.g. Devis & Johnson, 1987; Marimon & Felfili, 1997; Mushove, 1997; Shackleton, 1993), negative power function (e.g. Kigomo, Savill & Woodell, 1990), as well as United Nations Organisation [UNO] (1994) model of balanced forests in East African natural forests (e.g. Hitimana et al., 2004; Ronoh, Sirmah, Hitimana & Mullah, 2018); all the above models are based on the concept of reverse -J curve (Devis & Johnson, 1987). Diameter size is used as an indicator of age, with larger trees assumed to be older in age than smaller ones (Devis & Johnson, 1987; Hitimana et al., 2004) though this relationship may not be true in some cases (Harper, 1977). None of the above models is defacto superior to the other; the suitability of a particular model depending on the unique characteristics of a given forest ecosytem. Spatial distribution patterns and distribution of trees across diameter classes for individual species reveal how well the forest growing stock is utilizing the forestland (Krebs, 1989). In phytosociological studies, the species inventory is fundamental to characterize both α diversity (species richness of a particular community considered homogeneous) and β diversity (degree of variability or replacement in the composition of species among different communities of an environment (Whittaker, 1962). To study the composition and structure of a plant community, the following fundamentals are considered: the choice of sampling method (e.g. random or systematic), location, size, shape, and number of sample units (Barbour, Burk, Pitts, Gilliam & Schwartz, 1998; Concenço et al., 2017). Based on field measurement on species composition, importance value (SIV) and biodiversity indices (Barbour et al., 1998; Concenço et al., 2017) are computed.

Plant species composition is recognized as an important attribute of habitat for many wildlife species (Cade, 1997) and is fundamental for describing vegetation changes associated with plant succession (Mueller-Dombois & Ellenberg, 1974). The study of forest composition refers to identification of taxonomic groups making the forest as well as their relative importance based on abundance data (density and/or basal area) and frequency of occurrence. Species composition of a forest influences the products and services derivable from the same ecosystem, notably woody biomass for carbon storage, biodiversity conservation value and structural stability. Species - area curves are useful in comparing species richness between forests or sites. Arellano et al. (2016) found that systematic placement of plots contiguously was accurate and had added advantage of being relatively time- and cost-effective in species diversity assessment as compared to spread samples. Using basal as an estimate of tree cover may be advantageous when the resources important to wildlife species of interest are directly linked to tree biomass (Cade, 1997). With respect to forest composition studies, the species importance value (SIV) combines measures of relative frequency, relative density and relative basal area (relative dominance) to come up with the crude index of ecological dominance (Brower et al., 1990; Clarke et al., 1986; Concenço et al., 2017; Morais & Scheuber, 1997). Ecologically, dominant species or group of species contribute over 50% of the total forest basal area or density and have over 80% frequency of occurrence (Richards, 1981) and influence the management and conservation strategies of natural forests.

Diversity indices

The study of species composition enables one to appreciate species diversity through computing diversity indices such as Shannon-Wiener (Kent & Coker, 1992), Simpson (Hawksworth, 1995; Pielou, 1977) and Kinaro (1993). These diversity indices encompass both species richness and evenness (Kent & Coker, 1992; Krebs, 1989). Calculation of diversity indices, α (alpha), β (beta), and γ (gamma), allows the comparative analysis of homogeneous or heterogeneous plant formations; they measure, respectively, the species richness of a community, the degree of change or replacement in species composition among different communities, and their richness in the set of communities (Concenço et al., 2017; Merganič et al., 2012).

Most widely used diversity indices include Margalef (α), Menhinick (Dm), Simpson (D), and modified Shannon–Weiner (*H'*), besides species density itself (Gurevitch, Scheiner & Fox, 2009; Merganič et al., 2012). The Margalef index (Margalef, 1958) is used to estimate the biodiversity of a community based on the numerical distribution of the individuals of the different species according to the number of individuals in the sample being analysed, and is computed by Equation (4). This method compares species richness among samples collected from different habitats. The Menhinick index, Dm, is equivalent to species richness index (Equation 2). It is based on the relationship between the number of species and the total number of individuals observed (Equation 5), which increases together with sample size (Whittaker, 1962). The Simpson index (Barbour et al., 1998) is obtained by Equation (6). Its calculation is strongly influenced by the importance of the most dominant species. Since its value is

inverse to equity, diversity by Simpson is usually calculated by Equation (7), which indicates that closer to the value of 1, the greater the equity. Simpson's D gives very little weight to rare species and is more sensitive to abundant species.

$$\alpha = \frac{(S-1)}{\ln N}$$
 (Equation 4)

where α = Margalef index, S = number of species, and N = total number of individuals.

$$Dm = \frac{S}{\sqrt{N}}$$
 (Equation 5)

where Dm = Menhinick index, S = species collected, and N = total number of individuals from all the species, S.

$$\lambda = \sum P_i^2 \qquad (Equation 6)$$
$$D = 1 - \sum P_i^2 \qquad (Equation 7)$$

where λ = Simpson index, Pi = proportion of individuals of species "i" divided by the total number of individuals in the sample, and D = diversity of Simpson.

The Shannon–Weiner diversity index (H') is commonly used to characterize species diversity in a community and is more sensitive to rare species (McManus & Pauly, 1990); therefore sampling errors may be high (Barbour et al., 1998; Moore & Chapman, 1986; Pandeya, Puri & Singh, 1968). It is computed as in Equation 8 and ranges from 0 to the Natural logarithm of S (Barbour et al., 1998).

$$H' = -\sum [P_i \times \ln(P_i)].$$
 (Equation 8)

where H' = Shannon–Weiner diversity index, P_i = proportion of individuals of species "i" divided by the total number of individuals in the sample.

Species-accumulation curves

Species-accumulation curves, also knowm as species - area curves, are used as tools to evaluate consequences of disturbance on species diversity (Denslow, 1995). Species -area curves are important in examining sampling effectiveness for species richness within different forest sites; and species richness falls within the scope of biodiversity measures (Schwarz, Thor & Elsner, 1976). Species accumulation curves are used to estimate the rate of species accumulation along a transect (Gillison & Brewer, 1985). Species - area curves are also used to examine sampling effectiveness for species richness and determine optimum unit sample area within different forests or sites (Brower et al., 1990; Hitimana, 2000).

Measuring β -diversity

Similarity indices also exist that are used to compare different communities or forest sites. They include Jaccard index, Sorensen index among others (Concenço et al., 2017; Kent & Coker, 1992; Spellerberg, 1991). The methods for quantifying β - diversity are divided into two classes: similarity-dissimilarity and exchange/replacement of species. The different indices are applied depending on the nature of the data, whether qualitative or quantitative, and what the relationship between the samples is, what it implies, how samples are organized, and how they were obtained. Thus, the similarity or dissimilarity expresses the degree of comparability in species composition and its abundances between two communities.

The Jaccard (J) and Sorensen (So) index values (Equations 9-10) should be interpreted on an absolute scale from 0 to 1 [or 0 to 100%]; with 0 indicating total dissimilarity and 1 [or 100%] absolute similarity. Sorensen's index, puts more weight on the co-occurrence of species, compared to Jaccard's index. Sorensen relates the number of shared species with the arithmetic mean of the species in both compared sites, while

Jaccard relates the number of shared species with the total number of exclusive species (Kent & Coker, 1992). Sorensen index above 50% indicates high similarity, and the threshold is 25% for Jaccard index (Concenço et al., 2017).

$$J = \frac{c}{a+b+c}$$
 (Equation 9)
$$So = \frac{2c}{(2c+a+b)}$$
 (Equation 10)

where J = Jaccard's similarity index; So = Sorensen's similarity index; a = total number of species in area a; b = total number of species in area b; and c = number of species common to areas a and b.

According to Spellerberg (1991), sample size and diversity do affect similarity indices and the choice of a given index should be based on comparative advantages and the objectives of the study.

2.8 Common Forest Parameters of Interest in Tropical Natural Forest Assessments

Phytosocio-ecological studies in tropical forests include tree species composition across different development stages, tree species diversity and dominance indices, and abundance of each species in the forest (Concenço et al., 2017; Girma, 2012). It was found taxa-based inventory may provide the optimal instrument for biological survey and conservation planning (Higgins & Ruokolainen, 2004). Tree species richness and evenness are components of species diversity used in assessing forest biodiversity value.

In sampling forest elements to construct and characterize forest structure, both vertical and horizontal structural elements may vary with local microenvironment. Species are the fundamental units of biological organisation, and any small changes in the species diversity may alter to some extent ecosystem functions and services (Hitimana et al., 2004; You, Vasseur, Régnière & Zheng, 2009). As reviewed by Girma (2012), species diversity, species richness and biodiversity are widely used terms, sometimes interchangeably, in ecology and natural resource management. Species diversity is a fundamentally multidimensional concept that includes species richness, abundance and

evenness (Hitimana et al., 2004; Kent & Coker, 1992; Merganič et al., 2012; Purvis & Hector, 2000).

The ideal structural models can be modified at various spatial scales by localized environmental factors including the biotic and / or abiotic e.g. topography, soils (Brunig, 1983; Denslow, 1995; Hett & Loucks, 1976). Vertical structure parameters include stand height and foliage dispersion or density and screening efficiency (Brower et al., 1990; Brunig 1983). The model horizontal structure of a mixed uneven-aged tropical rain forest is characterized by trees in all diameter sizes; decreasing basal area and diameter size distribution of the forest community (Brunig, 1983; Devis & Johnson, 1987; Philip, 1994).

In carrying out analytical measurements of horizontal forest structure, tree diameter size distribution and/or basal area (Hitimana et al., 2004) are represented by stand curves as indicator of rates of recruitment, growth and mortality in the forest over time. Tree diameter size pattern is an indicator of forest stability, regeneration history and impact of past disturbances. Generally, the logarithm of the number of trees over diameter class becomes a straight line for regular recruitment and sufficient regeneration (Poore & Sayer, 1991). McWilliams et al. (2015) described a regeneration indicator for forest inventory and analysis including sampling and estimations. Options of measurements of regeneration may be done in sample plots, in subplots or in microplots. Variables include counts, heights and root collar diameter. The number of tree seedlings is used as a measure of regeneration potential of a forest.

Stand density depicts the degree to which a given site is being utilized by the growing trees. Its measures include the number of trees per unit area, basal area per unit area, quadratic mean diameter and relative spacing (Burkhart & Tomé, 2012; Hitimana et al., 2004; Philip, 1994).

Stand basal area is the sum of the basal areas of all living trees in a forest stand, and larger than a specified minimum diameter. It is expressed on a horizontal area basis and is used as reference variable for quantitative description of forest stands. Stand basal area typically ranges from 0 - 60 m²ha⁻¹ depending on the forest type and site quality. Basal area attribute is assessed in all ground-based forest resource inventory because estimates of timber volume and / or biomass are derived from it. In ecological studies,

basal area is a measure of both the degree of crowding of trees in a forest stand and the level of space utilization attained (Schreuder et al., 1993). Basal area per unit area is also described as the cumulative cross-sectional areas at breast height of all trees over that unit area. The major advantage of basal area as a measure of density is that it incorporates both number of trees and tree sizes (Pretzsch, 2009). A stand with many small trees can have a large basal area as one with fewer but larger trees. Basal area per unit area and number of trees per unit area combined specify the average tree size. Both measures are sometimes combined to obtain improved quantification of average stand density for input into planning silviculture treatments and projecting stand growth and yield.

Quadratic mean diameter (QMD) is a stand parameter used in appreciating average tree diameter sizes for different woody vegetation types. Being the diameter of the tree of average basal area (Burkhart & Tome, 2012), QMD is a surrogate measure of stand density. It gives weight to larger trees and is more directly related to stand volume; thus becomes a superior size parameter of trees in comparison with the arithmetic mean DBH (Schreuder et al., 1993).

Relative spacing is a stand parameter which assume that stands with desirable stocking share similar ratios of average distance between trees to average dominant height. Average top canopy height is also an important factor in modeling stand biomass production and in describing stand site quality. Saud, Lynch, Anup and Guldin (2016) applied quadratic mean diameter and relative spacing index to improve predictive capacity in tree height–diameter and crown ratio modeling. Their application in natural forests is however not common.

According to Zeide (2005), the number of trees per unit area is the true measure of stand density, but not a sufficient index of competition. Basal area is a more effective measure because it integrates both the number and diameter sizes of the trees in a stand (Zeide, 2005). However, basal area is not also a true measure of species competition unless it is combined with some measure of stand development. Otherwise, basal area treats all species as equal contributors to competition and there are multiple pathways to the same basal area value: few large trees or many small trees. Zeide (2005) observed that basal area is only an effective index of competition when it is compared to basal area derived from a normal yield table. It varies with species, site and age, making it a relative

density measure. Likewise, quadratic mean diameter is not a true measure of competition but it is widely used to describe stand structure; preferring it over the simple arithmetic mean. Combining number of trees, basal area and quadratic mean diameter leads to construction of alternative measures of stand density which describe competition but primarily in even-aged stands.

Quantification of site occupancy in terms of stand density is central to developing reliable models for predicting forest growth and yield. Stand density is a quantitative term describing the degree of stem crowding within a stocked area. The extent of competition in a stand is determined by the number of trees per unit area, their respective sizes and spatial distribution. The number of trees per unit area is a simple, easy to measure expression for average stand density. Description and analysis of stand structures include use of natural stocking density index (SDI) which is the ratio of observed basal area in a stand to the maximum observed basal area (Burkhart & Tome, 2012; Pretzsch, 2009). Stand density rule which is based on the relationship between quadratic mean diameter and stem numbers per hectare in a fully stocked, unmanaged, pure even-aged stand, is expressed by Equation (11).

 $N = aQ^b$ (Equation 11)

where $\ln N = \ln a + b \ln Q$ is the double logarithmic coordinate system; N is the total number of individuals; Q is quadratic mean diameter; a and b are parameters to be estimated.

All measures of stand density are dynamic; they change over time and in space due to fluctuations in the environment. Stand density itself influences forest productivity and is used as an input variable for stand volume or yield models, together with stand age and site index. Age of trees in natural forests being difficult to measure, the density remains the most indispensible predictor to rely on. However, the use of density in stand volume equations works better for even-aged than uneven-aged stands. Finally, we note that tree growth and disturbances also characterize forest dynamics, which are equally influenced by available resources, e.g., radiation, water and nutrients, and prevailing environmental conditions such as temperature, soil acidity and air pollution (Burkhart & Tome, 2012; Öztürk et al., 2018; Pretzsch, 2009).

2.9 Experiences and Limitations of Application of Sampling in Natural Forests

Field studies through sampling are combined with most commonly used remote sensing technologies to accelerate assessment of forest resources (Lackmann, 2011; Morales, 2012; Nilson et al., 2003), in particular for large scale inventories or for integrated assessment of forest ecosystems such as ecological studies at ecosystem level (Hitimana et al., 2004; Hitimana et al., 2009; Asthana & Asthana, 1998). Remote sensing technologies are also used in forest or tree canopy cover assessments and research in this field to refine methods for improved accuracy is active e.g. Ucar et al., (2016) compared point-based sampling with plot (grid) sampling approaches for assessing the urban forest canopy cover from aerial photography. Based on the standard error of the mean, they found the second approach superior to the more commonly applied point-based sampling approach. The development of an accurate estimate of tree canopy cover can be a critical aspect of assessments of the carbon sequestration potential (Nowak et al., 2008).

Commonly used field sampling techniques in tropical forest ecosytsems include walk trails, transects and plots to determine tree species diversity, vegetation types, wildlife richness, forest structure and regeneration (Hitimana et al., 2009; Mutiso, Cheboiwo, Kiyiapi, Sang & Hitimana, 2016) as well as allometric relationships for modelling forest growth and yield including evaluating site quality (Burkhart & Tome, 2012; Morales, 2012; Weiskittel et al., 2011). Sampling strategies in tropical forests are dictated by such factors as ragged terrain, abundant wildlife, expansiveness and scarcity of baseline data e.g. checklists of indigenous species. Past field studies have integrated stratified sampling designs, nested plots characterised by purposively mixing use of different plot sizes and sampling intensities (e.g. Hitimana, 2000; Hitimana et al., 2009; Mutiso et al., 2016; Ronoh, 2016), indigenous knowledge, satellite images and geographic information system, all to overcome existing technical and scientific challenges for many situations in tropical forests.

Different researchers in Kenya have used varying plot sizes, e.g. 20 m x 10 m (Hitimana et al., 2009; Warinwa, Mwaura, Kiringe & Ndubi, 2016), 10 m x 10 m (Ronoh,

2016), at predetermined distances along georeferenced line transects to capture trees and forest physical habitat. In addition, sub-sampling through nested smaller plots within the large units are often used to assess forest regeneration (Hitimana et al., 2004; Kiruki et al., 2017; Ronoh et al., 2018). Sapling and seedling individuals are counted from smaller but different sub-plot sizes e.g. 40 m² and 20 m², respectively. The above sampling approach enabled the collection of useful information on a diversity of attributes from mixed tropical forests and within a relatively short term. The collected primary data enabled the understanding of actual forest regeneration, recruitment, density, structure, diversity as well as other realities about studied ecosystems such as wildlife and water resources, types and extent of anthropogenic activities (Bulafu, Mucunguzi & Kakudidi, 2007; Clausnitzer, Churchfield & Hutterer, 2003; Hitimana et al., 2009; Hitimana et al., 2010; Hitimana et al., 2011; Kiringe, Mwaura & Warinwa , 2016). Plot data also enable objective documentation and analysis of effects of grazing and cultivation on forest plant communities (e.g. Hitimana et al., 2009; Reed & Cokie, 2000). Integrating use of aerial photographs and field sample plots along altitudinal changes provided data for the description of vegetation in montane forests (e.g., Hamilton & Perrott, 1981).

The review of literature revealed that a mix of different plot shapes, plot sizes and sampling intensities have been applied in different studies and inventories at the will of different reseachers and with no justification nor indication of any possible impact such mix would have on the reliability (accuracy and precision) of the findings.

2.10 Demand for Quality Data in Forest Inventories

Ecological and socioeconomic factors such as biodiversity, protection and recreational functions are becoming increasingly important in addition to tree and forest biophysical attributes (Pretzsch, 2009). Integrated knowledge of a stand about stand level or at landscape level is more relevant for ecosystem management rather than fragmented details about trees, stands and ecosystem functioning. System management requires integration and a holistic view of the system in question. There is a link between models and inventories; from deductive to inductive approaches. Two features of modern forest inventories that contribute considerably to bridging the gap between scientific and practical relevance. According to Vanclay (2003), there are emerging new demands for

pertinent information for forest management which dictate the need to develop tools to collect and analyze the data efficiently. Special challenges to modeller of tropical moist forests include high species diversity up to 100 tree species per hectare and a range of lifeforms and stem sizes (Vanclay, 1995).

Model development involves exploring data to provide new insights into the forest dynamics and reveal gaps in present knowledge. Quality data are therefore an imperative to achieve this important goal of modelling. The quality of growth models and their predictions depend on many factors, chief of them being the quality of calibration data; they must be reliable. According to Kiruki et al. (2017), the management and conservation of dry woodlands need knowledge about composition diversity, structure and regeneration of plant species. We need a healthy, stable population of woodland species which recruits regularly overtime. The impact of human land use on vegetation structure is normally complex (Nacoulma et al., 2011) and often influenced by land ownership (Kiruki et al., 2017); resource ownership to a greater extent determines accessibility and utilization.

Pretzsch (2009) extensively reviewed the use of quadratic mean diameter in forest dynamics, growth and yield studies. The critical role of inventory data in modeling forest dynamics, growth and yield was stressed and demonstrated. Inventory data are used in the inductive approach as start values for simulation runs and for the derivation of site-growth relations. The current (1st time or baseline inventories) need to be used as model input to provide the start or initial variables for simulation runs. These inventories are expected to provide detailed information about standing volume, diameter distribution and spatially explicit information about stand structure e.g. stem coordinates. Successive inventories on fixed permanent plots provide information about stand and tree growth for empirical models development (Morales, 2012; Pretzsch, 2009). There is therefore need for consistent, standardized and harmonised use of inventory schemes.

Repeated surveys of the forest state, increment, environmental conditions and resource supply make it possible to initialise growth models. Stand dynamics are closely related to the initial stand structure. Use of the detail information can raise the accuracy and precision. Diverse demands on the forest complicate planning process and decision making. Tools and methods of forest and tree assessment are neither specific nor new; what is more original is the way they are combined and implemented (Bellefontaine et al., 2002). Large scale aerial photographs are good for describing the spatial distribution of tree and forest formations. Satelllite data are used to stratify a region on the basis of ecological and land use criteria. For ground measurements, sampling arrangements designed for forests are diverse. More essential to planners and managers is the ability to assess patterns of change over time and/or space, and to identify suitable methods to produce the needed data.

2.11 Summary of Knowledge Gaps

Different plot sizes, sampling intensities, sampling techniques have been applied in mixed tropical forests with no indication of the efficiency or quality of methods used. Multistage sampling techniques are known to increase efficiency in forest inventories especially in the mixed tropical forests that are notably heterogeneous at the local scale such that variance increases as plot size decreases (Alder & Synnott, 1992). Experience suggests that a plot size of one hectare is a suitable compromise for sampling purposes. According to Synnott (1979), a square 100mx100m-plot is adequate for sampling purposes in tropical forests. The plot is convenient for subdivision into quadrats of 20 m x 20 m or 10 m x 10 m in terms of cost effectiveness and accuracy of information during field work. A study in Nandi forests by Girma (2012) used 20mx20m-plots to collected vegetation information. The plots were distributed along transects that ranged from 1 km to 1.6 km and were laid parallel to the slope. It is widely accepted that the distribution of biota, stand structure and floristic composition are strongly influenced by physical environmental gradients (Lee et al., 2002). However, there has been no serious discussion of the statistical implications of purposive sampling along such gradients. Advantages of purposive sampling along gradient-oriented transects over sampling along non-gradientoriented transects have not also been established.

Girma laid five small plots of size 3 m x 3 m within each main quadrats; four at the corners and one at the center to record herbaceous plants and seedlings of all woody plants. Large plots were used to record all woody plants which were ≥ 2 cm DBH and height > 1 m as well as lianas (Gerwing et al, 2006; Girma, 2012). Fewer but larger plots are preferred to many but small plots. There is always need to strike a balance between the cost and precision or accuracy when fixing required sampling intensity. Subdividing any forest estate into 1 ha inventory units is therefore a common and agreeable practice. Is there any opportunity to subsample this standard unit and reduce the cost of inventory and at the same time achieve statistically similar or higher accuracy of estimates on per hectare basis?

Some important points can be drawn from the reviewed literature:

- Forest assessment studies are complex in the context of tropical mixed natural forests and in the wake of changing roles of forests and tree resources due to dynamic socio-ecological and economic situations.
- There are many research initiatives undertaken in forest resources assessment. However, studies on efficiency and harmonization of sampling methodologies in forestry are rare.
- Natural forests and woodlands are today recognized as a critical asset for livelihoods, biodiversity conservation, economic development and climate moderation for which quality information-guided strategic planning is mandatory. Unfortunately, there is serious lack of scientifically tested and locally adapted tools to be used in generating the much needed knowledge.
- Based on the existing knowledge in forest sampling techniques, on past practices in forest assessments as well as the availability of computer technologies, research on efficiency (accuracy and cost effectiveness) of sampling schemes is achievable.
- Variation in forest species data may arise due to sampling designs and not necessarily from the difference in forest vegetation characteristics per se.
- There is need to harmonise sampling designs in forestry to allow comparability of data from different researchers in the context of National Forest Management System.

CHAPTER THREE

MATERIALS AND METHODS

3.1 Introduction

In view of the existing methodological constraints with respect to inventory systems in natural tropical forests, this study sought to circumvent such challenges by designing, testing and evaluating 48 sampling schemes based on three sampling designs, four plot sizes and four sampling intensities to study forest structure, composition and species diversity attributes using known, original empirical data from field-based inventories in selected tropical natural forests in Kenya. The efficiency by which different sampling models captured studied forest parameters were determined and compared based on known field populations and computer-based simulated samples. The research used scientific analytical tools to discern, ascertain and recommend the most effective schemes in terms of accuracy, precision and effort by which observed or measured population parameters were estimated. The selected three natural forest types in Kenya were: Kakamega mixed tropical rainforest (TRF), Mt Elgon moist lower montane forest (MMF) and Loruk dry woodland forest (DWF), respectively representing dense western rain forests, dense montane forests and open dryland forests strata proposed under the National Forest Monitoring System in Kenya (DRSRS et al., 2019).. Simple random sampling (SRS) and systematic sampling designs along horizontal, East-West oriented transects (SSH) and along vertical, North-South oriented transects (SSV), four plot sizes (25, 50, 100 and 400 m²) and four sampling intensities (5, 10, 20 and 30 %) were screened for suitability in estimating biophysical forest attributes commonly used in comprehensive description of natural forest ecosystems. The evaluated attributes in each of the three forests are: tree species composition, diversity, top canopy height structure, regeneration, recruitment, diameter size structure and forest density measures (stems per hectare, basal area per hectare) and average forest tree diameter size.

Complete inventory provided population parameter values for each of the attributes. Each forest was represented by a well demarcated 100 m by 100 m square-shaped forest unit of reference. The population parameters values served as a control

against which we gauged the relative *efficiency* of the different sampling *schemes*. Before sampling, each one of the forest units of reference was described. Drawing of samples, data organisation and analysis were based on conventional quadrat methods using R-programming software (version 3.3.1) tools such as selection of plot samples, averages, descrptive statististics, dispersion box plots, analysis of variance and multiple comparison tests. Tables were created and graphs drawn using MS Excel 2013 spreadsheet tools. Editing and grouping of graphs or photos as presented in the document were done using print screen and PowerPoint 2013 functions.

3.2 Study Area

Figure 2 shows forest map of Kenya, the location of the three studied forests (Kakamega rainforest, Mt Elgon moist montane forest and Loruk dry woodland) and the specific study sites. The selected forest types represent three main geographical formations in Kenya. Mt Elgon forest represents High Mountain and high range forests, Kakamega rainforest represents forests on the Western plateau, and Loruk woodland/forest represent forests in dry low altitude woodlands.

Figure 2: Location of Study Sites in Kenya (Author, 2019)

3.3. Study Sites

The geo-ecological locations of the three forest types represent western rain forests (Kakamega site), montane forests (Mt Elgon site) and dryland forests (Loruk site) (DRSRS et al., 2019). Geo-referenced coordinates, climatic regimes and Agro-Ecological Zones (Jaetzold & Schmidt, 1983) are provided in Appendix I. The general floristic characteristics of the studied forest ecosystems are described in subsequent sections. Kakamega forest zone (AEZ UM0) has shallow soils but tropical rain forest nutrient cycling process ensures a flourishing vegetation and above-ground tree biomass. Mt Elgon forest zone (AEZ UH0) has moderate to high fertility. The Loruk zone (AEZ LM5) has shallow soils with variable fertility level (Jaetzold & Schmidt, 1983).

3.3.1 Kakamega Rainforest

The sampled Kakamega forest (Figure 3) is the only tropical rainforest in Kenya of the Guineo–Congolian type (Kumelachew 2008, Megevand et al., 2013; Miao 2008) but has a cooler and less humid climate (Kokwaro, 1988). The current Kakamega forest is a fragment of past Nandi-Kakamega single block of forest. Fregmentation of this large forest block gave rise to different forests: including Kakamega gazetted forest reserve, Kisere forest, Malaba forest, Bunyala forest, North Nandi and South Nandi forests (Girma, 2012; Kokwaro, 1988).

Megevand et al., (2013) documented salient features of the Congo Basin forest that are similar to those in Kakamega tropical rainforest. The Congo Basin forests harbor thousands of endemic plants in both low altitude and montane forests. These forests are also habitat to a range of wildlife e.g. African elephants, buffalo and many endemic animal species such as antelope, birds and gorillas (CBFP, 2006; Ervin et al., 2010). Dense forests represent the largest portion of land cover; about 46 % of them classified as dense humid forests. The distribution of forest types in the Congo Basin correlates strongly with annual rainfall. Kakamega forest falls within the category submontane forests of the Congo Basin forest which fall with an elevation range of 900 - 1500 m.

Kakamega rainforest consists of a large block and six fragments (Peters, Fischer, Schaab & Draemer, 2009). The study site was located in the central main forest block, which covers 8245 ha. The site is at 0° 19' N, 34° 52' E; elevation 1580 m and 40 km north-west of Lake Victoria (Fashing, Forrestel, Scully & Cords, 2003; Mutiso, Hitimana, Kiyiapi, Sang & Eboh, 2013).

Generally, this part of the forest was subjected to selective logging in the1940s (Fashing et al., 2003) and to other anthropogenic activities (Momanyi 2007). Currently, man-made trails are the main disturbance affecting Kakamega forest ecosystem (Mutiso et al., 2013). It is dominated by thick undergrowth beneath large and tall trees (Figure 3) which are influenced by high rainfall regime and constant temperatures. Despite past disturbances, the forest is on the recovery path and near climax development stage (Mutiso et al., 2013) with high tree species diversity (Kokwaro, 1988).

At this site, average annual temperature is 20.4 °C with 21.3 °C for the hottest month and 19.3 °C for the coldest month. Average annual rainfall is 1971 mm with average rainfall of 61 mm for the driest month and 273 mm for the wettest month. The data is within the range found in other publications as reviewed by Mutiso et al. (2013).

Figure 3: Tropical rain forest top most canopy layer (A) and lowest canopy layer with typicaly thick undergrowth (B) and buttressed huge tree stems (C) sizes, Kakamega forest structure, Kenya (Source: Author, 2019)

3.3.2 Mt Elgon Montane Forest

Mt. Elgon forest ecosystem description is documented in Hitimana et al. (2004). The study site was located in the diversity-rich tropical moist lower montane forest side, on the steep slopes of the extinct volcano Mt. Elgon (height of 4321 m a.s.l.) in Kenya (Figures 2 & 4). Elevation is between 2000 and 2100 m a.s.l, higher than in Kakamega forest. Entire forest is confined between 0°49'-1°13'N and 34°05'-34°47'E, and covers 78025 ha (Hitimana et al., 2004). Annual mean temperature at the study site is documented to be 15.2-18.0 °C, with a bimodal annual rainfall: 1460 mm (May) and 1622 mm (August); the driest month (January) has an average annual rainfall of 41 mm (Hitimana, 2000; Jaetzold & Schmidt, 1983). The forest area is reported to be understocked tropical mixed rain forest, affected by historic logging activities, with a good overall forest regeneration but which does not mirror the regeneration status of some individual tree species (Hitimana et al., 2004). Selective logging affected the population structure of some affected species (Hitimana et al., 2010). The ecosystem is a habitat to a rich diversity of tree species and globally threatened faunal species (MENR, 2016). Mt Elgon moist lower montane forest is in the building phase, with its canopy cover intersected by some forest gaps (Hitimana et al., 2004). Thick and continuous undergrowth developed beneath scattered canopy trees (Figure 4). The Mt Elgon ecosystem is a critical catchment for the Lake Victoria drainage system and the Nile River system at large.

Figure 4: Mt Elgon forest undergrowth and canopy characteristics in disturbed area, Kenya (Source: Author, 2019)
3.3.3 Loruk Dry Woodland

The sampling schemes were evaluated at Loruk site in the larger Baringo woodlands (Figure 2), representing dry woodland forests. In Kenya, tropical dryland forests and woodlands occupy expansive area and support many people and over 75% of livestock. Lake Baringo woodland ecosystem falls within the Arid and Semi-Arid Lands (Omondi, 2016; Pauw et al., 2000). Figure 5 shows the typical Loruk dryland forest, with short trees and poorly developed undergrowth. Loruk site is classified as a ranching zone in North-West of Lake Baringo and characterized by erratic rainfall and high temperatures (Jaetzold & Schmidt, 1983). The average annual rainfall is 629 mm, with 21 mm average rainfall for the driest month and 92 mm for the wettest month. The average annual temperature is 23.7 °C, with the warmest month recording 24.8°C and the coldest month registering 22.5 °C.

3.4 Field Methods

3.4.1 Forest Unit of Reference

A one-hectare forest unit of reference was demarcated in each forest type, at least 500 m inside the typical vegetation type of the forest in order to get a good representation of the local vegetation type and avoid edge effect. The designated area of one hectare constitutes a forest unit of reference that contains "test populations" for all sampled variables and a benchmark or "control" against which relative efficiency of each of the candidate sampling schemes was compared and evaluated. Complete census (that is, 100 % sampling intensity) over each one ha forest unit also provided information that is used to describe each forest type of reference in detail.

Figure 5: Loruk Woodland Forest site (open low canopy vegetation with 65-40% cover) with a typical tropical dryland forest physiognomy (A) and Tropical dry woodland forest canopy structure in Loruk area (B), Baringo, Kenya (Source: Author, 2019)

One-hectare forest plot is widely used in tropical natural forest inventories and as permanent sample plots to study forest dynamics over time (e.g. Alder & Synnott, 1992; FAO, 1981; Ganivet & Bloomberg, 2019; Martinez & Phillips, 2000; Stropp, Ter Steege & Malhi, 2009). However, some studies have indicated that 1-ha plot size may not be most appropriate to measure species diversity (e.g. Phillips et al., 2003a), and smaller plot size e.g. 0.5 ha-plot is recommended for diversity studies (Baraloto et al., 2012) and contiguous 20mx50m-plots are used as standard protocol for woody plant inventories and soil characterisation in tropical forests (Arellano et al., 2016).

3.4.2. Field Work Organisation

Efficient planning of field work reduces labour costs, prevents safety risks and ensures accurate estimates (Lackmann, 2011). Data collection over 1-ha forest unit of reference was done in the field to determine "true" values of forest attributes. The demarcated one-hectare forest unit was subdivided into smaller units, up to 400 smallest 25m²-plots. The subdivision exercise in the field started by progressively establishing temporal 10mx10m-field plots (Figure 6) and dividing each plot into four 5mx5msubplots (Figure 7) to ensure accurate field observations of forest vegetation attributes from seedling stage were made and recorded. Complete enumeration of forest attributes was carefully and systematically done in 5mx5m-plots which was the smallest unit of data compilation. To enhance accuracy of observations on small sized individuals such as seedlings, thorough search and counting was done within 1mx1m-subplots, one after the other. Pre-prepared field data collection sheets were used and filled manually by trained field assistants. Measurements and observations on trees were later transferred into MS Excel spreadsheets. The four hundred 5mx5m-plots in each forest unit of reference were well labelled for easy identification and retrieval. The 20mx20m-plot was the largest.

Figure 6: Illustration of 100m x 100m forest unit of reference subdivided into 10 m x 10 m sampling plot units

5	O	
J	フ	

	1221	12221	12241	12261	12281	122101	122121	122141	122161	122181	122201	122221	122241	122261	122281	122301	122321	122341	122361	122381
	1222	12222	12242	12262	12282	122102	122122	122142	122162	122182	122202	122222	122242	122262	122282	122302	122322	122342	122362	122382
	1223	12223	12243	12263	12283	122103	122123	122143	122163	122183	122203	122223	122243	122263	122283	122303	122323	122343	122363	122383
	1224	12224	12244	12264	12284	122104	122124	122144	122164	122184	122204	122224	122244	122264	122284	122304	122324	122344	122364	122384
	1225	12225	12245	12265	12285	122105	122125	122145	122165	122185	122205	122225	122245	122265	122285	122305	122325	122345	122365	122385
	1226	12226	12246	12266	12286	122106	122126	122146	122166	122186	122206	122226	122246	122266	122286	122306	122326	122346	122366	122386
	1227	12227	12247	12267	12287	122107	122127	122147	122167	122187	122207	122227	122247	122267	122287	122307	122327	122347	122367	122387
	1228	12228	12248	12268	12288	122108	122128	122148	122168	122188	122208	122228	122248	122268	122288	122308	122328	122348	122368	122388
	1229	12229	12249	12269	12289	122109	122129	122149	122169	122189	122209	122229	122249	122269	122289	122309	122329	122349	122369	122389
W 7	12210	12230	12250	12270	12290	122110	122130	122150	122170	122190	122210	122230	122250	122270	122290	122310	122330	122350	122370	122390
vv	12211	12231	12251	12271	12291	122111	122131	122151	122171	122191	122211	122231	122251	122271	122291	122311	122331	122351	122371	122391
	12212	12232	12252	12272	12292	122112	122132	122152	122172	122192	122212	122232	122252	122272	122292	122312	122332	122352	122372	122392
	12213	12233	12253	12273	12293	122113	122133	122153	122173	122193	122213	122233	122253	122273	122293	122313	122333	122353	122373	122393
	12214	12234	12254	12274	12294	122114	122134	122154	122174	122194	122214	122234	122254	122274	122294	122314	122334	122354	122374	122394
	12215	12235	12255	12275	12295	122115	122135	122155	122175	122195	122215	122235	122255	122275	122295	122315	122335	122355	122375	122395
	12216	12236	12256	12276	12296	122116	122136	122156	122176	122196	122216	122236	122256	122276	122296	122316	122336	122356	122376	122396
	12217	12237	12257	12277	12297	122117	122137	122157	122177	122197	122217	122237	122257	122277	122297	122317	122337	122357	122377	122397
	12218	12238	12258	12278	12298	122118	122138	122158	122178	122198	122218	122238	122258	122278	122298	122318	122338	122358	122378	122398
	12219	12239	12259	12279	12299	122119	122139	122159	122179	122199	122219	122239	122259	122279	122299	122319	122339	122359	122379	122399
	12220	12240	12260	12280	122100	122120	122140	122160	122180	122200	122220	122240	122260	122280	122300	122320	122340	122360	122380	122400
											s									

Figure 7: Example of field arrangement for four hundred 5 m by 5 m subplots in the forest (Horizontal: E-W; Vertical: N-S).

Each cell with a number represents a coded 5mx5m-plot for easy data set identification, entry, storage, retrieval and use in sampling activity. First three digits denote the forest site (122-Kakamega site; 111- Mt Elgon site; 131- Loruk site). The subsequent digits represent serial plot number within the 100 m x 100 m frame (see Appendix III for codes in all sampling frames used).

The field team was composed of three people: the researcher and two field assistants. The team was trained in the use of equipment and filling of data collection forms. The following instruments and materials were used: compass for orientation and geographic direction; fiberglass meter tapes for horizontal ground distance measurement, global positioning system [GPS] spatial coordinates to demarcate each 100 m x 100 m forest unit of reference, and wooden pegs used to mark corners of plots and subplots.

3.4.3 Sampling Frames

In this study, sampling schemes are combinations of sampling designs, plot sizes and intensities in capturing forest attributes of interest. Picking of random or systematic

Е

sample data for specified sampling intensities for each of the standard plot size considered was accurately achieved through programming with R Software. Each data entry was linked to a uniquely coded plot (e.g., Figure 7). Sampling frame varied as the plot sizes changed (Appendix II & Appendix III). Large plot sizes [10 m x 5 m, 10 m x 10 m, 20 m x 20 m] were derived from 5 m x 5 m cells using confounding technique in R-programming software. Codes used to merge plots are shown in Appendix II. The following sampling frames were formed: four hundred 5mx5m-plots ha⁻¹, two hundred 10mx5m-plots, one hundred 10mx10m-plots and twenty five 20mx20m-plots. Appendix III contains sampling frames for different plot sizes, using Mt Elgon forest site as an example. Merging of smaller plots was associated with automatic collation of records they contained. Calculations on plot data were done for all plot sizes, separately, using specialized functions in the R software.

3.4.4 Sampling

Two sampling methods, simple random sampling and systematic sampling, were tested. However, three designs that were evaluated for efficiency in each forest type were simple random sampling [SRS], systematic sampling along vertical transect (N - S direction) [SSV], systematic sampling along horizontal transect (E – W direction) [SSH]. Sampling process in R is described in Appendices IV-V. In addition, systematic sampling along slope gradient (diagonal transect) [SSD] was evaluated in the montane forest. The three directional sampling options: horizontal, vertical and diagonal are illustrated in Figure 8. The diagonal sampling direction is often applied along gradients such as slope or altitude in mountainous forest landscapes to strike a balance between variations influenced by vertical and horizontal directional factors. Sorting and arranging plots [and their corresponding data] along a progressively increasing slope factor was done [in R] based on plot characteristics at the Mt Elgon site. Serial plot numbers and percent slope measurements enabled actualizing the slope gradient. Sampling trials were then tested along this transect line using three plot sizes [10 m x 5 m; 10 m x 10 m; 20 m x 20 m] and three sampling intensities [10%, 20% and 30%]. Evaluated sampling schemes were composed of sampling designs, plot sizes and sampling intensities (Table 4).

Figure 8: Illustrated three directional sampling options within a forest unit of reference (horizontal, vertical and diagonal).

On a slopping terrain such as in montane forests, vertical direction faced up slope (North-South) and horizontal direction is perpendicular to the slope (East-West) direction, and diagonal direction facing gradual change in slope (e.g South-East to North-West or South-West to North-East direction tangent to steepness). Only those plots traversed by transects in B and C have a chance to be selected and form samples in systematic sampling schemes. On flat terrain, only vertical and horizontal directions were considered.

Plot sizes (m x m)	\rightarrow	5x5	10x5	10x10	20x20			
Sampling frame (N = all	plots ha ⁻¹) \rightarrow	400	200	100	25			
Sampling specifications								
Sampling intensity $(I)^1$			Sample s	izes (n)				
5%	No. sample plots \rightarrow	20	10	5	1			
	Actual sampled area (m ²)	500	500	500	400			
10%	No. sample plots	40	20	10	2			
	Actual sampled area (m ²)	1,000	1,000	1,000	800			
20%	No. sample plots	80	40	20	5			
	Actual sampled area (m ²)	2,000	2,000	2,000	2,000			
30%	No. sample plots	120	60	30	7			
	Actual sampled area (m ²)	3,000	3,000	3,000	2,800			
${}^{1}[I = \frac{n}{N} \times 100]$								

 Table 4: Sampling frames (N) for different plot sizes and respective sample sizes for varying sampling intensities

A sampling scheme refers to a combination of three elements: a specified sampling design

(D), a specified sampling intensity (I) and a specified plot size (S).

3.4.5 Designing and Actualization of Sampling Schemes

Data were collected on each of the three forest types independently but applying similar designs. Simple random sampling (abbreviated as SRS) was performed using randomisation function in R. Various samples drawn from each forest type using simple random sampling (SRS) and systematic sampling (SSH and SSV) are shown for different sampling intensities in Appendix VI, Appendix VII and Appendix VIII. In the case of systematic sampling, we applied belt transect technique with constant length of 100m; the width varied with sampling intensity. Vertical transects faced north – south to support the vertical systematic sampling design, shortened as SSV. Horizontal transects faced east – west to support the horizontal systematic sampling design, shortened as SSH. Sampling

along the diagonal direction was only applied at Mt Elgon forest where the slope gradient is prominent and could influence forest attributes of interest.

In this study, 48 distinct sampling schemes were generated by combining three designs, four plot sizes and four sampling intensities (Table 4 and Table 5). The number of sampling units (sample size, n) for each sampling scheme are shown. Each sampling scheme was applied across the three natural forest types and evaluated for efficiency (accuracy and cost-effectiveness) in each forest type as an independent block. Mapping of actual distribution of sampling units for each sampling scheme was done using R programming software, Excel spreadsheet and MS Word.

3.4.6 Assessed Forest Variables

Sampling was performed on each test pupulation using different schemes which combined three sampling components: method, plot size and sampling intensity. Key Forest attributes of interest were assessed for use to describe and understand overall structure and floristic composition of each ecosystem based on the one-hectare forest unit of reference subdivided into the 5m x 5m plot size as the smallest basic units for data collation. Broadly the data was about tree species composition, species diversity (richness and evenness), top canopy height, diameter size distribution and basal area distribution patterns. These attributes were selected due to their high ecological, silvicultural and conservation significance in forest resource conservation and management. Despite its multiple dimensions, biodiversity is usually equated with species richness only (Feld et al., 2009; Merganič et al., 2012). This study adopted species richness concept by Hamilton (2005), which is the number of species in a habitat or sample without considering the number of individuals in each species. Measurement techniques and applications of measured variables are summarized in Table 6. Forest top canopy height was measured within each 5 m x 5 m basic plot unit using suunto hypsometer. The maximum slope inclination was recorded in percentage using suunto clinometer. Light screening efficiency of the canopy was dermined using a transparent frame with 100 square grid, at the plot centre (Brower et al., 1990). Time taken to complete work within the plot (duration) was recorded in minutes using a watch chronometer.

Sampling	Sampling	Plot sizes							
Design	intensity $(n / N \%)^1$	5 m x 5 m (25 m ²)	10 m x 5 m (50 m ²)	10 m x10 m (100 m ²)	20 m x 20 m (400 m ²)				
SRS	5	20	10	5	1				
	10	40	20	10	2				
	20	80	40	20	5				
	30	120	60	30	7				
SSH	5	20	10	5	1				
	10	40	20	10	2				
	20	80	40	20	5				
	30	120	60	30	7				
SSV	5	20	10	5	1				
	10	40	20	10	2				
	20	80	40	20	5				
	30	120	60	30	7				
SSD	10	40	20	10					
	20	80	40	20					
	30	120	60	30					

Table 5: Sample sizes for different candidate sampling schemes

SRS = Simple random sampling; SSH = Systematic sampling along horizontal transect;

SSV = Systematic sampling along vertical transect; SSD = Systematic sampling along diagonal transect

 1 n = sample size (no. of sample plots selected from on- hectare forest ecosystem);

N = population size (total number of plots in a one- hectare forest)

Variables	Measurement	Application
i) Top tree canopy height	Haga hypsometer for each 5mx5m-plot	Vertical forest structure
ii) Tree diameter (≥ 1 cm at 1.3 m from ground level i.e. dbh)	Calipers: veneer caliper for small sizes e.g. saplings and large calipers for larger diameters	Diameter size distribution; derive basal area and quadratic mean diameter
iii) Maximum slope inclination	Suunto clinometers (percent scale) for steepness	Evaluate influence of slope on accuracy of inventory sampling method
iv) Canopy screening efficiency (100% - % skylight)	Transparent grid (polythene sheet) fixed on a wooden frame and divided into 100 squares	Measure concealed skylight reaching forest floor and perhaps influence regeneration quality and quantity
v) Canopy Brokaw gaps	Visual observation of empty plots	Deep canopy gap % [from ground level] and their possible influence on sampling scheme
vi) Name of tree species	Dendrology and plant taxonomy reference books	Species composition, tree diversity

Table 6: Checklist of variables assessed for overall forest characterization

Counting of the number of tree seedlings within each 5mx5m-plot was done systematically and tallied in progressive 1mx1m-subplots. Diameter at breast height (DBH) for trees was measured at 1.3 m above higher ground level using a diameter tape. Trees were identified to species level using local parataxonmists, standard dendrology text books e.g. Beentje (1994) and herbarium specimens. Other field records include signs of forest disturbance, Geographic Positionning System coordinates for the 100 m x 100 m forest unit corners captured using Garmin GPS Unit.

3.4.7 Descriptive Analysis of the Forest Types Structure and Composition

Simulated factorial experimental design and treatments

For easy data organisation and statistical analysis, three factors (sampling designs, plot size and sampling intensity) were combined in a factorial fashion. The levels of each factor when combined produced 48 factorial treatments (sampling schemes) to be administered in each of the three forest types. A treatment is described and documented as

a triplet "D-S-I". To illustrate this, we take an example of a sampling scheme "simple random sampling with plot size of 5 m x 5 m or 25 m² and sampling intensity of 10%". The scheme is identified by short names "SRS-25-10" or "SRS-5mx5m-10%". Precision, accuracy, cost and relative efficiency of each scheme were computed.

Tree composition and diversity

The trend in forest composition is described in terms of tree species from seedling stage to mature trees. Species compostion was evaluated and compared between forest types by grouping individuals according to species they belong to. Bar graphs were then displayed showing the level of representation of each species within the forest unit of reference and in relation to other species. After individual trees were organized into species, further classification was done for genera and families. The number of species, genera and families were compared among the different forest types and which families dominate within each forest. Similarities of the forest types in terms of families and species were also displayed.

Shannon diversity index (Merganič et al., 2012) was used to measure the level of species diversity in each forest and compared between the forests. Shannon species diversity index values were derived from species composition: the number of species and the relative abundance of each species. Species evenness (E') was calculated from the ratio of observed diversity to maximum diversity (Magurran, 1988) using the following equation (12) below.

$$E' = \frac{H'}{H_{max}} = \frac{H'}{\ln(S)}$$
 (Equation 12).

where H_{max} is the maximum level of diversity possible within a given population, that is, the natural logarithm of the total number of species. *E* ' value normally ranges from 0 to 1; where 1 is attained where all the species are abundant equally.

Forest vertical structure

Comparison of forest vertical structure among the three forest types that form an ecological gradient of some sort was done based on the characteristics of canopy in the units of reference. The components of physical vertical structure of the 1 ha-forest units

(reconstituting a sample of the entire forest) include top forest canopy height, screening efficiency, canopy gaps (Brokaw) percent, which gave insight into the relative complexity of the various forest types in terms of canopy structure as captured from 5mx5m-plot units. Brokaw (1982) defines a gap as a "hole in the forest canopy extending through all levels down to an average height of two meters above the ground". Plotting forest canopy height was done for the three forest types in a comparative manner. The graph depicts height profiles for each forest type showing canopy layers for the tree component. The effect of plot size in capturing true picture of forest canopy height was evaluated by combining information from contagious smallest plot sizes (5 m x 5 m) and summarizing them in the largest plot size (20 m x 20 m).

Forest horizontal structure

Sampling to analyze forest horizontal structure are common and critical in forest ecosystem analysis (Hitimana et al., 2004; Hitimana et al., 2011) for management, conservation and accounting for carbon sequestration. The forest horizontal structure covers the demographic trends from regeneration density (no. seedlings per ha) to tree density (stems per ha), and the trends in tree density, basal area, quadratic mean diameter relationships and what such relationships reflect in terms of forest structure and population dynamics across the different forest types. The transition of individual trees from one development stage to another indicates tree recruitment patterns (Girma, 2012) within the selected forest formations: tropical rainforest, moist montane forest and dry woodland. Standing basal area distribution was assessed as a positive indicator of volume, biomass and carbon sequestration in trees and was compared among studied forest ecosystems. Sampling schemes were also evaluated for same attributes in the three forest types. The horizontal analysis also includes tree diameter size structure and basal area structure.

Tree diameter size distribution patterns as we move from one forest type to the other was assessed as indicator of overall stability for the studied forest types. All data from plots were standardised by converting them on per-hectare basis. The reverse-J curve model of diameter size distribution (mathematical negative power function model) was fitted for each forest type using Hett and Loucks (1976)'s model (Equation 13). Least

squares fit of this model was performed for all species combined after linearization through natural log transformation (Hitimana et al., 2004). The power model describes well diameter-size structure for populations with survival pattern characterised by a changing (rather than a constant) mortality rate over time (Hett & Loucks, 1976).

 $Y = Y_0 X^{-b}$ (Equation 13) where Y is the number of individuals in any diameter class X, Y₀ is the initial input into the population at time zero, i.e., the number of trees at the smallest dbh recognized in the data (1 cm for this particular study) and b is the mortality or depletion rate with time.

Relative stand density based on the number of trees in site were computed as shown in Equation 14. The use of density in stand volume equations works better for evenaged stands than for uneven-aged stands.

.

Relative stand density for a site=
$$\left(\frac{\text{Density of the Site}}{\text{Sum of densities for all sites combined}}\right) \times 100$$
 (Equation 14)

Quadratic mean diameter, QMD, was computed (Equation 15) and used as a more stable stand parameter than basal area (Saud et al., 2016). It is derived from the diameter of a tree with mean basal area (Equation 16).

$$QMD = \sqrt{\frac{\Sigma d_i^2}{N}} = \sqrt{\frac{4 \times \overline{BA}}{\pi}} \dots (Equation 15);$$

With BA/ha = $\sum \frac{\pi d_i^2}{40000} = \frac{N\pi}{40000} \times \frac{2d_j^2}{N} \dots (Equation 16);$

where BA = basal area, N = number of stems per hectare, d is diameter at breast height

Relative basal area (BA) was computed based on diameter data in each site (Equation 17). It indicates relative dominance of each species within the ecosystem.

Relative stand BA for a site=
$$\left(\frac{\text{Basal area value of the Site}}{\text{Sum of basal area values for all sites combined}}\right) \times 100$$
... (Equation 17)

Relative spacing (RS) is a stand parameter (Equations 18 and 19). It assumes that stands with desirable stocking share similar ratios of average distance between trees to average dominant height.

$$RS = \frac{A \text{verage distance between trees}}{\text{average height of dominant canopy}} \dots (Equation 18)$$

On per hectare basis,

$$RS = \frac{\sqrt{\frac{10,000}{N}}}{\overline{H}} \quad \dots \quad (Equation \ 19)$$

Where N is the number of trees per hectare and \overline{H} is average dominant height (top canopy height).

3.4.8 Evaluation Tests for Sampling Efficiency

After creating plots of various sizes in R (Appendix II), sampling frames for each plot size were created defined and their grids displayed for Mt. Elgon as an example (Appendix III). The lists of all samples according to specified plot sizes, sampling intensities, sampling designs and forest types are shown in Appendices VI-IX. Statistical analyses were undertaken to establish suitability of various sampling schemes in terms of efficiency. Sample statistics values were compared against the corresponding values from complete inventory (population parameters). For each sampling scheme being evaluated, plot records were standardized by blowing them up to per hectare-basis. The sample statistics per hectare basis were compared with true population values for the variables of focus. Measures of precision and accuracy were also done on per hectare basis. Two broad approaches were applied in evaluating the efficiency of sampling intensities, plot

sizes, designs that define sampling schemes for the selected variables: (i) exploratory approach based on indices and visual aids; and (ii) confirmatory statistical analyses.

Evaluating sampling designs for tree species richness and diversity

The study explored to what extent comparing the different forest types (along the tropical rain forests- moist lower montane forests- dry forests continuum) can be adequately achieved using simplest index of species richness (no. of species) instead of computing Shannon index (H') of diversity. Species diversity is one of the measures of forest biodiversity. The relationship between species diversity index and species richness was established across studied forest types using regression analysis (SPSS version 21). Preliminary exploratory analysis of the data indicated a positive correlation between the two and defined a predictive regression equation for the same where the number of species predicts almost perfectly species diversity measured by Shanon –Wiener index. The percentage richness (Equation 20) captured by different sampling schemes in relation to true richness (actual number of species recorded from 1 ha forest unit) was used to rank different schemes's suitability. This was done for the three different sampling designs: SRS, SSH and SSV.

Percentage richness =
$$\left(\frac{\text{Number of species in the sample}}{\text{Total number of species in the population}}\right) \times 100$$

..... (Equation 20)

Data from systematic sampling designs along transects were used to construct cumulative species – area curves as a relative measure of species richness across different forest types. We used contiguous plots of various sizes established along transects (belt transect method). The curves were models of rates of change in number of species with progressively increasing plot sizes (translated into sampling effort). Species-area curves were produced in MS Excel. Progressive species richness capture as we increase sampling intensity from 5%, 10%, 20% to 30% was interpreted and compared in each forest type between vertical and horizontal systematic sampling. The comparison was also made between different plot sizes.

Testing of sampling schemes' efficiency in capturing species richness based on species – area curves was done along vertical and horizontal transects. "Sample curves" relied on 5 %, 10 %, 20 % and 30 % sample intensities data to develop a predictive curve that would estimate maximum number of species to be found in a 1-ha forest area. Curves were drawn using the cumulative number of species (on vertical y axis) recorded from different sample area sizes (as represented by different sampling intensities) against the same sampling intensities (on the horizontal x axis). Projectory curves constructed from 30% of 1 ha were compared with predictive regression models which were constructed using all records from 1 ha including the actual number of tree species found in forest unit of study. They represent "true species –area curves" on per hectare basis against which efficiency of different sample plot sizes was determined and compared.

Evaluating efficiency of sampling schemes for forest structure assessment

In this section, we used crude indices to evaluate effectiveness of different combinations of plot size, sampling intensity and sampling designs to determine regeneration density per hectare, tree density per hectare, basal area per hectare and quadratic mean diameter in different natural forest types. Plots data were standardized on per hectare basis and were analysed in a simulated factorial experimental design, in which a combination of sampling design type, plot size and sampling intensity form a treatment. This treatment is in effect a sampling scheme. Two stages of analysis were used: screening 48 candidate sampling schemes to pre-select those that were further evaluated by analysing deviations from the complete enumeration.

Screening sampling schemes

The aim is identify sampling schemes that reduce sampling error and enhance great accuracy (Klauberg, Vidal, Silva, de M. Bentes & Hudak, 2016). The use of such schemes provides better direction for sustainable forest management and conservation. Accuracy of different sampling approaches were computed and compared for estimation of key forest paramters during inventories or ecological studies or other forest resource assessment programmes. Screening used simulations based on field data. A checklist of best sampling options based on efficiency index values is provided for each forest attribute of focus, accompanied by the plotting of deviations (errors) from reference values from complete enumeration after detailed descriptive analysis. Efficiency of each sampling scheme in estimating stand parameters of interest was descriptively and statistically evaluated.

Tests for Efficiency of the sampling schemes

This evaluation was performed on four attributes: seedlings per hectare, trees per hectare, basal area per hectare and quadratic mean diameter. Statistical tests of significance between sampling errors emanating from different sampling schemes were performed and measures of relative efficiency used to rank suitable schemes computed following procedures in Strimbu (2014), Klauberg et al (2016) and Zar (1999). Bar graphs were used to display final outputs of statistical analysis. Reference population parameters were used for benchmarking accuracy levels of different sampling schemes. The following steps were followed to determine relative efficiency of sampling options:

- Computation of population variance based on 100 % intensity for each plot size and choosing the smallest variance for each of the four variables (seedlings per ha, density of trees per ha, basal area per ha and quadratic mean) per forest type.
- Calculating sample variance and standard error of mean for each sampling intensity (5%, 10%, 20% and 30%) with each of the specified plot sizes and sampling methods (SRS, SSH, SSV).
- Computing standardised cost per hectare associated with each standard error (sampling effort) and obtain Student's t value for each sample size from t-table with α=5%. The cost of inventory for the sample was measured in terms of duration in minutes taken to take field records in a plot.
 - Applying the methods by Pálico-Netto and Brena (1997) (as cited in Klauberg et al., 2016) to compute sampling scheme precision (sampling error as a % of mean also known as uncertainty %) (Morais & Scheuber, 1997; Wong et al., 2001; Lackmann, 2011) (Equation 21) for each combination of plot size and intensity.

Sampling error % =
$$\frac{SE \times t}{\bar{X}} \times 100$$
 (Equation 21)

The smaller the error, the more precise is the sampling scheme.

- In the preliminary screening, we set desired precision level (maximum allowable error as a percentage of the mean; Error %) to be ≤ 25%. Sampling schemes with higher error level were eliminated from the list as unsuitable. This level of acceptable error is adequate for inventories targeting multiple attributes in one survey from the highly variable tropical forests. Forest inventories in commercial plantation set a 10% error (Cavalcanti, Machado, Osokawa & Cunha, 2011), diagnostic inventory focusing on two forest species adopted 20 % and sampling for one species adopted 15% error (Klauberg et al., 2016).
- For the retained sampling schemes (error ≤ 25 % of the mean), tests of significance were done to determine those that differed statistically from reference values. One-way ANOVA and Tukey's test were applied (Zar, 1999) in R.
- Further, we determined the levels of relative efficiency (efficiency %; Equation 22) for each of the retained sampling schemes to zero-in on the most suitable schemes for each forest attributes and forest type. This efficiency measure was computed following the procedure recommended in Klauberg et al. (2016). The applied reference treament was the one with 100% intensity that produced smallest population mean variance, $\frac{\sigma^2}{N}$, regardless of forest type, plot size and sampling design (Table 7).
- For each sampling intensity 5%, 10%, 20% and 30% (per plot size category) and per design, variance, standard error of mean, the sampling effort i.e. standardised cost (area inventoried per hour) associated with each standard error per hectare was computed (Appendix XVI). In testing a rapid biodiversity assessment protocol for sampling termite assemblages in tropical forests, Jones and Eggleton (2000) defined sampling efficiency as the number of species collected per unit effort; where effort was measured as the number of days required for one trained person to collect, sort and identify the samples over a standard area.

Forest attribute	Forest	Smallest $\sigma^2/_{\rm M}$	Inventory	Basic unit of data	
		, IN	$cost (ha h^{-1})$	compilation	
Seedlings ha ⁻¹	TRF	1,726,559.16	0.02	5x5	
	MMF	223,003.91	0.02	5x5	
	DWF	3,033.49	0.04	5x5	
Stand density ha-1	TRF	5,239.46	0.02	5x5	
	MMF	2,848.56	0.02	5x5	
	DWF	2,427.01	0.04	5x5	
Basal area / ha	TRF	46.967955	0.08	10x10	
	MMF	7.148552	0.41	20x20	
	DWF	0.050566	0.04	5x5	
Quadratic mean diameter	TRF	0.000057	0.04	10x5	
	MMF	0.000059	0.10	10x10	
	DWF	0.000004	0.18	10x10	

Table 7: Reference treatment based on mean population variance of 100 % intensity

Comparable sampling efforts were recorded in a pilot inventory study in mixed natural forest (Aberdares site) as well as in the dry woodlands (Marigat Site) in Kenya (Nduati et al., 2016): 25.4 h ha⁻¹ equivalent to 0.04 ha h⁻¹ and 13.6 h ha⁻¹ equivalent to 0.07 ha h⁻¹, respectively.

In this study, the mean variance multiplied by actual sampling effort [cost] was used to calculate relative efficiency (Husch, Miller & Beers, 1972) (Equation 22)

Efficiency % =
$$\frac{\sigma_1^2 \times \frac{C_t}{N_1}}{S_1^2 \times C_1/n_1} \times 100....$$
 (Equation 22)

Where S_1^2 = sample variance for the sampling scheme; n_1 = sample size (i.e. number of plots based on the sampling intensity of the scheme); C_1 = time (in hours) spent on measuring variables in the sample standardized per hectare (ie sampling effort or cost); σ_1^2 = population variance for reference (reference treatment) for the variable; C_t = actual total cost of measuring variables in one-hectare forest unit of reference with the selected plot size; N_1 the population size (number of plots per ha, varying with plot size).

Relative efficiency introduced element of cost (sampling effort) measured in terms of time duration spent in each plot during field sampling activity. The average duration per ha (and hectare per hour) was computed based on the number of plots making the sample size and and total time spent on the sample. If relative efficiency is 100 %, then the tested scheme is 100 % efficient compared to the reference inventory (i.e. benchmark). Ideally, both effort and methods should be optimized so that overall sampling efficiency is not compromised (Gaspar, Cardoso, Borges & Gaston, 2014). At this stage, the most effective sampling schemes are those with highest efficiency and were selected based on the value of efficiency above 50 % (Klauberg et al., 2016). They were graphically displayed using bar graphs.

CHAPTER FOUR

RESULTS

4.1 Introduction

Description of studied forest types is covered before the sampling schemes for components are evaluated and reported. The tropical rain forest – moist lower montane forest – dry woodland forest gradient is described by floristic composition and similarities (Figures 9a–c; 10a-b; 11a-c), species richness, evenness and diversity (Table 8), vertical structure characteristics (Figures 12; 13a-d), diameter size distribution patterns (Figures 14 & 15), forest density (Figures 16) and **tree** recruitment trends (Figures 17a-b & 18). Results on sampling efficiency and optimum sampling schemes are presented in section 4.3. for species richness (Figures 19a-d; 20a-c and Table 9), for regeneration (Figures 21 & 22; Tables 10-12), for forest density measures (Figures 23-27;Tables 13-21). Finally, efficiency of sampling schemes along a slope gradient in montane forests is presented (Table 22; Figure 28 for regeneration; Figure 29 for density and Figure 30 fo basal area).

4.2. Characterisation of Studied Forest Types

4.2.1 Tree Species Composition, Relative Dominance and Similarity among the Forests

The data presented in this section were generated from complete enumeration of each of the three one-hectare-forest units. A total of 50 tree species from tropical rainforest, 36 from moist lower montane forest and 12 from dry woodland forest were recorded and their relative dominance across the three forest types is shown in Figures 9a-c. Recorded trees belonged to a mix of taxonomic groups across the three forest types (Figures10a-b; Appendix X). Overall, 81 different species belonging to 59 different genera and 36 different families were recorded in the three hectares we studied. However, each forest type contained some unique species, genera and families (Figure 10b). Respective lists of species, genera and families (X.4-6. Moraceae, Rutaceae, Euphorbiaceae and Bignoniaceae are the most species-rich families in TRF, those in MMF were Flacourtiaceae, Rutaceae, Rutaceae. Mimosaceae

was the only species-rich family in the dry woodland forest site; others being monospecific and monogeneric. Overall, Kakamega rainforest was the most diverse in species and genera unlike at family level where MMF diversity was as high as that in TRF (Figure 10b). Endemism of tree species and genera was found in the three forests. Tropical rain forest was the most species diverse and dry woodland forest the least diverse.

Figure 9a: Forest tree species composition and dominance in the studied one hectare –block in Kakamega Rainforest, Kenya.

Figure 9b: Forest tree species composition and dominance in the studied one hectare –block in Mt Elgon Moist montane forest, Kenya.

Figure 9c: Forest tree species composition and dominance in the studied one hectare –block in Loruk dry woodland forest, Kenya.

Figure 10a: Total number of families, genera and species per hectare in Kakamega tropical rainforest, Mt Elgon moist montane forest and Loruk dry woodland forest, Kenya.

(B) Distribution of the 59 tree genera among the forest types

(C) Distribution of the 36 tree families among the forest types

Figure 10b: Similarity in composition among forest types in terms of tree species (A), tree genera (B) and tree families (C), Kenya.

Figure 11a: Percent (%) Jaccard and Sorensen similarity indices indicating similarity levels between different forest types [in terms of family composition], Kenya.

Figure 11b: Percent (%) Jaccard and Sorensen similarity indices indicating similarity levels between different forest types [in terms of genera composition], Kenya.

Figure 11c: Percent (%) Jaccard and Sorensen similarity indices indicating similarity levels between different forest types [in terms of species composition], Kenya.

4.2.2 Species Dominance and Diversity in Studied Forest Types

Species relative dominance structure was much similar across the forest types: 15 over 50 species (30 %) make 76 % of the stems in TRF, 10 over 36 (28%) make 77 % of the stems in MMF and 3 over 12 species (25 %) contribute 75% of the stems (Figure 9 & Appendix X). Shared tree species, genera and families among the forest types are shown in Appendices XI-XIII. Species diversity trends were analysed based on Shannon diversity index and evenness index. Species evenness was high for each of the three forest types (0.82 for TRF, 0.75 for MMF and 0.71 for DWF). Evenness of 1 represents a situation in which all the species are equally abundant (Magurran, 1988). The species diversity level is therefore more influenced by the number of species than evenness (Table 8); Shannon index of diversity being highest in TRF (3.25), lowest in dry woodland forest (1.76) and intermediate in montane forest (2.69). The value of Shannon diversity index is normally between 1.5 and 3.5 (and rarely surpasses 4.5) (Magurran, 1988). The three forests majorly differred in number of species, types of species but were much similar in species evenness and species relative dominance. The study established the extent to which tree species richness estimates species diversity along the gradient formed by the three different forest types. Rainforest was the most diverse and densely populated.

Forest attributes	Rain forest	Moist montane forest	Dry woodland forest
Ν	2684	1432	1275
S	50	36	12
Dm	0.97	0.95	0.34
H'^1	3.24^{a}	2.69 ^b	1.76 ^c
Hmax=lnS	3.91	3.58	2.48
E'	0.83	0.75	0.71
varH	0.0037	0.0030	0.0026
Hmax=lnS E' varH	3.91 0.83 0.0037	3.58 0.75 0.0030	2.48 0.71 0.0026

Table 8: Species richness, evenness and diversity coefficients in the three forest types

¹Shannon diversity index values followed by same letter in a row are not significantly different (α =0.05). N = population size (number of individuals \geq 1cm dbh); S = Number of tree species (= measure of richness); Dm = Menhinick species diversity index = species richness index; H' = Shannon Wiener species diversity index; H_{max} = Maximum expected diversity index value; E' = Species evenness index; varH = variance of species diversity value.

4.2.3 Forest Structure Description

Sampling for Vertical forest structure across the forest types

The top canopy height structure of the three forest types is described in Figures 12 -13b. Kakamega forest structure was more complex and diverse than the two other forest types. Mt Elgon forest, though closed, its foliage allowed more skylight to the floor (i.e. low screening efficiency). On average, as indicated by canopy height, trees in Kakamega were 8 m and 25 m taller than those in moist montane forest and dry woodland forest, respectively (Appendix XIV). The dry woodland forest of Loruk had the least complex and least diverse vertical structure of the three forest types. The tropical rain forest site (31-m-tall dense closed canopy; Figure 12), had a closed canopy (rare canopy gaps) and high screening efficiency (75%). The moist montane forest site (23-m-tall dense closed canopy), also had closed canopy (few canopy gaps), on a gently sloping ground, with moderate light screening efficiency (62%). The dry woodland forest site (5-m-short open canopy), had very low canopy screening efficiency (29.5%) above observer's head height due to short trees that dominate the ecosystem. Ground cover was inadequate for soil protection.

Measuring forest canopy height based on 20mx20m-plots overesimplified the typical vertical structure of studied forest types as compared to data collection from

smaller plots e.g. 5 m x 5 m (Appendix XIV.1.). Relatively small plot size produced well detailed description of canopy height structure for TRF and MMF types (multi-layered) and DWF (least differentiated canopy layers) (Figures 13a-c); implying that the existence of small-scale site conditions that shape variability in tropical forest vertical structure can only be detected and differentiated through use of small plot sizes. Other structural canopy features observed based on 5mx5m-plots were canopy gaps and screening efficiency (Figure 12). We observe that different plot sizes produced different structures for the same forest.

Figure 12: Average canopy characteristics of the vertical physical forest structure for tropical rain forest, moist montane natural forest and dry woodland forest, Kenya

The results in Figure 13 indicate that all attributes combined, both the tropical rain forest and the moist montane forest were more complex than tropical dry woodland forest.

Tree diameter size distribution based on 1-ha sample plot data

The diameter size distribution of trees from sapling to largest individuals was assessed as a component of forest horizontal structure and an indicator of overall structural stability for the studied forest types (Figure 14). This distribution was continuous up to 160 cm dbh and 85 cm dbh for TRF and MMF, respectively. It only extended up to 45 cm dbh in the DWF where majority of trees were below 10-20 cm dbh (Appendix XIV.2). Diameter size structures for studied forest types were characterised by the conventional reverse- J curve (Figure 14) and conformed to the UNO (1994) model for stable tropical natural forests in Eastern Africa (Figure 15). The UNO model was however not well followed by tropical DWF.

Multilayered nature of closed canopy tropical forests and simplicity of dry woodland forest

Figure 13a: Top canopy heights (m) distribution based on 5 m x 5 m plots in tropical rain forest, moist montane natural forest and dry woodland forest in Kenya

Figure 13b: Kakamega tropical rainforest with well differentiated distinct four canopy laters: at 20 m, 25 m, 30 m and 35 m mean height

Figure 13c: Mt Elgon moist montane forest structure characterised by less differentiated multiple canopy layers, generally below 25 m mean canopy height, with few emergent trees up to 35 m mean height.

Figure 13d: Luruk dry woodland forest structure typically characterised by short trees forming one canopy layer around 5 m tall.

Figure 14: Diameter size distributions for studied forest types, Kenya
Overall, graphical data analysis based on UNO model revealed three distinct development phases in terms of forest structure (Figure 15): individuals with DBH below 10cm; DBH between 10 and 35cm, and > 35cm DBH tree category. The small tree sizes were well-stocked to over-stocked except in DWF where regeneration was under-stocked (i.e., below the UNO model expected estimates for individuals less than 5cm dbh). Regeneration and recruitment levels were satisfactory at TRF and MMF Sites. Populations of pole size trees (10 - 35cm DBH) were well stocked in both TRF and MMF but persistently understocked for DWF. The populations of timber-size trees (above 35cm DBH) were consistently understocked in all the three studied forests. Based on the above findings, the DWF type is either not structurally stable or the UNO Model is not suitable for application in the dry woodland forest type; the model having been conceptualised based on data from closed canopy tropical forest. Thus, there may be need to research on suitable model for the woodland ecosystems as a unique context.

Forest tree density, basal area and mean diameter structures

Figure 16 shows the values and relationships between forest tree density, basal area and quadratic mean diameter. Tree densities in moist montane forest (816 stems ha⁻¹ for dbh ≥ 5 cm) and dry woodland forest (299 stems ha⁻¹) were lower than in the tropical rainforest (1,166 ha⁻¹). Tropical rainforest density was 1.4 times that of moist montane forest density and nearly four (3.9) times that of the dry woodland forest. However, in terms of basal area (m²ha⁻¹), tropical rainforest had 2.7 times that of moist montane forest (69 m²ha⁻¹ against 25.1 m²ha⁻¹). The dry woodland forest supported the lowest stand basal area, 2.1 m² ha⁻¹; 32.9 times lower than in TRF.

Figure 15: Forest types models versus UNO (1994) model of tropical forest stability

Huge tree diameters were measured using diameter tapes, all round the stem at 1.3 m above ground level.

On average, trees from tropical rain and moist montane forests are of larger diameter sizes than in the dry woodland forest. When all the three vegetation types are combined, TRF dominated with 72% for basal area; the least was DWF with 2%. However, the dominance of TRF over other forest ecosystems declined (45%) when quadratic diameter is used (Figure 16). QMD was less variable than BA across different forest types; implying that this diameter is less affected across forest types and is a more stable stand density measure than the basal area. These results indicate that tropical rainforest dominated other forest types mostly in number of trees per hectare. However most of these trees did not contribute much to the basal area. Quadratic mean diameter was nearly in TRF (13.9 cm) and MMF (13.0 cm). As expected, small diameter trees were on average found in DWF. Quadratic diameter mean is less density-dependent than basal area.

Figure 16: Relative basal area, relative density (≥5 cm dbh trees ha⁻¹) and relative quadratic mean diameter in tropical natural forests, Kenya

Overall trends from Figure 16 results include the following:

Relative basal area separated varied among the three forest types, with TRF alone carrying over 70%. There was less variability in relative density, with MMF and DWF being comparable and TRF carried 50% only. Relative quadratic mean diameter was least variable between TRF and MMF. Overall, quadratic mean diameter trait was a less density-dependent stand parameter between TRF and MMF. On average, trees in both forest types are of similar diameter sizes and dfference in basal area is due to differences in density (number of stems). Relative density was found to be similar between MMF and DWF but trees were dominated by smaller diameters at DWF than in MMF. TRF and DWF differed in relative tree diameter sizes and density.

4.2.4 Recruitment characteristics in studied forests

Figure 17 shows the trend of recruitment of individuals from one development stage of trees into the other. Overall, tropical rainforest had highest density (19,448 individuals ha⁻¹) followed by moist montane forest (7,711 individuals ha⁻¹), with dry woodland forest having the lowest (3,369 individuals ha⁻¹), all sizes combined from seedlings to mature trees (Figure 17a). Each forest had seedlings, saplings and large trees represented but relative contribution of each development stage (Figure 17b) revealed that different size categories balanced out almost in similar manner in TRF and MMF where seedlings dominated most by over 80 %. In dry woodland forest, seedlings and saplings were represented equally, making 87% of all individuals. It implies a deficient seedling stage in comparison with other two forest types. The sapling stage was instead relatively over represented.

Figure 17a: Recruitment patterns of trees (expressed in absolute number of trees from different tree development stages) in different tropical natural forest types in Kenya

TRF = Tropical rainforest, MMF = Moist montane forest, DWF = Dry Woodland Forest. Seedlings = indiv. < 1 cm dbh and <1.50 m tall; Saplings = small trees with 1 - 5 cm dbh; and large trees = individuals ≥ 5 cm dbh (Stride et al., 2018).

Figure 17b: Recruitment patterns of trees (expressed in percent relative abundance of different tree development stages) in different tropical natural forest types in Kenya

TRF = Tropical rainforest, MMF = Moist montane forest, DWF = Dry Woodland Forest. Seedlings = indiv. < 1 cm dbh and <1.50 m tall; Saplings = small trees with 1 - 5 cm dbh; and large trees = individividuals \geq 5 cm dbh (Stride et al., 2018).

Within the dry woodland forest, large trees (\geq 5 cm dbh) contributed 13 % of total density; a higher percentage than in the moist montane forest (11 %) as well as in the tropical rain forest (6 %) (Figure 17b). The proportion of large trees against saplings population was exceptionally low in Kakamega tropical rain forest. The unique recruitment trend in dry woodland forest could be attributed to environmental hardships working against seed germination and or seedling establishment. Similar trend of low seedling and sapling counts in the wider Baringo woodland was observed for *Acacia tortilis* as a result of high mortality rate occasioned by competition for moisture, drought, shading effects of mature trees and intense browsing (Kiyiapi, 1994). Differences in densities (and representation) may influence sampling schemes to adopt in each forest and for a specified tree development stage. Relative dominance of the respective tree development stages in each forest type was further evaluated based on the "q" ratio

(Equation 26) as an indicator or measure of regular regeneration and recruitment (Marimon & Felfili, 1997; Hitimana et al., 2004). The "q" quotient measures the relationship between successive diameter classes.

$$q = \frac{D_{(i-1)}}{D_i} \quad \dots \quad (Equation \ 26),$$

where $D_{(i-1)}$ is density in a lower diameter class, and D_i density in the immediate upper diameter class.

Based on the q ratio (Figure 18), regular recuitment was only observed in the tropical rainforest in tree sizes (post sapling size) up to about about 110 cm dbh class. Recruitment of trees in MMF Site follwed same trend as in TRF Site up to 80 cm dbh class. However, at Mt Elgon Site, some exceptional events or processes occurred and distorted diameter size distribution for trees with DBH \geq 50 cm; causing drastic departure from the balanced trend observed in Kakamega tropical rain forest site (Figure 18). The narrower range of dbh classes in the DWF Site would suggest, not withstanding environmental and ecological constraints to tree growth, that this ecosystem is the simplest and perhaps the youngest in succession. To this extent, tropical rain forest was judged more stable than the other forest types, and the woodland ecosystem was the least stable. Rising "q" ratio at the tail-end of diameter size distribution in TRF is characteristic of mature, self-regulating tropical forests. Protection and rehabilitation measures are needed in management and conservation of the structurally unstable ecosystems: MMF and DWF. Periodic monitoring programmes, say every 10 years, are encouraged to follow up the recovery and development processes over time.

Tree recruitment patterns

Figure 18: Trend in regeneration and recruitment process in three natural forest types in Kenya.

TRF = Tropical rain forest, MMF = Tropical moist montane forest, DWF = Tropical dry woodland forest.

4.3 Evaluation of Efficiency of Sampling Schemes in Tropical Natural Forests

4.3.1 Sampling Schemes for Tree Species Richness and Diversity

Use of percentage of species per sampling effort

Figures 19a-d show how effective different sampling schemes captured the number of species per hectare from three tropical forest types. In TRF, increasing sampling intensity for 25 m² plot size (Figure 19a) led to progressive increase in the number of species, regardless of the sampling design applied, but, with 30% sampling intensity in SRS, 100%, 90 % and 80 % of the species were captured in DWF, TRF and MMF, respectively. With intensities of 10 % and 20 %, SSV was superior to SSH in MMF, whereas SSH was better than SSV in both TRF and DWF. The slope effect in the montane forest may justify the trend at MMF. Species turn-over gradient from East to West was reflected in the forests where the slope was negligible. Using plot sizes of 50 m² (Figure 19b), sampling intensity also affected the sampling efficiency of the number of

species, with intensity of 30% being efffective in all the three forest types for both SSH and SRS. Based on 100 m² plot size (Figure 19c), both SSH and SRS were again efficient in all the forest types, for sampling intensities greater than 5 %. Sampling intensities of 10% and 20 % captured 80 % to 90 % of total number of species in a hectare. Finally, when using plot sizes of 400 m² (Figure 19d), results mirrored (to a larger extent) those with 100 m² plots. For example, SRS and SSH captured about 85% to 90 % of species richness at 20 % and 30 % intensities, respectively, in all forest types. The decision will be to choose between using few large plots or many small plots. This choice is about cost and or more precise (smaller sampling error).

Figure 19a: Sampling species richness with 5 m x 5 m plots (% species capture per sampling intensity and design) MMF = Tropical Moist Montane Forest Site (Mt Elgon; Kaberwa); TRF = Tropical Rain Forest Site (Kakamega; Isecheno); DWF = Tropical Dry woodland Site (Baringo, Loruk)

Figure 19b: Sampling species richness with 10mx5m-plots (% species capture per sampling intensity and design)

MMF = Tropical Moist Montane Forest Site (Mt Elgon; Kaberwa); TRF = Tropical Rain Forest Site (Kakamega; Isecheno); DWF = Tropical Dry woodland Site (Baringo, Loruk)

Figure 19c: Sampling species richness with 10 m x 10 m plots (% species capture per sampling intensity and design) MMF = Tropical Moist Montane Forest Site (Mt Elgon; Kaberwa); TRF = Tropical Rain Forest Site (Kakamega; Isecheno); DWF = Tropical Dry woodland Site (Baringo, Loruk)

Figure 19d: Sampling species richness with 20 m x 20 m plots (% species capture per sampling intensity and design) MMF = Tropical Moist Montane Forest Site (Mt Elgon; Kaberwa); TRF = Tropical Rain Forest Site (Kakamega; Isecheno); DWF = Tropical Dry woodland Site (Baringo, Loruk)

Figures 19a-c indicate that as one increases the intensity of sampling, the number of species increases for 5mx5m-plots where random sampling captured more species than systematic sampling in all cases in MMF. However, all sampling options significantly underestimated actual number of species in this forest and 100% intensity per hectare is inevitable. All sampling options were not efficient in DWF except 30% intensity SRS and SSH. In TRF, both SSH and SRS with 30% intensity also give same number of species as the 100% intensity for plot sizes below 20 m x 20 m (Figures 19a-c). Where sampling is efficient enough with smaller intensities, there is no need to spend money and time on higher intensities. Observed low numbers of species in DWF at 20% intensity with 10 m x 5 m plots (Figure 19b) and 10 m x10 m plots (Figure 19c) reflect outliers; otherwise SSH and SRS are already efficient at 10% intensity. Species richness can be captured accurately using 10%, 20% or 30% sampling intensities in DWF. With 20 m x 20 m plot size, 5% sampling intensity in SRS can provide needed data with high accuracy in DWF. In TRF, sampling intensity should be at least 10% in SRS and 30% in SSH. An outlier observation occurred at 30% intensity for SRS.

Use of cumulative species -area curves for species richness

Graphs in Figures 20a-c show how efficient different sampling schemes captured species richness based on cumulative species – area curves. Sampling schemes are based on systematic sampling along vertical transect (SSV;- red coloured curve in graphs) or along horizontal transect (SSH; - blue coloured curve in the graphs). Dotted lines used in the graphs represent the projectory curves constructed from 30% of 1 ha. The solid line curves in cumulative species-area graphs indicate predictive regression models which were constructed using all records including the exact number of species found in the entire hectare forest unit through complete 100% census. Mathematical models for the above graphs are found in Appendix XV.

The quality of the models is expressed in terms of (i) reliability as measured by coefficient of determination (\mathbb{R}^2), (ii) Relative root mean square error (RMSE%) and (iii) Predictive power measured by mean prediction error (MPE %). Two categories of 1-ha models of species-area curves are presented: (i) those models that only used data from sub-sampling of 1 ha up to 30% along vertical (North – South) or horizontal (East-West) transects, and (ii) models that, on top of the sub-sampling data, included total enumeration data during modelling process. The

purpose was, in the 1-ha method approach, to find out which strategy to follow to develop models to be applied in estimating species richness (no. of species) on per-hectare basis. In this study, most efficient sampling schemes were those that produced curves that had R^2 values > 85%; RMSE % < 5% and MPE % < 5% (Table 9 & Appendix XV).

Sampling for species-area curves in tropical rain forest (Figure 20a) was best realised with 30% intensity when combined with 5 m x 5 m or 10 m x 5 m plot sizes. The most accurate scheme is found along the horizontal transect (East-West direction): SSH-5mx5m-30%, The second best scheme is SSV-10mx5m-30%. Larger plot sizes (10 m x 10 m and 20 m x 20 m) produced curves that deviated much from the expected trends.

In the moist montane forest, using 30% of the hectare underestimated the prediction of the maximum number of tree species in a hectare if we apply small plot sizes of 5 m x 5 m or 10 m x 5 m. Larger plot sizes improved accuracy (contrary to observed trend in TRF). Highest efficiency is achieved using 20 m x 20 m plot size along the vertical transect (South – North direction) up to a sample area of 0.3 ha (ie 30% sampling intensity in one hectare). Best sampling scheme is therefore SSV-20mx20m-30%.

For the dry woodland forest, graphs in Figure 20c show that subsampling of one hectare is not efficient. The minimum size of the sample should be one hectare, subdivided into large plot size (20 m x 20 m along horizontal transect; SSH-20mx20m-100%) or using small plot size 5 m x 5 m along the vertical transect (SSV-5mx5m-100%). Based on the results in Table 9, transect orientation had litlle or none on the quality of models from sampling that included the complete inventory data over 1-ha for species –area curves if the small plot size of 5 m x 5 m is adopted for all the forest types.

It is prudent to use many more small plot sizes than few large plots size for any given sampling intensity. Omitting the total number of species in the 1 ha unit when developing a model, influenced the quality of species – area curve. This design of sub-sampling 1-ha up to 30% was only effective in some cases as earlier described. Overall, sub-sampling of 1 ha produced very few options of having effective schemes. This strategy should be applied with caution outside the tropical rain forests.

Figure 20a: Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per- hectare based on 5 m x 5 m and 10 m x 5 m plot sizes, for two transect directions in Kakamega tropical rainforest, Kenya.

Equations with asterisk (*) indicate trajectory species –area models from the 30% sample data of a hectare forest. Those without the asterisk indicate trajectory models based on a series of sampling intensities up to including100 % i.e. entire 1-ha data (reference model). H = Horizontal transect (East-West), coloured blue; V = Vertical transect (North-South), coloured red.

Figure 20a (Cont.): Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per-hectare based on 10 m x 10 m and 20 m x 20 m plot sizes, for two transect directions in Kakamega tropical rainforest, Kenya.

Figure 20b: Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per-hectare based on 5 m x 5 m and 10 m x 5 m plot sizes, for two transect directions in Mt Elgon moist montane forest, Kenya.

Equations with asterisk (*) indicate trajectory species –area models from the 30% sample data of a hectare forest. Those without the asterisk indicate trajectory models based on a series of sampling intensities up to including100 % i.e. entire 1-ha data (reference model). H = Horizontal transect (East-West), coloured blue; V = Vertical transect (North-South), coloured red.

Figure 20b (Cont.): Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per-hectare based on 10 m x 10 m and 20 m x 20 m plot sizes, for two transect directions in Mt Elgon moist montane forest, Kenya.

Figure 20c: Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per- hectare based on 5 m x 5 m and 10 m x 5 m plot sizes, for two transect directions in Loruk dry woodland forest, Kenya.

Equations with asterisk (*) indicate trajectory species –area models from the 30% sample data of a hectare forest. Those without the asterisk indicate trajectory models based on a series of sampling intensities up to including100 % i.e. entire 1-ha data (reference model). H = Horizontal transect (East-West), coloured blue; V = Vertical transect (North-South), coloured red.

Figure 20c (Cont.): Actual and estimated cumulative species –area curves up to 30% and 100% intensity data per-hectare based on 10 m x 10m and 20 m x 20 m plot sizes, for two transect directions in Loruk dry woodland forest, Kenya.

Plot size	Forest	Sampling up to 1 ha	(R ²)	RMSE%	MPE%	Sub-sampling 1 ha up to 0.3 ha	power	RMSE%	MPE%
5 m x 5 m	TRF	$y(H) = 6.6673*\ln(x) + 55.217$	$R^2 = 0.974$	2.0275	-0.0006	$y(H^*) = 7.9895*\ln(x) + 58.202$	$R^2 = 0.992$	3.5657	-1.5561
		$y(V) = 7.7865*\ln(x) + 53.432$	$R^2 = 0.99$	1.2252	0.0007	$y(V^*) = 7.1696*\ln(x) + 52.039$	$R^2 = 0.988$	1.8372	0.7270
	MMF	$y(H) = 6.0081*\ln(x) + 35.547$	$R^2 = 0.9362$	4.3037	0.0006				
		y(V) = 5.587*ln(x) + 35.264	$R^2 = 0.9207$	4.4992	0.0001				
	DWF	y (H) = 0.581*ln(x) + 11.943	$R^2 = 0.8703$	1.8983	-0.0035				
5 m x 10 m	TRF	$y (H) = 5.9519*\ln(x) + 55.056$	$R^2 = 0.975$	1.7654	0.0001	$y(H^*) = 7.0995*\ln(x) + 57.647$	$R^2 = 0.992$	3.0980	-1.3503
		$y(V) = 6.9899*\ln(x) + 52.94$	$R^2 = 0.979$	1.9028	0.0001	$y(V^*) = 5.838*\ln(x) + 50.339$	$R^2 = 0.9785$	3.1862	1.3560
	MMF	$y(H) = 6.0081*\ln(x) + 35.547$	$R^2 = 0.9362$	4.8196	1.0817				
		$y(V) = 5.587*\ln(x) + 35.264$	$R^2 = 0.9207$	4.4992	0.0001				
	DWF								
10 m x 10 m	TRF	$y(V) = 6.2695 * \ln(x) + 51.571$	$R^2 = 0.861$	4.7233	0.0005				
	MMF	$y(H) = 4.1103 * \ln(x) + 35.668$	$R^2 = 0.9074$	3.6036	0.0009				
	DWF								
20 m x 20m	TRF	$y(H) = 4.9218 * \ln(x) + 55.185$	$R^2 = 0.954$	2.0111	-0.0003	$y(H^*) = 6.2094*\ln(x) + 58.092$	$R^2 = 0.985$	3.4933	-1.5152
	MMF	y(H) = 4.6734*ln(x) + 36.782	$R^2 = 0.947$	3.0066	-0.0004	$y(H^*) = 4.4363*\ln(x) + 36.247$	$R^2 = 0.859$	3.1029	0.4060
	DWF								

 Table 9: Most efficient sampling schemes for constructing species accumulation-area curves in tropical forests

4.3.2 Sampling Schemes for Forest Regeneration Inventory

Figure 21 show the extent to which different sample statistics departed from the true population values for each forest type. Results in Tables 10-12 provide deviations, averages and measures of variability associated with the sampling intensities and plot sizes that were applied within each sampling design: SRS, SSH and SSV. The study found that, with SRS, the estimates of seedlings per hectare from all intensities and plot sizes, across all forest types, did not significantly differ from actual population values (p > 0.05). In TRF, estimates of seedlings from 10 % to 30% sampling intensities (expressed on per-hectare basis) were all accurate; being not significantly different from total number of seedlings systematically counted from a hectare at 100% intensity (p > 0.05). Regeneration estimates based on different plot sizes used in the inventory (5 m x 5 m to 20 m x 20 m) were also not significantly different (p > 0.05). However, relative levels of accuracy of estimates (based on deviation %) varied between 0.5% and 58%, among intensities and plot sizes. In MMF, 10 % and 20 % intensities were not adequate (p < 0.05). All sampling intensities and plot sizes were adequate for regeneration assessment in DWF. Statistical significance was also detected along the vertical (North – South) oriented transect but with different levels of intensities performing adequately: 5% - 10% in TRF and 5% - 20% in MMF. Figure 22 shows that in TRF, sampling schemes with highest efficiency levels were two: SSV-5mx5m-30% (83.2% efficient in relation to reference treatment) and SSH-10mx5m-5% (79.8% efficient). Systematic sampling designs performed better than SRS while small plot sizes were most efficient in comparison with larger plots. In MMF, sampling plot size below 1- ha plot is inefficient. Seedling surveys should be done over the entire 1 ha, using plot size as small as 5 m x 5 m (optimum plot size). In the DWF, efficient sampling schemes were five with the best three performing being SRS-10mx10m-30% (90.9 % efficient), SSV-10mx10m-30% (74.6 % efficient) and SSV-10mx5m-30% (74.3% efficient). Both 10 m x 5 m and 10 m x 10 m plot sizes are found adequate for regeneration assessment and compilation in DWF.

Figure 21: Sampling for forest regeneration (no. seedlings ha⁻¹) under simple random sampling (SRS), systematic sampling horizontal (SSH) and vertical (SSV) in tropical rain forest (TRF), moist montane forest (MMF) and dry woodland (DWF), Kenya

Plot size (m ²) ⁱ	S.I. % ⁱⁱ	Rainforest	t			Moist for	est			Dry woodland forest				
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%	
25	5	12,320 ^a	2,598	-26.5	94	6,720 ^a	2,070	7.0	138	740 ^a	170	-32.4	103	
25	10	$14,690^{a}$	3,286	-12.4	141	$10,370^{a}$	2,792	65.2	170	$1,000^{a}$	194	-8.6	123	
25	20	$17,715^{a}$	3,694	5.7	186	7,415 ^a	1,246	18.1	150	$1,010^{a}$	123	-7.7	109	
25	30	16,423 ^a	2,639	-2.0	176	6,290 ^a	804	0.2	140	$1,117^{a}$	104	2.1	102	
25	100	16,764 ^a	1,314	0.0	157	6,279 ^a	472	0.0	150	1,094 ^a	55	0.0	101	
50	5	$14,100^{a}$	3,162	-15.9	71	$4,740^{a}$	1,421	-24.5	95	900 ^a	291	-17.7	102	
50	10	$15,680^{a}$	4,444	-6.5	127	6,750 ^a	1,726	7.5	114	$1,000^{a}$	186	-8.6	83	
50	20	13,010 ^a	2,182	-22.4	106	6,685 ^a	1,324	6.5	125	975 ^a	103	-10.9	67	
50	30	$17,660^{a}$	2,495	5.3	109	7,707 ^a	1,211	22.7	122	$1,050^{a}$	108	-4.0	80	
50	100	16,764 ^a	1,383	0.0	117	6,279 ^a	500	0.0	113	1,094 ^a	60	0.0	77	
100	5	$7,100^{a}$	1,914	-57.6	60	7,620 ^a	1,850	21.4	54	$1,000^{a}$	270	-8.6	60	
100	10	$22,140^{a}$	6,134	32.1	88	$5,470^{a}$	1,206	-12.9	70	$1,020^{a}$	188	-6.8	58	
100	20	16,685 ^a	4,215	-0.5	113	5,145 ^a	1,201	-18.1	104	950 ^a	157	-13.2	74	
100	30	$16,630^{a}$	2,892	-0.8	95	5,843 ^a	808	-6.9	76	$1,000^{a}$	104	-8.6	57	
100	100	16,764 ^a	1,543	0.0	92	6,279 ^a	572	0.0	91	1,094 ^a	66	0.0	61	
400	5	$12,175^{a}$	NA	-27.4	NA	$10,850^{a}$	NA	72.8	NA	1,275 ^a	NA	16.5	NA	
400	10	18,913 ^a	12,038	12.8	90	2,313 ^a	1,388	-63.2	85	550^{a}	0	-49.7	0	
400	20	19,610 ^a	5,997	17.0	68	5,510 ^a	1,673	-12.2	68	$1,020^{a}$	271	-6.8	59	
400	30	17,496 ^a	5,478	4.4	83	5,179 ^a	1,014	-17.5	52	946 ^a	188	-13.5	52	
400	100	16,764 ^a	2,356	0.0	70	6,279 ^a	733	0.0	58	1,094 ^a	99	0.0	45	

Table 10: Simple random sampling (SRS) outputs for number of seedlings per hectare forest unit

ⁱ Plot size (m²): 25 \rightarrow 5 m x 5 m; 50 \rightarrow 10 m x 5 m; 100 \rightarrow 10 m x 10 m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev. % = 100 x (Sample statistic – Population parameter)/population parameter

Plot size (m ²) ⁱ	S.I.	Tropical	rain forest			Moist m	ontane fo	orest		Dry woodland forest				
	70	Mean	SE	Dev. % ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%	
25	5	33,020 ^a	8,986	97.0	122	$2,960^{ab}$	724	-52.9	109	940 ^a	195	-14.1	93	
25	10	$24,170^{ab}$	5,212	44.2	136	3,100 ^a	498	-50.6	102	910 ^a	134	-16.8	93	
25	20	$21,685^{ab}$	3,416	29.4	141	$4,005^{a}$	600	-36.2	134	950^{a}	101	-13.2	95	
25	30	17,977 ^b	2,442	7.2	149	5,590 ^{ab}	940	-11.0	184	997 ^a	94	-8.9	104	
25	100	16,764 ^b	1,314	0.0	157	6,279 ^b	472	0.0	150	1,094 ^a	55	0.0	101	
50	5	20,280 ^a	2,049	21.0	32	6,040 ^{ab}	1,450	-3.8	76	$1,220^{a}$	185	11.5	48	
50	10	$19,560^{ab}$	2,735	16.7	63	5,610 ^a	1,075	-10.7	86	$1,140^{a}$	115	4.2	45	
50	20	$18,850^{ab}$	4,579	12.4	154	5,855 ^a	969	-6.8	105	1,165 ^a	126	6.5	69	
50	30	18,423 ^b	3,466	9.9	146	6,367 ^{ab}	886	1.4	108	1,243 ^a	119	13.6	74	
50	100	16,764 ^b	1,383	0.0	117	6,279 ^b	500	0.0	113	1,094 ^a	60	0.0	77	
100	5	43,140 ^a	6,946	157.3	36	3,280 ^{ab}	973	-47.8	66	980 ^a	282	-10.4	64	
100	10	$25,540^{ab}$	6,780	52.4	84	$3,670^{a}$	942	-41.6	81	$1,020^{a}$	172	-6.8	53	
100	20	$21,685^{ab}$	4,010	29.4	83	$4,005^{a}$	665	-36.2	74	950^{a}	127	-13.2	60	
100	30	19,217 ^b	3,152	14.6	88	4,797 ^{ab}	791	-23.6	90	937 ^a	125	-14.4	73	
100	100	16,764 ^b	1,543	0.0	92	6,279 ^b	572	0.0	91	1,094 ^a	66	0.0	61	
400	5	33,625 ^a	NA	100.6	NA	4,575 ^{ab}	NA	-27.1	NA	1,575 ^a	NA	44.0	NA	
400	10	37,713 ^{ab}	4,088	125.0	15	$2,750^{a}$	1,825	-56.2	94	$1,063^{a}$	513	-2.8	68	
400	20	$21,685^{ab}$	6,956	29.4	72	$4,005^{a}$	1,102	-36.2	62	950^{a}	209	-13.2	49	
400	30	24,314 ^b	5,536	45.0	60	3,904 ^{ab}	893	-37.8	61	1,039 ^a	232	-5.0	59	
400	100	16,764 ^b	2,356	0.0	70	6,279 ^b	733	0.0	58	1,094 ^a	99	0.0	45	

Table 11: Systematic sampling along horizontal transect (SSH) outputs for number of tree seedlings per hectare forest unit

ⁱ Plot size (m²): 25 \rightarrow 5 m x 5 m; 50 \rightarrow 10 m x 5 m; 100 \rightarrow 10 m x 10 m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Plot size (m ²) ⁱ	S.I. % ⁱⁱ	T	ropical 1	rain forest		M	oist mon	ntane fores	Dry woodland forest				
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%
25	5	$10,980^{ab}$	3,037	-34.5	124	$5,560^{ab}$	1,546	-11.5	124	1,260 ^a	291	15.2	103
25	10	$10,200^{ab}$	1,739	-39.2	108	$6,650^{ab}$	1,392	5.9	132	$1,070^{a}$	170	-2.2	101
25	20	11,930 ^a	1,543	-28.8	116	$7,100^{ab}$	1,087	13.1	137	980^{a}	112	-10.4	102
25	30	11,290 ^a	1,193	-32.7	116	8,493 ^a	1,167	35.3	151	933 ^a	85	-14.7	99
25	100	16,764 ^b	1,314	0.0	157	6,279 ^b	472	0.0	150	1,094 ^a	55	0.0	101
50	5	16,180 ^{ab}	4,907	-3.5	96	6,980 ^{ab}	2,831	11.2	128	840^{a}	181	-23.2	68
50	10	13,580 ^{ab}	2,912	-19.0	96	$6,270^{ab}$	1,645	-0.1	117	$1,050^{a}$	200	-4.0	85
50	20	11,930 ^a	1,700	-28.8	90	$7,100^{ab}$	1,222	13.1	109	980^{a}	118	-10.4	76
50	30	$10,557^{a}$	1,242	-37.0	91	8,833 ^a	1,299	40.7	114	997^{a}	92	-8.9	71
50	100	16,764 ^b	1,383	0.0	117	6,279 ^b	500	0.0	113	1,094 ^a	60	0.0	77
100	5	19,880 ^{ab}	3,773	18.6	42	$6,840^{ab}$	2,346	8.9	77	920 ^a	146	-15.9	36
100	10	$12,428^{ab}$	3,092	-25.9	79	$6,270^{ab}$	1,660	-0.1	84	$1,050^{a}$	211	-4.0	64
100	20	11,930 ^a	1,729	-28.8	65	$7,100^{ab}$	1,503	13.1	95	980^{a}	123	-10.4	56
100	30	10,557 ^a	1,294	-37.0	67	8,833 ^a	1,492	40.7	93	997^{a}	96	-8.9	53
100	100	16,764 ^b	1,543	0.0	92	6,279 ^b	572	0.0	91	1,094 ^a	66	0.0	61
400	5	11,500 ^{ab}	NA	-31.4	NA	900 ^{ab}	NA	-85.7	NA	650 ^a	NA	-40.6	NA
400	10	$13,200^{ab}$	1,700	-21.3	18	$10,475^{ab}$	3,500	66.8	47	813 ^a	163	-25.7	28
400	20	11,930 ^a	2,153	-28.8	40	$7,100^{ab}$	1,987	13.1	63	980^{a}	97	-10.4	22
400	30	11,450 ^a	1,687	-31.7	39	7,971 ^a	1,547	26.9	51	946 ^a	79	-13.5	22
400	100	16,764 ^b	2,322	0.0	70	6,279 ^b	733	0.0	58	1,094 ^a	99	0.0	45

Table 12: Systematic sampling along vertical transect (SSV) outputs for number of tree seedlings per hectare forest unit

ⁱ Plot size (m²): 25 \rightarrow 5 m x 5 m; 50 \rightarrow 10 m x 5 m; 100 \rightarrow 10 m x 10 m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Black bars = complete inventory schemes (100% intensity); Blue bars = SSV sampling schemes with intensity < 100% Yellow bars = SSH sampling schemes with intensity < 100%; Orange bars = SRS sampling schemes with intensity < 100%;

4.3.3 Sampling Schemes for Forest Density

Forest density measured in number of stems per hectare for tree individuals with a minimum diameter at breast height of 1cm (i.e. from sapling to large trees) were evaluated to determine suitable sampling schemes. Figure 23 show patterns of sample estimates departure from the actual population parameter. With SRS (Table 13) and SSH (Table 14) designs, the estimates of the number trees per hectare from different sampling intensities and plot sizes did not differ significantly from the true population values (p > 0.05), across the studied forest types. It implies that deviations reflected through the graph are product of random errors, and that schemes with "5 % intensity and 5 m x 5 m plot size" are as good as those with "100% intensity and 20 m x 20 m plot size". Whereas SSV design (Table 15) produced similar results as the other designs in both TRF and MMF, it is not adequate for inventory in DWF with sample size less than one hectare; effect of 100 % intensity was significantly different from that of 30 % (p < 0.05). Consequently, it is prudent to avoid the use of SSV (N-S oriented) in DWF altogether.

Figure 24 shows that many efficient sampling schemes exist for each forest type based on maximum allowable sampling error of 25% of the mean. Three most efficient schemes per forest types were: SRS-10mx10m-30%, SSV-20mx20m-20%, SSH-10mx10m-30% in TRF; SSH-10mx10m-20%, SRS-10mx10m-20% and SSH-10mx10m-30% in MMF; and for DWF, highest efficiency levels were associated with SSV-10mx5m-30%, SRS-10mx10m-30% and SSH-10mx10m-30%. All tested sampling designs are applicable by ensuring that the right combination with plot size and sampling intensitiy is adopted. Overall, optimum plot size for forest density varies from 10 m x 5 m to 10 m x 10 m depending on forest type.

Figure 23: Sampling for forest density (no. trees ha⁻¹) under simple random sampling (SRS), systematic sampling horizontal (SSH) and vertical (SSV) in tropical rain forest (TRF), moist montane forest (MMF) and dry woodland (DWF), Kenya

Plot size	S.I.% ⁱⁱ		Rair	nforest			Moi	st forest		Dry woodland				
$(m^2)^{i}$		Number of	of trees ha	ι ⁻¹		Number of	of trees	ha ⁻¹		Number of trees ha ⁻¹				
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV %	
25	5	2,820 ^a	403	5.1	64	1,220 ^a	206	-14.8	76	$1,040^{a}$	177	-18.4	76	
25	10	2,310 ^a	203	-13.9	56	1,530 ^a	159	6.8	66	$1,060^{a}$	143	-16.9	85	
25	20	2,515 ^a	174	-6.3	62	1,480 ^a	123	3.4	74	1,195 ^a	102	-6.3	76	
25	30	2,463 ^a	134	-8.2	60	1,460 ^a	100	2.0	75	1,307 ^a	85	2.5	71	
25	100	2,684 ^a	72	0.0	54	1,432 ^a	53	0.0	75	1,275 ^a	49	0.0	77	
50	5	3,040 ^a	451	13.3	47	1,440 ^a	321	0.6	70	1,420 ^a	250	11.4	56	
50	10	2,400 ^a	272	-10.6	51	1,550 ^a	193	8.2	56	1,310 ^ª	131	2.7	45	
50	20	2,605 ^a	169	-2.9	41	1,305 ^a	109	-8.9	53	1,115 ^a	98	-12.5	56	
50	30	2,667 ^a	127	-0.6	37	1,387 ^a	102	-3.1	57	1,170 ^ª	104	-8.2	69	
50	100	2,684 ^a	77	0.0	41	1,432 ^a	55	0.0	55	1,275 ^a	59	0.0	66	
100	5	2,060 ^a	121	-23.2	13	1,260 ^a	216	-12.0	38	1,060 ^a	112	-16.9	24	
100	10	2,470 ^ª	285	-8.0	36	1,290 ^ª	125	-9.9	31	1,310 ^ª	234	2.7	56	
100	20	2,255 ^a	165	-16.0	33	1,390 ^a	104	-2.9	33	1,230 ^a	154	-3.5	56	
100	30	2,637 ^a	146	-1.8	30	1,360 ^a	90	-5.0	36	1,100 ^a	92	-13.7	46	
100	100	2,684 ^a	81	0.0	30	1,432 ^a	58	0.0	41	1,275 ^a	65	0.0	51	
400	5	1925 ^a	NA	-28.3	NA	825 ^a	NA	-42.4	NA	1,225 ^a	NA	-3.9	NA	
400	10	2800^{a}	400	4.3	20	1,288 ^a	63	-10.1	7	863 ^a	63	-32.3	10	
400	20	2715 ^a	269	1.2	22	1,600 ^a	197	11.7	28	1,085 ^a	196	-14.9	40	
400	30	2668 ^a	171	-0.6	17	1,507 ^a	86	5.2	15	1,204 ^a	172	-5.6	38	
400	100	2,684 ^a	100	0.0	19	1,432 ^a	74	0.0	26	1,275 ^a	104	0.0	41	

Table 13: Simple random sampling (SRS) outputs for number of trees per hectare forest unit

All evaluated sampling intensities and plot sizes were not significantl different from total census of the forest parameters in a one-hectare reference unit across the three natural forest types (p > 0.05). Values followed by same letter in a column are not significantly different at $\alpha = 0.05$.

ⁱ Plot size (m²): 25 \rightarrow 5 m x 5 m; 50 \rightarrow 10 m x 5 m; 100 \rightarrow 10 m x 10 m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Plot size (m ²) ⁱ	S.I.% ⁱⁱ		Raiı	nforest			Mois	t forest		Dry woodland				
		Number	of tree	s ha ⁻¹		Number of	f trees l	ha ⁻¹		Number of trees ha ⁻¹				
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%	
25	5	2,980 ^a	288	11.0	43	1,700 ^a	297	18.7	78	1,080 ^a	314	-15.3	130	
25	10	2,850 ^a	214	6.2	48	1,610 ^ª	198	12.4	78	1,130 ^a	189	-11.4	106	
25	20	2,860 ^a	155	6.6	49	1,515 ^a	128	5.8	75	1,205 ^a	123	-5.5	91	
25	30	2,723 ^a	125	1.5	50	1,537 ^a	103	7.3	73	1,203 ^a	95	-5.6	86	
25	100	2,684 ^a	72	0.0	54	1,432 ^a	53	0.0	75	1,275 ^a	49	0.0	77	
50	5	2,920 ^a	260	8.8	28	1,200 ^a	191	-16.2	50	1,640 ^ª	392	28.6	76	
50	10	2,960 ^a	192	10.3	29	1,120 ^a	155	-21.8	62	1,500 ^a	212	17.6	63	
50	20	2,600 ^a	153	-3.1	37	1,265 ^a	127	-11.7	63	1,495 ^a	130	17.3	55	
50	30	2,757 ^a	140	2.7	39	1,353 ^a	98	-5.5	56	1,380 ^a	106	8.2	60	
50	100	2,684 ^a	77	0.0	41	1,432 ^a	55	0.0	55	1,275 ^a	59	0.0	66	
100	5	2,940 ^a	372	9.5	28	1,540 ^a	216	7.5	31	1,380 ^a	275	8.2	44	
100	10	2,870 ^a	284	6.9	31	1,510 ^ª	157	5.4	33	1,080 ^a	187	-15.3	55	
100	20	2,860 ^a	211	6.6	33	1,515 ^a	115	5.8	34	1,205 ^a	122	-5.5	45	
100	30	2,690 ^a	153	0.2	31	1,533 ^a	104	7.1	37	1,163 ^a	104	-8.8	49	
100	100	2,684 ^a	81	0.0	30	1,432 ^a	58	0.0	41	1,275 ^a	65	0.0	51	
400	5	3,400 ^a	NA	26.7	NA	1,350 ^a	NA	-5.7	NA	1,725 ^a	NA	35.3	NA	
400	10	2,850 ^a	550	6.2	27	1,350 ^a	NA	-5.7	0	1,325 ^a	400	3.9	43	
400	20	2,860 ^a	299	6.6	23	1,515 ^a	147	5.8	22	1,205 ^a	165	-5.5	31	
400	30	2854 ^a	206	6.3	19	1,407 ^a	128	-1.7	24	1,214 ^a	172	-4.8	37	
400	100	2,684 ^a	100	0.0	19	1,432 ^a	74	0.0	26	1,275 ^a	104	0.0	41	

Table 14: Systematic sampling along horizontal transect (SSH) outputs for number of trees per hectare forest unit

All evaluated sampling intensities and plot sizes were not significantl different from total census of the forest parameters in a one-hectare reference unit across the three natural forest types (p > 0.05). Values followed by same letter in a column are not significantly different at $\alpha = 0.05$.

ⁱ Plot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Plot size $(m^2)^{i}$	S.I.% ⁱⁱ		Rai	nforest			Moist	forest		Dry woodland			
		Number	of tree	es ha ⁻¹		Number of	trees l	ha ⁻¹		Number of trees ha ⁻¹			
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%
25	5	3,220 ^a	294	20.0	41	$1,640^{a}$	213	14.5	58	$1,260^{ab}$	160	-1.2	57
25	10	3,300 ^a	219	23.0	42	1,630 ^a	164	13.8	63	1,200 ^{ab}	138	-5.9	73
25	20	2,975 ^a	168	10.8	50	1,490 ^a	106	4.1	64	1,130 ^{ab}	81	-11.4	64
25	30	2,907 ^a	135	8.3	51	1,510 ^a	99	5.4	72	$1,060^{a}$	65	-16.9	67
25	100	2,684 ^a	72	0.0	54	1,432 ^a	53	0.0	75	1,275 ^b	49	0.0	77
50	5	2,180 ^a	150	-18.8	22	1,120 ^a	213	-21.8	60	1,160 ^{ab}	126	-9.0	34
50	10	2,700 ^a	218	0.6	36	1,380 ^a	162	-3.6	53	1,210 ^{ab}	109	-5.1	40
50	20	2,975 ^a	184	10.8	39	1,490 ^a	109	4.1	46	1,130 ^{ab}	81	-11.4	45
50	30	2,813 ^a	147	4.8	41	1,477 ^a	97	3.1	51	1,100 ^a	68	-13.7	48
50	100	2,684 ^a	77	0.0	41	1,432 ^a	55	0.0	55	1,275 ^b	59	0.0	66
100	5	2,420 ^a	188	-9.8	17	1,540 ^a	191	7.5	28	1,160 ^{ab}	150	-9.0	29
100	10	2,700 ^a	186	0.6	22	1,380 ^a	169	-3.6	39	1,210 ^{ab}	124	-5.1	32
100	20	2,975 ^a	185	10.8	28	1,490 ^a	103	4.1	31	1,130 ^{ab}	85	-11.4	34
100	30	2,813 ^a	152	4.8	30	1,477 ^a	103	3.1	38	1,100 ^a	68	-13.7	34
100	100	2,684 ^a	81	0.0	30	1,432 ^a	58	0.0	41	1,275 ^b	65	0.0	51
400	5	2,300 ^a	NA	-14.3	NA	900 ^a	NA	-37.2	NA	1,150 ^{ab}	NA	-9.8	NA
400	10	2,463 ^a	163	-8.2	9	1,513 ^a	288	5.7	27	988^{ab}	163	-22.5	23
400	20	2,975 ^a	288	10.8	22	1,490 ^a	150	4.1	22	1,130 ^{ab}	83	-11.4	17
400	30	3,036 ^a	203	13.1	18	1,546 ^a	110	8.0	19	1,150 ^a	65	-9.8	15
400	100	2,684 ^a	103	0.0	19	1,432 ^a	74	0.0	26	1,275 ^b	104	0.0	41

Table 15: Systematic sampling along vertical transect (SSV) outputs for number of trees per hectare forest unit

Values followed by same letter in a column are not significantly different at $\alpha = 0.05$.

•

ⁱ Plot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Black bars = complete inventory schemes (100% intensity); Blue bars = SSV sampling schemes with intensity < 100% Orange bars = SRS sampling schemes with intensity < 100%; Yellow bars = SSH sampling schemes with intensity < 100%.

4.3.4 Sampling Schemes for Basal Area

Figure 25 illustrates how samples from different plot sizes and sampling intensities fluctuated around the true population value. However, ANOVA test of significance (Table 16) revealed that, with SRS, all sampling intensities and plot sizes produced estimates that are not significantly different from population true value (p > 0.05), in each of the studied forest type. SSH (Table 17) and SSV (Table 18) designs produced similar results as with SRS. No single sampling scheme is superior over the other for basal area inventory per hectare. Results in Figure 26 also show that there was no efficient sampling scheme within the "one-hectare" forest unit, for basal area assessment. Trees on the entire one-hectare forest unit should be measured with 10 m x 10 m subdivision units being used; this size produced the smallest sampling error.

4.3.5 Sampling Schemes for Quadratic Mean Diameter

In TRF, sampling intensities effect on true QMD was not significant (Table 19). SSH (Table 20) gave results of QMD without any influence being observed from varying plot sizes and sampling intensities. However, SSV (Table 21) produced different results from SRS and SSH. A trend emerged that 10 m x 10 m plot size produced more acciurate average QMD, closest to the true value. In MMF, all sampling schemes produced accuarate QMD. Sampling overestimated significantly (p < 0.05) estimate of tree dimeter size in DWF. Figure 27 shows sampling schemes with highest efficiency to be SSH-20mx20m-20% and SRS-20mx20m-30% in TRF; SRS-10mx10m-20% and SRS-10mx10m-20% in DWF.

Figure 25: Sampling for forest basal area (m²ha⁻¹) under simple random sampling (SRS), systematic sampling horizontal (SSH) and vertical (SSV) in tropical rain forest (TRF), moist montane forest (MMF) and dry woodland (DWF), Kenya
Plot size (m ²) ⁱ	S.I.% ⁱⁱ	Tropica	l rain fores	st		Moist m	nontane f	orest		Dry wo	odland forest		
		m ² ha ⁻¹				m ² ha ⁻¹				m ² ha ⁻¹			
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%
25	5	80.4^{a}	26.4	16.6	147	27.4 ^a	11.3	9.4	185	1.3 ^a	0.3	-38.0	90
25	10	45.6^{a}	12.9	-33.9	179	35.2 ^ª	8.1	40.3	146	3.2 ^a	0.9	51.2	178
25	20	71.9 ^a	17.2	4.2	214	19.9 ^ª	3.0	-20.6	134	3.4 ^a	0.9	59.6	241
25	30	87.5 ^a	16.9	26.9	211	24.5 ^a	3.5	-2.5	158	2.4^{a}	0.6	12.2	254
25	100	69.0 ^a	7.2	0.0	210	25.1 ^a	2.7	0.0	215	2.1 ^a	0.2	0.0	211
50	5	79.5 ^a	31.0	15.3	123	14.9 ^ª	7.5	-40.5	159	3.2 ^a	1.1	48.4	113
50	10	38.6^{a}	10.5	-44.1	122	29.9 ^ª	7.5	19.4	112	1.3 ^a	0.2	-37.6	68
50	20	77.2^{a}	20.7	12.0	169	12.6 ^a	2.0	-50.0	102	3.4 ^a	0.9	59.6	163
50	30	56.0 ^a	8.9	-18.8	124	24.9 ^a	3.8	-0.8	118	2.5 ^a	0.5	18.3	148
50	100	69.0 ^a	7.5	0.0	154	25.1 ^a	2.8	0.0	158	2.1 ^a	0.2	0.0	154
100	5	87.8^{a}	54.6	27.3	139	18.5 ^a	7.9	-26.1	95	2.0 ^a	0.7	-5.2	72
100	10	58.6^{a}	21.0	-15.0	113	23.9 ^a	4.6	-4.7	60	1.6^{a}	0.3	-23.0	48
100	20	70.7^{a}	15.1	2.5	95	21.0 ^a	2.6	-16.4	55	1.5^{a}	0.2	-31.5	73
100	30	85.8^{a}	15.5	24.4	99	23.2 ^a	3.3	-7.6	77	2.2 ^a	0.6	1.9	154
100	100	69.0 ^a	6.9	0.0	99	25.1 ^a	2.7	0.0	108	2.1 ^a	0.2	0.0	108
400	5	42.5 ^a	NA	-38.4	NA	32.1 ^a	NA	28.1	NA	4.0^{a}	NA	89.7	NA
400	10	56.4 ^a	10.7	-18.2	27	11.9 ^ª	1.7	-52.5	20	1.5 ^a	0.7	-30.5	67
400	20	65.0^{a}	16.8	-5.7	58	20.2 ^a	4.7	-19.3	52	2.6^{a}	0.7	21.6	59
400	30	90.8 ^a	15.7	31.7	46	19.1 ^ª	3.5	-23.8	49	2.0 ^a	0.3	-4.2	36
400	100	69.0 ^a	7.2	0.0	52	25.1 ^a	2.7	0.0	53	2.1 ^a	0.2	0.0	55

Table 16: Simple random sampling (SRS) outputs for basal area per hectare (m²ha⁻¹) forest unit

Mean values followed by same letter in a column for each forest type are not significantly different (p > 0.05). Smaller plots in TRF and MMF overestimate basal area.

ⁱ Plot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Plot size $(m^2)^i$	S.I.% ⁱⁱ	Tropical rain forest				Ν	/loist n	nontane fores	st	Dry woodland forest			
		$m^2 ha^{-1}$				$m^2 ha^{-1}$				$m^2 ha^{-1}$			
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%
25	5	77.3 ^a	215.2	12.0	208	16.5 ^a	5.5	-34.3	150	1.6 ^c	0.5	-25.4	152
25	10	136.6 ^a	140.9	98.0	217	16.5 ^b	4.1	-34.4	159	1.3 ^c	0.3	-40.8	144
25	20	111.5 ^a	26.9	61.7	216	20.8^{b}	3.8	-17.0	165	1.7^{c}	0.3	-19.7	158
25	30	90.3 ^a	18.7	30.9	227	20.0^{b}	2.9	-20.3	156	1.7^{c}	0.2	-19.7	153
25	100	69.0 ^a	7.2	0.0	210	25.1 ^b	2.7	0.0	215	2.1^{c}	0.2	0.0	211
50	5	79.3 ^a	24.4	15.0	97	25.7 ^b	6.1	2.4	75	2.8°	1.2	32.4	134
50	10	98.5 ^a	22.5	42.8	102	17.9 ^b	3.7	-28.5	92	2.2^{c}	0.6	3.3	128
50	20	75.5 ^a	13.6	9.4	114	27.3 ^b	5.2	8.8	120	2.5°	0.6	18.3	144
50	30	70.0^{a}	10.4	1.5	115	22.7 ^b	3.6	-9.5	124	2.6°	0.6	21.1	187
50	100	69.0 ^a	7.5	0.0	154	25.1 ^b	2.8	0.0	158	2.1 ^c	0.2	0.0	154
100	5	64.6 ^a	22.9	-6.3	79	24.8 ^b	9.3	-1.3	84	1.8 ^c	0.6	-15.0	74
100	10	67.7 ^a	22.2	-1.9	104	22.0^{b}	5.8	-12.2	84	2.1 ^c	0.5	-1.9	80
100	20	111.5 ^a	24.7	61.7	99	20.8^{b}	4.4	-17.0	96	1.7^{c}	0.3	-19.7	79
100	30	94.2 ^a	18.0	36.6	103	28.9^{b}	7.7	15.1	146	1.6^{c}	0.2	-23.5	81
100	100	69.0 ^a	6.9	0.0	99	25.1 ^b	2.7	0.0	108	2.1 ^c	0.2	0.0	108
400	5	135.8 ^a	NA	96.9	NA	16.3 ^b	NA	-34.9	NA	2.5°	NA	15.0	NA
400	10	131.6 ^a	4.3	90.7	5	13.3 ^b	3.1	-47.1	33	2.3°	0.1	8.9	8
400	20	111.5 ^a	13.4	61.7	27	20.8^{b}	5.6	-17.0	60	1.7 ^c	0.5	-19.7	64
400	30	98.8 ^a	12.4	43.2	33.08	27.9 ^b	8.5	11.1	81	1.7^{c}	0.4	-20.7	65
400	100	69.0 ^a	7.2	0.0	52	25.1 ^b	2.7	0.0	53	2.1^{c}	0.2	0.0	55

Table 17: Systematic sampling along horizontal transect (SSH) outputs for basal area per hectare (m²ha⁻¹) forest unit

Mean values followed by same letter in a column for each forest type are not significantly different (p > 0.05) Smaller plots in TRF and MMF overestimate basal area.

ⁱ Plot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Plot size $(m^2)^i$	S.I.% ⁱⁱ		Tropical rain forest					ontane forest		Dry woodland forest						
			m ² ha ⁻¹					m ² ha ⁻¹				m ² ha ⁻¹				
	-	Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%			
25	5	102.6 ^a	53.6	48.7	234	27.4 ^b	7.3	9.2	119	1.4 ^c	0.2	-32.9	63			
25	10	89.3 ^a	30.1	29.5	213	28.1 ^b	5.4	11.9	121	3.3 ^c	1.5	56.3	288			
25	20	73.9 ^a	18.4	7.1	222	23.6 ^b	3.3	-5.9	126	2.9°	0.8	38.0	250			
25	30	72.7^{a}	15.5	5.4	234	22.8 ^b	3.2	-9.1	154	2.8°	0.6	31.0	235			
25	100	69.0 ^a	7.2	0.0	210	25.1 ^b	2.7	0	215	2.1 ^c	0.2	0.0	211			
50	5	42.2^{a}	20.3	-38.9	152	16.8 ^b	4.2	-32.9	78	3.4 ^c	1.3	60.1	117			
50	10	72.4 ^a	28.4	4.9	175	22.1 ^b	4.9	-11.8	100	2.4 ^c	0.7	13.6	123			
50	20	73.9 ^a	18.4	7.1	158	23.6 ^b	3.4	-5.9	92	2.9°	0.8	38.0	174			
50	30	71.7 ^a	15.5	3.9	167	23.0 ^b	3.1	-8.5	106	2.7°	0.6	28.2	163			
50	100	69.0 ^a	7.5	0.0	154	25.1 ^b	2.8	0	158	2.1 ^c	0.2	0.0	154			
100	5	52.9 ^a	16.5	-23.4	70	31.3 ^b	9.2	24.9	66	3.3 ^c	1.3	53.1	87			
100	10	72.4 ^a	35.7	4.9	156	22.1 ^b	5.7	-11.8	82	2.4°	0.7	13.6	89			
100	20	73.9 ^a	20.9	7.1	127	23.6 ^b	3.9	-5.9	74	2.9°	0.8	38.0	119			
100	30	71.7 ^a	16.4	3.9	125	23.0 ^b	3.5	-8.5	83	2.7°	0.6	28.2	112			
100	100	69.0 ^a	6.9	0.0	99	25.1 ^b	2.7	0	108	2.1 ^c	0.2	0.0	108			
400	5	54.2 ^a	NA	-21.5	NA	11.8 ^b	NA	-52.8	NA	2.9 ^c	NA	37.1	NA			
400	10	52.4 ^a	1.8	-24.1	5	28.1 ^b	7.2	11.9	36	1.9 ^c	1.1	-13.1	81			
400	20	73.9 ^a	22.8	7.1	69	23.6 ^b	5.2	-5.9	49	2.9 ^c	0.6	38.0	48			
400	30	68.9 ^a	16.3	-0.1	62	21.7 ^b	3.9	-13.5	48	2.7°	0.5	26.3	48			
400	100	69.0 ^a	6.6	0.0	48	25.1 ^b	2.7	0	53	2.1°	0.2	0.0	55			

Table 18: Systematic sampling along vertical transect (SSV) outputs for basal area per hectare (m²ha⁻¹) forest unit

Mean values followed by same letter in a column for each forest type not significantly different (p > 0.05)

ⁱPlot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Black bars = complete inventory schemes (100% intensity);

Yellow bar = SSH sampling schemes with intensity < 100%;

Plot size	S.I.% ⁱⁱ		Ra	inforest			Moi	st forest			Dry	woodland	
$(m^2)^i$		Quadrat	ic mean	diameter (cm)	Quadra	tic mea	an diameter	(cm)	Quadratic mean diameter (cm)			
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%
25	5	15.5 ^a	2.7	11.7	77.1	13.5 ^a	2.6	3.8	87.4	4.0^{a}	0.4	-1.7	50.5
25	10	13.0 ^a	1.9	-6.2	93.3	13.6^{a}	1.9	4.0	87.3	5.2 ^a	0.5	29.2	59.8
25	20	15.5^{a}	2.1	11.7	118.5	12.1^{a}	1.0	7.6	76.3	4.9^{a}	0.5	22.1	96.4
25	30	15.9 ^a	1.6	14.5	109.9	12.9 ^a	1.0	-1.3	88.1	4.2 ^a	0.3	2.9	76.4
25	100	13.9 ^a	0.7	0.0	101.9	13.0 ^a	0.6	0.0	88.6	4.0^{a}	0.1	0.0	70.0
50	5	15.7^{ab}	3.0	5.1	61.2	11.3 ^a	3.2	-19.2	90.4	4.6^{a}	0.7	10.1	47.9
50	10	11.7^{ab}	1.6	-21.7	61.9	14.5^{a}	2.3	4.1	69.5	3.5 ^a	0.2	-16.2	28.1
50	20	15.1^{ab}	2.0	1.2	82.6	10.3^{a}	1.0	-26.2	62.1	5.3 ^a	0.6	27.5	69.2
50	30	14.0^{ab}	1.1	-5.8	61.2	13.4 ^a	1.0	-4.1	59.4	4.6^{a}	0.3	9.4	57.1
50	100	14.9 ^{ab}	0.8	0.0	71.7	13.9 ^a	0.7	0.0	75.8	4.2 ^a	0.2	0.0	56.0
100	5	19.1 ^b	7.4	14.7	87.0	12.9 ^a	2.4	-10.0	41.2	4.6^{a}	0.5	6.3	23.2
100	10	15.2 ^b	2.1	-8.5	43.7	15.1^{a}	1.6	5.8	32.6	4.2 ^a	0.3	-4.7	19.1
100	20	19.0 ^b	2.6	14.3	62.1	13.7 ^a	0.9	-4.0	30.0	3.8 ^a	0.2	-12.9	22.6
100	30	19.3 ^b	1.9	15.6	55.2	14.2^{a}	1.0	-0.3	39.7	4.4^{a}	0.5	1.7	63.2
100	100	16.7 ^b	0.8	0.0	50.0	14.3 ^a	0.8	0.0	53.6	4.4 ^a	0.2	0.0	45.4
400	5	16.8^{ab}	NA	-5.0	NA	22.3^{a}	NA	48.5	NA	6.5 ^a	NA	40.9	NA
400	10	16.2^{ab}	2.7	-8.3	23.6	10.9^{a}	1.0	-27.6	13.6	4.5 ^a	1.0	-2.3	30.9
400	20	17.2^{ab}	2.5	-2.6	32.4	12.4 ^a	0.6	-17.2	11.6	5.6^{a}	0.9	21.0	34.4
400	30	20.4^{ab}	2.0	15.8	25.6	12.4 ^a	0.9	-17.6	18.5	4.7^{a}	0.3	1.9	19.7
400	100	17.6^{ab}	0.8	0.0	23.7	15.0^{a}	1.0	0.0	33.9	4.6^{a}	0.3	0.0	30.2

Table 19: Simple random sampling (SRS) outputs for quadratic mean diameter in different forest types

Mean values followed by same letter in a column for each forest type are not significantly different (p > 0.05).

ⁱ Plot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Plot size $(m^2)^i$	S.I.% ⁱⁱ		Rain	forest			Mo	oist forest			Dry	woodland	
(111)		Ouadratic	mean diame	eter (cm)		Ouadrati	c mean	diameter (cm)		Ouadrati	c mean d	liameter (cm)	
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%
25	5	12.7 ^a	2.8	-8.8	100.6	9.1 ^a	1.4	-30.3	67.8	3.9 ^a	0.5	-3.4	51.6
25	10	16.4 ^a	3.2	18.3	122.1	9.4 ^a	1.1	-27.9	75.6	3.5 ^a	0.3	-12.4	46.1
25	20	15.6^{a}	2.0	12.0	112.2	11.0 ^a	0.9	-15.4	70.2	3.8 ^a	0.2	-5.6	48.3
25	30	14.6^{a}	1.5	5.4	109.0	10.9 ^a	0.7	-16.6	67.6	3.9 ^a	0.2	-3.8	62.0
25	100	13.9 ^a	0.7	0.0	101.9	13.0 ^a	0.6	0.0	88.6	4.0^{a}	0.1	0.0	70.0
50	5	16.6^{ab}	3.0	11.4	56.6	16.6 ^b	3.0	19.3	57.9	3.7 ^a	0.6	-11.3	53.5
50	10	17.8^{ab}	2.3	19.5	56.7	13.6 ^b	1.9	-2.2	62.0	3.5 ^a	0.4	-15.7	47.2
50	20	17.7^{ab}	2.8	18.9	98.6	14.3 ^b	1.4	2.6	62.7	3.9 ^a	0.3	-6.6	54.1
50	30	16.3^{ab}	1.9	9.4	91.3	13.0 ^b	1.0	-6.6	61.9	4.1 ^a	0.4	-1.5	74.5
50	100	14.9 ^{ab}	0.8	0.0	71.7	13.9 ^b	0.7	0.0	75.8	4.2 ^a	0.2	0.0	56.0
100	5	16.2 ^b	4.0	-2.8	55.3	13.4 ^{ab}	1.9	-6.2	32.4	3.9 ^a	0.4	-9.5	25.5
100	10	15.5 ^b	2.8	-6.9	57.2	12.8^{ab}	1.4	-10.2	35.7	4.8^{a}	0.5	9.8	35.8
100	20	20.6^{b}	3.1	23.5	67.7	11.9 ^{ab}	1.1	-16.4	41.3	4.1 ^a	0.3	-4.8	36.6
100	30	19.4 ^b	2.2	16.3	62.0	13.9 ^{ab}	1.8	-2.8	71.8	4.1 ^a	0.3	-6.8	34.2
100	100	16.7 ^b	0.8	0.0	50.0	14.3 ^{ab}	0.8	0.0	53.6	4.4 ^a	0.2	0.0	45.4
400	5	22.6^{ab}	NA	0.0	NA	12.4 ^{ab}	NA	-17.2	NA	3.2 ^a	NA	-30.0	NA
400	10	24.5^{ab}	2.0	39.1	11.5	11.1 ^{ab}	1.3	-25.9	16.6	3.4 ^a	0.1	-26.8	6.1
400	20	22.6^{ab}	2.1	28.0	21.1	12.6^{ab}	1.2	-16.1	21.3	4.1 ^a	0.6	-10.3	33.2
400	30	21.1 ^{ab}	1.8	19.5	22.1	15.3 ^{ab}	2.7	2.0	47.5	4.0^{a}	0.4	-12.4	29.3
400	100	17.6^{ab}	0.8	0.0	23.7	15.0^{ab}	1.0	0.0	58.0	4.6 ^a	0.3	0.0	30.2

Table 20: Systematic sampling along horizontal transect (SSH) outputs for quadratic mean diameter in different forest types

Mean values followed by same letter in a column for each forest typeare not significantly different (p > 0.05)

ⁱ Plot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Plot size $(m^2)^i$	S.I.% ⁱⁱ	Rainforest					Moist f	orest		Dry woodland			
()		Quadrati	c mean d	iameter (cm)		Quadrat	ic mean dian	neter (cm)		Quadrati	c mean diam	neter (cm)	
		Mean	SE	Dev.% ⁱⁱⁱ	CV%	Mean	SE	Dev.%	CV%	Mean	SE	Dev.%	CV%
25	5	14.5 ^a	3.7	4.7	113.0	12.6 ^a	2.2	-3.3	76.3	3.9 ^{ab}	0.3	-4.2	34.2
25	10	13.4 ^a	2.3	-3.2	110.3	13.9 ^a	1.7	6.4	78.4	5.0^{ab}	0.8	22.8	96.9
25	20	12.6 ^a	1.5	-9.4	107.3	13.2 ^a	1.1	1.5	75.6	4.9^{a}	0.4	21.4	75.5
25	30	12.8 ^a	1.2	-8.1	106.4	12.4 ^a	0.9	-4.7	81.7	4.8^{a}	0.3	19.6	72.7
25	100	13.9 ^a	0.7	0.0	101.9	13.0 ^a	0.6	0.0	88.6	4.0^{b}	0.1	0.0	70.0
50	5	12.2 ^{ab}	2.7	-18.4	69.8	15.5 ^a	2.9	11.4	59.6	5.4^{ab}	0.7	29.4	43.9
50	10	14.3 ^{ab}	2.5	-4.1	77.1	14.3^{a}	1.8	2.8	57.5	4.5^{ab}	0.4	9.0	43.0
50	20	13.5 ^{ab}	1.7	-9.4	78.7	14.2^{a}	1.3	1.6	58.1	5.0^{a}	0.5	20.4	64.0
50	30	14.2^{ab}	1.5	-4.5	80.6	13.4 ^a	1.1	-3.9	60.8	5.0^{a}	0.4	18.9	60.3
50	100	14.9 ^{ab}	0.8	0.0	71.7	13.9 ^a	0.7	0.0	75.8	4.2 ^b	0.2	0.0	56.0
100	5	15.9 ^b	3.2	-4.7	44.5	15.9 ^a	2.7	11.1	38.1	5.4^{ab}	0.8	25.1	34.6
100	10	14.9 ^b	3.3	-10.3	69.1	13.8 ^a	1.7	-3.1	37.8	4.7^{ab}	0.5	7.6	32.9
100	20	14.9 ^b	2.0	-10.6	60.3	13.7 ^a	1.1	-4.0	34.6	5.4^{a}	0.7	23.3	55.9
100	30	15.7 ^b	1.8	-6.0	62.2	13.4 ^a	1.1	-6.3	43.3	5.3 ^a	0.5	21.1	49.2
100	100	16.7 ^b	0.8	0.0	50.0	14.3 ^a	0.8	0.0	53.6	4.4 ^b	0.2	0.0	45.4
400	5	17.3 ^a	NA	-1.9	NA	12.9 ^a	NA	-13.7	NA	4.8^{ab}	NA	4.1	NA
400	10	16.5 ^a	0.8	-6.6	7.1	15.6^{a}	3.5	4.4	31.6	5.6^{ab}	0.8	21.9	20.7
400	20	17.0^{a}	1.9	-3.5	24.9	13.9 ^a	1.5	-7.0	24.7	5.8^{a}	0.8	25.0	31.6
400	30	16.4 ^a	1.4	-6.9	22.5	13.2 ^a	1.2	-12.3	24.7	5.4^{a}	0.6	17.8	29.8
400	100	17.6^{a}	0.8	0.0	23.7	15.0^{a}	1.0	0.0	33.9	4.6^{b}	0.3	0.0	30.2

Table 21: Systematic sampling along vertical transect (SSV) outputs for quadratic mean diameter in different forest types

Mean values followed by same letter in a column for each forest type are not significantly different (p > 0.05)

ⁱ Plot size (m²): 25 \rightarrow 5m x 5m; 50 \rightarrow 10m x 5m; 100 \rightarrow 10m x 10m; 400 \rightarrow 20 m x 20 m ⁱⁱ S.I. %= Sampling Intensity in percentage = 100 x no, of plots making the sample / total number of such plots over the 1 hectare forest ⁱⁱⁱ Dev.% = 100 x (Sample statistic – Population parameter)/population parameter

Black bars = complete inventory schemes (100% intensity); **Orange bars** = SRS sampling schemes with intensity < 100%; **Yellow bars** = SSH sampling schemes with intensity < 100%; **Blue bars** = SSV sampling schemes with intensity < 100%.

4.3.6 Influence of Slope Gradient on Sampling Schemes' Efficiency for Forest Attributes

Slope gradient was pronounced in the Mt Elgon moist montane forest with an average of 9.5; and a range of 8 to 16 %. Data from this forest were organised following the slope gradient and used to test the effect of diagonal transects on the efficiency of forest sampling schemes for regeneration, density and basal area (Table 22). Among the three attributes, regeneration count was the most sensitive stage and attribute in the moist montane forest with reference to slope gradient.

Sampling scheme for the number of seedlings per hectare

For regeneration, diagonal sampling design (SSD) differed with horizontal sampling for tested intensities of 10% and 20% (p < 0.05) but did not significantly differ from other designs at 30% intensity, regardless of plot sizes. In this case, horizontal transect-based schemes underestimated the regeneration density for plot size of 5 m x 5 m, which is the optimal plot size for regeneration. It is prudent to use intensity of at least 30% when small plot sizes are applied along horizontal transect in the montane forest to assess regeneration. With larger plot sizes, a 10% intensity was adequate along transects facing any direction. Although many sampling schemes were found to give sufficiently accurate estimates of assessed quantities (Table 22), efficiency index was used to rank and filter out the most efficient inventory schemes. Both plot sizes and sampling intensities contributed to efficiency of each scheme. With lowest acceptable relative efficiency index value set at 50%, two sampling schemes (SSD-10mx10m-20%) emerged useful, and both are made of plots arranged along the diagonal transect, where transect line intersects the slope gradient diagonally (Figure 7 & Figure 28).

			SSD		SSH		SSV		
Attributes	Plot (m^2)	S.I.%	Mean	SE	Mean	SE	Mean	SE	95% CI for µ
Regeneration	25	10	8217 ^a	1765	3100 ^b	498	6650 ^{ab}	1392	5354 - 7204
-		20	7753 ^a	1280	4005 ^b	600	7100 ^{ab}	1087	
		30	7259 ^{ab}	1008	5590 ^b	940	8493 ^a	1167	
	50	10	8259 ^a	1556	5610 ^b	1075	6270^{ab}	1645	5299-7259
		20	8463 ^a	1532	5855 ^b	969	7100 ^{ab}	1222	
		30	7280 ^{ab}	1198	6367 ^b	886	8833 ^a	1299	
	100	10	7322 ^a	2892	3670 ^b	942	6270 ^{ab}	1660	5158-7400
		20	6767 ^a	1547	4005 ^b	665	7100 ^{ab}	1503	
		30	7633 ^{ab}	1287	4797 ^b	791	8833 ^a	1492	
Forest density	25	10	1474 ^a	202	1610 ^a	198	1630 ^a	164	1328-1536
		20	1367 ^a	146	1515 ^a	128	1490 ^a	106	
		30	1429 ^a	125	1537 ^a	103	1510 ^a	99	
	50	10	8259 ^a	1556	5610 ^a	1075	6270^{a}	1645	1324-1540
		20	1566 ^a	128	1265 ^a	127	1490 ^a	109	
		30	1513 ^a	106	1353 ^a	98	1477 ^a	97	
	100	10	7322 ^a	2892	3670 ^a	942	6270 ^a	1660	1318-1546
		20	1506 ^a	136	1515 ^a	115	1490 ^a	103	
		30	1463 ^a	105	1533 ^a	104	1477 ^a	103	
Basal area	25	10	21.73 ^a	5.07	16.46^{a}	4.15	28.07^{a}	5.37	19.79-30.37
		20	19.29 ^a	3.62	20.81^{a}	3.85	23.59 ^a	3.32	
		30	17.74 ^a	2.82	19.98 ^a	2.85	22.79 ^a	3.2	
	50	10	29.19 ^a	4.7	17.92^{a}	3.69	22.12^{a}	4.93	19.59-30.57
		20	25.03 ^a	3.53	27.29 ^a	5.19	23.59 ^a	3.44	
		30	22.58^{a}	2.87	22.69 ^a	3.63	22.95 ^a	3.14	
	100	10	26.84 ^a	6.96	22.01 ^a	5.84	22.12^{a}	5.72	19.19-30.37
		20	23.72 ^a	4.05	20.81^{a}	4.45	23.59 ^a	3.88	
		30	25.02^{a}	3.07	28.87^{a}	7.72	22.95 ^a	3.46	

Table 22: Estimates for forest attributes through systematic sampling along diagonal transect in Mt Elgon forest

Mean values followed by same letter for each variable are not significantly different (p > 0.05)

Figure 28: Efficiency of sampling schemes for number of seedlings per hectare on slope

Black bars = complete inventory schemes (100% intensity); **Green bars** = SSD sampling schemes with intensity < 100%;

Optimum plot size was 10 m x 10 m along the diagonal transect, with a sampling intensity of ideally 30 % (but can be at least 20%), translating into a minimum sample size of 30 plots or at least 20 plots). The other sampling schemes reported in Figure 28 are accurate (and are all along diagonal transect) but not efficient. Where complete inventory of a hectare is undertaken, 5 m x 5 m small plot size should be adopted along belt transect facing any direction. This plot size minimizes sampling error and perhaps the magnitude of plot edge effect errors for seedlings.

In terms of choice of type of transect, it was observed that only sampling along diagonal was efficient as compared to vertically and horizontally oriented belt transects. Diagonal transect

is the only effective sampling design on the sloping terrain in the moist montane forest (MMF); but it must be accompanied by careful selection of plot size and intensity.

Sampling schemes for forest density in stems per hectare

Findings in Table 22 indicate that neither forest density nor basal area estimates, was influenced by plot sizes in the moist montane forest. However, sampling intensity as small as 10% resulted in overestimation of tree density for all plot sizes; and should be avoided. Results in Figure 29 confirms the same by revealing a long list of accurate inventory schemes along the three transect types (horizontal – yellow colour; vertical – blue colour; diagonal – green colour; complete inventory – black colour). Based on relative efficiency index value and the critical level of 50%, all the four inventory schemes were represented. However, to optimize efficiency level, adequate adoption of sampling intensity and plot size must be realized. In terms of relative efficiency of inventory schemes, optimum plot size and sampling intensity for stem density per hectare, small plot sizes (5 m x 5 m or 10 m x 5 m) are most efficiency (and reliability) of the design declines. There were more alternative efficient sampling schemes for inventory of stems per hectare than for regeneration (seedlings) (Figure 29).

Figure 29: Forest density (stems /ha) assessment on the gentle slope of montane forest

Black bars = complete inventory schemes (100% intensity); **Yellow bars** = SSH sampling schemes with intensity < 100%; **Green bars** = SSD sampling schemes with intensity < 100%; **Blue bars** = SSV sampling schemes with intensity < 100%

Basal area per hectare

From Table 22, basal area estimates in moist montane forest were not significantly different among sampling designs, plot sizes and sampling intensities. Results in Figure 30, however, show that only complete inventory schemes per hectare are the only ones reliable based relative efficiency index values for different sampling schemes at a critical level of 50% relative efficiency. Large plot size of 20 m x 20 m along any transect direction was the most efficient in

comparison with smaller ones that were tested. The smaller the plot size, the less efficient is the inventory design for basal area in the montane forest. This is the opposite requirement of plot size effect for assessment of regeneration. Complete inventory schemes with smaller plot sizes were associated with efficiency below 50%. Where complete inventory over one hectare is not practical, the best option is to adopt diagonally oriented transect with 30% sampling intensity of 10 m x 10 m plot size; however relative efficiency would be below 50%. No sampling intensity less than 100 % is reliable enough. This is an indication of high variability of basal area within the forest.

Figure 30: Basal area assessment on slope in montane forest

Black bars = complete inventory schemes (100% intensity); **Green bars** = SSD sampling schemes with intensity < 100%;

CHAPTER FIVE

DISCUSSION

5.1 General Context

Data used to test the performance of different sampling designs, intensities and plot sizes were collected from three distinct sites, that mimic a climate gradient from low rainfall dry zone (Loruk woodland, 629 mm yr⁻¹) to high rainfall humid zone (Kakamega rainforest; 1971 mm yr⁻¹) through the intermediate moist zone (Mt Elgon forest, 1541mm yr⁻¹). These forest sites also differed in altitude from 987 m a.s.l. at Loruk to 2000-2060 m at Mt. Elgon through 1580 m a.s.l. at Kakamega. Loruk is community-owned and under silvopastoral land use system. Kakamega snd Mt Elgon are protected state-owned forests adjacent to densely populated human settlements and farming activities. Communities around Mt Elgon forest practice mixed livestock rearing and crop farming system. The three sites represent different ecological, climatic and socio-economic complexity of natural forest resources in Kenya. Many factors, biotic or abiotic, affect the composition, structure and dynamics of the above forests and woodlands (Hitimana et al. 2004; Hitimana et al., 2010; Kiruki et al., 2017; Schwartz & Caro, 2003). Abiotic factors such as soil, topography, precipitation, temperature and drought not only influence plant species composition (Randriamalala, Radosy, Razanaka, Randriambanona & Harve, 2016), but also determine regeneration success including seeding, seed germination, tree seedling establishment and early sapling survival and growth (Principe et al., 2014).

Sampling effort was measured in time spent on making observations and measurements on a plot and influenced efficiency of sampling schemes. This surrogate of sampling cost is critical in measuring sampling efficiency in the tropics (Klauberg et al., 2016; Muchiri et al., 2016). The design of any plot network needs to balance cost with being representative of the conditions intended to be considered in the model (Weiskittel et al., 2011). The sampling effort was measured and determined for each sampling scheme (Appendix VI). Time spent in collecting data over one hectare compared well with findings from a recent pilot inventory study in Kenya (Nduati et al., 2016) but higher than the documented sampling effort per hectare in Amazon forest (Holmes et al., 2002; Klauberg et al., 2016).

5.2 Forest Vertical and Canopy Structure across Forest Types

Small plot size of 5 m x 5 m produced a more detail and realistic description of canopy height structure in all the three forest types than larger plots. The top canopy height structure was best described using data from 5 m x 5 m plots than the use of larger plots such as 20 m x 20 m. It was found that TRF and MMF were much similar in terms of height and percentage canopy gaps but not so for screening efficiency and number of canopy layers (Figure 16). Both the tropical rain forest and the moist montane forest were multi-layered almost in equal measure in contrast to the tropical dry woodland forest in which only 2 to 3 layers are distinguishable. TRF canopy layers were more differentiated and distinctly visible than in other forest types (Figures 13a-b). The characteristic of canopy stratification in the montane forest was typical of a forest ecosystem in the building phase, recovering form historical disturbances (Hitimana et al., 2004). This study confirmed that tropical rain forest trees were much taller than those in montane forest but percent Brokaw canopy gaps was small in both forests. Screening efficiency (i.e. shading conditions of the undergrowth by canopy foliage) was highest in tropical rainforest, perhaps due to different types of species and density levels. The undergrowth in montane forest potentially received more light than in the tropical rain forest. Dry woodland forest canopy was most porous to light penetration among the three forest types. Highest percentage gaps in Loruk woodland may be a result of harsh climatic conditions and/or animal disturbance through grazing in this pastoralism-dominated region. Grazing influences species composition and ecosystem functioning by removing species from important functional groups (Neil, Raymond & Philip, 1995). Grazing may also prevent young seedlings from reaching mature stages, changes morphology of individual trees by turning single stem into multi-stemmed individual and cause death through trampling and uprooting (Eshete, Sterck, Teketay & Bongers, 2009; Zida, Sawadogo, Tigabu, Tiveau & Odena, 2007). Continuous intensive grazing also accelerates soil compaction and erosion leading to site degradation (Eshete et al., 2009). Overall, the TRF was found to be more complex and diverse than the moist montane and dry woodland forest types; with DWF being the simplest and perhaps most vulnerable ecosystem among them.

5.3 Forest Composition and Taxonomic Balance

The type and number of tree species, genera and families varied among the three forest types (Figure 9; Appendix X). The balance in taxonomic composition for the various forest types was determined by family – genera – species ratios (Figure 10). In terms of species richness and number of genera per hectare, tropical rainforest was more diverse than moist lower montane forest; and dry woodland forest was the least diverse. Comparison based on tree families reflected less the differences in species diversity among the forest types. The similarity level between forest types varied with different taxa, for both Jaccard and Sorensen indices. Howover, for all cases, the dry woodland forest was the most dissimilar to other forest types. At DWF, the dominant species were *Acacia reficiens* and *A. mellifera* which, according to (Snelder, 1994), are positive indicators of intensive grazing. *A. reficiens* is known to be an indication of heavily grazed and exhausted woodland (Kiyiapi, 1994). Based on both Jaccard and Sorensen similarity indices, similarity in tree composition between Kakamega tropical rainforest and Mt Elgon moist montane forests is high at family level, moderate at genera level and low at species level (Figures 11a, b, c).

5.4 Species Dominance and Diversity

Species relative dominance structure was much similar across the forest types. Maximum richness was highest in TRF, intermediate in montane forest and lowest in dry woodland forest (Table 8). Species evenness was also highest in TRF, intermediate in MMF and lowest in DWF. The species diversity level was influenced more by the number of species in the forest than evenness. Based on Magurran (1988)'s expected Shannon species diversity index values (1.5 to 4.5), the diversity was above average at TRF, within average range at MMF and below average at DWF. Species diversity and species richness index relationship was found to be stronger in comparison with the influence of evenness. The number of species was therefore found to be a good indicator of species diversity across the three forest types; and can reliably be applied as a positive indicator of levels of tree species diversity in biodiversity studies [through species presence /absence records]. Rapid assessment of tree species diversity in studied forests can be

achieved using species richness. The three forest types differed in number of species, types of species but were much similar in species evenness and species relative dominance.

Tree species diversity in DWF (Shannon index =1.69) compared well with other woodlands e.g. Kitui dry bushland and thickets (Shannon index between 1.33 and 1.65) (Kiruki et al., 2017). However, in Kitui, 10 species accounted for 84% of woody plants compared to only three species that make 75% of the recorded individuals per ha in DWF. The findings reveal that the dry woodland was equally important in supporting a number of tree species, and share some taxonomic groups (genera and families) with tropical rainforests and moist montane forests. Species diversity being significantly different among the studied forest types (p < 0.05; Table 8), it is also observed that species richness is a perfect mirror of overall species diversity. This is because equity (evenness) of individual among observed species varied relatively less between the forest types as compared to variation in species richness. Species richness being easiest to measure is subsequently adequate to compare and rank the forest types in terms of diversity of woody vegetation. This is also an indicatiion that tree species diversity in tropical natural forests can be approximated based on species presence / absence binary data records

5.5 Forest Regeneration, Recruitment And Structural Stability

5.5.1 Regeneration and Recruitment

Seedlings and saplings, respectively, contributed over 80% and 8% to overall forest density in both TRF and MMF (Figures 17a, b). The ratio was exceptionally different in the dry woodland forest where seedlings contributed 48% and saplings 40% of total density. Apparently, the current seedling stage was very deficient. In terms of regeneration and recruitment process, TRF was the most prolific, populated and balanced than MMF and DWF. Within the dry woodland forest, large trees (\geq 5 cm dbh) contributed 12% of total density; the highest percentage as compared to tropical rain forest (5%) and moist montane forest (2%).

The recruitment process of individuals into the different development stages was only regular (balanced) in TRF for trees sized up to about 110 cm dbh. MMF was extremely deficient in tree size categories between 50 and 70 cm DBH classes. Past heavy logging activities at Mt

Elgon site (Hitimana et al., 2004) might have mostly affected trees which distorted the structural balance of tree diameter size distribution for trees with DBH \geq 50 cm; causing drastic departure from the balanced trend observed in Kakamega tropical rain forest site. A balanced diameter distribution (i.e. regular regeneration and recruitment) is characterised by constant "q" value across different diameter categories. Graphically, q values are drawn against diameter class midpoints, and regular recruitment patterns over time are expected to follow a straight line. The results on "q" ratio (Figure 18) reveal that recruitment process fluactuated and therefore not regular in all the forests. Historical selective logging in Kakamega rainforest (Mutiso et al., 2013) and Mt Elgon forest (Hitimana, 2000; Hitimana et al., 2004; Hitimana et al., 2010) are the likely factors that distorted recruitment patterns in these two ecosystems. Factors that affect seedlings and saplings in the dry woodland, e.g. sporadic rainfall, shaped the pattern of "q" ratio graph which characterizes cohorting in the regeneration process over time.

Narrower range of dbh classes were observed in the DWF which suggest, not withstanding environmental and ecological constraints to tree growth on this site, that this forest type was the simplest and perhaps the youngest in succession. To this extent, tropical rain forest is concluded to be more stable than the other forest types, and the woodland ecosystem is the least stable. Moist montane forest maintained the intermediate status due to human interference. Tree recruitment patterns within the selected forest types followed the reverse –J curve for all the forest types but the level of regeneration and diamter size distribution patterns revealed different degrees of structural stability of the forests. The stability was highest for the tropical rainforest, which was also characterised by highest proportion of seedling stage. Both tropical rainforest and moist montane forest had number of seedlings > number of saplings. The moist montane forest had higher proportion of large trees than saplings. Large trees: saplings ratio was 100:80 in MMF against 100:130 in TRF and 100:330 in DWF. The observed diameter size structure at MMF was the opposite of the norm in structurally stable mixed natural forests. The deficiency in saplings within MMF site is a reflection of the disturbed seedling establishment phase in the recent past. This forest site experienced heavy logging and charcoal production as documented in recent studies. Further monitoring of regeneration establishment and resilience is required at MMF and DWF where stocking levels in pole and sapling stages are also low in absolute terms.

Overall, there were concerns over low regeneration levels in the dry woodland forest that should be increased to ensure stand structure stability of the woodland. Therefore, rehabilitation work is required to uplift the stocking levels in MMF and DWF, either by protecting upcoming regeneration and/or planting more trees in degraded or open gaps. Seed germination and seedling establishment are known to be vulnerable stages, very much sensitive to variations in microsite conditions such as edaphic, droughts, fires, tramping and grazing, and majority of them do not transit into the next diameter size class (Hitimana et al., 2004; Kiruki et al., 2017). Generally, trees and forests are shaped by their history in addition to the present factors that act upon them; that is, the prior use or disturbance determines the existing state of development (Pretzsch, 2009).

5.5.2 Diameter Size Distribution Structure

Diameter structure analysis revealed three distinct development phases: individuals with DBH below 10 cm; DBH between 10 and 35 cm, and > 35 cm DBH tree category. Regeneration and recruitment levels were satisfactory in closed canopy forests (TRF and MMF) but regeneration was under-stocked in dry woodland site (DWF). Timber-sized trees (above 35 cm DBH) were understocked in all the three studied forests. Diameter size distribution patterns in the three forests revealed that the TRF and MMF had more balanced structures and therefore were more stable than DWF. The number of stems in various diameter classes was lower in MMF than in TRF and lowest in DWF. The woodland had most of its individuals below 20 cm dbh. The diameter size structure in DWF characterized a very simple forest system and thus less stable than tropical rainforest and moist montane forest. There is need to monitor the ecological stability and sustainability of the woodland forest and find ways of enhancing its conservation and management standing. Management interventions are required to promote a stable forest structure in the near future. For example, the woodland can be protected by adopting sustainable grazing systems. There may be need to research on suitable model for the woodland ecosystems as a unique context.

5.6 Forest Density Measures

Standing basal area distribution is a key component in volume, biomass and carbon sequestration computation in forestry. Stand basal area is a product of both tree sizes and their abundance. Basal area is a positive indicator of wood biomass production and is used as a measure of forest productivity in combination with height. The level of standing basal area was highest in TRF; more than double that of from MMF. All the three forests combined, tropical rainforest contributed over 70% of the standing basal area. The dry woodland forest contributed less than 5% and the moist montane forest contained around 25%. On average, trees from tropical rain and moist montane forests were of larger tree diameter sizes than in the dry woodland forest. Quadratic mean diameter was nearly the same in TRF and MMF. Small diameter trees were on average found in DWF. Quadratic diameter mean was less density-dependent than basal area.

Referring to height as an indicator of site quality, recorded mean top canopy height was highest in tropical rain forest (30.5 m), intermediate in moist montane forest (22.8m) and lowest in the dry woodland (5.1m). The differences in productivity across the study forests are a dictate of differences in site quality, species composition and disturbance history; TRF being perhaps the best protected and managed of all. The situation is however different with forest density (number of trees per hectare). The tropical rainforest maintained its dominance but with a decreased magnitude. In comparison to basal area, relative tree density declined to 50% in TRF and increased to 25% in DWF. TRF dominated all vegetation types in terms of forest tree density, basal area and quadratic mean diameter structures.

5.7 Efficiency of Sampling Schemes

5.7.1 Sampling Schemes for Tree Species Richness and Diversity

By using percentage of species per sampling effort (Figures 19a-d), simple random sampling design and 30 % sampling intensity formed the best sampling scheme to be used to compare species diversity through richness. The second approach compared species-area curve models for 30% sampling intensity against100% sampling intensity to measure species richness over 1 ha. The use of 5 m x 5 m plot size (Figure 19a), was efficient with both SSV and SSH in

TRF. SSH was also adequate in DWF. Slight deviations were found from reference curve. They are therefore reliable in developing species-area curve model for the specified forests. They were found inadequate for MMF. Based on 10 m x 5 m plot size, SSH and SSV transect sampling were found efficient for TRF in development of species-area curve model; however deviation from reference curve was wider than with smaller plot size. The 10 m x 10 m plot size was inadequate for species-area curve modelling in all forest types and for all sampling designs. The 20 m x 20 m plot size along SSH transect was efficient scheme for species – area curve model development per hectare in MMF and in TRF despite some observed light deviation from reference curve. Sampling along the horizontal transect dominated the list of reliable designs in developing cumulative species-area curve models. Species-area curves (Figures 20a-d) are used to compare tree species richness among sites; effects of adopting different directions of belt transects and of sub-sampling 1-ha forest unit were investigated (Brower et al., 1990; Denslow, 1995; Gillison & Brewer, 1985; Hitimana, 2000; Schwarz et al., 1976) and their results are as presented here below.

5.7.2 Sampling Schemes for Natural Forest Regeneration

Sampling schemes for forest regeneration inventory refers to how to capture the number of seedlings (individuals <1 cm dbh and not taller than 150 cm) per hectare. SRS estimate of seedlings per hectare did not significantly differ from actual population values. However, with systematic sampling along east –west (SSH) oriented transect, the selection of sampling intensity (10% to 30% for TRF) had a significant effect depending on the forest type: For DWF, all sampling intensities and plot sizes were found adequate for regeneration inventory. Accuracy of the inventory outputs along the north – south oriented (SSV) transect was significantly affected by sampling intensity but with different levels: 5% - 10% for TRF and 5% - 20% for MMF. For DWF, all the sampling schemes were adequate for estimation of averages or totals (point estimates). Using measures of sampling efficiency, best schemes were identified: SSV-5mx5m-30% (83% efficiency) and SSH-10mx5m-5% (80%) for TRF. In DWF, best performing schemes were SRS-10mx10m-30% (91 % efficient), SSV-10mx10m-30% (75 %) and SSV-10m x5m-30% (74%). For MMF, all evaluated sampling schemes were not efficient. Seedling surveys should be done over the entire 1 ha, subdivided into 5 mx 5 m sub-plots.

5.7.3 Sampling Schemes for Number of Trees per Unit Area

Evaluation of suitable sampling schemes for forest density (number of stems \geq 5 cm DBH ha⁻¹) revealed that tested sampling intensities and plot sizes produced estimates of forest density which were accurate enough in tropical rain forest and moist montane forest. However, in DWF inventory, density estimate from 30% sample in SSV was significantly different from actual population value (p < 0.05). Based on the measure of sampling efficiency, many suitable schemes were recorded, with the best three or four per forest type being singled out: SRS-10mx10m-30%, SSV-20mx20m-20%, SSH-10mx10m-30% and SSV-10mx10m-30% in TRF; SSH-10mx10m-20%, SRS-10mx10m-20% and SSH-10mx10m-30% for MMF, and SSV-10mx5m-30%, SRS-10mx10m-30% and SSH-10mx10m-30% for DWF. All sampling designs (SRS, SSV and SSH) were found efficient when combined with the right plot size. Optimum plot size for forest density was 10 m x 10 m across all designs and forest types, with the sampling intensity varying between 20% and 30%.

5.7.4 Sampling Schemes for Natural Forest Basal Area and Quadratic Mean Diameter

Estimation of woody biomass in trees and dry woodlands is crucial for sustainable management (Henry et al., 2011; Schreuder et al., 1993). Evaluation of efficiency of sampling was done based on forest basal area per hectare ($m^2 ha^{-1}$) as one of the simplest measures of forest density. Graphically, different combinations of sampling intensity, plot size and designs produced different estimates for basal area and fluctuated around the population parameters. However, all the evaluated sampling schemes yielded good estimates of the population value (p > 0.05) in all the forest types. However, sampling efficiency analysis showed that no single sampling scheme was efficient enough based on the reference inventory for all forest types. In this case, only 100 % inventory per ha with 10 mx10 m plot size resulted in the smallest sampling error compared to other plot sizes. We recommended full-cover basal area inventory per ha. In

contrast, efficient sampling schemes for quadratic mean diameter, a variable derived from mean basal area per hectare, were obtained. The accuracy of sampling for QMD in TRF was influenced by plot size but not by sampling intensity. Most efficient schemes, two per forest type, were SSH-20mx20m-20% and SRS-20mx20m-30% for TRF; SRS-10mx10m-20% and SRS-10mx10m-30% for MMF, and SRS-10mx10m-20% and SRS-20mx20m-30% for DWF. Sampling schemes for quadratic mean diameter could be used for basal area but estimates to be interpreted cautiously.

5.7.5 Sampling Schemes for Natural Forest Attributes along a Slope Gradient

Sampling schemes along slope gradient were influenced by the slope for regeneration (Figure 28), but not so much for stems per hectare (Figure 29) and basal area (Figure 30). Sampling schemes along the slope gradient may be stratified and place more units placed in the stratum with highest variability (Lackmann, 2011). Stratification is recommended to minimize the influence of variation between strata on estimated values. Plot sizes for various forest attributes would conform to the findings in previous sections. However, exact sampling intensities per stratum is a subject for further investigations.

5.8. Summary of Findings

5.8.1 Tree Composition, Diversity, Structure and Recruitment of the Three Natural Forest Types

Forest composition, relative dominance and diversity

Forest composition at family taxonomic level varied from one forest type to the other, with high similarity between TRF and MMF, good similarity between MMF and DWF. Some level of similarity, though still low, exists between TRF and DWF. All families at DWF were monogenic, implying a delicate taxonomic balance. At family level, TRF and MMF were 4.6 times richer than DWF. Equal number of families was found in TRF and MMF. Relative dominance of species (evenness) was low across the forest types; few species (25-30%) counted for majority of the individuals in each site (75-77%). Species diversity is therefore more

influenced by the number of species rather than eveneness in all the forest types. Inventories on species diversity (biodiversity) can reliably be compared based on the species richness among the three types of forests.

Forest vertical structure

Forest vertical structure was simpler at DWF than at TRF and MMF. Top canopy height at TRF was 6 times that at DWF; 1.3 times that at MMF. MMF height was 4.5 times that of DWF. Forest gaps were negligible (< 1%) at TRF and MMF sites and < 5% at DWF. However, light screening efficiency was 2.8 times and 1.9 times higher than in DWF for TRF and MMF, respectively. Shading effect correlates posively with screening efficiency, and thus may have significant ecological implications in forest regeneration. TRF canopy layers were more differentiated and distinctly visible than in other forest types; making it more stable and richer in habitat diversity for host of flora and fauna species than the other ecosytems.

Forest regeneration, recruitment and diameter size structure

TRF dominated all vegetation types in terms of forest tree density, basal area and mean diameter attributes. In terms of forest horizontal structure, TRF and MMF are well balanced and well stocked. However, DWF was understocked with very low regeneration levels. Diameter size structures in TRF and MMF conform to the conventional reverse- J curve based on the UNO model for stable tropical natural forests in Eastern Africa but not so for tropical DWF. TRF was more complex and diverse than the moist montane and dry woodland forest types; with DWF being the simplest and perhaps most vulnerable ecosystem among them.

Overall, the characterisation of sampled forest types showed a gradient in biophysical features, from a more complex and stable TRF to a simplest and most vulnerable DWF

5.8.2 Efficiency of Sampling Schemes

Sampling for species richness and diversity

Species richness was found to mirror species diversity in all the studied forest types. Using percentage of maximum tree species captured from one hectare as a measure of sampling efficiency (percent species indicator), systematic sampling based schemes (SSV and SSH) with use of 5 mx 5 m plot size, produced mixed results for sampling intensities less than 30%. Most efficient sampling scheme using this small plot, is to apply simple random sampling with high sampling intensity (30%). However, doubling the plot size (10 m x 5 m) and maintaining the 30% sampling intensity, made both SSH and SRS efficient schemes in each of the studied forest types. Larger plot sizes of 10 mx10 m and 20 mx20 m produced good estimates of species richness in equal measure for both SSH and SRS, with 20%-30 % sampling intensities in all the studied forests. The choice is between the uses of few large plots or many smaller plots but maintain adequate sampling intensity. This would depend on other considerations in the planning of forest inventory. Where both SRS and systematic sampling give same quality of parameter estimates, the later design is more practical and in most cases preferable. There are fewer options of sampling schemes usefull for developing species – area curves for further use in estimating species richness (species accumulation rate indicator). This study established that with a fixed 30% sampling intensity, the optimum plot sizes of 5 mx 5 m or 10 m x 5 m were applicable only in tropical rain forest, and could be arranged along transects regardless of the orientation. Larger plot sizes were not efficient. In the other forest types, the efficient scheme is to collect data over the entire one hectare (complete inventory) but using optimum plot size of 5 mx 5 m along transect lines facing any direction in the montane forest, and horizontal (East – West) direction in the dry woodland. Overall, sub-sampling of 1 ha-forest unit is practical in TRF with 30% intensity (i.e. 0.3 ha sample area). For other forest types, minimum sample size would be a total of 1 ha, using 5 mx 5 m plots, distributed along horizontal transects (East-West direction).

Efficient sampling schemes for species diversity (number of species) are SRS or SSH in TRF and DWF; e.g. SSH- any plot size between 25 m2 and 400 m2 - 30% with high efficiency (89-94%). Complete enumeration of 1 ha plot is inevitable in MMF.

Cumulative species-area curve models are applicable using 30% intensity per hectare, with varying sampling designs and plot sizes among forest types. However, 10 m x 10 m plot size was found to be inadequate.

Sampling for natural forest regeneration density

Adequacy and efficiency of sampling schemes for forest regeneration inventory based on sampling error and cost of operations per sampling unit established that systematic sampling along transects, with 10% sampling intensity was in general adequate for each of the tested plot sizes. SRS was also accurate for all the studied forest types. Plot sizes did not influence the outcome of the regeneration sampling. For the dry woodland forest in particular, both simple random sampling and systematic sampling designs were found practical and adequate for all tested sampling intensities for regeneration abundance. For both the tropical rainforest and the moist montane forest sites, SSH with 30% sampling intensity was adequate, and smaller sampling intensities (5% and 10%) were compatible with SSV. However, beside adequacy, efficient schemes (accurate and cost-effective) varied from one forest type to the other. In TRF, systematic sampling –based schemes (SSV-30%- 5 mx 5 m and SSH-5%-10 m x 5 m) performed better than random sampling. In MMF, the minimal sample size should be one hectare, with 5 mx 5 m plot size being used as the optimal size. For DWF, there were more options of efficient sampling schemes from both SRS and SSV. However, the smallest plot size of 5 mx 5 m was not adequate and optimal plot sizes were 10 m x 5 m and 10 mx10 m with 100% intensity. Sampling for regeneration density can based on the following established efficient sampling schemes for tree regeneration: SSH- 5 m x 10 m-5% (e=80%) for tropical rain forest; SSV/SSH- 5 m x 5 m-100% for moist montane forest; and SSV-10 m x 10 m-30% (e=75%) and SSV- 5 m x 10 m-30% (e=74%) for dry woodland forest in Kenya.

Sampling for forest density in number of stems per ha

For inventory of forest density, SRS and SSH are both efficiently applicable with each of the tested plot sizes and sampling intensities in all forest types, with optimum plot size of 10 mx10 m, and adequate sampling intensity varying between 20% and 30%. SSV is also applicable in TRF and MMF with any sampling intensity but it can only be applicable in DWF for a sample

size of at least 1 ha. Forest density attribute had the highest number of efficient sampling schemes across the three forest types. The most efficient sampling schemes are:

- i) SRS-10mx10m-30% (e= 99%), SRS-10mx10m-20% (e= 81%), SSV-20mx20m-20% (e= 98%) and SSH-10mx10m-30% (e= 94%) for tropical rain forest;
- ii) SSH-10 mx10m-20% (e= 99%), SRS-10mx10m-20% (e= 86%), SSH-10mx10m-30% (e=82%) and SSV-10mx10m-30% (e= 79%) for moist montane forest;
- iii) SSV-10m x5m-30% (e= 92%), SRS-10mx10m-30% (e= 89%) and SSH-10mx10m-30% (e= 88%) for dry woodland forest in Kenya.

Sampling for forest basal area

For basal area, efficient inventory strategy is to measure trees over the entire 1 ha-area but using 10 m x 10 m subdivision units in TRF and MMF or 5 m x 5 m subdivisions in DWF. Sampling for standing basal area did not show any promising sub-sampling scheme of 1 ha forest unit; none was found efficient enough to assess basal area, across studied forest types. However, the following data compilation units minimized sampling error within 1ha-complete inventory:

- i) 10 m x 10 m for tropical rain forest,
- ii) 20 m x 20 m for moist montane forest and
- iii) 5 m x 5 m for dry woodland forest in Kenya.

Sampling for quadratic mean diameter

Sampling for QMD had mixed results. In MMF and DWF all tested schemes produced reliable results. However, in TRF, the systematic sampling should be vertical with 10 m x 10 m plot size with any sampling intensity. Quadratic mean diameter, unlike basal area, had efficient sampling schemes within the 1 ha-forest unit and for the different forest types. They were:

- i) SSH-20mx20m-20% (e=94%), SSH-20mx20m-30% (e= 61%) and SRS-20mx20m-30% (e= 73%) for TRF;
- ii) SRS-10mx10m-20% (e= 75%), SSV-10mx10m-20% (e= 63%), SSV-10mx10m-30% (e= 60%), SRS-10mx10m-30% (e= 66%) and SSH-10mx10m-20% (e= 56%) for MMF;
- iii) SRS-10mx10m-20% (e= 90%), SRS-10mx10m-10% (e= 62%), SRS-20mx20m-30% (e= 73%) and SSH-10mx10 m-30% (e= 60%) for DWF in Kenya.

Efficient sampling schemes with respect to slope gradient in a tropical montane forest

Where gradient slope is apparent, regeneration sampling schemes with small plot sizes e.g. 5 mx 5 m should apply 30 % intensity for SSH. For plots larger than 5 m x 5 m, 10% intensity was optimum for any transect design (SSD = SSH = SSV). Analysis of relative efficiency of the many candidate schemes revealed that many options exist for regeneration assessment on the slope gradient and accommodate all transect designs. However, the most efficient were SSD-30%-10mx10 m and SSD-20%-10mx10m. SSD was found superior to SSH and SSV on average. Optimum plot size was found to be 10mx10 m in sampling (less than 100 % intensity). But where entire 1 ha is assessed, smaller plots were most effective along any transect. For forest density measured by number of stems per ha, effective sampling intensity should be higher than 10%. SSD, SSH and SSV – based sampling schemes are applicable but with small plot sizes (5 m x 5 m and 10 m x 5 m) being most effective where 100% inventory is performed in one hectare. As plot sizes increase, the efficiency of sampling schemes declines. For basal area assessments, larger plot size of 20 m x 20 m was the most effective for any transect design. The choice of a transect direction would depend on the convenience of field work. Sampling schemes along the slope gradient /diagonal transect improved assessment of regeneration and basal area. However, efficiency of sampling schemes for basal area along the slope gradient was still below 50%. It remains imperative to invoque complete inventory of 1 ha forest unit but which should be subdivided into 20 m x 20 m compilation units. Efficient sub-sampling of one hectare was found justified along diagonal transects on sloppy terrains. Most efficient schemes are the following:

- i) SSD-10mx10m-30% (e= 81%), SSD-10mx10m-20% (e= 50%) for number of seedlings per hectare. It implies that levels of seedling establishment vary along the slope gradient.
- ii) For density (no. stems ha⁻¹) inventory in the montane forest: SSD-10mx10m-20% (e= 83%), SSH-10mx10m-20% (e= 99%) and SSV- and SRS-based schemes (e $\leq 79\%$).

5.8.3 Optimum Schemes, Plot Sizes and/or Sampling Intensities

Different sampling schemes are associated with different optimum plot sizes and optimum sampling intensities. Different forest attributes often require different sampling

156

schemes. Table 23 summarizes, case by case, inventory schemes found in this study as efficient for indicated attributes and per speficied forest type. Optimisation of inventories with multiple objectives can be achieved by integrating suitable plot size, sampling intensity and /or sampling design.

Studied forest attribute	Measured indicator	Optimum plot size (m x m)	Adequate sampling intensity (%)	Required Sampling design	Forest type where applied
Species diversity	Percent species	5X5	30	SRS	TRF or MMF or DWF
or richness	in a sample	10x5	30	SSH or SSV	TRF or MMF or DWF
		10X10 or 20X20	20 or 30	SSH or SSV	TRF or MMF or DWF
	Species	5X5 or 10x5	30	SSH or SSV	TRF
	accumulation	5X5	100	SSH or SSV	MMF
	rate (species -	5X5	100	SSH	MMF or DWF
	area curve)	5X5	30	SSH	TRF
Regeneration	seedlings /ha	5X5	30	SSV	TRF
density		5X5	100		MMF
		10x5	5	SSH	TRF
		10x5 or 10X10	100	SSV	DWF
Forest density	Stems /ha	10 x 10	20 or 30	SRS or SSH	TRF or MMF or DWF
		10 x 10	20 or 30	SSV	TRF or MMF
		10 x 10	100	SSV	DWF
	Basal area/ha	5 x 5	100	Total inventory	DWF
		10 x 10	100	Total inventory	TRF or MMF
	QMD	5X5, 10x5 or 10X10	10, 20 or 30		MMF or DWF
		10X10	10, 20 or 30	SSV	TRF
Slope gradient	Seedlings /ha	5X5	30	SSH	Slope: 8-16% (MMF)
effect		5X5 or 10x5	100	SSD or SSH or S	SV
		10x5 or 10X10	10	SSD or SSH or S	SV
		10x10	20 or 30	SSD	
	Stems /ha	5x5 or 10x5	100		MMF
	Basal area/ha	20x20	100		MMF

 Table 23: Examples of Sampling Schemes's Optimum Plot Sizes, Intensities And Designs For Different Forest Types

CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1. Conclusions

Tropical rainforest was more diverse, complex and structurally stable than the tropical montane and dry woodland forests in terms of species composition, vertical and horizontal structure, regeneration and recruitment. Many small plots e.g 5 mx 5 m in size gave more accurate description of vertical structure in all the three forest types than fewer large plots e.g. 20 mx20 m in size. Sampling for comparative purposes of tree species diversity (e.g. beta and gamma diversity) is achievable through use of species richness alone. Both random and systematic sampling designs supported efficient and applicable sampling schemes for forest regeneration, density and diversity indicators, based on different combinations of optimum plot sizes and sampling intensities. The study identified and documented optimum plot sizes, adequate sampling intensities, required sampling designs applicable in tropical rainforest, tropical moist montane forest and tropical dry woodland forest to assess species diversity/richness, regeneration density and forest density indicators including sampling along slope gradient. Subdividing onehectare forest unit into sub-plots for data collection increased accuracy and effectiveness of forest inventory schemes even where sampling intensity should be 100%; and optimum plot sizes vary depending on forest type or forest attribute, e.g. basal area ha⁻¹ in general; and seedlings ha⁻¹, stems ha⁻¹ along slope gradient in montane forest. Systematic sampling was superior to simple random sampling even in some situations where complete inventory is the option; for example, systematic data collection along transects to fit species – area curve models in dry woodland and montane forests. Diagonal transect -based sampling schemes were superior to sampling methods along vertical and horizontal transects for regeneration (but not for stems and basal area ha⁻¹) in the montane forest where slope gradient exists, but require selection of optimum plot size (e.g.10 m x10 m) and adequate sampling intensity (e.g. 20% - 30%)

Characterisation of sampled forest types showed a gradient in biophysical features, from more complex and stable TRF to simplest and most vulnerable DWF

SRS and SSH-based sampling schemes were both efficient for species richness assessment in TRF and DWF; e.g. SSH- any plot size between 25 m² and 400 m² - 30% are associated with relative efficiency levels betwwn 89 % and 94%. Assessment of species richness on slopes such as in montane forests requires a minimum plot size of 1 ha.

Cumulative species-area curve models that estimate the number of species per hectare can efficiently be fitted by data from 0.3 ha (30% sampling intensity in a hectare) using random sampling or systematic sampling along belt transects, and plot sizes as small as 25 m^2 and as large as 400 m² in tropical rain forests, moist montane forest and dry woodland forest. Relative efficiency levels were 80% and above. However, 10 m x 10 m plot size was an outlying plot size.

Well-designed systematic sampling schemes along transects were found superior to random sampling for assessment of number of seedlings (individuals < 1 cm dbh) per hectare, with high efficiency levels e.g. 80% for SSH- 5 m x 10 m-5% in tropical rain forest; 75 % for SSV-10 m x 10 m-30% in dry woodland forest. No sub-sampling scheme of 1 ha forest plot was found efficient enough in montane forest where local topograpghy is characterised by a slope gradient (1% to 16%). One hectare forest unit is the lowest data compilation unit, with field data gathered systematically along belt transects and using 5 m x 5 m subplots.

Forest density measured by the number of stems per hectare (for individuals ≥ 1 cm dbh) was found to be the most cost-effective measure of overall forest density across all the forest types we investigated. This attribute had the highest number of efficient sampling schemes in each forest type: two SRS schemes and two SS schemes in for tropical rain forest with efficiency level above 80%; one SRS and two SS schemes in moist montane forest and dry woodland forest, with efficiency level over 80%. Systematic sampling – based schemes in a hectare were generally as efficient as random sampling; SS was even superior to SRS in montane and dry woodland forests.

Basal area as a stand parameter was the least sensitive to sampling in studied forest types. No sub-sampling scheme of 1 ha forest unit was efficient enough to assess basal area. However accuracy of estimates per hectare [as a compilation unit] was found to be influenced by the

applied sub-plot size e.g. sampling error within 1ha complete inventory was lowest by subdividing the area into 10 m x 10 m units in tropical rain forest, 20 m x 20 m units in moist montane forest and 5 m x 5 m units in dry woodland forest.

Quadratic mean diameter, unlike basal area, had efficient sampling schemes within the 1 ha forest unit and for the different forest types. Systematic sampling-based scheme was more efficient than random sampling scheme in tropical rain forest with relaive effiency above 90%; random and systematic sampling-based schemes were efficiencent in moist montane and dry woodland forests. However, in both forests, systematic sampling had lower efficiency levels than random sampling based schemes.

Finally, sampling schemes along the slope gradient (diagonal transect) was much superior than vertical and horizontal transects in the montane forest and raised sampling efficiency for regeneration to over 80%. Assessment of forest density (no. stems ha⁻¹) along diagonal transect was among most efficient, with efficiency level above 80%.

The sampling scheme along diagonal transect was superior to using vertical or horizontal transect. However, efficiency level was below the 50% minimum mark. Complete enumeration over one hectare remains the ideal plot size, with 20 m x 20 m sub-units.

6.2 Recommendations

Practically, in multiple resource assessment, a blended approach should be applied. For example, the inventory unit should be 100mx100m for basal area but subdivided into 20 mx20 m subplots. Smaller units of 5 mx 5 m each should be nested in the 20 mx20 m plots for regeneration assessment. If the transect is diagonal, nested plots should be increased to 10 mx10 m plots and use at least 30% sampling intensity along a diagonal transect. The same 10 mx10 m would be adequate and used for capturing forest density data with 20% or 30 % sampling intensity along any transect direction. Efficiency measured by sampling error and sampling effort enabled identification and ranking different sampling schemes for each attribute and forest type.

There is need to replicate this study in other tropical forest types in order to provide comprehensive and exhaustive applicable inventory protocols. There is need to measure and monitor the ecological stability and sustainability of natural forests including woodlands based on availed schemes to enhance knowledge creation and informed-decision making in forest resource conservation and management.

- i) Multiple purpose forest inventory covering different development stages requires careful integration of different plot sizes, sampling intensities and transect orientations.
- ii) Efficient sampling schemes along transects (SSH, SSV, SSD) are practically more convenient and recommended over simple random sampling (SRS) based schemes in mixed tropical natural forests.
- iii) Diagonal transect improved efficiency of sampling seedlings and, to a limited extent, basal area
- iv) Choice of plot size and sampling intensity must be balanced with the implied cost and desired reliability of the results.
- v) Where sampling schemes for quadratic mean diameter are used, basal area estimates should be used and interpreted with caution.

6.3 Suggestions for Future Research

UNO model was found to be less applicable outside closed canopy forests. There is need to investigate and develop structural stability model for tropical woodlands as an important tool for measuring and monitoring management standards for these ecosystems. To scale up the test of efficiency and application of identified efficient inventory schemes to minimize sampling errors (the measures of precision) which include, but not limited to, stratified sampling, cluster sampling and /or multistage sampling in tropical forests. There is need to carry out research on regeneration establishment and resilience of the montane and woodlands forests. Similar research done in other forest strata of Kenya would support decisions regarding establishment of an accurate and cost-effective National Forest Inventory. There is need to investigate factors contributing to inefficiency of 10 m x 10 m plot size in developing reliable cumulative species-area curves for the tropical natural forests; efficiency of various plot shapes applied in forest

inventory including circular and rectangular plots; and efficiency of other sampling designs including stratified, cluster, multistage and multiphase sampling designs. Further research is required for efficient sampling methods to estimate basal area
REFERENCES

- Alder, D., & Synnott, T.J. (1992). Permanent sample plot techniques for mixed tropical forest. Tropical Forestry Papers, Commonwealth Forestry Institute, University of Oxford, No.25.
- Aldrich, P. R., & Hamrick, J. L. (1998). Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. *Science*, 281, 103-105.
- Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., ...Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. *Forest Ecology and Management*, 259 (4), 660–684.
- Arellano, G., Cala, V., Fuentes, A., Cayola, L., Jørgensen, P.M., & Macía, M. J. (2016). A standard protocol for woody plant inventories and soil characterisation using temporary 0.1-ha plots in tropical forests. *Journal of Tropical Forest Science*, 28, 508-516.
- Askari, Y., Saei, E.K., & Rezaei, D. (2013). Evaluation of different sampling methods to study of shrub density in Zagros forest. *European Journal of Experimentalbiology*, 3(2), 121-128.
- Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., ... van Breugel, M (2012). Universal airborne LiDAR approach for tropical forest carbon mapping. *Oecologia*, 168, 1147-1160.
- Asner, G.P., Powell, G.V., Mascaro, J., Knapp, D.E., Clark, J.K., Jacobson, J., ... Hughes, R.F. (2010). High-resolution forest carbon stocksand emissions in theamazon. *Proceedings* of the National Academy of Sciences of the United States of America, 107, 16738-16742.
- Asthana, D. K., & Asthana, M. (1998). *Environment: problems and solutions*. Ramnagar, New Dheli: S. Chand and Company Ltd.

Avery, T. E., & Burkhart, H.E. (2015). Forest Measurements, 5th Ed. Illinois: Waveland Press.

Baraloto, C., Rabaud, S., Molto, Q., Blanc, L., Fortunel, C., Hérault, B., ...Rios, M. (2011). Disentangling standard environmental correlates of above groundbiomass inamazonian forests. *Global Change Biology*, 17, 2677-2688.

Baraloto, C., Molto, Q., Rabaud, S., Hérault, B., Valencia, R., Blanc, L., ... Thompson, J.

- . (2012). Rapid simultaneous estimation of aboveground biomass and tree diversity across Neotropical forests, a comparison of field inventory methods. *Biotropica*, 45, 288-298.
- Barbour, M.G., Burk, J.H., Pitts, W.D., Gilliam, F.S., & Schwartz, M.W. (1998). *Terrestrial Plant Ecology*. 3rd Ed. Menlo Park, CA: Benjamin-Cummings.
- Bawa, K.S., & Seidler, R. (1998). Natural forest management and conservation of diversity in tropical forest. *Conservation Biology*. 12(1), 46-55.
- Beckage, B., Osborne, B., Gavin, D. G., Pucko, C., Siccama, T., & Perkins, T. (2008). A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences of the United States of America, 105 (11), 4197-4202
- Beentje, H.J. (1994). Kenya Trees, Shrubs and Lianas. Nairobi : National Museums of Kenya.
- Bellefontaine, R., Petit, S., Pain-Orcet, M., Deleporte, P., & Bertault, J. (2002). *Trees outside forests: towards better awereness*. FAO Conservation guide 35, Rome.
- Bohn, F. J., & Huth, A. (2017). The importance of forest structure to biodiversity productivity relationships. *Royal Society Open Science*, 4(1), 160521.
- Bolkin, D. B., & Talbot, L. M. (1992). Biological diversity and forests. In: Sharma, N. P. (Ed.) Managing Worlld.s forests: Looking for balance between conservation and Development (pp. 47-74). Dubique: Kendall-Hunt Publ. Co.

- Bourdaghs, M, Johnston, C.A., & Regal, R.R. (2006). Properties and performance of the floristic quality index in Great Lakes coastal wetlands. *Wetlands*, 26, 718-735.
- Bourgeron, P. S. (1983). Spatial aspects of vegetation structure. In: Golley, F. B. (Ed.). *Tropical Rainforest Ecosystems: Structure and Function* (pp. 29-48). Amsterdam: Elsevier.
- Bowley A. L. (1926). Measurement of the precision attained in sampling. Bulletin of the International Statistical Institute, 22, 1-62.
- Bowley, A. L. (1906). Address to the Economic Science and Statistics Section of the British Association for the Advancement of Science. *Journal of the Royal Statistical Society*, 69, 540-558.
- Boyle, B.L. (1996). Changes onaltitudinaland Latitudinal Gradients in Neotropical Montane Forests. St Louis: Washington University.
- Brokaw, N. V. L. (1982). The definition of tree-fall gap and its effect on measures of forest dynamics. *Biotropica*, 14, 158–160.
- Brower, J. E., Zar, J. H., & Von Ende (1990). *Field and Laboratory Methods for General Ecology*, 3rd Ed. Duburques (USA): Wm. C. Brown.
- Brown, E.D., & Williams, B.K. (2016). Ecological integrity assessment as a metric of biodiversity: are we measuring what we say we are? *Biodiversity Conservation*, 25, 1011–1035
- Brown, J. D. (2007). Statistics corner questions and answers about language testing statistics: Sample size and statistical precision. *Shiken: JALT Testing & Evaluation SIG Newsletter*, 11 (2), 21-24.
- Bruenig, E.F. (1998). Conservation and Management of Tropical Rainforests: An Integrated approach to Sustainability. Wallingford: CAB International.

- Brunig, E. F. (1983). Vegetation structure and growth. In Golley, F. B. (Editor). *Tropical Rainforest Ecosystems: Structure and Function* (pp. 49-76). Amsterdam: Elsevier.
- Bryan, R.B. (1994). Land degradation and the development of land use policies in a transitional semi-arid region. *Advances in Geoecology*, 27, 1-30.
- Bulafu, C.E., Mucunguzi, P., & Kakudidi, E.K. (2007). Diversity and distribution of wild terrestrial orchids of Mt Elgon Forest National Park, eastern Uganda. *African Journal* of Ecology, 45 (3), 21–28.
- Bullock, S.H., Mooney, H.A., & Medina E. (1995). *Seasonally dry tropical forests*. New York: Cambridge University Press.
- Burkhart, H.E., & Tome, M. (2012). Modeling forest trees and stands. London: Springer Science.
- Cade, B.S. (1997). Comparison of tree basal area and canopy cover in habitat models: Subalpine Forest. *Journal of Wildlife Management*, 6(2), 326-336.
- Campbell, P., Comiskey, J., Alonso, A., Dallmeier, F., Nuñez, P., Beltran, H., ...Udvardy S. (2002). Modified Whittaker plots asanassessment and monitoring tool for vegetation in a lowland tropical rainforest. *Environmental Monitoring and Assessment*, 76, 19-41.
- Campbell, B.M., Costanza, R., Belt, M., & Van Den, (2000). Land use options in dry tropical woodland ecosystems in Zimbabwe: introduction, overview and synthesis. *Ecological Economics*, 33 (3), 341-351.
- Cavalcanti, F.J.B, Machado, A.S., Osokawa, R.T., & Cunha, U.S. (2011). Comparison of the estimated values by sampling in the characterization of the structure of a forest area in the Amazon with the information recorded in forest census. *Revista Árvore*, 35, 1061–1068.
- CBFP (The Congo Basin Forest Partenership), (2006). *The Forests of the Congo Basin: State of the Forest 2006*. Kinshasa: COMIFAC/CIFOR/CIRAD/USAID

- Chave, J., Davies, S.J., Phillips, O.L., Lewis, S.L., Sist, P., Schepas, D., ...Saatchi, S. (2019). Ground Data are Essential for Biomass Remote Sensing Missions. Surveys in Geophysics 40(4), 863–880.
- Chidumayo, E., & Marunda, C. (Eds) (2010). The Dry Forests and Woodlands of Africa: Managing for Products and Services. London: EarthScan.
- Churski, M. (2006). Age structure and diameter distribution in a southern Swedish beech dominated landscape. Alnarp: SLU, Southern Swedish Forest Research Centre
- Cielo-Filho, R., Gneri, M.A., & Martins, F.R. (2009). Sampling effort and factors influencing the precision of estimates of tree species abundance in a tropical forest stand. *Phytocoenologia*, 39 (4), 377–388.
- Clark, D.B., Hurtado, J., & Saatchi, S.S. (2015). Tropical Rain Forest Structure, Tree Growth and Dynamics along a 2700-m Elevational Transect in Costa Rica. *PLoS ONE*, 10(4), 1-18.
- Clarke, R. (1986). *The handbook of ecological monitoring*. A GEMS/UNEP Publication, New York: Oxford University Press.
- Clausnitzer, V., Churchfield, S., & Hutterer, R. (2003). Habitat occurrence and feeding ecology of Crocidura montis and Lophuromys flavopunctatus on Mt. Elgon, Uganda. *African Journal of Ecology*, 41(1), 1–8.
- Committee On Managing Global Genetic Resources (1991). *Managing Global Forest Tree Genetic Resources*. National Research Council (Ed.). Washington: National Academy Press.
- Colwell, R.K., Brehm G., Cardelus, C.L., Gilman A.C., & Longino, J.T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. *Science*, 322, 258-261.
- Concenço, G., Menegaz de Farias, P., Quintero, N.F.A., Schreiber, F., Galon, L., Tomazi, M., Andres, A. (2017). *Phytosociological Surveys in Weed Science: Old Concept, New Approach.* Chapter 7. http://dx.doi.org/10.5772/intechopen.69083.

- Condit, R. (1995). Research in large, long-term tropical forest plots. *Trends in Ecology & Evolution*, 10, 18-22.
- Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., ... Hubbell, S.P. (2002). Beta-diversity in tropical forest trees. *Science*, 295, 666-669.
- Connell, J.H., Tracey, J.G. & Web, L.J. (1984). Compensatory recruitment, growth and mortality as factors maintaining rainforests tree diversity. *Ecological Monographs*, 54, 141-164.
- Cox, P., McNamara, K., Donovan, G., Spears, J., Hanan, B., Allaway, J., ... van Gelder, A. (1988). *Kenya Forestry Subsector Review*. Document of The World Bank. Report No. 6651-KE, Annexes I-III Volume II.
- Curtis, R.O. & Marshall, D.D. (2005). Permanent-plot procedures for silvicultural and yield research. Gen. Tech. Rep. PNW-GTR-634. Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.
- Dale, V.H., Joyce, L.A., Mcnulty, S., Neilson, R.P., Ayres, M. P., Flannigan, M. D., ...Wotton, B.M. (2001). Climate Change and Forest Disturbances. *BioScience*, 51(9), 723-734.
- Dangasuk, O.G. (1999). *Genetic diversity in Faidherbia albida (Del.) A. Chev.* Unpublished Ph.D. Thesis, Eldoret, Moi University.
- Denslow, J.S. (1995). Disturbance and diversity in tropical rain forests: the density effect. *Ecological Applications*, 5 (4), 962-968.
- Devis, L.S, & Johnson, K.N. (1987). *Forest Management*. 3rd Ed. New York: Mc Graw-Hill Book Co.
- Directorate of Resource Surveys and Remote Sensing [DRSRS], RCMRD, KFS, SOK, CSIRO, CCI (2019). *SLEEK System for land-based emissions estimation in Kenya*. The land cover change mapping programme technical manual. Ministry of Environment and Forestry.

- Eason, G., Coles C.W., & Gettinby, G. (1992). *Mathematics and Statistics for the Bio-sciences*. USA: Pearson Education.
- Enquist, B. J., & Niklas, K. J. (2001). Invariant scaling relations across tree-dominated communities. *Nature*, 410, 655–660.
- Ervin, J., Sekhran, N., Dinu, A., Gidda, S., Vergeichik, M., & Mee, J. (2010). Protected Areas for the 21st Century: Lessons from UNDP/GEF's Portfolio. New York: United Nations Development Programme and Convention on Biological Diversity.
- Eshete, A.W.; Sterck, F.J.; Teketay, D., & Bongers, F. (2009). Effects of livestock exclusion on tree regeneration in church forests of Ethiopia. *Forest Ecology and Management*, 257 (3), 765 - 772.
- Eshete, A.W., Sterck, F., & Bongers, F. (2011). Diversity and production of Ethiopian dry woodlands explained by climate and soil stress gradients. *Forest Ecology and Management*, 26, 1499-1509.
- Evans, T.D., & Viengkham, O.V. (2001). Inventory time-costand statistical power: a case study of a Lao rattan. *Forest Ecology and Management*, 150 (3), 313-322.
- Food and Agriculture Organisation [FAO] (1981). *Manual of Forest Inventory with Special Reference to Mixed Tropical Forests*. Rome: FAO.

Food and Agriculture Organisation [FAO] (2003). State of the World's forests. Rome: FAO.

- Food and Agriculture Organisation [FAO] (2010). *Global forest resources assessment, 2010 Main Report.* FAO Forestry Paper 163. Rome: FAO.
- Fashing, P., Forrestel, A., Scully, C., & Cords, M. (2003). Long-term tree population dynamics and their implications for the conservation of the Kakamega forest, Kenya. *Biodiversity* and Conservation, 13, 753–771.

- Feld, C.K., da Silva, P.M., Sousa, J.P., de Bello, F., Bugter, R., Grandin, U., ... Harrison, P. (2009). Indicators of biodiversity and ecosystem services: a synthesis across ecosystems and spatial scales. *Oikos*, 118(12),1862 - 1871
- Franklin, J.F, Spies, T.A., Van Pelta, R., Carey, A.B., Thornburgh, D.A., Berge, D.R., ... Chen, J. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. *Forest Ecology and Management*, 155, 399-423.
- Freese, F. (1989). *Elementary forest sampling*. Agriculture Handbook no. 232. Oregon: US Department of Agriculture, Forest Service
- Ganivet, E., & Bloomberg, M. (2019). Towards rapid assessments of tree species diversity and structure in fragmented tropical forests: A review of perspectives offered by remotely-sensed and field-based data. *Forest Ecology and Management*, 432, 40-53.
- Gaspar, C., Cardoso, P., Borges, P.A.V., & Gaston, K.J. (2014). Efficiency of sampling methods and effort to assess arthropod diversity in Azorean native forests. *Arquipelago Life and Marine Sciences*, 31, 21-36.
- Gentry, A. H. (1988a). Changes in plant community diversity and floristic composition on environmentaland geographical gradients. Annals of the Missouri Botanical Garden, 75, 1–34.
- Gentry, A. H. (1988b). Tree species richness of upper amazonian forests. *Proceedings of the National Academy of Sciences of the United States of America*, 85,156–159.
- Gentry, A. H. (1993). Diversity and floristic composition of lowland forest in Africa and South America. In: Goldblatt, P. (Ed.). *Biological relationships between Africa and South America* (pp. 500–546). New Haven: Yale University Press
- Gerhardt, K., & Todd, C., (2009). Natural regeneration and population dynamics of the tree Afzelia quanzensis in woodlands in Southern Africa. *African Journal of Ecology*, 47, 583-591.

- Gerwing, J.J., Schnitzer, S.A., Burnham, R.J., Bongers, F., Chave, J., DeWalt, S.J., ... Thomas, D.W. (2006). A standard protocol for liana censuses. *Biotropica*, 38(2), 256–261.
- Gillison, A.N., & Brewer, K.R.W. (1985). The use of gradient directed transects or gradsects in natural resource surveys. *Journal of Environmental Management* 20,103-127.
- Girma, A. (2012). Plant Communities, Species Diversity, Seedling Bank and Resprouting in Nandi Forests, Kenya. Doctoral Thesis. University of Koblenz-Landau, Campus Koblenz. https://kola.opus.hbz-nrw.de/frontdoor/index/index/year/2012/docId/601
- Gonçalves, A.C. (2018). Effects of Forest Stand Structure in Biomass and Carbon. Chapter 1. In: Shukla, G. & Chakravarty, S. (Eds). *Forest Biomass and Carbon*,(pp.1-21).. IntechOpen, DOI: 10.5772/intechopen.76004.
- Grainger, A. (1993). Controlling Tropical Deforestation. London: Earthscan Publications.
- Grainger, A. (1999). Contraints on modelling the deforestation and degradation of tropical open woodlands. *Global Ecology and Biogeography*, 8, 179-190.
- Greenwood, J.J.D. (1996). Basic techniques. In: *Ecological census techniques*. Sutherland, W.J. (Ed). Cambridge University Press, pp. 11-110.
- Groombridge, B., & Jenkins, M. (2000). *Global biodiversity, Earth's living resources in the 21st century*. Cambridge: World Conservation Press.
- Grussu, G, Testolin, R., Saulei, S., Farcomeni, A., Yosi, C.K., De Sanctis, M., ... Attorre, F. (2016). Optimum plot and sample sizes for carbon stockandbiodiversity estimation in the lowland tropical forests of Papua New Guinea. *Forestry*, 89 (2), 150–158.

Gurevitch, J., Scheiner, S.M., & Fox, G.A. (2009). Plant Ecology. Porto Alegre: Artmed.

Hamilton, A.C., & Perrott, R.A. (1981). A study of altitudinal zonation in the Montane Forest Belt of Mt. Elgon, East Africa. *Vegetatio*, 45, 107-125.

- Hamilton, A.J. (2005). Species diversity orbiodiversity? *Journal of Environmental Management*, 75, 89–92.
- Harper, J.L. (1977). *Population Biology of Plants*. 9th impression 1994. London: Academic Press.
 Hawksworth, D.L. (Ed.) (1995). *Biodiversity: Measurement and Estimation*. Oxford: Chapman & Hall.
- Hemp, A. (2006). Vegetation of Kilimanjaro: hidden endemics andmissing bamboo. *African Journal of Ecology*, 44, 305–328.
- Henry, M., Picard, N., Trotta, C., Manlay, R.J., Valentini, R., Bernoux, M., & Saint-André, L. (2011). Estimating tree biomass of sub-Saharan African forests, a review of available allometric equations. *Silva Fennica*, 45, 477-569.
- Hernández-Stefanoni, J.L., Reyes-Palomeque G., Castillo-Santiago, M.A., George-Chacón S.P., Huechacona-Ruiz, A.H., Tun-Dzul, F., ... Dupuy, J.M. (2018). Effects of Sample Plot Size and GPS Location Errors on Aboveground Biomass Estimates from LiDAR in Tropical Dry Forests. *Remote Sensing*, 10, 1586.
- Herold, M., & Skutsch, M. (2011). Monitoring, reporting and verification for national REDD+ programmes: two proposals. *Environmental Research Letters*, 6. DOI: 10.1088/1748-9326/6/1/014002.
- Hett, J.M., & Loucks, O.L. (1976). Age structure models of balsam fir and eastern hemlock. *Journal of Ecology*, 64,1029-1044.
- Hett, J.M., & Loucks. O.L. (1968). Application of life analyses to tree seedlings in Quetico Provincial Park, Ontario. *Forestry Chronicle*, 44, 29-32.
- Hicks, C., Woroniecki, S., Fancourt, M., Bieri, M., Robles, H. G., Trumper, K., & Mant, R (2014). The relationship between biodiversity, carbon storage and the provision of other ecosystem services: Critical Review for the Forestry Component of the International Climate Fund. Cambridge, UK.

- Higgins, M.A., & Ruokolainen, K. (2004). Rapid tropical forest inventory, a comparison of techniques based on inventory data from Western Amazonia. *Conservation Biology*, 18, 799-811.
- Hitimana, J., Ole Kiyiapi, J., Kisioh, H., Warinwa, F., Lenaiyasa, P., Mayienda, R., & Sumba, D. (2009). Participatory ecological assessment of Kirisia forest reserve, Samburu, Kenya. *AWF Technical Paper Series*, April 2009. Nairobi: African Wildlife Foundation.
- Hitimana, J. (2000). Structure, Composition and Regeneration of Mt Elgon Moist Lower Montane Forest (Kenya) with Particular Interest in Olea capensis subsp. welwitschii. Unpublished M.Phil. Thesis, Eldoret, Moi University.
- Hitimana, J., Kiyiapi, J. L., Kibugi, P. W., Kisioh, H., Mayienda, R., Warinwa, F., ... Sumba, D.. (2011). Challenges of linking socio-economic significance and conservation value of forests In Drylands of Kenya: Case study of Kirisia Forest- Samburu pastoralists coexistence. In: Grillo, O. & Venora, G. (Eds). *Biological Diversity and Sustainable Resource Use*. Chapter 1 (pp. 1-34). Intech.
- Hitimana, J., Kiyiapi, J., & Njunge, J. (2004). Forest structure characteristics in disturbed and undisturbed sites of Mt Elgon moist lower montane forest, western Kenya. *Forest Ecology and Management*, 194, 269-291.
- Hitimana, J., Kiyiapi, J., Njunge, J., & Bargerei, R. (2010). Disturbance indicators and population decline of logged species in Mt Elgon Forest, Kenya. *African Journal of Ecology*, 48, 699-708.
- Hogg, R.V., McKean, J., & Craig, A.T. (2012). *Introduction to Mathematical Statistics*. 7th ed. Pearson.

Holdridge, L.R. (1967). Life Zone Ecology. San Jose: Tropical Science Center.

Holmes, T.P., Blate, G.M., Zweede, J.C., Pereira, R. Jr., Barreto, P., Boltz, .F, & Bauch, R. (2002). Financial and ecological indicators of reduced impact logging performance in the eastern amazon. *Forest Ecology and Management*, 163, 93–110. Husch B., Miller C.I., Beers T.W. (1972). *Forest mensuration*. 2nd ed. New York: The Ronald Press,

Husch, B., Beers, T. W. & Kershaw, J. A. (2003). Forest mensuration. 4th ed. Wiley.

- Hyvönen, P., Haakana, H., Muchiri, M.N., Muga, M., Bekuta, B.K., Kimondo, J.M., & Nduati, P. (2016). Improving Capacity in Forest Resources Assessment in Kenya (IC-FRA): Field Manual for Tree Volume and Biomass Modelling. Muguga: KEFRI.
- Intergovernmental Panel on Climate Change [IPCC] (2007). *Climate Change 2007: Synthesis Report*. Contribution of Working Groups I, II & III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.
- Jahn, G. (Ed.) (1982). Handbook of Vegetation Science, Application of Vegetation science to Forestry: Introduction (pp.1-4). The Hague: W. Junk

Jayaraman, K. (2000). A statistical manual for forestry research. FORSPA.

- Jaetzold, R., & Schmidt, H. (1983). Farm Management Handbook of Kenya, West Kenya. II/A (pp. 309–324). Nairobi: Ministry of Agriculture, Kenya.
- Jones, D.T., & Eggleton, P. (2000). Sampling termite assemblages in tropical forests, testing a rapid biodiversity assessment protocol. *Journal of Applied Ecology*, 37, 191 203.
- Jucker, T., Bongalov, B., Burslem, D.F.R.P., Nilus, R., Dalponte, M., Lewis, S.L., ... Coomes, D.A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. *Ecology Letters*, 21, 989–1000.
- Kabubo-Mariara, J. (2013). Forest-poverty nexus: Exploring the contribution of forests to rural livelihoods in Kenya. *Natural Resources Forum*, 37 (3), 177-188.
- Kalema, V.N., Witkowski, E.F.T., Erasmus, B.F.N., & Mwavu, E.N. (2014). The impacts of changes in land use on woodlands in an equatorial African savanna. *Land Degradation* & *Development*, 26, 632-641.

- Kane, V.R., Gersonde, R.F., Lutz, J.A, McGaughey, R.J., Bakker, J.D., & Franklin, J.F. (2011). Patch dynamics and the development of structural and spatial heterogeneity in Pacific Northwest forests. *Canadian Journal of Forest Research*, 41, 2276–2291.
- Kenkel, K.A., & Podani, J. (1991). Plot size and estimation efficiency in plant community studies. *Journal of Vegetation Science*, 2, 539-544.
- Kent, M., & Coker, P. (1992). Vegetation Description and Analysis: A practical Approach. Chichester: John Wiley & Sons.
- Kigomo, B.N.; Savill, P.S., & Woodell, S.R. (1990). Forest composition and its regeneration dynamics; a case study of seme-deciduous tropical forests in Kenya. *African Journal of Ecology*, 28, 174-188.
- Kinaro, P.D.S. (1993). Mathematical elegance and ecological naivety of diversity indices. *African Journal of Ecology*, 21, 93-99.
- Kinyanjui, M. J., Shisanya, C. A., Nyabuti, O. K., Waqo, W. P., & Ojwala, M. A. (2014). Assessing Tree Species Dominance along an Agro Ecological Gradient in the Mau Forest Complex, Kenya. *Open Journal of Ecology*, 4(11).
- Kiringe, J.W., Mwaura, F., & Warinwa, F. (2016). Characterization of Water Source Types and Uses in Kirisia Forest Watershed, Samburu County, Kenya. *Environment and Natural Resources Research*, 6 (3).
- Kiruki, H.M., van der Zanden, E.H., Gikuma-Njuru, P., & Verburg, P.H. (2017). The effect of charcoal production and other land uses on diversity, structure and regeneration of woodlands in a semi-arid area in Kenya. *Forest Ecology and Management*, 391, 282-295.
- Kiyiapi, J.L. (1994). Structure and characteristics of *Acacia tortilis* woodland on the Njemps Flats. *Advances in Geoecology*, 27, 47-70.

- Klauberg, C., Vidal, E., Silva, C.A., de M. Bentes, M., & Hudak, A.T. (2016). Sampling methods for titica vine (Heteropsis spp.) inventory in a tropical forest. *Annals of Forest Science*, 73, 757–764.
- Kokwaro J. (1988). Conservation status of the Kakamega forest in Kenya: the easternmost relic of the equatorial rain forest of Africa. *Monographs in Systematic Botany Missouri Botanocal Garden*, 25, 471–489.
- Kral, K., Janik, D., Vrska, T., Adam, D., Hort, L., Unar, P. & Šamonil, P. (2010). Local variability of stand structural features in beech dominated natural forests of Central Europe: implications for sampling. *Forest Ecology and Management*, 260, 2196 – 2203.
- Krebs, C.J. (1989) *Ecological Methodology*. University of British Columbia, New York: Harper & Row Pub.
- Kullman, L., & O"berg, L. (2009). Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes. A landscape ecological perspective. *Journal of Ecology*, 97, 415 – 429.
- Kumelachew, Y. (2008). Effects of Anthropogenic Disturbance on the Diversity of Foliicolous Lichens in Tropical Rainforests of East Africa: Godere (Ethiopia), Budongo (Uganda) and Kakamega (Kenya). Landau: Universität Koblenz.
- Lackmann, S. (2011). Lesson 8- Good practice in designing a forest inventory. Regional Workshop: "Capacity Development for Sustainable National Greenhouse Gas Inventories – Agriculture, Forestry and Other Land Use (AFOLU) sector (CD-REDD II) Programme, Quito, Ecuador. https://docplayer.net/23416273-Lesson-8-goodpractice-in-designing-a-forest-inventory.html
- Lanly, J.P. (1997). World forest resources: situation and prospects. Unasylva 190/91, 48 (3-4), 9-18.
- Laumonier, Y., Edin, A., Kannien, M., & Munadar, A.W. (2010). Landscapescale variation in the structure and biomass of the hill dicterocarp forests of Sumatra: implications for carbon stock assessment. *Forest Ecology and Management*, 259, 505–513.

- Lee, H.S., Davies, S.J., LaFrankie, J.V., Tan, S., Yamakura, T., Itoh, A., ... Ashton, P. S. (2002). Floristic and structural diversity of mixed dipterocarp forest in Lambir Hills National Park, Sarawak, Malaysia. *Journal of Tropical Forest Science* 14(3), 379-400.
- Levine, C.R., Cogbill, C.V., Collins, B.M., Larson, A.J., Lutz, J.A., North, M.P., ... Battles J.J. (2017). Evaluating a new method for reconstructing forest conditions from General Land Office survey records. *Ecological Applications*, 27(5), 1498-1513.
- Lowman, M. (1986). Light interception and its relation to structural difference in three Australian rainforests canopies. *Australian Journal of Ecology* 11 (2), 163-170.
- Ludwig, J.A., & Reynolds, J.F. (1988). Statistical Ecology: A Primer on Methods and Computing. New York: John Wiley & Sons.
- Magurran, A.E. (1988). Ecological diversity and its measurement. Chapman and Hall, London.
- Malhi, Y., Adu-Bredu, S., Asare, R. A., Lewis, S.L., & Mayaux, P. (2013). African rainforests: past, present and future. *Philosophical Transactions of the Royal Society B* 368: 20120312. http://dx.doi.org/10.1098/rstb.2012.0312.
- Malhi, Y., Phillips, O.L., Lloyd, J., Baker, T., Wright, J.A., Almeida, S., ... Silveira, M. (2002) An International Network to Understand the Biomass and Dynamics of Amazonian Forests (RAINFOR). *Journal of Vegetation Science*, 13, 439-450.
- Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir P., & Saathi, S. (2010). Introduction, elevation gradients in the tropics, laboratories for ecosystem ecology and global change research. *Global Change Biology*, 16, 3171-3175.
- Margalef, D.R. (1958). Information theory in ecology. General Systematics, 3, 36–71.
- Marimon, B.S., & Felfili, J.M. (1997). Structure of a monodominant forest of Brosimum rubescens Taub in Nova Xavantina MT, Brazil. In *Proceedings of the International*

Symposium on Assessment and Monitoring of Forests in Tropical Dry Regions with special reference to Gallery Forests, Nov. 1996. (pp. 215-230). Brasilia.

- Martinez, R.V., & Phillips, O. L. (2000). Allpahuayo: Floristics, Structure, and Dynamics of a High-Diversity Forest in Amazonian Peru. *Annals of the Missouri Botanical Garden*, 87(4), 499-527.
- Matthews J.W., Tessene, R.A., Wiesbrook, S.M., & Zercher, B.W. (2005). Effect of area and isolation on species richness and indices of floristic quality in Illinois, USA wetlands. *Wetlands*, 25, 607–615.

Matthews, J.D. (1989). Silvicultural Systems. Oxford: Oxford University Press.

- Mauya, E.W., Hansen, E.H., Gobakken, T., Bollandsås, O.M., Malimbwi, R.E., & Næsset, E. (2015). Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania. *Carbon Balance and Management*, 10, 10.
- Mayaux, P., Holmgren, P., Achard, F., Eva, H., Stibig, H., & Branthomme, A. (2005). Tropical forests cover change in the 1990s and options for future monitoring. *Philosophical Transactions of the Royal Society*, 360, 373-384.
- McCune, B., & Grace, J.B. (2002). *Analysis of ecological communities*. Gleneden Beach: MjM Software Design.
- McElhinny, C., Gibbons, P., Brack, C., & Bauhus, J. (2005). Forest and woodland stand structural complexity: Its definition and measurement. *Forest Ecology and Management*, 218, 1–24.
- McManus, J.W., & Pauly, D. (1990). Measuring ecological stress: Variations on a theme by R. M. Warwick. *Marine Biology*, 106(2), 305–308.
- McRoberts, R.E., Tomppo, E.O., & Naesset, E. (2010) Advances and emerging issues in national forest inventories. *Scandinavian Journal of Forest Research*, 25(4), 368-381.

- McWilliams, W.H., Westfall, J.A, Brose, P.H., Dey, D.C., Hatfield, M., Johnson, K., ... Woodall, C.W.(2015). A Regeneration Indicator for Forest Inventoryandanalysis: History, Sampling, Estimation, analytics, and Potential Use in the Midwestand Northeast United States. United States Department of agriculture Forest Service.
- Megevand, C., Mosnier, A., Hourticq, J., Sanders, K., Doetinchem, N., & Streck, C. (2013). Deforestation Trends in the Congo Basin: Reconciling Economic Growth and Forest Protection. Washington DC: The Worldbank.
- Merganič, J., Merganičová, K., Marušák, R., & Audolenská, V. (2012). Plant Diversity of Forests. Chapter 1. In: Blanco, J.A. & Yueh-Hsin Lo, Y. (Ed.), Forest Ecosystems -More than Just Trees (pp. 3-28). IntechOpen, DOI: 10.5772/31958.
- Meyer, H.A. (1952). Structure, growth and grain in balanced even-aged forests. *Journal of Forestry*, 50, 85-92.
- Miao, G. (2008). *Modeling of carbon dynamics in an African rainforest: a case study with Coup model in Kakamega forest, Kenya.* Unpublished MSc thesis, Land and KTH Royal Institute of Technology, Stockholm.
- Millennium Ecosystem Assessment (2005). *Ecosystems and human well-being: biodiversity synthesis*. Washington DC: World Resource Institute.
- Ministry of Environment and Natural Resources. (2016). *National Forest Programme of Kenya*. Nairobi: MENR.
- Momanyi, G. (2007). The role of rural poverty in deforestation of Kakamega forest, Kenya. *Journal of Discovery and Innovations*, 19, 302–311.
- Moore, P.D., & Chapman, S.B. (1986). Methods in Plant Ecology. Oxford: Blackwell.
- Morais, R., & Sheuber, M. (1997). Statistical precision in phytosociological surveys. In: Proceedings of the International Symposium on Assessment and Monitoring of Forests in Tropical Dry Regions with special reference to Gallery Forests, Nov. 1996. (pp. 135-147). Brasilia.

- Morales, R.M. (2012). Using Remotely Sensed Imagery for Forest Resource Assessment and Inventory. Chapter 7. In: Álvarez, F.A., Gomez-Mediavilla, G., & López-Estébanez, N. (Eds). Forest Ecosystems – More than Just Trees (pp. 165-178). IntechOpen, DOI: 10.5772/30140
- Morris, R. J. (2010). Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. *Philosophical transactions of the Royal Society of London. Series B, Biological sciences*, 365, 3709–3718.
- Muchiri, M.N., Ngugi, J., Kinyanjui, M., Balozi, K., Ojuang, F., Nduati, P., ... Parikka, H. (2016). Improving Capacity in Forest Resources Assessment in Kenya (IC-FRA): Field Manual for Biophysical Forest Resources Assessment in Kenya. Muguga: KEFRI.
- Mueller-Dombois, D., & Ellenberg, H. (1974). *Aims and methods of vegetation ecology.*. New York: John Wiley & sons.
- Mulatu, K.A., Mora, B., Kooistra, L., & Herold, M. (2017). Biodiversity monitoring in changing tropical forests, a review of approaches and new opportunities. *Remote Sensing*, 9, 1059.
- Mullah, J., A., Otuoma, J., & Kigomo, B. (2013). Rehabilitation of degraded Natural Forests in Kenya: A guide for forest managers and stakeholders in Forest Rehabilitation. Nairobi: KEFRI.
- Mushove, P. (1997). Population structure of Brachystegia spiciformis formations along the Lutope River, Zimbabwe. In: Proceedings International Symposium on Assessment and Monitoring of forests in Tropical Dry regions with special reference to Gallery Forests, Nov. 1996 (pp. 183-197), Brasilia.
- Mutiso, F.M., Hitimana, J., Kiyiapi, J.L., Sang, F.K., & Eboh, E. (2013). Recovery of Kakamega tropical rainforest from anthropogenic disturbances. *Journal of Tropical Forest Science*, 25(4), 566–576.

- Mutiso, F.M., Cheboiwo, J., Kiyiapi, J.L., Sang, F.K., & Hitimana, J. (2016). Comparative Study of Sampling Methods for Efficient Diagnosis of Health Status of Selected Natural Forest Ecosystems in Kenya. *Journal of Natural Sciences Research* 5(2).
- Muturi, G.M. (2012). Ecological impacts of *Prosopis* invasion in Riverine Forests of Kenya. Unpublished PhD Thesis, Wageningen University.
- Mwavu, E.N. & Witkowski, E.T.F. (2009). Population structure and regeneration of multiple-use tree species in a semi-deciduous African tropical rainforest: implications for primate conservation. *Forest Ecology and Management*, 258, 840-849.
- Myers, W.L. & Patil, G.P. (1995). Simplicity, efficiency, and economy in forest surveys. In Monte Verita, Switzerland, 2-7 May 1994. Kohl, M., Bachmann, P., Brassel, P. & Preto, G. (Eds). *The monte Verita Conference on forest survey designs. "Simplicity versus efficiency" and assessment of non-timber resources* (pp.47-55). Swiss Federal Institute for Forest, Snow and Landscape Research, Zurich.
- Nacoulma, B.M.I., Schumann, K., Traore, S., Bernhardt-Roermann, M., Hahn, K., Wittig, R. & Thiombiano, A. (2011). Impacts of land-use on West African Savanna vegetation: a comparison between protected and communal area in Burkina Faso. *Biodiversity Conservation*, 20, 3341-3362.
- Nassiuma, D.K. (2000). Survey sampling: theory and methods. Nairobi: Nairobi University Press.
- Nduati, P., Muchiri, M.N., Kirongo, B.B., Ojuang, F., Ngugi, J., Atie, W., ... Parikka, H. (2016). Improving Capacity in Forest Resources Assessment in Kenya (IC-FRA): Technical Report on the Pilot inventory. Muguga: KEFRI.
- Neil, E., Raymond, H., & Philip, G. (1995). Grazing in remnant woodland vegetation: changes in species composition and life form groups. *Journal of Vegetation Science*, 6, 121-130.
- Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. *Journal of the Royal Statistical Society*, 109, 558-606.

- Nilson, M., Folving, S., Kennedy, P., Puumalainan, J., Chirici, G., Corona, P., ... Tomppo, E. (2003). Combining remote sensing and field data for deriving unbiased estimates of forest parameter over large regions. In Corana, P., Kohl, M., & Marchetti, M. (Eds). Advances in Forest Inventory for sustainable Forest Management and Biodiversity Conservation (pp 19-32). Switzerland: SpringerNature
- Njunge, J. T., & Mugo, J. M. (2011). Composition and succession of the woody flora of South Nandi Forest, Kenya. *Research Journal of Botany*, 6, 112-121.
- Nowak, D.J., Crane, D.E., Stevens, J.C., Hoehn, R.E., Walton, J.T., & Bond, J. (2008). A ground-based method of assessing urban forest structure and ecosystem services. *Arboriculture & Urban Forestry*, 34, 347–358.
- Ohmann, J.L., Gregory, M.J., & Roberts, H.M. (2014). Scale considerations for integrating forest inventory plot data and satellite image data for regional forest mapping. *Remote Sensing of Environment*, 51, 3–15.
- Ohmann, J.L., Gregory, M.J., Roberts, H.M., Cohen, W.B., Kennedy, R.E., & Yang, Z. (2012). Mapping change of older forest with nearest-neighbor imputation and Landsat timeseries. *Forest Ecology and Management*, 272, 13-25.
- Oldfield, S., & Newton, A.C. (2012). *Integrated conservation of tree species by botanic gardens: A reference Manual.* United Kingdom: Botanic Gardens Conservation International.
- Omondi, S.F. (2016). Reproductive biologyand population ecology of Senegalia senegal (L.) britton within Lakebaringo woodland ecosystem, Kenya. Upublished PhD Thesis, Nairobi, University of Nairobi.
- Öztürk, M., Palta, S., & Gökyer, E. (2018). Advances in the Assessment of Climate Change Impact on the Forest Landscape. Chapter 9. In: Viana, H. & García-Morote, F.A. (Eds). *New Perspectives in Forest Science* (pp.230-295). IntechOpen, DOI: 10.5772/intechopen.72714

Pálico-Netto S, & Brena D.A. (1997). Forest inventory. UFPR, Curitiba

- Pan, Y., Birdsey, R.A., Phillips, O.L., & Jackson, R.B. (2013). The Structure, Distribution, and Biomass of the World's Forests. Annual Review of Ecology, Evolution, and Systematics, 44, 593–622.
- Park, B.B., Han, S.H., Rahman, A., Choi, B. A., Im, Y.S., Bang, H.S., ... Yong, S.M. (2016). Brief history of Korean national forest inventory and academic usage. *Korean Journal* of Agricultural Science, 43(3), 299-319.
- Pandeya, S.C., Puri, G.S., & Singh, J.S. (1968). *Research Methods in Plant Ecology*. New York: Asia Publishing House.
- Pasher, J., & King, D.J. (2011). Development of a forest structural complexity index based on multispectral airborne remote sensing and topographic data. *Canadian journal of forest research*, 41(1), 44-58.
- Pauw, E.D., Göbel, W., & Adam H. (2000). Agrometeorological aspects of agriculture and forestry in the arid zones. *Agricultural and Forest Meteorology*, 103, 43-58.
- Peters M.K., Fischer G., Schaab G., & Draemer M. (2009). Species compensation maintains abundance and raid rates of African swarm-raiding army ants in rainforest fragments. *Biological Conservation*, 142, 668–675.
- Picard, N., Magnussen, S., Banak, L.N., Namkosserena, S., & Yalibanda, Y. (2010) Permanent sample plots for natural tropical forests: a rationale with special emphasis on Central Africa. *Environmental Monitoring and Assessment*, 164, 279–295.
- Philip, M.S. (1994). *Measuring Trees and Forests*. 2nd Ed. UK.: CAB International.
- Phillips, O.L., Martinez, R.V., Vargas, P.N., Lorenzo, A., Monteagudo, A.L., Zans, M.C., ... Rose, S. (2003a). Efficient plot-based floristic assessment of tropical forests. *Journal* of *Tropical Ecology*, 19, 629–645.
- Phillips, O.L., Vargas, P.N., Monteagudo, A.L., Cruz, A.P., Zans, M.E.C., Sánchez, W.G., ... Rose, S. (2003b). Habitat association among amazonian tree species, a landscape-scale approach. *Journal of Ecology*, 91, 757-775.

- Phillips, O.L., Aragão, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G., ... Torres-Lezama, A. (2009). Drought sensitivity of the amazon rainforest. *Science*, 323, 1344-1347.
- Pielou, E.C. (1977). *Mathematical Ecology*. New York: John Wiley & Sons.
- Pitman, N.C.A., Terborgh, J., Silman, M. R. & Nunez, V.P. (1999). Tree species distributions in an upper amazonian forest. *Ecology*, 80, 2651–2666.
- Poore, D., & Sayer, J. (1991). *The Management of Tropical Moist Forest Lands: Ecological Guidelines*, 2ndEd. Gland, Switzerland: IUCN.
- Poorter, L., Bongers, F., van Rompaey, R.S.A.R., & de Klerk, M. (1996). Regeneration of Canopy tree species at five sites in West African moist forest. *Forest Ecology and Management*, 84, 61-69.
- Pretzsch, H. (2009). Forest dynsmics, growth and yield, from measurement to model. Springer-Verlag, Berlin.
- Principe, A., Nunes, A., Pinho, P., Rosario, L., Correia, O., & Branquinho, C. (2014). Modeling the long-term natural regeneration potential of woodlands in semi-arid regions to guide restoration efforts. *European Journal of Forest Research*, 133, 757-767.
- Purvis, A., & Hector, A. (2000). Getting the measure of biodiversity. Nature, 405, 212-219.
- Randriamalala, J., Radosy, H.O., Razanaka, S., Randriambanona, H., & Harve, D. (2016). Effects of goat grazing and woody charcoal production on xerophytic thickets of southwestern Madagascar. *Journal of Arid Environments*, 128, 65-72.
- Reed, M.S., & Cokie, M.R.J. (2000). Effects of grazing and cultivation on forest plant communities in Mount Elgon National Park, Uganda. *African Journal of Ecology*, 38 (2), 154–162.
- Ribeiro, N.S., Matos, C.N., Moura, I.R., Washington-Allen, R.A., & Ribeiro, A. I. (2013). Monitoring vegetation dynamics and carbon stock density in miombo woodlands. *Carbon Balance Management*, 8, 1-9.

- Richards, P.W. (1981). *The Tropical Rainforest: An ecological Study*. Cambridge: Cambridge University Press.
- Rollet, B. (1974). L'Architecture des Forets Denses, Humides, Sempervirentes de Plaine. Nogent-Sur-Marne (France): C.T.F.T.
- Ronoh, D. K. (2016). Anthropogenic disturbance indicators and population structure of Zanthoxylum gillettii (De Wild Waterman) and Prunus Africana (Hook. f.) Kalkman in South West Mau Forest, Kenya. Unpublished master's thesis, Kericho, University of Kabianga.
- Ronoh, D.K., Sirmah, P.K., Hitimana, J., & Mullah, C.J.A. (2018). Variation in Regeneration Density and Population Structure of *Prunus africana* Across Human Disturbance Gradient in South West Mau Forest, Kenya. *International Journal of Natural Resource Ecology and Management*, 3 (1), 1-8.
- Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T., Salas, W., ... Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regionsacross three continents. *Proceedings of the National Academy of Sciences of the United States of America*, 108, 9899-9904.
- Saud, P., Lynch, T.B., Anup, K. C., & Guldin, J.M. (2016). Using quadratic mean diameter and relative spacing index to enhance height-diameter and crown ratio models fitted to longitudinal data. *Forestry: An International Journal of Forest Research*, 89 (2), 215– 229.
- Schreuder, H.T., Gregoire, T.G., & Wood, G.B. (1993). Sampling methods for multiresource forest inventory.New York: John Wiley & Sons, Inc.
- Schulz, B.K., Bechtold, W.A., & Zarnoch, S.J. (2009). Sampling and Estimation Procedures for the Vegetation Diversity and Structure Indicator. Gen. Tech. Rep. PNW-GTR-781. Portland: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station.

- Schwartz, M.W., & Caro, T.M., (2013). Effect of selective logging on tree and understorey regeneration in miombo woodland in western Tanzania. *African Journal of Ecology*, 41, 75-82.
- Schwarz, C. F., Thor, E. C., & Elsner, G. H. (1976). Wildland Planning Glossary. USDA Forest Service General Technichal Report PSW-13, Pacific Southwest Forest and Range Experiment Station. Berkeley, California.
- SCBD (Secretariat of the Convention on Biological Diversity) (2010). *Global Biodiversity Outlook 3*. Montréal: SCBD..
- Sebata, A. (2017). Ecology of Woody Plants in African Savanna Ecosystems. Chapter 3. In: Yousaf, Z. (Ed). *Plant Ecology: Traditional Approaches to Recent Trends* (pp. 25-42). IntechOpen, DOI: 10.5772/intechopen.69865.
- Seidel, D., Fleck, S., Leuschner, C., & Hammett, T. (2011). Review of ground-based methods to measure the distribution of biomass in forest canopies. *Annuals of Forest Science*, 68, 225-244.
- Seng, Y.P. (1951). Historical survey of the development of sampling theories and practice. *Journal of the Royal Statistical Society* A, 114, 214-231.
- Serna, C.B. (1986). *Degradation of Forest Resources*. GCP/RAS/106/JPN, Field Doc. 15. Bangkok: FAO.
- Shackleton, C.M. (1993). Demography and dynamics of the dominant woody species in a communal and protected area of the eastern Transvaal Lowveld. *South African Journal of Botany*, 59 (6), 569-574.
- Sharma, N.P. (Ed.) (1992). *Managing the World's Forests: Looking for Balance between Conservation and Development*. Dubuque: Kendall-Hunt Publ. Co.
- Shijo, J., Herold, M., Sunderlin, W.D., & Verchot, L.V. (2013). REDD+ readiness: early insights on monitoring, reporting and verification systems of project developers. *Environmental Research Letters*, 8 (3). doi:10.1088/1748-9326/8/3/034038

Shiver, B.D., & Borders, B.E. (1996). Sampling techniques for forest resource inventory. Wiley.

Singh, K.D. (1993). The 1990 tropical forest resources assessment. Unasylva, 44 (174), 10-19

- Sist, P., Mazzei, L., Blanc, L., & Rutishauser, E. (2014). Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. *Forest Ecology and Management*, 318, 103-109.
- Smith, T. M. F. (1976). The foundations of survey sampling, a review. *Journal of the Royal Statistical Society A*, 139, 183-204.
- Snelder, D.J. (1994). Productivity of eroded rangelands on the Njemp Flats. Advances in Geoecology, 27, 97-120.
- Spellerberg, I.F. (1991). *Monitoring Ecological change*. Cambridge: Cambridge University Press.
- Spies, T.A. (1998). Forest structure: a key to the ecosystem. Northwest Science, 72, 34-39.
- Stride, G., Thomas, C.D., Benedick, S., Hodgson, J.A., Jelling, A., Senior, M.J.M & Hill, J.K. (2018). Contrasting patterns of local richness of seedlings, saplings, and trees may have implications for regeneration in rainforest remnants. *Biotropica*, 0(0), 1–9.
- Strimbu, B.M. (2014). Comparing the efficiency of intensity-based forest inventories with sampling-error-based forest inventories. *Forestry*, 87,249–255.
- Stropp, J., Ter Steege, H., & Malhi, Y. (2009). Disentangling regional and local tree diversity in the amazon. *Ecography*, 32, 46-54.

Student. (1908). On the probable error of the mean. Biometrika, 6, 1-25.

- Sullivan, M.J.P., Talbot, J., Lewis, S.L., Phillips, O.L., Qie, L., Begne, S.K., ... Zemagho, L. (2017). Diversity and carbon storage across the tropical forest biome. *Scientific Reports* 7(39102). doi: 10.1038/srep39102. www.forestplots.net
- Sullivan M.J.P., Lewis S.L., Hubau W., Qie, L., Baker, T.R., Banin, L.F., ... Oliver L.P. (2018). Field methods for sampling tree height for tropical forest biomass estimation. *Methods* in Ecology and Evolution, 9,1179–1189.
- Swanson, M.E., Franklin, J.F., Beschta, R.L., Crisafulli, C.M., Sala, D.A., Hutto, R.L., ... Swanson, F.J. (2011). The forgotten stage of forest succession: Early-successional ecosystems on forest sites. *Frontiers in Ecology and Environment*, 9, 117–125.
- Syampungani, S., Chirwa, P.W., Akinnifesi, F.K., Sileshi, G., & Ajayi, O.C. (2009). The miombo woodlands at the cross roads: potential threats, sustainable livelihoods, policy gaps and challenges. *Natural Resources Forum*, 33, 150-159.
- Synnott, T. J. (1979). A manual of permanent plot procedures for tropical rainforests. Tropical Forestry Papers. Commonwealth Forestry Institute, University of Oxford, No. 14.
- Talbot, J., Lewis, S.L., Lopez-Gonzalez, G., Brienen, R.J.W., Monteagudo, A., Baker, T.R., ... Phillips, O.L. (2014). Methods to Estimate Aboveground Wood Productivity from Long-Term Forest Inventory Plots. *Forest Ecology and Management*, 320, 30–38.
- Ter Steege, H., Sabatier, D., Castellanos, H., Vanandel, T., Duivenvoorden, J., De Oliveira, A., ... Mori, S. (2000). Analysis of the floristic composition and diversity of amazonian forests including those of the Guiana Shield. *Journal of Tropical Ecology*, 16, 801– 828.
- Terborgh, J., & Andresen, E. (1998). The composition of amazonian forests: patterns at local and regional scales. *Journal of Tropical Ecology*, 14, 645–664.
- Tomlinson, P.B. (1983). Structural elements of the Rain Forest. In: Golley, F.B. (Ed). *Tropical Rainforest Ecosystems: Structure and* Function (pp. 9-28). Amsterdam: Elsevier.

- Tschuprow, A. A. (1923). On the mathematical expectation of the moments of frequency distributions in the case of correlated observations. *Metron*, 2, 461-493; 646-683.
- Ucar, Z., Bettinger, P., Merry, K., Siry, J., Bowker, J.M., & Andakbuluta, R. (2016). A comparison of two samplingapproaches forassessing the urban forest canopy cover fromaerial photography. Urban Forestry & Urban Greening, 16, 221–230.
- United Nations Organisation (1994). Conservation and Management of Closed forest: A manual of Field Techniques for Students and Trainees. UNO/RAF/006/GEF. E.A. Forest Field Workshop, April-May 1994, Uganda.
- Vanclay, J.K. (1995). Growth models for tropical forests: a synthesis of models and methods. *Forest Science*, 41(1), 4-42.
- Vanclay, J.K. (2003). Realizing opportunities in forest growth modelling. *Canadian Journal of Forest Research*, 33, 536 541.
- Walther, G. (2010). Community and ecosystem responses to recent climate change. *Philosophical Transactiond of the Royal Society B*, 365, 2019–2024.
- Wang, X., Hao, Z., Zhang, J., Lian, J., Li, B., Ye, J., & Yao, X. (2009). Tree size distributions in an old-growth temperate forest. *Oikos*, 118, 25-36.
- Warinwa, F., Mwaura, F., Kiringe, J.W., & Ndubi, A.O. (2016). Land Cover Dynamics in the Kirisia Forest Ecosystem, Samburu County, Kenya. Advances in Remote Sensing, 5, 168-182.
- Wass, P. (Ed.) (1995). Kenya 's Indigenous Forests: Status, Management and Conservation. IUCN, Gland, Switzerland, and Cambridge, UK: IUCN.
- Weiskittel, A.R., Hann, D.W., Kershaw Jr., J.A., & Vanclay, J. (2011). Forest growth and yield modeling. Oxford: Wiley-Blackwell

- White, J.C., Coops, N.C., Wulder M.A., Vastaranta M., Hilker T., & Tompalski, P. (2016) Remote sensing technologies for enhancing forest inventories: A review. *Canadian Journal of Remote sensing*, 42, 619-641.
- Whittaker R.H. (1962). Classification of plant communities. *Botanical Review*, 28, 1–239.
- Whittaker, R.H. (1975). Communities and Ecosystems. 2nd Ed., New York: Mac Millan.
- Wong, J.L.G., Thornber, K. & Baker, N. (2001). Resource assessment of non-wood forest products: experience and biometric principles.Rome: FAO
- Worku, A., Teketay, D., Lemenih, M., & Fetene, M. (2012). Diversity, regeneration status, and population structure of gum and resin producing woody species in Borana, Southern Ethiopia. *Forests, Trees and Livelihoods*, 20, 85-96.
- Yoo, S., Im, J., & Wagner, J.E. (2012). Variable selection for hedonic model using machine learning approaches: A case study in Onondaga County, NY. *Landscape Urban Planning*, 107,293–306.
- You, M., Vasseur, L., Régnière, J. & Zheng, Y. (2009). The Three Dimensions of Species Diversity. *The Open Conservationbiology Journal* 3, 82-88.
- Zar, J.H. (1999). Biostatistical analysis. 4th ed. New Jersey: Prentice-Hal,
- Zeide B. (2005). How to measure stand density. Trees, 19 (1), 1-14.
- Zida, D., Sawadogo, L., Tigabu, M., Tiveau, D., & Odena, P.C. (2007). Dynamics of sapling population in savanna woodlands of Burkina Faso subjected to grazing, early fire and selective tree cutting for a decade. *Forest Ecology and Management*, 243, 102-115.

APPENDICES

		Experimental sites for sampling designs											
Sites	Elevation (m a.s.l)	Climate type & Kenya Agro- ecological zone	Disturbance history	Monthly temperature (°C)	Annual rainfall (mm)	Georeferenced location (GPS coordinates in decimal degrees)							
Kakamega Tropical Rain Forest (Isecheno)	1580	Humid and warm Tropical (Af) Upper Midland (AEZ UM0)	Moderate logging	20.4	1971	Lat.: 0.269624 - 0.270523 Long.: 34.900855 - 34.901755							
Mt Elgon Moist Montane Forest (Kaberwa)	1976	Moist and warm temperate (Cfb) Upper Highland (AEZ UH0)	Extensive Logging	17.9	1577	Lat.: 0.867403 - 0.868302 Long.:34.692033 - 34.692932							
Loruk Tropical dry woodland Forest (Loruk)	987	Dry Tropical (Aw) Lower Midland (AEZ LM5)	Livestock grazing	23.7	629	Lat.: 0.71024565 - 0.71114497 Long.: 36.000983 - 36.001882							

APPENDIX I: LOCATION, ELEVATION AND CLIMATE FEATURES OF THE FOREST STUDY SITES, KENYA

Weather data are averages between 1982 and 2012. (Hitimana et al., 2004; Hitimana et al., 2010; Fashing et al., 2003; Joetzoald & Schmidt, 1983; Kokwaro, 1988; Mutiso et al., 2013).

APPENDIX II: R CODES FOR CREATING VARIOUS PLOT SIZES

1. Introduction

This process is the same in R studio for all the three forests. We use Mt. Elgon site to illustrate it. We just update the name of the forest in the function and run to get output.

2. Merging 5 m by 5 m plots to create 10 m by 5 m plots

Field data collection from the forest was done and organized in 400 plots of equal size of 5 m x 5 m (Smallest plot size tested in the study). *Display of grid for four hundred 5 m by 5 m plots is available (Appendix III. 1.)*

Reorganising field data from same forest in 10 m x 5 m plot size was done in R as described below. It required having 1 ha forest divided it into 200 plots of 10 m x 5 m each. Each plot here is going to be twice as large as the the plots in the previous part. We create the 200 plots here by merging every two consecutive plots (vertically) from the initial grid of 400 plots.

First, let us identify the unique plots in order

```
plots = unique(mt_elgon$plot.no.)
plots = as.character(plots)
```

We take the *odd* plot number eg *1111* to represent the new plot that is created by merging the two plots *1111* and *1112*. The unique plots are arranged in ascending order from 1 through 400. The position of the plot in this arrangement (between 1 and 400) can be separated as either *even eg 2* or *odd eg 1*. The first and second lines of the code below checks if the position is even or odd and creates a list with the values *TRUE* if the position is even and *FALSE* if the position is odd.

```
is.even = function(x) x%%2 == 0
even = is.even(1:length(plots))
```

Finally, the two lists *plots* and *even* are merged together to create a table with two rows, one for plot number and another indicating whether the position is odd or even, and 400 rows, one for each unique plot number.

mytable= cbind(plots,even)
mytable= as.data.frame(mytable)

Our new table is named *mytable*

Unique number for the new created plot of 10 m x 5 m is the *odd* plot number from each pair of small plots that were merged. In R, we create another column in *mytable*. This column will contain the unique plot number. The first line of code below creates another

column and calls it *newplots*. The second part of the code adds the values of plot number that we want.

```
mytable= mutate(mytable, newplots = plots )
mytable[mytable$even == T,][3] = mytable[mytable$even == F,][3]
```

We use this table to check for all values of *plot number* in our *mt_elgon* data set that match the values of *plots* in *mytable* and we replace them with the values of *newplots* in *mytable*. We also ensure the values in these three columns are of the same "data type".

```
mytable$plots = as.character(mytable$plots)
mytable$newplots = as.character(mytable$newplots)
mt_elgon$plot.no. = as.character(mt_elgon$plot.no.)
for (i in 1:nrow(mt_elgon)) {
    for (j in 1:nrow(mytable)) {
        if (mt_elgon$plot.no.[i] == mytable$plots[j]) {
            mt_elgon$plot.no.[i] == mytable$plots[j]) {
            mt_elgon$plot.no.[i] = mytable$newplots [j]
        }
    }
    length(unique(mt_elgon$plot.no.))
```

[1] 200

We now have 200 unique plots from initial 400. We can now go ahead with our analysis just in the same way as it is done in the 400 plots.

```
uniq_plots = as.character(unique(mt_elgon$PLOT.NO.))
length(uniq_plots)
## [1] 200
```

Arranging the plots appropriately;

uniq_plots = cbind(uniq_plots[1:20], uniq_plots[21:40], uniq_plots[41:60], uniq_plots[61:80], uniq_plots[81:100], uniq_plots[101:120], uniq_plots[121:140], uniq_plots[141:160], uniq_plots[161:180], uniq_plots[181:200])

uniq_plots = as.data.frame(uniq_plots)
Display of grid for two hundred 10 m by 5 m plots is available (Appendix III.2)

3. Merging 10 m by 5 m plots to create 10 m by 10 m plots

The 200 plots grid is made of 20 columns and 10 rows. We need to merge two consecutive plots (horizontally) to create 10 columns, and obtain a grid of 10 columns by 10 rows as follows.

```
x = unique(mt_elgon$plot.no.)
x = as.data.frame(x)
```

 $\mathbf{y} = \mathbf{x}$

```
y[11:20,] = y[1:10,]
y[31:40,] = y[21:30,]
y[51:60,] = y[41:50,]
y[71:80,] = y[61:70,]
y[91:100,] = y[81:90,]
y[111:120,] = y[101:110,]
y[131:140,] = y[121:130,]
y[151:160,] = y[141:150,]
y[171:180,] = y[161:170,]
y[191:200,] = y[181:190,]
```

```
mytable= cbind(x,y)
names(mytable) = c("plots", "newplots")
```

```
mytable$plots = as.character(mytable$plots)
mytable$newplots = as.character(mytable$newplots)
mt_elgon$plot.no. = as.character(mt_elgon$plot.no.)
```

```
for (i in 1:nrow(mt_elgon)) {
  for (j in 1:nrow(mytable)) {
    if (mt_elgon$plot.no.[i] == mytable$plots[j]) {
        mt_elgon$plot.no.[i] = mytable$newplots [j]
    }
    }
}
```

```
length(unique(mt_elgon$plot.no.))
## [1] 100
```

We now have 100 unique plots from initial 200 plots. We can now go ahead with our analysis just like in the 400 plots.

```
uniq_plots = as.character(unique(mt_elgon$PLOT.NO.))
length(uniq_plots)
## [1] 100
```

Then we arrange the plots appropriately.

```
uniq_plots = cbind(uniq_plots[1:10], uniq_plots[11:20], uniq_plots[21:30], uniq_plots[31:40],
uniq_plots[41:50], uniq_plots[51:60], uniq_plots[61:70], uniq_plots[71:80],
uniq_plots[81:90], uniq_plots[91:100])
```

```
uniq_plots = as.data.frame(uniq_plots)
Display of grid for one hundred 10 m by 10 m plots is available (Appendix III.3)
```

4. Merging 10 m by 10 m plots to create 20 m by 20 m plots

4..1. Merging pairs of consecutive plots vertically to create 20 m by 10 m plots

First, let us identify the unique plots from the list of 10mx10m-plots

```
plots = unique(mt_elgon$plot.no.)
plots = as.character(plots)
```

The unique plots are arranged in order from 1 through 100. The position of the plot in this arrangement (between 1 and 100) can be separated as either *even eg 2* or *odd eg 1*. The first and second lines of the code below check if the position is even or odd and create a list with the values *TRUE* if the position is even and *FALSE* if the position is odd.

Finally, the two lists *plots* and *even* are merged together to create a table with two rows: one for plot number and another indicating whether the position is odd or even. and 100 rows, one for each unique plot number.

is.even = function(x) x%%2 == 0
even = is.even(1:length(plots))
mytable= cbind(plots,even)
mytable= as.data.frame(mytable)

Our new table is named mytable

Unique number for the new created plot of 20 m x 10 m is the *odd* plot number from each pair of 10mx10m-plots that were merged. In R, we create another column in *mytable*. This column will contain the unique plot number for 20 m x 10 m plot. The first line of code below creates another column and calls it *newplots*. The second part of the code adds the values of plot number that we want.

```
mytable= mutate(mytable, newplots = plots )
mytable[mytable$even == T,][3] = mytable[mytable$even == F,][3]
mytable$plots = as.character(mytable$plots)
mytable$newplots = as.character(mytable$newplots)
mt_elgon$plot.no. = as.character(mt_elgon$plot.no.)
for (i in 1:nrow(mt_elgon)) {
    for (j in 1:nrow(mt_elgon)) {
        if (mt_elgon$plot.no.[i] == mytable$plots[j]) {
            mt_elgon$plot.no.[i] = mytable$newplots [j]
        }
    }
length(unique(mt_elgon$plot.no.))
## [1] 50
```

We now have 50 unique plots from initial 100 plots

4.2. Merging consecutive 20 m by 10 m plots horizontally to form 20 m by 20 m plots

The fifty **20 m x 10 m** plots are arranged in 5 rows and 10 columns. In R, we need to reduce the 10 columns with 10 m length each to 5 columns with 20 m length each.

```
\mathbf{x} = unique(\mathbf{mt} \ elgon\$plot.no.)
\mathbf{x} = as.data.frame(\mathbf{x})
\mathbf{y} = \mathbf{x}
y[6:10,] = y[1:5,]
y[16:20,] = y[11:15,]
y[26:30,] = y[21:25,]
y[36:40,] = y[31:35,]
y[46:50,] = y[41:45,]
mytable = cbind(x,y)
names(mytable) = c("plots", "newplots")
mytable$plots = as.character(mytable$plots)
mytable$newplots = as.character(mytable$newplots)
mt_elgon$plot.no. = as.character(mt_elgon$plot.no.)
for (i in 1:nrow(mt elgon)) {
 for (j in 1:nrow(mytable)) {
  if (mt_elgon$plot.no.[i] == mytable$plots[j]) {
   mt_elgon$plot.no.[i] = mytable$newplots [j]
  }
}
```

```
} length(unique(mt_elgon$plot.no.))
## [1] 25
```

We now have 25 unique plots from initial 50 and can go ahead with our data analysis from them.

```
uniq_plots = as.character(unique(mt_elgon$PLOT.NO.))
length(uniq_plots)
## [1] 25
```

Appropriate arrangement of the plots through are codes:

```
uniq_plots = cbind(uniq_plots[1:5], uniq_plots[6:10], uniq_plots[11:15], uniq_plots[16:20],
uniq_plots[21:25])
uniq_plots = as.data.frame(uniq_plots)
Display of grid for twenty-five 20 m by 20 m plots is available (Appendix III.4)
```

APPENDIX III: SAMPLING FRAMES FOR DIFFERENT PLOT SIZES

1. Grid of the 400 5 m x 5 m-plots: case in Mt Elgon 100 mx100m-Forest Unit

1111	11121	11141	11161	11181	111101	111121	111141	111161	111181	111201	111221	111241	111261	111281	111301	111321	111341	111361	111381
1112	11122	11142	11162	11182	111102	111122	111142	111162	111182	111202	111222	111242	111262	111282	111302	111322	111342	111362	111382
1113	11123	11143	11163	11183	111103	111123	111143	111163	111183	111203	111223	111243	111263	111283	111303	111323	111343	111363	111383
1114	11124	11144	11164	11184	111104	111124	111144	111164	111184	111204	111224	111244	111264	111284	111304	111324	111344	111364	111384
1115	11125	11145	11165	11185	111105	111125	111145	111165	111185	111205	111225	111245	111265	111285	111305	111325	111345	111365	111385
1116	11126	11146	11166	11186	111106	111126	111146	111166	111186	111206	111226	111246	111266	111286	111306	111326	111346	111366	111386
1117	11127	11147	11167	11187	111107	111127	111147	111167	111187	111207	111227	111247	111267	111287	111307	111327	111347	111367	111387
1118	11128	11148	11168	11188	111108	111128	111148	111168	111188	111208	111228	111248	111268	111288	111308	111328	111348	111368	111388
1119	11129	11149	11169	11189	111109	111129	111149	111169	111189	111209	111229	111249	111269	111289	111309	111329	111349	111369	111389
11110	11130	11150	11170	11190	111110	111130	111150	111170	111190	111210	111230	111250	111270	111290	111310	111330	111350	111370	111390
11111	11131	11151	11171	11191	111111	111131	111151	111171	111191	111211	111231	111251	111271	111291	111311	111331	111351	111371	111391
11112	11132	11152	11172	11192	111112	111132	111152	111172	111192	111212	111232	111252	111272	111292	111312	111332	111352	111372	111392
11113	11133	11153	11173	11193	111113	111133	111153	111173	111193	111213	111233	111253	111273	111293	111313	111333	111353	111373	111393
11114	11134	11154	11174	11194	111114	111134	111154	111174	111194	111214	111234	111254	111274	111294	111314	111334	111354	111374	111394
11115	11135	11155	11175	11195	111115	111135	111155	111175	111195	111215	111235	111255	111275	111295	111315	111335	111355	111375	111395
11116	11136	11156	11176	11196	111116	111136	111156	111176	111196	111216	111236	111256	111276	111296	111316	111336	111356	111376	111396
11117	11137	11157	11177	11197	111117	111137	111157	111177	111197	111217	111237	111257	111277	111297	111317	111337	111357	111377	111397
11118	11138	11158	11178	11198	111118	111138	111158	111178	111198	111218	111238	111258	111278	111298	111318	111338	111358	111378	111398
11119	11139	11159	11179	11199	111119	111139	111159	111179	111199	111219	111239	111259	111279	111299	111319	111339	111359	111379	111399
11120	11140	11160	11180	111100	111120	111140	111160	111180	111200	111220	111240	111260	111280	111300	111320	111340	111360	111380	111400

1111	11122	11141	11161	11181	111100	111120	111140	111160	111180	111201	111221	111241	111261	111281	111300	111320	111340	111360	111380
1113	11124	11143	11163	11183	111102	111122	111142	111162	111182	111203	111223	111243	111 2 63	111283	111302	111322	111342	111362	111382
1116	11126	11145	11165	11185	111104	111124	111144	111164	111184	111205	111225	111245	111265	111285	111304	111324	111344	111364	111384
1118	11128	11147	11167	11187	111106	111126	111146	111166	111186	111207	111227	111247	111267	111287	111306	111326	111346	111366	111386
11111	11131	11149	11169	11189	111108	111128	111148	111168	111188	111209	111229	111249	111269	111289	111308	111328	111348	111368	111388
11113	11133	11150	11170	11190	111111	111131	111151	111171	111191	111210	111230	111250	111270	111290	111311	111331	111351	111371	111391
11115	11135	11152	11172	11192	111113	111133	111153	111173	111193	111212	111232	111252	111272	111292	111313	111333	111353	111373	111393
11117	11137	11154	11174	11194	111115	111135	111155	111175	111195	111214	111234	111254	111274	111294	111315	111335	111355	111375	111395
11119	11139	11156	11176	11196	111117	111137	111157	111177	111197	111216	111236	111256	111276	111296	111317	111337	111357	111377	111397
11120	11140	11158	11178	11198	111119	111139	111159	111179	111199	111218	111238	111258	111278	111298	111319	111339	111359	111379	111399

2. Grid of the 200 10 m x 5 m-plots: case in Mt Elgon 100 mx100m-Forest Unit
| 1111 | 11141 | 11181 | 111120 | 111160 | 111201 | 111241 | 111281 | 111320 | 111360 |
|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| 1113 | 11143 | 11183 | 111122 | 111162 | 111203 | 111243 | 111283 | 111322 | 111362 |
| 1116 | 11145 | 11185 | 111124 | 111164 | 111205 | 111245 | 111285 | 111324 | 111364 |
| 1118 | 11147 | 11187 | 111126 | 111166 | 111207 | 111247 | 111287 | 111326 | 111366 |
| 11111 | 11149 | 11189 | 111128 | 111168 | 111209 | 111249 | 111289 | 111328 | 111368 |
| 11113 | 11150 | 11190 | 111131 | 111171 | 111210 | 111250 | 111290 | 111331 | 111371 |
| 11115 | 11152 | 11192 | 111133 | 111173 | 111212 | 111252 | 111292 | 111333 | 111373 |
| 11117 | 11154 | 11194 | 111135 | 111175 | 111214 | 111254 | 111294 | 111335 | 111375 |
| 11119 | 11156 | 11196 | 111137 | 111177 | 111216 | 111256 | 111296 | 111337 | 111377 |
| 11120 | 11158 | 11198 | 111139 | 111179 | 111218 | 111258 | 111298 | 111339 | 111379 |

3. Grid of the 100 10 m x 10 m-plots: case in Mt Elgon 100 mx100m-Forest Unit

1111	11181	111160	111241	111320
1116	11185	111164	111245	111324
11111	11189	111168	111249	111328
11115	11192	111173	111252	111333
11119	11196	111177	111256	111337

4. Grid of the 25 20 m x 20 m-plots: case in Mt Elgon 100 mx100m-Forest Unit

APPENDIX IV: SIMPLE RANDOM SAMPLING PROCESS IN R FOR DIFFERENT PLOT SIZES AND SAMPLING INTENSITIES

The processes reported about mt. Elgon are the same across all the other forests

SIMPLE RANDOM SAMPLING (SRS)

a. 5 m by 5 m plot size

i. 30% intensity (SRS-5mx5m-30% sampling scheme)

We take a sample from 400 plots e.g. 30% (equivalent to 120 plots) by first accessing the list of all the 400 plots (sampling frame) as follows:

uniq_plots = **unique**(mt_elgon\$PLOT.NO.) **length**(uniq_plots) ## [1] 400

Now that we have 400 plots, we can pick SRS samples of different sizes ie for different intensities 30%, 20%, 10%, 5%. For reproducibility, let us set our seed to 100

set.seed(100)
30% sample
size_30 = sample(uniq_plots, 0.3*400)
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

length(unique(mt_elgon_0.3\$PLOT.NO.))
[1] 120

List of the one hundred and twenty 5mx5m-plots for SRS- 5 m x 5 m-30% sampling scheme in Mt Elgon forest is thus generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk).

Display of samples for all the three forests are indicated in Appendix VI.1.

ii. 20% intensity (SRS-5mx5m-20% sampling scheme)

20% sample
size_20 = sample(uniq_plots, 0.2*400)
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),]

length(unique(mt_elgon_0.2\$PLOT.NO.))
[1] 80

List of the eighty 5mx5m-plots for SRS- 5 m x 5 m-20% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.2.*

iii. 10% intensity (SRS-5mx5m-10% sampling scheme)

10% sample
size_10 = sample(uniq_plots, 0.1*400)
mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),]

length(unique(mt_elgon_0.1\$PLOT.NO.))
[1] 40

List of the fourty 5mx5m-plots for SRS- 5 m x 5 m-10% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.3.*

iv. 5% intensity (SRS-5mx5m-5% sampling scheme)

5% sample
size_5 = sample(uniq_plots, 0.05*400)
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]

length(unique(mt_elgon_0.05\$PLOT.NO.))
[1] 20

List of the twenty 5mx5m-plots for SRS-5 mx5m-5% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.4.*

b. 10 m by 5 m plot size

i. 30% intensity (SRS-10mx5m-30% sampling scheme)

We take a sample from 200 plots e.g. 30% (equivalent to 60 plots) by first accessing the list of all the 200 plots (sampling frame) as follows:

uniq_plots = unique(mt_elgon\$PLOT.NO.) length(uniq_plots) ## [1] 200

Now that we have our 200 plots, we can pick SRS samples of different sizes ie for different intensities 30%, 20%, 10%, 5%. For reproducibility, let us set our seed to 100

set.seed(100)
30% sample
size_30 = sample(uniq_plots, 0.3*nrow(mt_elgon))
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

length(unique(mt_elgon_0.3\$PLOT.NO.))
[1] 60

List of the sixty 0mx 5 m plots for SRS-10 m x 5 m-30% sampling scheme in Mt Elgon forest is thus generated. Similar procedure was applied on other forests by replacing the

name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk).

Display of samples for all the three forests are indicated in Appendix VI.5.

ii. 20% intensity (SRS-10mx5m-20% sampling scheme)

20% sample
size_20 = sample(uniq_plots, 0.2*nrow(mt_elgon))
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),]

length(unique(mt_elgon_0.2\$PLOT.NO.))
[1] 40

List of the fourty 10mx5m-plots for SRS-10 m x 5 m-20% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.6.*

iii. 10% intensity (SRS-10mx5m-10% sampling scheme)

10% sample
size_10 = sample(uniq_plots, 0.1*nrow(mt_elgon))
mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),]

length(unique(mt_elgon_0.1\$PLOT.NO.))
[1] 20

List of the twenty 10mx5m-plots for SRS-10 m x 5 m-10% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.7.*

iv. 5% intensity (SRS-10mx5m-5% sampling scheme)

```
# 5% sample
size_5 = sample(uniq_plots, 0.05*nrow(mt_elgon))
mt_elgon_0.05 = mt_elgon [which(mt_elgon$PLOT.NO. %in% size_5),]
```

length(unique(mt_elgon_0.05\$PLOT.NO.))
[1] 10

List of the ten 10mx5m-plots for SRS-10mx5m-5% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.8.*

c. 10 m by 10 m plot size

i. 30% intensity (SRS-10mx10m-30% sampling scheme) We take a sample from 100 plots e.g. 30% (equivalent to 30 plots) by first accessing the list of all the 100 plots (sampling frame) as follows: uniq_plots = unique(mt_elgon\$PLOT.NO.)
length(uniq_plots)
[1] 100

Now that we have our 100 plots, we can pick SRS samples of different sizes ie for different intensities 30%, 20%, 10%, 5%. For reproducibility, let us set our seed to 100

set.seed(100)
30% sample
size_30 = sample(uniq_plots, 0.3*nrow(mt_elgon))
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

length(unique(mt_elgon_0.3\$PLOT.NO.))
[1] 30

List of the thirty 10mx10m-plots for SRS-10mx10m-30% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.9.*

ii. 20% intensity (SRS-10mx10m-20% sampling scheme)

20% sample
size_20 = sample(uniq_plots, 0.2*nrow(mt_elgon))
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),]

length(unique(mt_elgon_0.2\$PLOT.NO.))
[1] 20

List of the twenty 10mx10m-plots for SRS-10mx10m-20% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.10.*

iii. 10% intensity (SRS-10mx10m-10% sampling scheme)

10% sample
size_10 = sample(uniq_plots, 0.1*nrow(mt_elgon))
mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),]

length(unique(mt_elgon_0.1\$PLOT.NO.))
[1] 10

List of the ten 10mx10m-plots for SRS-10mx10m-10% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.11.*

iv. 5% intensity (SRS-10mx10m-5% sampling scheme)

5% sample
size_5 = sample(uniq_plots, 0.05*nrow(mt_elgon))
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]

length(unique(mt_elgon_0.05\$PLOT.NO.))
[1] 5

List of the five 10mx10m-plots for SRS-10mx10m-5% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.12.*

d. 20 m by 20 m plot size

i. 30% intensity (SRS-20mx20m-30% sampling scheme) We take a sample from 25 plots e.g. 30% (equivalent to 7 plots) by first accessing the list of all the 25 plots (sampling frame) as follows:

uniq_plots = unique(mt_elgon\$PLOT.NO.)
length(uniq_plots)
[1] 25

Now that we have our 25 plots, we can pick SRS samples of different sizes ie for different intensities 30%, 20%, 10%, 5%. For reproducibility, let us set our seed to 100

set.seed(100)
30% sample
size_30 = sample(uniq_plots, 0.3*nrow(mt_elgon))
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

length(unique(mt_elgon_0.3\$PLOT.NO.))
[1] 7

List of the seven 20mx20m-plots for SRS-20mx20m-30% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.13.*

ii. 20% intensity (SRS-20mx20m-20% sampling scheme)

20% sample

size_20 = sample(uniq_plots, 0.2*nrow(mt_elgon))
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),]

length(unique(mt_elgon_0.2\$PLOT.NO.))
[1] 5

List of the five 20mx20m-plots for SRS-20mx20m-20% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.14*.

iii. 10% intensity (SRS-20mx20m-10% sampling scheme)

10% sample
size_10 = sample(uniq_plots, 0.1*nrow(mt_elgon))
mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),]

length(unique(mt_elgon_0.1\$PLOT.NO.))
[1] 2

List of the two 20mx20m-plots for SRS-20mx20m-10% sampling scheme in Mt Elgon forest is generated. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.15*.

iv. 5% intensity (SRS-20mx20m-5% sampling scheme)

5% sample
size_5 = sample(uniq_plots, 0.05*nrow(mt_elgon))
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]

length(unique(mt_elgon_0.05\$PLOT.NO.))
[1] 1

Identity of the one 20mx20m-plot for SRS-20mx20m-5% sampling scheme in Mt Elgon forest is given. Similar procedure was applied on other forests by replacing the name of forest (mt_elgon) in R codes by that of the forest of interest (Kakamega or Loruk). *Display of samples for all the three forests are indicated in Appendix VI.16*.

APPENDIX V: SYSTEMATIC SAMPLING PROCESS IN R FOR DIFFERENT PLOT SIZES AND SAMPLING INTENSITIES

V.1. SYSTEMATIC SAMPLING ALONG HORIZONTAL BELT TRANSECT (SSH) – EXAMPLE FROM MT. ELGON MONTANE FOREST

Horizontal transect faced East-West direction within the 100 m x 100 m forest unit. We sampled rows up to specified intensities.

a. 5 m by 5 m plot size

i. 30% intensity

library(reshape2)

30% sample

size_30 = nrow(uniq_plots) * ncol(uniq_plots) * 0.3

since each row has 20 plots, we get the number of rows to pick as

size_30 = size_30/20

we will therefore pick the 6 middle rows ie 8 to 13

size_30 = uniq_plots [8:13,]

size_30 = melt(size_30, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]
Display of list of 5 m by 5 m plots with 30% SSH samples Appendix IX

ii. 20% intensity

20% sample

size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2

since each row has 20 plots, we get the number of rows to pick as

size_20 = size_20/20

we will therefore pick the 6 middle rows ie 8 to 13

size_20 = uniq_plots [9:12,]

size_20 = melt(size_20, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),]
Display of list of 5 m by 5 m plots with 20% SSH samples Appendix VIII.

iii. 10% intensity

10% sample

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1
since each row has 20 plots, we get the number of rows to pick as
size_10 = size_10/20
we will therefore pick the 6 middle rows ie 8 to 13
size_10 = uniq_plots [8:13,]
size_10 = melt(size_10, id.var = NULL, variable.name= ''v1'')[,2]
Warning: attributes are not identical across measure variables; they will be dropped

Now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),] Display of list of 5 m by 5 m plots with 10% SSH samples in Appendices VII.

iv. 5% intensity

5% sample size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05 ## since each row has 20 plots, we get the number of rows to pick as size_5 = size_5/20 ## we will therefore pick the 6 middle rows ie 8 to 13 size_5 = uniq_plots [8:13,] size_5 = melt(size_5, id.var = NULL, variable.name= "v1")[,2] ## Warning: attributes are not identical across measure variables; they will be dropped ## Now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),] Display of list of 5 m by 5 m plots with 5% SSH samples Appendix VI.

b. 10 m by 5 m plot size

i. 30% intensity

library(reshape2)

30% sample

size_30 = nrow(uniq_plots) * ncol(uniq_plots) * 0.3

since each row has 10 plots, we get the number of rows to pick as

 $size_{30} = size_{30/10}$

we will therefore pick the 6 middle rows ie 8 to 13

size_30 = uniq_plots [8:13,]

size_30 = melt(size_30, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped
now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]
Display of list of 10 m by 5 m plots with 30% SSH samples in Appendix IX.

ii. 20% intensity

20% sample

size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2

since each row has 20 plots, we get the number of rows to pick as

size_20 = size_20/10

we will therefore pick the 6 middle rows ie 8 to 13

size_20 = uniq_plots [9:12,]

size_20 = melt(size_20, id.var = NULL, variable.name= "v1")[,2]

Display of list of 10 m by 5 m plots with 20% SSH samples in Appendix VIII.

iii. 10% intensity

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1
since each row has 20 plots, we get the number of rows to pick as

 $size_{10} = size_{10/10}$

we will therefore pick the 6 middle rows ie 8 to 13

size_10 = uniq_plots [10:11,]

size_10 = melt(size_10, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped

Now subset the plots in mt_elgon whose plot numbers are among the selected regions.

mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),]

Display of list of 10 m by 5 m plots with 10% SSH samples in Appendix VII.

iv. 5% intensity

5% sample

size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05
since each row has 20 plots, we get the number of rows to pick as
size_5 = size_5/10
we will therefore pick the 6 middle rows ie 8 to 13
size_5 = uniq_plots [11,]
size_5 = melt(size_5, id.var = NULL, variable.name= "v1")[,2]
Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]

Display of list of 10 m by 5 m plots with 5% SSH samples in Appendix VI

c. 10 m by 10 m plot size

i. 30% intensity

30% sample

size_30 = **nrow**(uniq_plots) * **ncol**(uniq_plots) * 0.3

since each row has 10 plots, we get the number of rows to pick as

size_30 = size_30/10

we will therefore pick the 6 middle rows ie 8 to 13

size_30 = uniq_plots [5:7,]

size_30 = melt(size_30, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

Display of list of 10m by 10m plots with 30% SSH samples in Appendix IX

ii. 20% intensity

20% sample
size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2
since each row has 20 plots, we get the number of rows to pick as
size_20 = size_20/10
we will therefore pick the 6 middle rows ie 8 to 13
size_20 = uniq_plots [5:6,]
size_20 = melt(size_20, id.var = NULL, variable.name= "v1")[,2]
Warning: attributes are not identical across measure variables; they will be dropped

now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),] Display of list of 10m by 10m plots with 20% SSH samples in Appendix VIII.

iii. 10% intensity

10% sample

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1
since each row has 20 plots, we get the number of rows to pick as
size_10 = size_10/10
we will therefore pick the 6 middle rows ie 8 to 13
size_10 = uniq_plots [5,]
size_10 = melt(size_10, id.var = NULL, variable.name= "v1")[,2]
Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10,]
Display of list of 10m by 10m plots with 10% SSH samples in Appendix VII

iv. 5% intensity

#5% sample

size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05

since each row has 20 plots, we get the number of rows to pick as

 $size_5 = size_5/20$

we will therefore pick the 6 middle rows ie 8 to 13

size_5 = uniq_plots [5, 1:5]

size_5 = melt(size_5, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]
Display of list of 10m by 10m plots with 5% SSH samples in Appendix VI.

d. 20 m by 20 m plot size

i. 30% intensity

30% sample size_30 = nrow(uniq_plots) * ncol(uniq_plots) * 0.3 ## since each row has 5 plots, we get the number of rows to pick as size_30 = size_30/5 ## we will therefore pick the 6 middle rows ie 8 to 13 size_30 = c(uniq_plots [3,], uniq_plots [4, 1:3]) size_30 = melt(size_30, id.var = NULL, variable.name= "v1") ## now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30\$value),] Display of list of 20 m by 20 m plots with 30% SSH samples in Appendix IX

ii. 20% intensity

20% sample

size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2

since each row has 5 plots, we get the number of rows to pick as

 $size_{20} = size_{20/5}$

we will therefore pick the 6 middle rows ie 8 to 13

size_20 = uniq_plots [3,]

size_20 = melt(size_20, id.var = NULL, variable.name= "v1")

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20\$value),]

Display of list of 20 m by 20 m plots with 20% SSH samples in Appendix VIII

iii. 10% intensity

10% sample

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1

since each row has 5 plots, we get the number of rows to pick as

 $size_{10} = size_{10/5}$

we will therefore pick the 6 middle rows ie 8 to 13

size_10 = uniq_plots [5,1:3]

size_10 = melt(size_10, id.var = NULL, variable.name= "v1")

Warning: attributes are not identical across measure variables; they will be dropped ## Now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10\$value),] Display of list of 20 m by 20 m plots with 10% SSH samples in VII

iv. 5% intensity

5% sample

size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05

since each row has 5 plots, we get the number of rows to pick as

size_5 = size_5/5

we will therefore pick the 6 middle rows ie 8 to 13

size_5 = uniq_plots [5, 1:2]

size_5 = melt(size_5, id.var = NULL, variable.name= "v1")

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5\$value),]
Display of list of 20 m by 20 m plots with 5% SSH samples in Appendix VI.

V.2. SYSTEMATIC SAMPLING ALONG VERTICAL BELT TRANSECT (SSV) – EXAMPLE FROM MT. ELGON MONTANE FOREST

Vertical transect faced North-South direction within the 100 m x 100 m forest unit. We sampled columns up to specified intensities.

a. 5 m by 5 m plot

i. 30%

30% sample

size_30 = nrow(uniq_plots) * ncol(uniq_plots) * 0.3
since each row has 20 plots, we get the number of rows to pick as

size_30 = size_30/20

we will therefore pick the 6 middle rows ie 8 to 13

size_30 = uniq_plots [,8:13]

size_30 = melt(size_30, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped ## Now subset the plots in mt_elgon whose plot numbers are among the selected regions.

mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

Display of list of 5 m by 5 m plots with 30% SSV samples in Appendix IX.

ii. 20% intensity

20% sample

size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2
since each row has 20 plots, we get the number of rows to pick as
size_20 = size_20/20
we will therefore pick the 6 middle rows ie 8 to 13
size_20 = uniq_plots [,9:12]
size_20 = melt(size_20, id.var = NULL, variable.name= ''v1'')[,2]
Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),]

Display of list of 5 m by 5 m plots with 20% SSV samples in Appendix VIII.

iii. 10% intensity

10% sample

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1

since each row has 20 plots, we get the number of rows to pick as

 $size_{10} = size_{10/20}$

we will therefore pick the 6 middle rows ie 8 to 13

size_10 = uniq_plots [,8:13]

size_10 = melt(size_10, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),]

Display of list of 5 m by 5 m plots with 10% SSV samples in Appendix VII.

iv. 5% intensity

5% sample

size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05
since each row has 20 plots, we get the number of rows to pick as
size_5 = size_5/20
we will therefore pick the 6 middle rows ie 8 to 13
size_5 = uniq_plots [,8:13]
size_5 = melt(size_5, id.var = NULL, variable.name= ''v1'')[,2]
Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]
Display of list of 5 m by 5 m plots with 5% SSV samples in Appendix VI.

b. 10 m by 5 m plot size

i. 30% intensity

30% sample

size_30 = nrow(uniq_plots) * ncol(uniq_plots) * 0.3

since each column has 20 plots, we get the number of rows to pick as size 30 = size 30/20

we will therefore pick the 6 middle rows ie 8 to 13

size_30 = uniq_plots [,5:7]

size_30 = melt(size_30, id.var = NULL, variable.name= "v5")[,2]

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

Display of list of 10 m by 5 m plots with 30% SSV samples in Appendix IX.

ii. 20% intensity

20% sample

size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2

since each row has 20 plots, we get the number of rows to pick as

size_20 = size_20/20

we will therefore pick the 6 middle rows ie 8 to 13

size_20 = uniq_plots [,5:6]

```
size_20 = melt(size_20, id.var = NULL, variable.name= "v5")[,2]
```

Warning: attributes are not identical across measure variables; they will be dropped
Now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),]
Display of list of 10 m by 5 m plots with 20% SSV samples in Appendix VIII.

iii. 10% intensity

10% sample

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1
since each row has 20 plots, we get the number of rows to pick as
size_10 = size_10/20
we will therefore pick the 6 middle rows ie 8 to 13
size 10 = uniq_plots [,5]

Now subset the plots in mt elgon whose plot numbers are among the selected regions. mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),] Display of list of 10 m by 5 m plots with 10% SSV samples in Appendix VII.

> iv. 5% intensity

5% sample size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05 ## since each row has 20 plots, we get the number of rows to pick as size 5 = size 5/20## we will therefore pick the 6 middle rows ie 8 to 13 size_5 = uniq_plots [1:10,5] ## Now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),] Display of list of 10 m by 5 m plots with 5% SSV samples in Appendix VI.

c. 10 m by 10 m plot

i. 30% intensity

```
# 30% sample
```

size_30 = nrow(uniq_plots) * ncol(uniq_plots) * 0.3

since each column has 10 plots, we get the number of rows to pick as

size $30 = size \frac{30}{10}$

we will therefore pick the 6 middle rows ie 8 to 13

size 30 = uniq plots [.5:7]

size_30 = melt(size_30, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped ## Now subset the plots in mt elgon whose plot numbers are among the selected regions. mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30),]

Display of list of 10 m by 10 m plots with 30% SSV samples in Appendix IX.

ii. 20% intensity

20% sample

size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2

since each row has 20 plots, we get the number of rows to pick as

size $20 = size \frac{20}{10}$

we will therefore pick the 6 middle rows ie 8 to 13

size 20 = uniq plots [,5:6]

size 20 = melt(size 20, id.var = NULL, variable.name= "v1")[,2]

Warning: attributes are not identical across measure variables; they will be dropped ## Now subset the plots in mt elgon whose plot numbers are among the selected regions. mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),] Display of list of 10 m by 10 m plots with 20% SSV samples in Appendix VIII.

> iii. 10% intensity

10% sample

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1

since each row has 20 plots, we get the number of rows to pick as $size_{10} = size_{10/10}$

we will therefore pick the 6 middle rows ie 8 to 13
size_10 = uniq_plots [,5]

now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),] Display of list of 10 m by 10 m plots with 10% SSV samples in Appendix VII.

iv. 5% intensity

size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05
since each row has 20 plots, we get the number of rows to pick as
size_5 = size_5/20
we will therefore pick the 6 middle rows ie 8 to 13
size_5 = uniq_plots [1:5, 5]
now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]
Display of list of 10 m by 10 m plots with 5% SSV samples in Appendix VI.

d. 20 m by 20 m plot size

i. 30% intensity

30% sample

size_30 = nrow(uniq_plots) * ncol(uniq_plots) * 0.3

since each row has 5 plots, we get the number of rows to pick as

 $size_{30} = size_{30/5}$

we will therefore pick the 6 middle rows ie 8 to 13

size_30a = uniq_plots [,3]

size_30b = uniq_plots [1:3,4]

size_30 = c(melt(size_30a, id.var = NULL, variable.name= "v1"), melt(size_30b, id.var = NULL, variable.name= "v1"))

```
size_30 = melt(size_30, id.var = NULL, variable.name= NULL)
```

now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.3 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_30\$value),] Display of list of 20 m by 20 m plots with 30% SSV samples in Appendix IX.

ii. 20% intensity

20% sample

size_20 = nrow(uniq_plots) * ncol(uniq_plots) * 0.2

since each row has 5 plots, we get the number of rows to pick as

 $size_{20} = size_{20/5}$

we will therefore pick the 6 middle rows ie 8 to 13

size_20 = uniq_plots [,3]

now subset the plots in mt_elgon whose plot numbers are among the selected regions. mt_elgon_0.2 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_20),] Display of list of 20 m by 20 m plots with 20% SSV samples in Appendix VIII.

iii. 10% intensity

10% sample

size_10 = nrow(uniq_plots) * ncol(uniq_plots) * 0.1
since each row has 5 plots, we get the number of rows to pick as

 $size_{10} = size_{10/5}$

we will therefore pick the 6 middle rows ie 8 to 13
size_10 = uniq_plots [1:3,5]
now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.1 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_10),]
Display of list of 20 m by 20 m plots with 10% SSV samples in Appendix VII.

iv. 5% intensity

5% sample

size_5 = nrow(uniq_plots) * ncol(uniq_plots) * 0.05
since each row has 5 plots, we get the number of rows to pick as
size_5 = size_5/5
we will therefore pick the 6 middle rows ie 8 to 13
size_5 = uniq_plots [1:2,5]
now subset the plots in mt_elgon whose plot numbers are among the selected regions.
mt_elgon_0.05 = mt_elgon [which(mt_elgon\$PLOT.NO. %in% size_5),]
Display of list of 20 m by 20 m plots with 5% SSV samples in Appendix VI.

11.1.	JIIIAJIII-S	, to plots							
	<u>Kakameg</u>	a Forest		Mt Elgor	n forest		Loruk D	W forest	
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	12217	12210	122181	11117	11110	111181	13117	13110	131181
2	12224	12230	122182	11124	11130	111182	13124	13130	131182
3	12251	12250	122183	11151	11150	111183	13151	13150	131183
4	12288	12270	122184	11188	11170	111184	13188	13170	131184
5	122110	12290	122185	111110	11190	111185	131110	13190	131185
6	122111	122110	122186	111111	111110	111186	131111	131110	131186
7	122118	122130	122187	111118	111130	111187	131118	131130	131187
8	122123	122150	122188	111123	111150	111188	131123	131150	131188
9	122144	122170	122189	111144	111170	111189	131144	131170	131189
10	122152	122190	122190	111152	111190	111190	131152	131190	131190
11	122236	122210	122191	111236	111210	111191	131236	131210	131191
12	122261	122230	122192	111261	111230	111192	131261	131230	131192
13	122265	122250	122193	111265	111250	111193	131265	131250	131193
14	122281	122270	122194	111281	111270	111194	131281	131270	131194
15	122282	122290	122195	111282	111290	111195	131282	131290	131195
16	122286	122310	122196	111286	111310	111196	131286	131310	131196
17	122302	122330	122197	111302	111330	111197	131302	131330	131197
18	122326	122350	122198	111326	111350	111198	131326	131350	131198
19	122327	122370	122199	111327	111370	111199	131327	131370	131199
20	122373	122390	122200	111373	111390	111200	131373	131390	131200

VI.1. 5mx5m-5% plots

VI.2. 10mx5m-5% plots

	<u>Kakameg</u>	a Forest		<u>Mt Elgo</u>	n forest		Loruk D	W forest	
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	12211	12221	122161	11111	11121	111161	13111	13121	131161
2	12239	12261	122163	11139	11161	111163	13139	13161	131163
3	122139	122101	122165	111139	111101	111165	131139	131101	131165
4	122157	122141	122167	111157	111141	111167	131157	131141	131167
5	122159	122181	122169	111159	111181	111169	131159	131181	131169
6	122187	122221	122171	111187	111221	111171	131187	131221	131171
7	122211	122261	122173	111211	111261	111173	131211	131261	131173
8	122229	122301	122175	111229	111301	111175	131229	131301	131175
9	122369	122341	122177	111369	111341	111177	131369	131341	131177
10	122387	122381	122179	111387	111381	111179	131387	131381	131179

21	8
	~

VI.3. 10mx10m-5% plots

	<u>Kakamega Forest</u>			<u>Mt Elgo</u> i	n forest		Loruk D	W forest	
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	122165	1229	122161	111165	1119	111161	131165	1319	131161
2	122173	12249	122163	111173	11149	111163	131173	13149	131163
3	122249	12289	122165	111249	11189	111165	131249	13189	131165
4	122251	122129	122167	111251	111129	111167	131251	131129	131167
5	122369	122169	122169	111369	111169	111169	131369	131169	131169

VI.4. 20mx20m-5% plots

<u>Kakamega Forest</u>			<u>Mt Elgo</u> i	n forest		Loruk DW forest			
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	122321	1229	122161	111257	11117	111321	131257	1319	131161

	<u>Kakameg</u>	a Forest		Mt Elgor	n forest		Loruk D	W forest	
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	12214	12210	122181	11114	11110	111181	13114	13110	131181
2	12227	12211	122182	11127	11111	111182	13127	13111	131182
3	12229	12230	122183	11129	11130	111183	13129	13130	131183
4	12285	12231	122184	11185	11131	111184	13185	13131	131184
5	122102	12250	122185	111102	11150	111185	131102	13150	131185
6	122110	12251	122186	111110	11151	111186	131110	13151	131186
7	122111	12270	122187	111111	11170	111187	131111	13170	131187
8	122114	12271	122188	111114	11171	111188	131114	13171	131188
9	122127	12290	122189	111127	11190	111189	131127	13190	131189
10	122135	12291	122190	111135	11191	111190	131135	13191	131190
11	122137	122110	122191	111137	111110	111191	131137	131110	131191
12	122138	122111	122192	111138	111111	111192	131138	131111	131192
13	122139	122130	122193	111139	111130	111193	131139	131130	131193
14	122147	122131	122194	111147	111131	111194	131147	131131	131194
15	122148	122150	122195	111148	111150	111195	131148	131150	131195
16	122165	122151	122196	111165	111151	111196	131165	131151	131196
17	122167	122170	122197	111167	111170	111197	131167	131170	131197
18	122175	122171	122198	111175	111171	111198	131175	131171	131198
19	122204	122190	122199	111204	111190	111199	131204	131190	131199
20	122217	122191	122200	111217	111191	111200	131217	131191	131200
21	122227	122210	122201	111227	111210	111201	131227	131210	131201
22	122228	122211	122202	111228	111211	111202	131228	131211	131202
23	122241	122230	122203	111241	111230	111203	131241	131230	131203
24	122244	122231	122204	111244	111231	111204	131244	131231	131204
25	122248	122250	122205	111248	111250	111205	131248	131250	131205
26	122255	122251	122206	111255	111251	111206	131255	131251	131206
27	122279	122270	122207	111279	111270	111207	131279	131270	131207
28	122285	122271	122208	111285	111271	111208	131285	131271	131208
29	122293	122290	122209	111293	111290	111209	131293	131290	131209
30	122312	122291	122210	111312	111291	111210	131312	131291	131210
31	122316	122310	122211	111316	111310	111211	131316	131310	131211
32	122327	122311	122212	111327	111311	111212	131327	131311	131212
33	122343	122330	122213	111343	111330	111213	131343	131330	131213
34	122347	122331	122214	111347	111331	111214	131347	131331	131214
35	122359	122350	122215	111359	111350	111215	131359	131350	131215
36	122364	122351	122216	111364	111351	111216	131364	131351	131216
37	122382	122370	122217	111382	111370	111217	131382	131370	131217
38	122384	122371	122218	111384	111371	111218	131384	131371	131218
39	122386	122390	122219	111386	111390	111219	131386	131390	131219

VII.1 5mx5m-10% plots

V 11.4	2. IUMX5										
	<u>Kakam</u>	ega Forest		<u>Mt Elgo</u>	n forest		Loruk D	W forest			
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV		
	1 1225	12219	122161	1115	11119	111161	1315	13119	131161		
	2 12213	12221	122163	11113	11121	111163	13113	13121	131163		
	3 12217	12259	122165	11117	11159	111165	13117	13159	131165		
	4 12231	12261	122167	11131	11161	111167	13131	13161	131167		
	5 12273	12299	122169	11173	11199	111169	13173	13199	131169		
	6 12289	122101	122171	11189	111101	111171	13189	131101	131171		
	7 122131	122139	122173	111131	111139	111173	131131	131139	131173		
	8 122143	122141	122175	111143	111141	111175	131143	131141	131175		
	9 122155	122179	122177	111155	111179	111177	131155	131179	131177		
1	0 122205	122181	122179	111205	111181	111179	131205	131181	131179		
1	1 122223	122219	122181	111223	111219	111181	131223	131219	131181		
1	2 122265	122221	122183	111265	111221	111183	131265	131221	131183		
1	3 122267	122259	122185	111267	111259	111185	131267	131259	131185		
1	4 122271	122261	122187	111271	111261	111187	131271	131261	131187		
1	5 122305	122299	122189	111305	111299	111189	131305	131299	131189		
1	6 122317	122301	122191	111317	111301	111191	131317	131301	131191		
1	7 122337	122339	122193	111337	111339	111193	131337	131339	131193		
1	8 122359	122341	122195	111359	111341	111195	131359	131341	131195		
1	9 122377	122379	122197	111377	111379	111197	131377	131379	131197		
2	0 122387	122381	122199	111387	111381	111199	131387	131381	131199		
VII.3.	10mx10n	n-10% plo	ts								
	Kakameg	a Forest		Mt Elgon	forest		Loruk DV				
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV		
1	12243	1229	122161	11143	1119	111161	13143	1319	131161		
2	12259	12249	122163	11159	11149	111163	13159	13149	131163		
3	12283	12289	122165	11183	11189	111165	13183	13189	131165		
4	12287	122129	122167	11187	111129	111167	13187	131129	131167		
5	12289	122169	122169	11189	111169	111169	13189	131169	131169		
6	12293	122209	122171	11193	111209	111171	13193	131209	131171		
7	122127	122249	122173	111127	111249	111173	131127	131249	131173		
8	122209	122289	122175	111209	111289	111175	131209	131289	131175		
9	122213	122329	122177	111213	111329	111177	131213	131329	131177		
10	122377	122369	122179	111377	111369	111179	131377	131369	131179		
VII.4 .	20mx20m	10% plo	ts								
	<u>Kakameg</u>	a Forest		<u>Mt Elgor</u>	forest		Loruk DV	V forest			
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV		
1	12297	1229	122161	11189	11117	111321	13189	131161	131161		
2	122245	12289	122165	11197	11197	111325	13197	131165	131161		

VII.2. 10mx5m-10% plots

	Kakamega	a Forest		Mt Elgo	n forest		Loruk D	Loruk DW forest	
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	1227	1229	122161	1117	1119	111161	1317	1319	131161
2	1228	12210	122162	1118	11110	111162	1318	13110	131162
3	12210	12211	122163	11110	11111	111163	13110	13111	131163
4	12212	12212	122164	11112	11112	111164	13112	13112	131164
5	12217	12229	122165	11117	11129	111165	13117	13129	131165
6	12232	12230	122166	11132	11130	111166	13132	13130	131166
7	12233	12231	122167	11133	11131	111167	13133	13131	131167
8	12237	12232	122168	11137	11132	111168	13137	13132	131168
9	12239	12249	122169	11139	11149	111169	13139	13149	131169
10	12240	12250	122170	11140	11150	111170	13140	13150	131170
11	12242	12251	122171	11142	11151	111171	13142	13151	131171
12	12247	12252	122172	11147	11152	111172	13147	13152	131172
13	12251	12269	122173	11151	11169	111173	13151	13169	131173
14	12255	12270	122174	11155	11170	111174	13155	13170	131174
15	12258	12271	122175	11158	11171	111175	13158	13171	131175
16	12263	12272	122176	11163	11172	111176	13163	13172	131176
17	12267	12289	122177	11167	11189	111177	13167	13189	131177
18	12274	12290	122178	11174	11190	111178	13174	13190	131178
19	12293	12291	122179	11193	11191	111179	13193	13191	131179
20	12297	12292	122180	11197	11192	111180	13197	13192	131180
21	12299	122109	122181	11199	111109	111181	13199	131109	131181
22	122113	122110	122182	111113	111110	111182	131113	131110	131182
23	122117	122111	122183	111117	111111	111183	131117	131111	131183
24	122140	122112	122184	111140	111112	111184	131140	131112	131184
25	122144	122129	122185	111144	111129	111185	131144	131129	131185
26	122146	122130	122186	111146	111130	111186	131146	131130	131186
27	122154	122131	122187	111154	111131	111187	131154	131131	131187
28	122157	122132	122188	111157	111132	111188	131157	131132	131188
29	122159	122149	122189	111159	111149	111189	131159	131149	131189
30	122172	122150	122190	111172	111150	111190	131172	131150	131190
31	122177	122151	122191	111177	111151	111191	131177	131151	131191
32	122182	122152	122192	111182	111152	111192	131182	131152	131192
33	122187	122169	122193	111187	111169	111193	131187	131169	131193
34	122189	122170	122194	111189	111170	111194	131189	131170	131194
35	122193	122171	122195	111193	111171	111195	131193	131171	131195
36	122194	122172	122196	111194	111172	111196	131194	131172	131196
37	122204	122189	122197	111204	111189	111197	131204	131189	131197
38	122205	122190	122198	111205	111190	111198	131205	131190	131198

VIII.1.5mx5m-20% plots

39	122207	122191	122199	111207	111191	111199	131207	131191	131199
40	122216	122192	122200	111216	111192	111200	131216	131192	131200
41	122217	122209	122201	111217	111209	111201	131217	131209	131201
42	122223	122210	122202	111223	111210	111202	131223	131210	131202
43	122224	122211	122203	111224	111211	111203	131224	131211	131203
44	122228	122212	122204	111228	111212	111204	131228	131212	131204
45	122232	122229	122205	111232	111229	111205	131232	131229	131205
46	122241	122230	122206	111241	111230	111206	131241	131230	131206
47	122244	122231	122207	111244	111231	111207	131244	131231	131207
48	122251	122232	122208	111251	111232	111208	131251	131232	131208
49	122253	122249	122209	111253	111249	111209	131253	131249	131209
50	122254	122250	122210	111254	111250	111210	131254	131250	131210
51	122256	122251	122211	111256	111251	111211	131256	131251	131211
52	122268	122252	122212	111268	111252	111212	131268	131252	131212
53	122274	122269	122213	111274	111269	111213	131274	131269	131213
54	122275	122270	122214	111275	111270	111214	131275	131270	131214
55	122278	122271	122215	111278	111271	111215	131278	131271	131215
56	122287	122272	122216	111287	111272	111216	131287	131272	131216
57	122294	122289	122217	111294	111289	111217	131294	131289	131217
58	122298	122290	122218	111298	111290	111218	131298	131290	131218
59	122301	122291	122219	111301	111291	111219	131301	131291	131219
60	122307	122292	122220	111307	111292	111220	131307	131292	131220
61	122313	122309	122221	111313	111309	111221	131313	131309	131221
62	122316	122310	122222	111316	111310	111222	131316	131310	131222
63	122324	122311	122223	111324	111311	111223	131324	131311	131223
64	122328	122312	122224	111328	111312	111224	131328	131312	131224
65	122330	122329	122225	111330	111329	111225	131330	131329	131225
66	122335	122330	122226	111335	111330	111226	131335	131330	131226
67	122340	122331	122227	111340	111331	111227	131340	131331	131227
68	122342	122332	122228	111342	111332	111228	131342	131332	131228
69	122343	122349	122229	111343	111349	111229	131343	131349	131229
70	122356	122350	122230	111356	111350	111230	131356	131350	131230
71	122357	122351	122231	111357	111351	111231	131357	131351	131231
72	122363	122352	122232	111363	111352	111232	131363	131352	131232
73	122367	122369	122233	111367	111369	111233	131367	131369	131233
74	122377	122370	122234	111377	111370	111234	131377	131370	131234
75	122383	122371	122235	111383	111371	111235	131383	131371	131235
76	122385	122372	122236	111385	111372	111236	131385	131372	131236
77	122386	122389	122237	111386	111389	111237	131386	131389	131237
78	122388	122390	122238	111388	111390	111238	131388	131390	131238
79	122393	122391	122239	111393	111391	111239	131393	131391	131239
80	122399	122392	122240	111399	111392	111240	131399	131392	131240

	Kakamega	i Forest		Mt Elgo	n forest		Loruk D	W forest	
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	1229	12217	122161	1119	11117	111161	1319	13117	131161
2	12213	12219	122163	11113	11119	111163	13113	13119	131163
3	12233	12221	122165	11133	11121	111165	13133	13121	131165
4	12241	12223	122167	11141	11123	111167	13141	13123	131167
5	12271	12257	122169	11171	11157	111169	13171	13157	131169
6	12287	12259	122171	11187	11159	111171	13187	13159	131171
7	12295	12261	122173	11195	11161	111173	13195	13161	131173
8	122103	12263	122175	111103	11163	111175	131103	13163	131175
9	122121	12297	122177	111121	11197	111177	131121	13197	131177
10	122123	12299	122179	111123	11199	111179	131123	13199	131179
11	122129	122101	122181	111129	111101	111181	131129	131101	131181
12	122139	122103	122183	111139	111103	111183	131139	131103	131183
13	122149	122137	122185	111149	111137	111185	131149	131137	131185
14	122157	122139	122187	111157	111139	111187	131157	131139	131187
15	122165	122141	122189	111165	111141	111189	131165	131141	131189
16	122169	122143	122191	111169	111143	111191	131169	131143	131191
17	122171	122177	122193	111171	111177	111193	131171	131177	131193
18	122175	122179	122195	111175	111179	111195	131175	131179	131195
19	122177	122181	122197	111177	111181	111197	131177	131181	131197
20	122185	122183	122199	111185	111183	111199	131185	131183	131199
21	122203	122217	122201	111203	111217	111201	131203	131217	131201
22	122215	122219	122203	111215	111219	111203	131215	131219	131203
23	122231	122221	122205	111231	111221	111205	131231	131221	131205
24	122247	122223	122207	111247	111223	111207	131247	131223	131207
25	122249	122257	122209	111249	111257	111209	131249	131257	131209
26	122251	122259	122211	111251	111259	111211	131251	131259	131211
27	122255	122261	122213	111255	111261	111213	131255	131261	131213
28	122257	122263	122215	111257	111263	111215	131257	131263	131215
29	122265	122297	122217	111265	111297	111217	131265	131297	131217
30	122267	122299	122219	111267	111299	111219	131267	131299	131219
31	122283	122301	122221	111283	111301	111221	131283	131301	131221
32	122301	122303	122223	111301	111303	111223	131301	131303	131223
33	122303	122337	122225	111303	111337	111225	131303	131337	131225
34	122309	122339	122227	111309	111339	111227	131309	131339	131227
35	122315	122341	122229	111315	111341	111229	131315	131341	131229
36	122327	122343	122231	111327	111343	111231	131327	131343	131231
37	122347	122377	122233	111347	111377	111233	131347	131377	131233
38	122361	122379	122235	111361	111379	111235	131361	131379	131235
39	122375	122381	122237	111375	111381	111237	131375	131381	131237
40	122381	122383	122239	111381	111383	111239	131381	131383	131239

VIII.2. 10mx5m-20% plots

	Kakamega Forest			Mt Elgo	n forest		Loruk DW forest			
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV	
1	12243	1229	122161	11143	1119	111161	13143	1319	131161	
2	12253	12211	122163	11153	11111	111163	13153	13111	131163	
3	12255	12249	122165	11155	11149	111165	13155	13149	131165	
4	12289	12251	122167	11189	11151	111167	13189	13151	131167	
5	12299	12289	122169	11199	11189	111169	13199	13189	131169	
6	122129	12291	122171	111129	11191	111171	131129	13191	131171	
7	122163	122129	122173	111163	111129	111173	131163	131129	131173	
8	122177	122131	122175	111177	111131	111175	131177	131131	131175	
9	122203	122169	122177	111203	111169	111177	131203	131169	131177	
10	122217	122171	122179	111217	111171	111179	131217	131171	131179	
11	122251	122209	122201	111251	111209	111201	131251	131209	131201	
12	122253	122211	122203	111253	111211	111203	131253	131211	131203	
13	122257	122249	122205	111257	111249	111205	131257	131249	131205	
14	122283	122251	122207	111283	111251	111207	131283	131251	131207	
15	122287	122289	122209	111287	111289	111209	131287	131289	131209	
16	122293	122291	122211	111293	111291	111211	131293	131291	131211	
17	122329	122329	122213	111329	111329	111213	131329	131329	131213	
18	122363	122331	122215	111363	111331	111215	131363	131331	131215	
19	122365	122369	122217	111365	111369	111217	131365	131369	131217	
20	122377	122371	122219	111377	111371	111219	131377	131371	131219	

VIII.3. 10mx10m-20% plots

VIII.4. 20mx20m-20% plots

	<u>Kakamega Forest</u>			Mt Elgon forest			Loruk DW forest		
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	1225	1229	122161	11113	1119	111161	13113	131161	131161
2	12289	12289	122165	11197	11189	111165	13197	131165	131161
3	122161	122169	122169	111173	111169	111169	131173	131169	131161
4	122169	122249	122173	111253	111249	111173	131253	131173	131161
5	122325	122329	122177	111333	111329	111177	131333	131177	131161

H	Kakamega	Forest	N	Mt Elgon f	forest	Ī	Loruk DW	forest	
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	1224	1228	122141	1114	1118	111141	1314	1318	131141
2	12210	1229	122142	11110	1119	111142	13110	1319	131142
3	12211	12210	122143	11111	11110	111143	13111	13110	131143
4	12212	12211	122144	11112	11111	111144	13112	13111	131144
5	12213	12212	122145	11113	11112	111145	13113	13112	131145
6	12223	12213	122146	11123	11113	111146	13123	13113	131146
7	12224	12228	122147	11124	11128	111147	13124	13128	131147
8	12230	12229	122148	11130	11129	111148	13130	13129	131148
9	12238	12230	122149	11138	11130	111149	13138	13130	131149
10	12243	12231	122150	11143	11131	111150	13143	13131	131150
11	12248	12232	122151	11148	11132	111151	13148	13132	131151
12	12257	12233	122152	11157	11133	111152	13157	13133	131152
13	12265	12248	122153	11165	11148	111153	13165	13148	131153
14	12266	12249	122154	11166	11149	111154	13166	13149	131154
15	12267	12250	122155	11167	11150	111155	13167	13150	131155
16	12269	12251	122156	11169	11151	111156	13169	13151	131156
17	12270	12252	122157	11170	11152	111157	13170	13152	131157
18	12273	12253	122158	11173	11153	111158	13173	13153	131158
19	12274	12268	122159	11174	11168	111159	13174	13168	131159
20	12278	12269	122160	11178	11169	111160	13178	13169	131160
21	12279	12270	122161	11179	11170	111161	13179	13170	131161
22	12282	12271	122162	11182	11171	111162	13182	13171	131162
23	12283	12272	122163	11183	11172	111163	13183	13172	131163
24	12288	12273	122164	11188	11173	111164	13188	13173	131164
25	12294	12288	122165	11194	11188	111165	13194	13188	131165
26	12296	12289	122166	11196	11189	111166	13196	13189	131166
27	12299	12290	122167	11199	11190	111167	13199	13190	131167
28	122103	12291	122168	111103	11191	111168	131103	13191	131168
29	122104	12292	122169	111104	11192	111169	131104	13192	131169
30	122108	12293	122170	111108	11193	111170	131108	13193	131170
31	122109	122108	122171	111109	111108	111171	131109	131108	131171
32	122111	122109	122172	111111	111109	111172	131111	131109	131172
33	122116	122110	122173	111116	111110	111173	131116	131110	131173
34	122117	122111	122174	111117	111111	111174	131117	131111	131174
35	122119	122112	122175	111119	111112	111175	131119	131112	131175
36	122120	122113	122176	111120	111113	111176	131120	131113	131176

IX.1. 5mx5m-30% plots

37	122124	122128	122177	111124	111128	111177	131124	131128	131177
38	122129	122129	122178	111129	111129	111178	131129	131129	131178
39	122137	122130	122179	111137	111130	111179	131137	131130	131179
40	122138	122131	122180	111138	111131	111180	131138	131131	131180
41	122146	122132	122181	111146	111132	111181	131146	131132	131181
42	122148	122133	122182	111148	111133	111182	131148	131133	131182
43	122149	122148	122183	111149	111148	111183	131149	131148	131183
44	122150	122149	122184	111150	111149	111184	131150	131149	131184
45	122153	122150	122185	111153	111150	111185	131153	131150	131185
46	122155	122151	122186	111155	111151	111186	131155	131151	131186
47	122156	122152	122187	111156	111152	111187	131156	131152	131187
48	122158	122153	122188	111158	111153	111188	131158	131153	131188
49	122170	122168	122189	111170	111168	111189	131170	131168	131189
50	122175	122169	122190	111175	111169	111190	131175	131169	131190
51	122181	122170	122191	111181	111170	111191	131181	131170	131191
52	122183	122171	122192	111183	111171	111192	131183	131171	131192
53	122186	122172	122193	111186	111172	111193	131186	131172	131193
54	122188	122173	122194	111188	111173	111194	131188	131173	131194
55	122192	122188	122195	111192	111188	111195	131192	131188	131195
56	122203	122189	122196	111203	111189	111196	131203	131189	131196
57	122204	122190	122197	111204	111190	111197	131204	131190	131197
58	122205	122191	122198	111205	111191	111198	131205	131191	131198
59	122206	122192	122199	111206	111192	111199	131206	131192	131199
60	122215	122193	122200	111215	111193	111200	131215	131193	131200
61	122216	122208	122201	111216	111208	111201	131216	131208	131201
62	122220	122209	122202	111220	111209	111202	131220	131209	131202
63	122228	122210	122203	111228	111210	111203	131228	131210	131203
64	122229	122211	122204	111229	111211	111204	131229	131211	131204
65	122230	122212	122205	111230	111212	111205	131230	131212	131205
66	122231	122213	122206	111231	111213	111206	131231	131213	131206
67	122233	122228	122207	111233	111228	111207	131233	131228	131207
68	122234	122229	122208	111234	111229	111208	131234	131229	131208
69	122237	122230	122209	111237	111230	111209	131237	131230	131209
70	122243	122231	122210	111243	111231	111210	131243	131231	131210
71	122244	122232	122211	111244	111232	111211	131244	131232	131211
72	122251	122233	122212	111251	111233	111212	131251	131233	131212
73	122255	122248	122213	111255	111248	111213	131255	131248	131213
74	122258	122249	122214	111258	111249	111214	131258	131249	131214
75	122261	122250	122215	111261	111250	111215	131261	131250	131215
76	122264	122251	122216	111264	111251	111216	131264	131251	131216
77	122269	122252	122217	111269	111252	111217	131269	131252	131217
78	122270	122253	122218	111270	111253	111218	131270	131253	131218

79	122277	122268	122219	111277	111268	111219	131277	131268	131219
80	122278	122269	122220	111278	111269	111220	131278	131269	131220
81	122279	122270	122221	111279	111270	111221	131279	131270	131221
82	122282	122271	122222	111282	111271	111222	131282	131271	131222
83	122283	122272	122223	111283	111272	111223	131283	131272	131223
84	122286	122273	122224	111286	111273	111224	131286	131273	131224
85	122289	122288	122225	111289	111288	111225	131289	131288	131225
86	122293	122289	122226	111293	111289	111226	131293	131289	131226
87	122295	122290	122227	111295	111290	111227	131295	131290	131227
88	122296	122291	122228	111296	111291	111228	131296	131291	131228
89	122311	122292	122229	111311	111292	111229	131311	131292	131229
90	122312	122293	122230	111312	111293	111230	131312	131293	131230
91	122313	122308	122231	111313	111308	111231	131313	131308	131231
92	122317	122309	122232	111317	111309	111232	131317	131309	131232
93	122318	122310	122233	111318	111310	111233	131318	131310	131233
94	122321	122311	122234	111321	111311	111234	131321	131311	131234
95	122324	122312	122235	111324	111312	111235	131324	131312	131235
96	122325	122313	122236	111325	111313	111236	131325	131313	131236
97	122329	122328	122237	111329	111328	111237	131329	131328	131237
98	122340	122329	122238	111340	111329	111238	131340	131329	131238
99	122343	122330	122239	111343	111330	111239	131343	131330	131239
100	122344	122331	122240	111344	111331	111240	131344	131331	131240
101	122346	122332	122241	111346	111332	111241	131346	131332	131241
102	122351	122333	122242	111351	111333	111242	131351	131333	131242
103	122354	122348	122243	111354	111348	111243	131354	131348	131243
104	122359	122349	122244	111359	111349	111244	131359	131349	131244
105	122360	122350	122245	111360	111350	111245	131360	131350	131245
106	122363	122351	122246	111363	111351	111246	131363	131351	131246
107	122365	122352	122247	111365	111352	111247	131365	131352	131247
108	122367	122353	122248	111367	111353	111248	131367	131353	131248
109	122372	122368	122249	111372	111368	111249	131372	131368	131249
110	122373	122369	122250	111373	111369	111250	131373	131369	131250
111	122375	122370	122251	111375	111370	111251	131375	131370	131251
112	122376	122371	122252	111376	111371	111252	131376	131371	131252
113	122378	122372	122253	111378	111372	111253	131378	131372	131253
114	122380	122373	122254	111380	111373	111254	131380	131373	131254
115	122382	122388	122255	111382	111388	111255	131382	131388	131255
116	122383	122389	122256	111383	111389	111256	131383	131389	131256
117	122384	122390	122257	111384	111390	111257	131384	131390	131257
118	122392	122391	122258	111392	111391	111258	131392	131391	131258
119	122395	122392	122259	111395	111392	111259	131395	131392	131259
120	122398	122393	122260	111398	111393	111260	131398	131393	131260

	<u>Kakame</u>	<u>ga Forest</u>		<u>Mt Elgor</u>	<u>n forest</u>	Loruk DW forest			
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
1	12223	12215	122161	11123	11115	111161	13123	13115	131161
2	12235	12217	122163	11135	11117	111163	13135	13117	131163
3	12241	12219	122165	11141	11119	111165	13141	13119	131165
4	12259	12221	122167	11159	11121	111167	13159	13121	131167
5	12263	12223	122169	11163	11123	111169	13163	13123	131169
6	12265	12225	122171	11165	11125	111171	13165	13125	131171
7	12269	12255	122173	11169	11155	111173	13169	13155	131173
8	12273	12257	122175	11173	11157	111175	13173	13157	131175
9	12275	12259	122177	11175	11159	111177	13175	13159	131177
10	12281	12261	122179	11181	11161	111179	13181	13161	131179
11	12293	12263	122181	11193	11163	111181	13193	13163	131181
12	12295	12265	122183	11195	11165	111183	13195	13165	131183
13	12299	12295	122185	11199	11195	111185	13199	13195	131185
14	122103	12297	122187	111103	11197	111187	131103	13197	131187
15	122105	12299	122189	111105	11199	111189	131105	13199	131189
16	122117	122101	122191	111117	111101	111191	131117	131101	131191
17	122123	122103	122193	111123	111103	111193	131123	131103	131193
18	122131	122105	122195	111131	111105	111195	131131	131105	131195
19	122143	122135	122197	111143	111135	111197	131143	131135	131197
20	122147	122137	122199	111147	111137	111199	131147	131137	131199
21	122149	122139	122201	111149	111139	111201	131149	131139	131201
22	122153	122141	122203	111153	111141	111203	131153	131141	131203
23	122167	122143	122205	111167	111143	111205	131167	131143	131205
24	122169	122145	122207	111169	111145	111207	131169	131145	131207
25	122173	122175	122209	111173	111175	111209	131173	131175	131209
26	122183	122177	122211	111183	111177	111211	131183	131177	131211
27	122189	122179	122213	111189	111179	111213	131189	131179	131213
28	122191	122181	122215	111191	111181	111215	131191	131181	131215
29	122193	122183	122217	111193	111183	111217	131193	131183	131217
30	122205	122185	122219	111205	111185	111219	131205	131185	131219
31	122209	122215	122221	111209	111215	111221	131209	131215	131221
32	122219	122217	122223	111219	111217	111223	131219	131217	131223
33	122231	122219	122225	111231	111219	111225	131231	131219	131225
34	122237	122221	122227	111237	111221	111227	131237	131221	131227
35	122241	122223	122229	111241	111223	111229	131241	131223	131229
36	122245	122225	122231	111245	111225	111231	131245	131225	131231
37	122247	122255	122233	111247	111255	111233	131247	131255	131233
38	122249	122257	122235	111249	111257	111235	131249	131257	131235
39	122255	122259	122237	111255	111259	111237	131255	131259	131237
40	122259	122261	122239	111259	111261	111239	131259	131261	131239
41	122265	122263	122241	111265	111263	111241	131265	131263	131241

42	122269	122265	122243	111269	111265	111243	131269	131265	131243
43	122271	122295	122245	111271	111295	111245	131271	131295	131245
44	122275	122297	122247	111275	111297	111247	131275	131297	131247
45	122283	122299	122249	111283	111299	111249	131283	131299	131249
46	122293	122301	122251	111293	111301	111251	131293	131301	131251
47	122297	122303	122253	111297	111303	111253	131297	131303	131253
48	122305	122305	122255	111305	111305	111255	131305	131305	131255
49	122313	122335	122257	111313	111335	111257	131313	131335	131257
50	122315	122337	122259	111315	111337	111259	131315	131337	131259
51	122319	122339	122261	111319	111339	111261	131319	131339	131261
52	122321	122341	122263	111321	111341	111263	131321	131341	131263
53	122327	122343	122265	111327	111343	111265	131327	131343	131265
54	122333	122345	122267	111333	111345	111267	131333	131345	131267
55	122343	122375	122269	111343	111375	111269	131343	131375	131269
56	122349	122377	122271	111349	111377	111271	131349	131377	131271
57	122365	122379	122273	111365	111379	111273	131365	131379	131273
58	122375	122381	122275	111375	111381	111275	131375	131381	131275
59	122381	122383	122277	111381	111383	111277	131381	131383	131277
<u>60</u>	<u>122389</u>	<u>122385</u>	<u>122279</u>	<u>111389</u>	<u>111385</u>	<u>111279</u>	<u>131389</u>	<u>131385</u>	<u>131279</u>

IX.3. 10mx10m-30% plots

	Kakamega Forest		<u>1</u>	Mt Elgon	forest	Loruk DW forest				
		SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV
	1	12211	1229	122161	11111	1119	111161	13111	1319	131161
	2	12245	12211	122163	11145	11111	111163	13145	13111	131163
	3	12251	12213	122165	11151	11113	111165	13151	13113	131165
	4	12255	12249	122167	11155	11149	111167	13155	13149	131167
	5	12259	12251	122169	11159	11151	111169	13159	13151	131169
	6	12289	12253	122171	11189	11153	111171	13189	13153	131171
	7	12291	12289	122173	11191	11189	111173	13191	13189	131173
	8	12299	12291	122175	11199	11191	111175	13199	13191	131175
	9	122121	12293	122177	111121	11193	111177	131121	13193	131177
1	0	122123	122129	122179	111123	111129	111179	131123	131129	131179
1	1	122129	122131	122201	111129	111131	111201	131129	131131	131201
1	2	122139	122133	122203	111139	111133	111203	131139	131133	131203
1	13	122163	122169	122205	111163	111169	111205	131163	131169	131205
1	4	122165	122171	122207	111165	111171	111207	131165	131171	131207
1	5	122169	122173	122209	111169	111173	111209	131169	131173	131209
1	6	122171	122209	122211	111171	111209	111211	131171	131209	131211
1	17	122201	122211	122213	111201	111211	111213	131201	131211	131213
1	8	122209	122213	122215	111209	111213	111215	131209	131213	131215
1	9	122211	122249	122217	111211	111249	111217	131211	131249	131217

20	122213	122251	122219	111213	111251	111219	131213	131251	131219
21	122215	122253	122241	111215	111253	111241	131215	131253	131241
22	122249	122289	122243	111249	111289	111243	131249	131289	131243
23	122251	122291	122245	111251	111291	111245	131251	131291	131245
24	122293	122293	122247	111293	111293	111247	131293	131293	131247
25	122297	122329	122249	111297	111329	111249	131297	131329	131249
26	122325	122331	122251	111325	111331	111251	131325	131331	131251
27	122329	122333	122253	111329	111333	111253	131329	131333	131253
28	122339	122369	122255	111339	111369	111255	131339	131369	131255
29	122365	122371	122257	111365	111371	111257	131365	131371	131257
30	122367	122373	122259	111367	111373	111259	131367	131373	131259

IX.4. 20mx20m-30% plots

	<u>Kakamega Forest</u>			Mt Elgon forest			Loruk DW forest			
	SRS	SSH	SSV	SRS	SSH	SSV	SRS	SSH	SSV	
1	1229	1229	122161	1115	1119	111161	1315	131161	131161	
2	12281	12289	122165	11185	11113	111165	13185	131165	131161	
3	12289	122169	122169	11189	11189	111169	13189	131169	131161	
4	122241	122249	122173	11197	11193	111173	13197	131173	131161	
5	122253	122329	122177	111169	111169	111177	131169	131177	131161	
6	122325	12213	122241	111241	111173	111241	131241	131241	131161	
7	122329	12293	122245	111321	111249	111245	131321	131245	131161	

APPENDIX X: TREE SPECIES AND FAMILY COMPOSITION IN THREE FOREST TYPES, KENYA

S/No	Species name	Family	Number of	Relative
•			individuals ha ⁻¹	Density %
1	Trilepisium madagascariense	Moraceae	339	12.63
2	Funtumia africana	Apocynaceae	248	9.24
3	Teclea nobilis	Rutaceae	224	8.35
4	Strombosia scheffleri	Olacaceae	172	6.41
5	Antiaris toxcaria	Moraceae	150	5.59
6	Celtis gomphophylla	Ulmaceae	140	5.22
7	Flacourtia indica	Flacourtiaceae	108	4.02
8	Hagenia abyssinica	Rosaceae	107	3.99
9	Wenzoria (Local)		104	3.87
10	Bequaertiodendron oblanceolatum	Sapotaceae	100	3.73
11	Rawsonia lucida	Flacourtiaceae	97	3.61
12	Celtis mildbraedii	Ulmaceae	87	3.24
13	Morus lactea	Moraceae	87	3.24
14	Trichilia emetica	Meliaceae	85	3.17
15	Aningeria altissima	Sapotaceae	68	2.53
16	Craibia brownii	Papilionaceae	60	2.24
17	Ficus exasperata	Moraceae	53	1.97
18	Dovyalis abyssinica	Flacourtiaceae	46	1.71
19	Polyscias fulva	Araliaceae	32	1.19
20	Kigelia moosa	Bignoniaceae	31	1.15
21	Markhamia lutea	Bignoniaceae	31	1.15
22	Zanthoxyllum gilletii	Rutaceae	27	1.01
23	Blighia unijugata	Sapindaceae	26	0.97
24	Diospyros abyssinica	Ebenaceae	23	0.86
25	Albizia gummifera	Mimosaceae	20	0.75
26	Vangueria volkensii	Rutaceae	20	0.75
27	Croton macrostachyus	Euphorbiaceae	16	0.60
28	Solanum mauritianum	Solanaceae	16	0.60
29	Spathodea campanulata	Bignoniaceae	16	0.60
30	Ficus sur	Moraceae	15	0.56
31	Trema orientellis	Ulmaceae	14	0.52
32	Clausena anisata	Rutaceae	13	0.48
33	Acanthus pubescens	Acanthaceae	12	0.45
34	Macaranga kilimandscharica	Euphorbiaceae	12	0.45
35	Bischofia javanica	Euphorbiaceae	11	0.41
36	Croton megalocarpus	Euphorbiaceae	11	0.41
37	Olea capensis ssp welwitschii	Olacaceae	7	0.26

X.1. Kakamega Tropical Rain forest Site

38	Prunus africana	Rosaceae	7	0.26
39	Chaetacme aristata	Ulmaceae	6	0.22
40	Maesopsis eminii	Rhamnaceae	6	0.22
41	Ficus thonningii	Agavaceae	6	0.22
42	Dracaena fragrans	Melianthaceae	5	0.19
43	Bersama abyssinica	Sapotaceae	5	0.19
44	Manilkara butugi	Euphorbiaceae	5	0.19
45	Sapium ellipticum	Boraginaceae	4	0.15
46	Cordia africana	Moraceae	4	0.15
47	Harungana madagascarensis	Guttiferae	3	0.11
48	Acacia tortilis	Mimosaceae	2	0.07
49	Balakaya (Local)	Х	2	0.07
50	Fagaropsis angolensis	Rutaceae	1	0.04

X.2. Mt Elgon moist montane forest Site

S/No	Species name	Family	Number of individuals ha ⁻¹	Relative Density %
1	Diospyros abyssinica	Ebenaceae	348	24.30
2	Aningeria altissima	Sapotaceae	159	11.10
3	Vangueria apiculata	Rubiaceae	119	8.31
4	Teclea simplicifolia	Rutaceae	108	7.54
5	Flacourtia indica	Flacourtiaceae	90	6.28
6	Turraea parvifolia	Meliaceae	82	5.73
7	Albizia gummifera	Mimosaceae	66	4.61
8	Dovyalis macrocalyx	Flacourtiaceae	66	4.61
9	Croton macrostachyus	Euphorbiaceae	59	4.12
10	Podocarpus falcatus	Podocarpaceae	50	3.49
11	Casaeria battiscombei	Flacourtiaceae	49	3.42
12	Celtis gomphophylla	Ulmaceae	46	3.21
13	Bersama abyssinica	Melianthaceae	43	3.00
14	Fagaropsis angolensis	Rutaceae	28	1.96
15	Maskat (Local)	Х	25	1.75
16	Nuxia congesta	Loganiaceae	16	1.12
17	Podocarpus latifolius	Podocarpaceae	14	0.98
18	Dracaena steudneri	Dracaenaceae	8	0.56
19	Celtis mildbraedii	Ulmaceae	7	0.49
20	Maytenus heterophylla	Celastraceae	6	0.42
21	Ritchiea albersii	Capparaceae	6	0.42
22	Clausena anisata	Rutaceae	5	0.35
23	Celtis africana	Ulmaceae	4	0.28
24	Schrebera alata	Oleaceae	4	0.28
25	Solanum mauritianum	Solanaceae	4	0.28
26	Olinia rochetiana	Oliniaceae	3	0.21

27	Senna didymobotrya	Caesalpiniaceae	3	0.21
28	Olea capensis ssp welwitschii	Oleaceae	2	0.14
29	Ficus thonningii	Moraceae	2	0.14
30	Markhamia lutea	Bignoniaceae	2	0.14
31	Vernonia auriculifera	Compositae	2	0.14
32	Solanum aculeastrum	Solanaceae	2	0.14
33	Sclerocarya birrea	Anacardiaceae	1	0.07
34	Ficus exasperata	Moraceae	1	0.07
35	Syzygium cordatum	Myrtaceae	1	0.07
36	Macaranga kilimandscharia	Euphorbiaceae	1	0.07

X.3. Loruk dry woodland forest Site

S/No.	Species	Family	Number of trees ha ⁻¹	Relative density %
1	Acacia reficiens	Mimosaceae	512	40.20
2	Acacia mellifera	Mimosaceae	295	23.10
3	Acacia tortilis	Mimosaceae	145	11.40
4	Boscia coriacea	Capparaceae	83	6.50
5	Acacia nubica	Mimosaceae	73	5.70
6	Acacia senegal	Mimosaceae	69	5.40
7	Mpirikwa (local)	Х	45	3.50
8	Diospyros scabra	Ebenaceae	20	1.60
9	Euphorbia candelabrum	Euphorbiaceae	18	1.40
10	Acacia nilotica	Mimosaceae	8	0.60
11	Cissus rotundifolia	Vitaceae	5	0.40
12	Sukur (local)	Х	2	0.10

APPENDIX XI. SHARING OF TREE SPECIES AMONG THREE DIFFERENT FOREST TYPES IN KENYA BASED ON THE ASSESSED ONE HECTARE PLOT PER FOREST

Tree species	Forest type	Tree species	Forest type
Acacia mellifera	DWF	Croton megalocarpus	TRF
Acacia nilotica	DWF	Dovyalis abyssinica	TRF
Acacia nubica	DWF	Dracaena fragrans	TRF
Acacia reficiens	DWF	Ficus sur	TRF
Acacia senegal	DWF	Funtumia africana	TRF
Boscia coriacea	DWF	Hagenia abyssinica	TRF
Cissus rotundifolia	DWF	Harungana madagascarensis	TRF
Diospyros scabra	DWF	Kigelia moosa	TRF
Euphorbia candelabrum	DWF	Maesopsis eminii	TRF
Mpirikwa (local, Loruk)	DWF	Manilkara butugi	TRF
Sukur (local, Loruk)	DWF	Morus lactea	TRF
Acacia tortilis	DWF-TRF	Polyscias fulva	TRF
Casaeria battiscombei	MMF	Prunus africana	TRF
Celtis africana	MMF	Rawsonia lucida	TRF
Dovyalis macrocalyx	MMF	Sapium ellipticum	TRF
Dracaena steudneri	MMF	Spathodea campanulata	TRF
Maskat (local, Mt Elgon)	MMF	Strombosia scheffleri	TRF
Maytenus heterophylla	MMF	Teclea nobilis	TRF
Nuxia congesta	MMF	Trema orientellis	TRF
Olinia rochetiana	MMF	Trichilia emetica	TRF
Podocarpus falcatus	MMF	Trilepisium madagascariense	TRF
Podocarpus latifolius	MMF	Vangueria volkensii	TRF
Ritchiea albersii	MMF	Wenzoria (Local, Kakamega)	TRF
Schrebera alata	MMF	Zanthoxyllum gilletii	TRF
Sclerocarya birrea	MMF	Albizia gummifera	TRF-MMF
Senna didymobotrya	MMF	Aningeria altissima	TRF-MMF
Solanum aculeastrum	MMF	Bersama abyssinica	TRF-MMF
Syzygium cordatum	MMF	Celtis gomphophylla	TRF-MMF
Teclea simplicifolia	MMF	Celtis mildbraedii	TRF-MMF
Turraea parvifolia	MMF	Clausena anisata	TRF-MMF
Vangueria apiculata	MMF	Croton macrostachyus	TRF-MMF
Vernonia auriculifera	MMF	Diospyros abyssinica	TRF-MMF
Acanthus pubescens	TRF	Fagaropsis angolensis	TRF-MMF
Antiaris toxcaria	TRF	Ficus exasperata	TRF-MMF
Balakaya (Local, Kakamega)	TRF	Ficus thonningii	TRF-MMF
Bequaertiodendron oblanceolatum	TRF	Flacourtia indica	TRF-MMF
Bischofia javanica	TRF	Macaranga kilimandscharia	TRF-MMF
Blighia unijugata	TRF	Markhamia lutea	TRF-MMF
Chaetacme aristata	TRF	Olea capensis ssp welwitschii	TRF-MMF
Cordia africana	TRF	Solanum mauritianum	TRF-MMF
Craibia brownii	TRF		
APPENDIX XII. SHARING OF TREE GENERA AMONG THREE DIFFERENT FOREST TYPES IN KENYA BASED ON THE ASSESSED ONE HECTARE PLOT PER FOREST

Genera	Forest type	Genera	Forest type
Acacia	DWF-TRF	Rawsonia	TRF
Boscia	DWF	Sapium	TRF
Cissus	DWF	Spathodea	TRF
Euphorbia	DWF	Strombosia	TRF
Casaeria	MMF	Trema	TRF
Maytenus	MMF	Trichilia	TRF
Nuxia	MMF	Trilepisium	TRF
Olinia	MMF	Zanthoxyllum	TRF
Podocarpus	MMF	Albizia	TRF-MMF
Ritchiea	MMF	Aningeria	TRF-MMF
Schrebera	MMF	Bersama	TRF-MMF
Sclerocarya	MMF	Celtis	TRF-MMF
Senna	MMF	Clausena	TRF-MMF
Syzygium	MMF	Croton	TRF-MMF
Turraea	MMF	Dovyalis	TRF-MMF
Vernonia	MMF	Dracaena	TRF-MMF
Acanthus	TRF	Fagaropsis	TRF-MMF
Antiaris	TRF	Ficus	TRF-MMF
Bequaertiodendron	TRF	Flacourtia indica	TRF-MMF
Bischofia	TRF	Macaranga	TRF-MMF
Blighia	TRF	Markhamia	TRF-MMF
Chaetacme	TRF	Olea	TRF-MMF
Cordia	TRF	Solanum	TRF-MMF
Craibia	TRF	Teclea	TRF-MMF
Funtumia	TRF	Vangueria	TRF-MMF
Hagenia	TRF	Diospyros	TRF-MMF-DWF
Harungana	TRF		
Kigelia	TRF		
Maesopsis	TRF		
Manilkara	TRF		
Morus	TRF		
Polyscias	TRF		
Prunus	TRF		

APPENDIX XIII. SHARING OF TREE FAMILIES AMONG THREE DIFFERENT FOREST TYPES IN KENYA BASED ON THE ASSESSED ONE HECTARE PLOT PER FOREST

Families	Forest type
Vitaceae	DWF
Anacardiaceae	MMF
Caesalpiniaceae	MMF
Celastraceae	MMF
Compositae	MMF
Dracaenaceae	MMF
Loganiaceae	MMF
Myrtaceae	MMF
Oleaceae	MMF
Oliniaceae	MMF
Podocarpaceae	MMF
Rubiaceae	MMF
Capparaceae	MMF-DWF
Acanthaceae	TRF
Agavaceae	TRF
Apocynaceae	TRF
Araliaceae	TRF
Boraginaceae	TRF
Guttiferae	TRF
Papilionaceae	TRF
Rhamnaceae	TRF
Rosaceae	TRF
Sapindaceae	TRF
Bignoniaceae	TRF-MMF
Flacourtiaceae	TRF-MMF
Meliaceae	TRF-MMF
Melianthaceae	TRF-MMF
Moraceae	TRF-MMF
Olacaceae	TRF-MMF
Rutaceae	TRF-MMF
Sapotaceae	TRF-MMF
Solanaceae	TRF-MMF
Ulmaceae	TRF-MMF
Ebenaceae	TRF-MMF-DWF
Euphorbiaceae	TRF-MMF-DWF
Mimosaceae	TRF-MMF-DWF

APPENDIX XIV: BIOPHYSICAL CHARACTERISATION OF VERTICAL STRUCTURE AND TREE DIAMETER DISTRIBUTION FOR THE THREE FOREST TYPES, KENYA

XIV.1. Characteristics of top canopy height (m) for Tropical rain forest, Moist Lower Montane Forest and Tropical Dry Woodland of Kenya

						~ "
TDE		1.		aD		Overall
TRF	No. plots	median	Mean \pm SE	SD	CV%	Mean (m)
20 m x 20 m plots	25	35	34.72 ± 0.43^a	1.06	3.06	30.5
5 m x $5 m plots$	200	30	30.36 ± 1.14^{b}	4.11	13.54	
5 m x 5 m plots	400	30	30.45 ± 0.39^{b}	4.04	13.27	
MMF						
20 m x 20 m plots	25	35	32.20 ± 2.06^{a}	5.02	15.58	22.8
5 m x 5 m plots	200	25	23.08 ± 1.69^{b}	6.10	26.42	
5 m x 5 m plots	400	23	22.84 ± 0.71^{b}	7.25	31.74	
DWF						
20 m x 20 m plots	25	6	6.64 ± 0.33^{a}	0.81	12.20	5.1
5 m x 5 m plots	200	5	5.22 ± 0.51^{b}	1.85	35.53	
5 m x 5 m plots	400	5	5.06 ± 0.18^{b}	1.78	35.13	

Mean top height values followed by same letter in a column within each forest type are not significantly different (α =0.05)

XIV.2: Diameter Distribution trends

DBH	Moist montane forest			Tropical rain forest			Dry woodland forest		
class	MMF	MMF	MMF	TRF	TRFm	TRFm	DWF	DWF	DWF
	m_0	m_1	m_2	m_0	1	2	m_0	m_1	m_2
3.0	5.33	6.48	3.78	6.23	6.52	3.90	5.79	6.11	4.73
9.5	4.07	2.47	3.35	4.42	3.78	3.39	3.40	-	-
19.5	2.51	-	-	2.87	0.72	1.43	0.34	-	-
29.5	1.79	-	-	1.79	-	-	0.34	-	-
39.5	1.57	-	-	1.48	-	-	0.10	-	-
49.5	1.28	-	-	1.31	-	-	-	-	-
59.5	0.34	-	-	0.83	-	-	-	-	-
69.5	0.26	-	-	0.83	-	-	-	-	-
79.5	0.26	-	-	0.92	-	-	-	-	-
89.5	-	-	-	0.59	-	-	-	-	-
99.5	-	-	-	0.34	-	-	-	-	-
109.5	-	-	-	0.41	-	-	-	-	-
154.5	0.01	-	-	0.11	-	-	-	-	-

Modelling diameter size distribution and graphical illustrations

 m_0 =actual forest data – zero model; m_1 = Model 1 (Y = Y₀ X^{-b}) estimates, m_2 = Model 2 (N = N₀ e^{-bD}) estimates

Dbh sizes distribution structure of the studied one hectare -blocks in different forest formations of Kenya based on actual forests data (solid lines) versus hypothetical mathematical models (dotted lines)

[MMF = Tropical moist montane forest; TRF = Tropical rain forest; and DWF = Tropical dry woodland forest. m_0 = actual forests data model; m_1 and m_2 are Model₁ = Negative power model (Y = Y₀ X^{-b}) and Model₂ = Negative exponential model (N = N₀ e^{-bD}) estimated data, respectively].

Comparison between tropical natural forest types based on stocking	, diameter size distribution an	nd regular dbh classes for tree
individuals $\geq 1 \text{ cm dbh}^{a}$		

Model ₁ (Y = Y ₀ X ^{-b}) = m_1 Model ₂ (N = N ₀ e ^{-bD}) = m_2								
Forest types	Yo	b	Adj. R ²	Prob.	Yo	b	Adj. R ²	Prob.
TRF	6348.666	2.041	0.98	0.000	55.813	0.047	0.80	0.000
MMF	8673.26	2.36	0.90	0.000	51.265	0.061	0.89	0.000
DWF	15740.62	3.236	0.94	0.004	214.005	0.216	0.82	0.021

^a Regular class interval of 10 cm-dbh (frequency density was used to standardize class sizes and remove any bias from unequal class intervals (Eason, Coles & Gettinby, 1992). The first class (1-5 cm) has a width of 4 cm, the last class (110-160cm) has a width of 50 cm and intermediate classes have a constant width of 10 cm each. Frequency density = frequency / class width)

APPENDIX XV: SPECIES –AREA CURVE MODELS AND THEIR QUALITIES

										Actual
		Actual model for no.spp/ha	Predictive			Predictive model for no. spp	Predictive			no.
Plot size	Forest	factoring spp total census	power (R²)	RMSE%	MPE%	/ha based on 30% sample	power (R^2)	RMSE%	MPE%	spp/ha
5 m x 5 m	TRF	$y(H) = 6.6673 \ln(x) + 55.217$	$R^2 = 0.974$	2.0275	-0.0006	$y(H^*) = 7.9895ln(x) + 58.202$	$R^2 = 0.992$	3.5657	-1.5561	54
		y(V) = 7.7865 ln(x) + 53.432	$R^2 = 0.99$	1.2252	0.0007	$y(V^*) = 7.1696ln(x) + 52.039$	$R^2 = 0.988$	1.8372	0.7270	54
	MMF	$y(H) = 6.0081 \ln(x) + 35.547$	$R^2 = 0.9362$	4.3037	0.0006	$y(H^*) = 4.4293 ln(x) + 31.982$	$R^2 = 0.8717$	6.6827	2.7131	37
		y(V) = 5.587 ln(x) + 35.264	$R^2 = 0.9207$	4.4992	0.0001	$y(V^*) = 3.7004 ln(x) + 31.004$	$R^2 = 0.8811$	7.5868	3.2414	37
	DWF	y(H) = 0.581 ln(x) + 11.943	$R^2 = 0.8703$	1.8983	-0.0035	$y(H^*) = 0.5186ln(x) + 11.802$	$R^2 = 0.6692$	1.9975	0.3279	12
		y(V) = 0.6293 ln(x) + 11.421	$R^2 = 0.6381$	4.0107	-0.0005	$y(V^*) = 10$	$R^2 = N/A$	7.4536	3.3333	12
5 m x 10 m	TRF	y(H) = 5.9519 ln(x) + 55.056	$R^2 = 0.975$	1.7654	0.0001	$y(H^*) = 7.0995 \ln(x) + 57.647$	$R^2 = 0.992$	3.0980	-1.3503	54
		y(V) = 6.9899 ln(x) + 52.94	$R^2 = 0.979$	1.9028	0.0001	$y(V^*) = 5.838\ln(x) + 50.339$	$R^2 = 0.9785$	3.1862	1.3560	54
	MMF	$y(H) = 6.0081 \ln(x) + 35.547$	$R^2 = 0.9362$	4.8196	1.0817	$y(H^*) = 4.4293ln(x) + 31.982$	$R^2 = 0.8717$	6.4820	3.7942	37
		y(V) = 5.587 ln(x) + 35.264	$R^2 = 0.9207$	4.4992	0.0001	$y(V^*) = 3.7004 ln(x) + 31.004$	$R^2 = 0.8811$	7.5868	3.2414	37
	DWF	y(H) = 1.1137 ln(x) + 12.407	$R^2 = 0.6952$	6.2410	-0.0016	$y(H^*) = 1.5559ln(x) + 13.405$	$R^2 = 0.6692$	7.6438	-2.3399	12
		y(V) = 0.6293ln(x) + 11.421	$R^2 = 0.6381$	4.0107	-0.0005	$y(V^*) = 10$	$R^2 = N/A$	7.4536	3.3333	12
10 m x 10 m	TRF	y(H) = 6.9233 ln(x) + 57.232	$R^2 = 0.777$	6.9713	0.0000	$y(H^*) = 10.435 ln(x) + 65.162$	$R^2 = 0.853$	10.4551	-4.1349	54
		y(V) = 6.2695 ln(x) + 51.571	$R^2 = 0.861$	4.7233	0.0005	$y(V^*) = 3.6303ln(x) + 45.612$	$R^2 = 0.669$	7.5229	3.1067	54
	MMF	y(H) = 4.1103ln(x) + 35.668	$R^2 = 0.9074$	3.6036	0.0009	$y(H^*) = 2.6632ln(x) + 32.401$	$R^2 = 0.8272$	5.9109	2.4855	37
		y(V) = 5.0442 ln(x) + 33.983	$R^2 = 0.7772$	7.4121	0.0012	$y(V^*) = 1.7661ln(x) + 26.582$	$R^2 = 0.4851$	12.9456	5.6303	37
	DWF	y(H) = 0.931 ln(x) + 12.71	$R^2 = 0.6572$	5.6896	0.0034	$y(H^*) = 1.703ln(x) + 14.454$	$R^2 = 0.9021$	9.5814	-4.0929	12
		y(V) = 0.6293ln(x) + 11.421	$R^2 = 0.6381$	4.0107	-0.0005	$y(V^*) = 10$	$R^2 = N/A$	7.4536	3.3333	12
20 m x 20m	TRF	y(H) = 4.9218ln(x) + 55.185	$R^2 = 0.954$	2.0111	-0.0003	$y(H^*) = 6.2094 \ln(x) + 58.092$	$R^2 = 0.985$	3.4933	-1.5152	54
		y(V) = 4.5673ln(x) + 50.61	$R^2 = 0.722$	5.3185	-0.0005	$y(V^*) = 0.8831\ln(x) + 42.291$	$R^2 = 0.485$	9.7516	4.3365	54
	MMF	y(H) = 4.6734ln(x) + 36.782	$R^2 = 0.947$	3.0066	-0.0004	$y(H^*) = 4.4363ln(x) + 36.247$	$R^2 = 0.859$	3.1029	0.4060	37
		y(V) = 3.4611ln(x) + 33.815	$R^2 = 0.638$	7.1542	0.0003	$y(V^*) = 26$	$R^2 = N/A$	13.2955	5.9459	37
	DWF	y(H) = 0.6646ln(x) + 12.478	$R^2 = 0.7118$	3.5790	0.0018	$y(H^*) = 1.1844ln(x) + 13.652$	$R^2 = 0.9519$	23.3051	-22.4472	12
		y(V) = 0.7104 ln(x) + 11.753	$R^2 = 0.8132$	29.8202	-29.1139	$y(V^*) = 0.4415ln(x) + 11.145$	$R^2 = 0.4851$	29.3847	-28.7100	12

APPENDIX XVI: INVENTORY COST AND SAMPLING ERRORS FOR TESTED SCHEMES IN DIFFERENT FOREST TYPES

Sampling Effort for Schemes Having Sampling Error < 25%

E	Sampling		Sampling	Sampling effort		Regeneration sampling
rorest	design	Plot size	Intensity _	1 /1	1 /1	error
TDE	ana	25	100	hours/ha	ha/hour	15.26
	SRS	25	100	50.42	0.02	15.36
TRF	SRS	50	100	25.28	0.04	16.17
TRF	SKS	100	100	12.47	0.08	18.40
TRF	SSH (E-W)	50	5	26.00	0.04	22.51
TRF	SSH (E-W)	25	100	50.42	0.02	15.36
TRF	SSH (E-W)	50	100	25.28	0.04	16.17
TRF	SSH (E-W)	100	100	12.47	0.08	18.40
TRF	SSV (N-S)	25	30	50.89	0.02	20.92
TRF	SSV (N-S)	50	30	25.17	0.04	23.53
TRF	SSV (N-S)	25	100	50.42	0.02	15.36
TRF	SSV (N-S)	50	100	25.28	0.04	16.17
TRF	SSV (N-S)	100	100	12.47	0.08	18.40
MMF	SRS	25	100	40.68	0.02	14.74
MMF	SRS	50	100	20.10	0.05	15.62
MMF	SRS	100	100	9.98	0.10	18.22
MMF	SRS	400	100	2.43	0.41	24.04
MMF	SSH (E-W)	25	100	40.68	0.02	14.74
MMF	SSH (E-W)	50	100	20.10	0.05	15.62
MMF	SSH (E-W)	100	100	9.98	0.10	18.22
MMF	SSH (E-W)	400	100	2.43	0.41	24.04
MMF	SSV (N-S)	25	100	40.68	0.02	14.74
MMF	SSV (N-S)	50	100	20.10	0.05	15.62
MMF	SSV (N-S)	100	100	9.98	0.10	18.22
MMF	SSV (N-S)	400	100	2.43	0.41	24.04
DWF	SRS	400	10	1.17	0.86	_
DWF	SRS	25	20	21.75	0.05	24.40
DWF	SRS	50	20	11.00	0.09	21.42
DWF	SRS	25	30	21.83	0.05	18.39
DWF	SRS	50	30	11.11	0.09	20.62
DWF	SRS	100	30	5.72	0.17	21.18
DWF	SRS	25	100	22.38	0.04	9.87
DWF	SRS	<u>50</u>	100	11 35	0.09	10.67
DWF	SRS	100	100	5 65	0.18	12.12
DWF	SRS	400	100	1 45	0.69	18 64
DWF	SSH (E-W)	50	10	11 33	0.09	21.09
DWF	SSH (E-W)	25	20	22.17	0.05	21.05
DWF	SSH (E-W)	50	20	11.25	0.09	21.91
DWF	SSH (E-W)	25	30	22.00	0.05	18 76
DWF	SSH (E-W)	50	30	11 50	0.05	19.70
DWF	SSH(E-W)	25	100	22.28	0.02	0.87
DWF	SSH(E-W)	23 50	100	11 35	0.04	2.07 10.67
DWF	SSII(E-W)	100	100	5 65	0.09	10.07
DWE		400	100	5.05 1 45	0.10	12.12 19 <i>E</i> A
DWE	SSIT(E-W)	+00	20	22.00	0.09	10.04
DWF	$(a - n) \vee a a$	23 50	20	22.00	0.05	22.82
	(a-ri) v aa	50	20	10.05	0.09	24.39

XVI.1. Regeneration density per hectare

DWF	SSV (N-S)	25	30	21.89	0.05	17.97
DWF	SSV (N-S)	50	30	10.89	0.09	18.39
DWF	SSV (N-S)	100	30	5.44	0.18	19.76
DWF	SSV (N-S)	400	30	1.28	0.78	19.73
DWF	SSV (N-S)	25	100	22.38	0.04	9.87
DWF	SSV (N-S)	50	100	11.35	0.09	10.67
DWF	SSV (N-S)	100	100	5.65	0.18	12.12
DWF	SSV (N-S)	400	100	1.45	0.69	18.64

XVI.2. Density of stems per hectare

	Sampling		Sampling	Sampling effort		Stem density sampling
Forest	design	Plot size	intensity			error
				hours/ha	ha/hour	
TRF	SRS	100	5	12.7	0.08	15.1
TRF	SRS	25	10	50.5	0.02	17.7
TRF	SRS	50	10	24.5	0.04	23.7
TRF	SRS	25	20	49.8	0.02	13.9
TRF	SRS	50	20	25.0	0.04	13.1
TRF	SRS	100	20	12.1	0.08	15.2
TRF	SRS	25	30	50.3	0.02	10.8
TRF	SRS	50	30	24.8	0.04	9.5
TRF	SRS	100	30	12.5	0.08	11.3
TRF	SRS	400	30	2.7	0.37	15.1
TRF	SRS	25	100	50.4	0.02	5.3
TRF	SRS	50	100	25.3	0.04	5.6
TRF	SRS	100	100	12.5	0.08	6.0
TRF	SRS	400	100	3.1	0.33	7.7
TRF	SSH (E-W)	25	5	51.3	0.02	20.2
TRF	SSH (E-W)	50	5	26.0	0.04	19.9
TRF	SSH (E-W)	25	10	51.2	0.02	15.2
TRF	SSH (E-W)	50	10	25.2	0.04	13.5
TRF	SSH (E-W)	100	10	12.0	0.08	22.1
TRF	SSH (E-W)	25	20	50.6	0.02	10.9
TRF	SSH (E-W)	50	20	25.3	0.04	11.9
TRF	SSH (E-W)	100	20	12.4	0.08	15.4
TRF	SSH (E-W)	25	30	50.5	0.02	9.1
TRF	SSH (E-W)	50	30	25.2	0.04	10.2
TRF	SSH (E-W)	100	30	12.0	0.08	11.6
TRF	SSH (E-W)	400	30	2.8	0.35	17.1
TRF	SSH (E-W)	25	100	50.4	0.02	5.3
TRF	SSH (E-W)	50	100	25.3	0.04	5.6
TRF	SSH (E-W)	100	100	12.5	0.08	6.0
TRF	SSH (E-W)	400	100	3.1	0.33	7.7
TRF	SSV (N-S)	25	5	54.7	0.02	19.0
TRF	SSV (N-S)	50	5	27.0	0.04	15.4
TRF	SSV (N-S)	100	5	13.7	0.07	20.0
TRF	SSV (N-S)	25	10	51.8	0.02	13.4
TRF	SSV (N-S)	50	10	27.2	0.04	16.9
TRF	SSV (N-S)	100	10	13.5	0.07	15.4
TRF	SSV (N-S)	25	20	51.4	0.02	11.3
TRF	SSV (N-S)	50	20	25.7	0.04	12.5
TRF	SSV (N-S)	100	20	12.8	0.08	13.0
TRF	SSV (N-S)	400	20	3.3	0.31	24.9
TRF	SSV (N-S)	25	30	50.9	0.02	9.2
TRF	SSV (N-S)	50	30	25.2	0.04	10.5
TRF	SSV (N-S)	100	30	12.5	0.08	11.1

TRF	SSV (N-S)	400	30	2.9	0.34	15.8
TRF	SSV (N-S)	25	100	50.4	0.02	5.3
TRF	SSV (N-S)	50	100	25.3	0.04	5.6
TRF	SSV (N-S)	100	100	12.5	0.08	6.0
TRF	SSV (N-S)	400	100	3.1	0.33	7.7
MMF	SRS	25	10	42.3	0.02	21.0
MMF	SRS	100	10	10.2	0.10	21.6
MMF	SRS	400	10	13	0.75	21.0
MME	SBS	25	20	38.6	0.73	16.6
MME	SBS	50	20	10 /	0.05	16.0
MME	SKS	100	20	0.2	0.05	10.9
	SKS	100	20	9.3 40.2	0.11	13.0
	SKS	23	30 20	40.2	0.02	15.0
	SKS	30 100	30	19.2	0.03	14.8
MMF	SKS	100	30	8.3	0.12	13.5
MMF	SKS	400	30	2.3	0.43	13.6
MMF	SRS	25	100	40.7	0.02	7.3
MMF	SRS	50	100	20.1	0.05	7.6
MMF	SRS	100	100	10.0	0.10	8.1
MMF	SRS	400	100	2.4	0.41	10.6
MMF	SSH (E-W)	25	10	39.8	0.03	24.8
MMF	SSH (E-W)	100	10	9.0	0.11	23.1
MMF	SSH (E-W)	400	10	1.2	0.86	0.0
MMF	SSH (E-W)	25	20	39.6	0.03	16.9
MMF	SSH (E-W)	50	20	19.0	0.05	20.2
MMF	SSH (E-W)	100	20	8.7	0.12	15.9
MMF	SSH (E-W)	400	20	1.7	0.60	24.9
MMF	SSH (E-W)	25	30	39.3	0.03	13.2
MMF	SSH (E-W)	50	30	19.3	0.05	14.5
MMF	SSH (E-W)	100	30	8.7	0.11	13.9
MMF	SSH (E-W)	400	30	17	0.58	21.5
MMF	SSH (E-W)	25	100	40.7	0.02	73
MMF	SSH (E-W)	50	100	20.1	0.02	7.5
MME	SSH (E-W)	100	100	10.0	0.05	9.0 8.1
MME	SSH (E-W)	400	100	2 4	0.10	10.6
MME	SSII(L-W)	+00	10	2.4	0.41	20.3
MME	SSV(NS)	23 50	10	177	0.05	20.5
	SSV(NS)	30 25	10	26.0	0.00	24.3
	SSV(NS)	23	20	50.9	0.05	14.5
MMF	55 V (IN-5)	50	20	17.7	0.06	14.8
MMF	SSV(N-S)	100	20	8.3	0.12	14.4
MMF	55 V (IN-5)	25	30	38.2	0.03	13.0
MMF	SSV(N-S)	50	30	18.0	0.06	13.2
MMF	SSV (N-S)	100	30	8.7	0.12	14.2
MMF	SSV (N-S)	400	30	1.8	0.55	16.8
MMF	SSV (N-S)	25	100	40.7	0.02	7.3
MMF	SSV (N-S)	50	100	20.1	0.05	7.6
MMF	SSV (N-S)	100	100	10.0	0.10	8.1
MMF	SSV (N-S)	400	100	2.4	0.41	10.6
DWF	SRS	50	10	11.2	0.09	20.9
DWF	SRS	25	20	21.8	0.05	17.0
DWF	SRS	50	20	11.0	0.09	17.7
DWF	SRS	25	30	21.8	0.05	12.8
DWF	SRS	50	30	11.1	0.09	17.7
DWF	SRS	100	30	5.7	0.17	17.1
DWF	SRS	25	100	22.4	0.04	7.6
DWF	SRS	50	100	11.4	0.09	9.1
DWF	SRS	100	100	5.7	0.18	10.2

DWF	SRS	400	100	1.5	0.69	16.9
DWF	SSH (E-W)	25	20	22.2	0.05	20.4
DWF	SSH (E-W)	50	20	11.3	0.09	17.6
DWF	SSH (E-W)	100	20	5.6	0.18	21.1
DWF	SSH (E-W)	25	30	22.0	0.05	15.6
DWF	SSH (E-W)	50	30	11.5	0.09	15.4
DWF	SSH (E-W)	100	30	5.7	0.17	18.2
DWF	SSH (E-W)	25	100	22.4	0.04	7.6
DWF	SSH (E-W)	50	100	11.4	0.09	9.1
DWF	SSH (E-W)	100	100	5.7	0.18	10.2
DWF	SSH (E-W)	400	100	1.5	0.69	16.9
DWF	SSV (N-S)	50	5	11.0	0.09	24.2
DWF	SSV (N-S)	25	10	22.0	0.05	23.3
DWF	SSV (N-S)	50	10	11.2	0.09	18.8
DWF	SSV (N-S)	100	10	5.5	0.18	22.9
DWF	SSV (N-S)	400	10	1.2	0.86	10.0
DWF	SSV (N-S)	25	20	22.0	0.05	14.4
DWF	SSV (N-S)	50	20	10.8	0.09	14.5
DWF	SSV (N-S)	100	20	5.4	0.18	15.7
DWF	SSV (N-S)	400	20	1.4	0.71	19.0
DWF	SSV (N-S)	25	30	21.9	0.05	12.2
DWF	SSV (N-S)	50	30	10.9	0.09	12.3
DWF	SSV (N-S)	100	30	5.4	0.18	12.7
DWF	SSV (N-S)	400	30	1.3	0.78	13.4
DWF	SSV (N-S)	25	100	22.4	0.04	7.6
DWF	SSV (N-S)	50	100	11.4	0.09	9.1
DWF	SSV (N-S)	100	100	5.7	0.18	10.2
DWF	SSV (N-S)	400	100	1.5	0.69	16.9

XVI.3. Basal area per hectare

Forest	Sampling	Plot size	Sampling	Sampling effort		Basal area Sampling
	design		intensity			error
			_	hours/ha	ha/hour	
TRF	SRS	25	100	50.42	0.02	20.6
TRF	SRS	50	100	25.28	0.04	21.4
TRF	SRS	100	100	12.47	0.08	19.9
TRF	SRS	400	100	3.07	0.33	21.5
TRF	SSH (E-W)	400	10	2.33	0.43	14.0
TRF	SSH (E-W)	25	100	50.42	0.02	20.6
TRF	SSH (E-W)	50	100	25.28	0.04	21.4
TRF	SSH (E-W)	100	100	12.47	0.08	19.9
TRF	SSH (E-W)	400	100	3.07	0.33	21.5
TRF	SSV (N-S)	400	10	2.67	0.38	14.6
TRF	SSV (N-S)	25	100	50.42	0.02	20.6
TRF	SSV (N-S)	50	100	25.28	0.04	21.4
TRF	SSV (N-S)	100	100	12.47	0.08	19.9
TRF	SSV (N-S)	400	100	3.07	0.33	21.5
MMF	SRS	25	100	40.68	0.02	21.1
MMF	SRS	50	100	20.10	0.05	21.8
MMF	SRS	100	100	9.98	0.10	21.6
MMF	SRS	400	100	2.43	0.41	22.0
MMF	SSH (E-W)	25	100	40.68	0.02	21.1
MMF	SSH (E-W)	50	100	20.10	0.05	21.8
MMF	SSH (E-W)	100	100	9.98	0.10	21.6
MMF	SSH (E-W)	400	100	2.43	0.41	22.0

MMF	SSV (N-S)	25	100	40.68	0.02	21.1
MMF	SSV (N-S)	50	100	20.10	0.05	21.8
MMF	SSV (N-S)	100	100	9.98	0.10	21.6
MMF	SSV (N-S)	400	100	2.43	0.41	22.0
DWF	SRS	25	100	22.38	0.04	20.7
DWF	SRS	50	100	11.35	0.09	21.4
DWF	SRS	100	100	5.65	0.18	21.7
DWF	SRS	400	100	1.45	0.69	22.5
DWF	SSH (E-W)	25	100	22.38	0.04	20.7
DWF	SSH (E-W)	50	100	11.35	0.09	21.4
DWF	SSH (E-W)	100	100	5.65	0.18	21.7
DWF	SSH (E-W)	400	100	1.45	0.69	22.5
DWF	SSV (N-S)	25	100	22.38	0.04	20.7
DWF	SSV (N-S)	50	100	11.35	0.09	21.4
DWF	SSV (N-S)	100	100	5.65	0.18	21.7
DWF	SSV (N-S)	400	100	1.45	0.69	22.5

XVI.4. Quadratic mean diameter

Forest	Sampling design	Plot size	Sampling intensity	Samp	ling effort	Quadratic mean diameter sampling error
	0		· _	hours/ha	ha/hour	
TRF	SRS	25	30	50.3	0.02	19.9
TRF	SRS	50	30	24.8	0.04	15.8
TRF	SRS	100	30	12.5	0.08	20.6
TRF	SRS	400	30	2.7	0.37	22.9
TRF	SRS	25	100	50.4	0.02	10.0
TRF	SRS	50	100	25.3	0.04	9.9
TRF	SRS	100	100	12.5	0.08	10.0
TRF	SRS	400	100	3.1	0.33	9.8
TRF	SSH (E-W)	400	20	3.0	0.33	24.3
TRF	SSH (E-W)	25	30	50.5	0.02	19.7
TRF	SSH (E-W)	50	30	25.2	0.04	23.6
TRF	SSH (E-W)	100	30	12.0	0.08	23.5
TRF	SSH (E-W)	400	30	2.8	0.35	19.8
TRF	SSH (E-W)	25	100	50.4	0.02	10.0
TRF	SSH (E-W)	50	100	25.3	0.04	9.9
TRF	SSH (E-W)	100	100	12.5	0.08	10.0
TRF	SSH (E-W)	400	100	3.1	0.33	9.8
TRF	SSV (N-S)	400	10	2.7	0.38	21.5
TRF	SSV (N-S)	25	20	51.4	0.02	24.0
TRF	SSV (N-S)	25	30	50.9	0.02	19.2
TRF	SSV (N-S)	50	30	25.2	0.04	20.8
TRF	SSV (N-S)	100	30	12.5	0.08	23.2
TRF	SSV (N-S)	400	30	2.9	0.34	20.1
TRF	SSV (N-S)	25	100	50.4	0.02	10.0
TRF	SSV (N-S)	50	100	25.3	0.04	9.9
TRF	SSV (N-S)	100	100	12.5	0.08	10.0

TRF	SSV (N-S)	400	100	3.1	0.33	9.8
MMF	SRS	100	10	10.2	0.10	23.0
MMF	SRS	25	20	38.6	0.03	17.1
MMF	SRS	50	20	19.4	0.05	19.8
MMF	SRS	100	20	9.3	0.11	14.0
MMF	SRS	400	20	2.1	0.48	13.3
MMF	SRS	25	30	40.2	0.02	15.9
MMF	SRS	50	30	19.2	0.05	15.3
MMF	SRS	100	30	8.3	0.12	14.8
MMF	SRS	400	30	2.3	0.43	16.5
MMF	SRS	25	100	40.7	0.02	8.7
MMF	SRS	50	100	20.1	0.05	10.5
MMF	SRS	100	100	10.0	0.10	10.7
MMF	SRS	400	100	2.4	0.41	14.0
MMF	SSH (E-W)	25	10	39.8	0.03	24.2
MMF	SSH (E-W)	25	20	39.6	0.03	15.7
MMF	SSH (E-W)	50	20	19.0	0.05	20.0
MMF	SSH (E-W)	100	20	8.7	0.12	19.3
MMF	SSH (E-W)	400	20	1.7	0.60	24.5
MMF	SSH (E-W)	25	30	39.3	0.03	12.2
MMF	SSH (E-W)	50	30	19.3	0.05	16.0
MMF	SSH (E-W)	25	100	40.7	0.02	8.7
MMF	SSH (E-W)	50	100	20.1	0.05	10.5
MMF	SSH (E-W)	100	100	10.0	0.10	10.7
MMF	SSH (E-W)	400	100	2.4	0.41	14.0
MMF	SSV (N-S)	25	20	36.9	0.03	16.9
MMF	SSV (N-S)	50	20	17.7	0.06	18.6
MMF	SSV (N-S)	100	20	8.3	0.12	16.1
MMF	SSV (N-S)	25	30	38.2	0.03	14.8
MMF	SSV (N-S)	50	30	18.0	0.06	15.7
MMF	SSV (N-S)	100	30	8.7	0.12	16.1
MMF	SSV (N-S)	400	30	1.8	0.55	22.1
MMF	SSV (N-S)	25	100	40.7	0.02	8.7
MMF	SSV (N-S)	50	100	20.1	0.05	10.5
MMF	SSV (N-S)	100	100	10.0	0.10	10.7
MMF	SSV (N-S)	400	100	2.4	0.41	14.0
DWF	SRS	25	5	22.0	0.05	23.5
DWF	SRS	25	10	21.7	0.05	19.1
DWF	SRS	50	10	11.2	0.09	13.1
DWF	SRS	100	10	5.7	0.18	13.4
DWF	SRS	25	20	21.8	0.05	21.6
DWF	SRS	50	20	11.0	0.09	22.1
DWF	SRS	100	20	5.4	0.18	10.5
DWF	SRS	25	30	21.8	0.05	13.8

DWF	SRS	50	30	11.1	0.09	14.7
DWF	SRS	100	30	5.7	0.17	23.5
DWF	SRS	400	30	1.3	0.75	17.6
DWF	SRS	25	100	22.4	0.04	6.9
DWF	SRS	50	100	11.4	0.09	7.8
DWF	SRS	100	100	5.7	0.18	9.1
DWF	SRS	400	100	1.5	0.69	12.4
DWF	SSH (E-W)	25	5	21.0	0.05	24.1
DWF	SSH (E-W)	25	10	21.7	0.05	14.7
DWF	SSH (E-W)	50	10	11.3	0.09	22.0
DWF	SSH (E-W)	400	10	1.3	0.75	18.6
DWF	SSH (E-W)	25	20	22.2	0.05	10.8
DWF	SSH (E-W)	50	20	11.3	0.09	17.3
DWF	SSH (E-W)	100	20	5.6	0.18	17.1
DWF	SSH (E-W)	25	30	22.0	0.05	11.2
DWF	SSH (E-W)	50	30	11.5	0.09	19.2
DWF	SSH (E-W)	100	30	5.7	0.17	12.7
DWF	SSH (E-W)	25	100	22.4	0.04	6.9
DWF	SSH (E-W)	50	100	11.4	0.09	7.8
DWF	SSH (E-W)	100	100	5.7	0.18	9.1
DWF	SSH (E-W)	400	100	1.5	0.69	12.4
DWF	SSV (N-S)	25	5	22.3	0.04	16.0
DWF	SSV (N-S)	50	10	11.2	0.09	20.0
DWF	SSV (N-S)	100	10	5.5	0.18	23.2
DWF	SSV (N-S)	25	20	22.0	0.05	16.9
DWF	SSV (N-S)	50	20	10.8	0.09	20.5
DWF	SSV (N-S)	25	30	21.9	0.05	13.1
DWF	SSV (N-S)	50	30	10.9	0.09	15.6
DWF	SSV (N-S)	100	30	5.4	0.18	18.3
DWF	SSV (N-S)	25	100	22.4	0.04	6.9
DWF	SSV (N-S)	50	100	11.4	0.09	7.8
DWF	SSV (N-S)	100	100	5.7	0.18	9.1
DWF	SSV (N-S)	400	100	1.5	0.69	12.4