EFFECTS OF TRYPANOSOMA BRUCEI BRUCEI INFECTION ON THE HISTOLOGY AND FUNCTIONING OF THE HYPOTHALAMO-THALAMUS-PINEAL GLAND AXIS IN MALE ALBINO RATS (Rattus novergicus)

BY

MAINA CHARLES IRUNGU

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ANIMAL PHYSIOLOGY) IN THE SCHOOL OF SCIENCE, UNIVERSITY OF ELDORET, KENYA

DECLARATION

Declaration by the Candidate

This thesis is my original work and has not been presented for a degree in any other University. No part of this thesis may be reproduced without the prior written permission of the author and/or University of Eldoret.

.....

(Date)

Maina Charles Irungu

SC/Ph.D/B/011/05

Declaration by the Supervisors

This thesis has been submitted for examination with our approval as University Supervisors.

Dr. Ng'wena G. Magak (Date) Maseno University, Maseno, Kenya Dr. Dickson M. Mwaniki (Date) University of Eldoret, Eldoret, Kenya

DEDICATION

This thesis is dedicated to my late father Maina Kahwaga and mother Jane Muthoni. The latter saw me begin my doctorate degree but did not live long enough to see its completion. May the Almighty God rest their souls in eternal peace.

To my dear wife Grace Nyawira, and sons Kevin Maina, Keith Kiune, and Geoffrey Kahwaga, for their endless love, prayers and encouragement.

ABSTRACT

Trypanosomosis is a major health problem threatening the lives of over 60 million people in 37 countries in sub-Saharan Africa. It is caused by *Trypanosoma* parasites which are transmitted through a bite of an infected tsetse fly of the genus Glossina. The disease is characterized by sleep/wake disturbances, and disruptions in other circadian rhythm activities like body temperature and hormone secretion. Since histopathological studies on brain regions involved in the control of circadian rhythms are scanty, this study investigated the effects of T.b. brucei infection on the hypothalamic suprachiasmatic and paraventricular nuclei, thalamic lateral geniculate nucleus, anterior pituitary and pineal glands in albino rats. It also investigated the effects of T.b. brucei infection on plasma concentration of melatonin and adrenocorticotropic hormone (ACTH). Twelve control and twelve experimental male albino rats, aged 3-3¹/₂ months, were used in this study. Body weight and temperature of each rat was measured four days in a week. The experimental rats were injected intraperitoneally with 0.2ml of infected blood containing 1 x 10^4 live T.b. brucei parasites. Once a week, 1ml of blood was obtained from the tail of each rat and the concentration of melatonin and ACTH in the plasma determined using an automated immunoanalyzer. The infected animals were allowed to go through the full course of infection, without treatment, and sacrificed when they were in extremis. For every experimental rat sacrificed, a control rat was sacrificed. Each rat was anaesthetized, decapitated, and the brain immediately extracted from the skull. The brain was fixed in neutral buffered formalin for at least 48 hours. The anterior pituitary and pineal glands were later extracted from the brain and a coronal section of the brain made. These tissues were processed histologically and stained using the haematoxylin and eosin method. The stained slides were examined under a microscope and photomicrographs taken. Parasites were detected in the blood of experimental rats 5-8 days post-infection. Significant differences in body weight (p = 0.0114), temperature (p = 0.0113), and plasma concentration of melatonin (p = 0.0382) and ACTH (p = 0.0113)0.0190), were recorded between the control and experimental rats. Histopathological changes, including tissue degeneration and infiltration and proliferation of glial cells, were observed in the suprachiasmatic nucleus, paraventricular nucleus, lateral geniculate nucleus, anterior pituitary gland, and pineal gland of infected rats. These findings provide a basis for understanding the physiological and behavioural changes that characterize trypanosomosis.

TABLE OF CONTENTS

Declarationii
Dedicationiii
Abstractiv
Table of Contentsv
List of Figuresix
List of Abbreviations, Acronyms and Symbolsxi
Acknowledgementxiv
CHAPTER ONE
INTRODUCTION1
1.1 Background Information1
1.2 Statement of the Problem
1.3 Objectives4
1.3.1 Broad Objective4
1.3.2 Specific Objectives
1.4 Hypotheses
1.5 Justification5
CHAPTER TWO7
LITERATURE REVIEW7
2.1 Occurrence and Distribution of Trypanosomosis7

2.2 Transmission of Trypanosomosis	.9
2.3 Life cycle of African Trypanosome1	10
2.4 Pathology and Pathogenesis of Trypanosomosis1	11
2.5 Diagnosis of Trypanosomosis 1	12
2.6 Treatment of Trypanosomosis1	14
2.7 Prevention and Control of Trypanosomosis1	16
2.8 Trypanosomosis and the Vertebrate Immune Response 1	16
2.9 Effects of Trypanosomosis on Mammalian Circadian Rhythms1	18
2.9.1 The Suprachiasmatic Nucleus – the Master Circadian	
Rhythm Pacemaker2	23
2.9.2 The Paraventricular Nucleus and its Role in Circadian Rhythms2	27
2.9.3 The Lateral Geniculate Nucleus and its Role in	
Circadian Rhythms	30
2.9.4 The Pineal Gland and its Role in Circadian Rhythms	33
CHAPTER THREE	38
MATERIALS AND METHODS	38
3.1 Study Site	38
3.2 Breeding of Rats	38
3.3 Study Design	38
3.4 Determination of Body Weight and Temperature	39
3.5 Infection of Experimental Rats4	40

3.6 Parasite Detection
3.7 Determination of Plasma Concentration of Melatonin and ACTH41
3.8 Organ Harvesting and Histological Studies
3.9 Data Analysis

CHAPTER FOUR ²	
RESULTS 4	5
4.1 Parasite Detection and Physical Observation for Clinical Signs	5
4.2 Effects of <i>T.b. brucei</i> Infection on Body Weight4	6
4.3 Effects of <i>T.b. brucei</i> Infection on Body Temperature	6
4.4 Effects of <i>T.b. brucei</i> Infection on Plasma Concentration of Melatonin4	7
4.5 Effects of <i>T.b. brucei</i> Infection on Plasma ACTH Concentration	8
4.6 Suprachiasmatic Nucleus Histology4	9
4.7 Paraventricular Nucleus Histology	0
4.8 Anterior Pituitary Gland Histology	2
4.9 Lateral Geniculate Nucleus Histology52	3
4.10 Pineal Gland Histology54	4

CHAPTER FIVE	
DISCUSSION	
5.1 Detection of Parasites	56
5.2 Body Weight and Temperature	57

5.3 Melatonin and Pineal Gland Histological Changes
5.4 ACTH, Paraventricular Nucleus and Anterior Pituitary Gland
Histological Changes63
5.5 Suprachiasmatic Nucleus Histological Changes
5.6 Lateral Geniculate Nucleus Histological Changes71

CHAPTER SIX	
CONCLUSIONS AND RECOMMENDATIONS	
6.1 Conclusions	73
6.2 Recommendations	73

REFERENCES

LIST OF FIGURES

Figure 1 Geographical distribution of trypanosomosis in Africa7
Figure 2 Diagrammatic representation of the life cycle of the
African trypanosome11
Figure 3 Schematic representation of possible immunopathological
pathways leading to brain dysfunction in African trypanosomosis21
Figure 4 Coronal section of rat brain showing the location of the
suprachiasmatic nucleus
Figure 5 Schematic summary of the pathways leading to (input) and
from (output) the suprachiasmatic nucleus
Figure 6 Synthesis of ACTH in the anterior pituitary gland
Figure 7 Synthesis of melatonin in the pineal gland
Figure 8 Blood smear of an infected rat showing <i>T.b.brucei</i> parasites45
Figure 9 Pre- and post-infection body weight of control and
experimental rats46
Figure 10 Pre- and post-infection body temperature of control and
experimental rats47
Figure 11 Pre- and post-infection plasma melatonin concentration in control
and experimental rats
Figure 12 Pre- and post-infection plasma ACTH concentration in control
and experimental rats

Figure 13 Photomicrograph of coronal section through the suprachiasmatic	
nucleus of a) control, and b) <i>T.b. brucei</i> -infected rats	50
Figure 14 Photomicrograph of coronal section through the paraventricular	
nucleus of a) control, and b) T.b. brucei-infected rats	51
Figure 15 Photomicrograph of transverse section through the anterior	
pituitary gland of a) control, and b) <i>T.b. brucei</i> -infected rats	52
Figure 16 Photomicrograph of coronal section through the lateral geniculate	
nucleus of a) control, and b) <i>T.b. brucei</i> -infected rats	53
Figure 17 Photomicrograph of transverse section through the pineal gland	
of a) control, and b) <i>T.b. brucei</i> -infected rats	54

LIST OF ABBREVIATIONS, ACRONYMS AND SYMBOLS

ACTH	adrenocorticotropic hormone
BBB	blood-brain barrier
b/v	blood vessel
CC	corpus callosum
CDC	Centres for Disease Control and Prevention
CG	ciliary ganglion
CLIP	corticotropin-like intermediate peptide
CNS	central nervous system
CRH	corticotropin-releasing hormone
CSF	cerebrospinal fluid
DNA	deoxyribonucleic acid
EDTA	ethylene diamine tetra acetate
EEG	electroencephalograph
EW	Edinger-Westphal
FAO	Food and Agriculture Organization
GHT	geniculohypothalamic tract
Нс	hippocampus
HPA	Hypothalamic-pituitary-adrenal
IFN	interferon
IGL	intergeniculate leaflet
IL	interleukine
ILRAD	International Laboratory for Research on Animal Diseases
ILRI	International Livestock Research Institute
IML	intermediolateral

intrinsically photosensitive retinal ganglion cells
lateral geniculate nucleus
lateral ventricle
magnification
major histocompatibility complex
micro-card agglutination test for trypanosomosis
milliliter
millimeter
melanocyte stimulating hormone
natural killer
nitric oxide
neuropeptide Y
National Research Council
optic chiasma
Office International des Epizooties
olivary pretectal nucleus
Pan African Tsetse and Trypanosomosis Eradication Campaign
post-infection
phosphate buffered saline
pro-opiomelanocortin
post-treatment reactive encephalopathy
paraventricular nucleus
quantitative buffy coat
rapid eye movement
retinohypothalamic tract

RNA	ribonucleic acid
SCG	superior cervical ganglion
SCN	suprachiasmatic nucleus
SO	supraoptic nucleus
STDM	standard trypanosome detection methods
SWS	slow wave sleep
<i>T.b.</i>	Trypanosoma brucei
Tltf	trypanosome-derived lymphocyte triggering factor
TNF	tumor necrosis factor
US/USA	United States of America
VATs	variant antigenic types
VIP	vasoactive intestinal polypeptide
VSG	variable surface glycoprotein
wb-CATT	whole blood- card agglutination test for trypanosomosis
wb-LATEX	whole blood latex agglutination test
WHO	World Health Organization
ZT	zeitgeber
α	alpha
β	beta
γ	gamma
£	dollar

ACKNOWLEDGEMENT

I am very grateful to my supervisors Dr. Ng'wena and Dr. Mwaniki for their scientific guidance, solid support, encouragement, and valuable advice. Also for always being available and sparing their precious time for the many inspiring discussions that we held. I would also like to thank Dr. Elizabeth Njenga, Head of Biological Sciences Department, University of Eldoret, and members of the department, for their hospitality and for facilitating my studies in one way or the other.

My sincere thanks go to Mr. Apolonary Oucho for taking good care of the research animals, keeping the animal house in perfect order, and more-so, for giving me company in the laboratory during those late hours of the night. I am indebted to Mr. Fredrick Munga of Eldoret Hospital for his expertise assistance in immunoassay techniques, Mr. Chebii Kiptanui of the Department of Human Pathology, Moi University, for his skillful technical assistance in tissue processing, Dr. Moses Ndiema of the Department of Human Anatomy, Moi University, for his professional assistance in analyzing and interpreting the histological slides, and Mr. Gilbert Biwott, of the Department of Biological Sciences, University of Eldoret, for ensuring that the microscope and the camera were always ready anytime I needed to use them. Last, but not least, my sincere thanks also goes to my family, friends and relatives for their prayers and never-ending encouragement throughout the entire study period. May God bless you all.