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ABSTRACT 

Similarity is a recent area of study on classes of operators in Hilbert spaces. The study of 

operators, under similarity and quasisimilarity concepts, motivated researchers to extend 

their research to almost similarity property which is undergoing current research. Almost 

similarity has been shown to be an equivalence relation and to preserve nullity and co-

nullity of operators. Though similarity preserves nontrivial subspaces and quasisimilarity 

preserves hyperinvariant subspaces of operators, there is scanty literature linking such 

conclusion to almost similarity.  Properties of almost similarity on some classes of 

operators, namely, partial isometries, θ-operators, posinormal operators among others and 

conditions under which almost similarity gives equality of spectra remain open for more 

research. The main purpose of this research was to investigate almost similarity 

properties on partial isometries, θ-operators, posinormal operators and conditions 

yielding equality of spectra. Comparative and analytic approaches were used by 

considering known results on similarity and quasisimilarity concepts. Among other 

results, unitary equivalence of both θ-operators and posinormal operators under isometry 

and co-isometry properties were established. Results from the study are fundamental as 

they will bring about more understanding on properties of operators, which is the basis 

for those applying these operators in quantum mechanics, spectral analysis of functions 

and unitary group representation.   
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INDEX OF NOTATIONS AND TERMINOLOGIES 

The following notations are used this thesis: 

ℂ: Set of complex numbers. 

ℝ: Set of real numbers. 

𝐻, 𝐾: Hilbert spaces over the complex scalars ℂ. 

𝔅(𝐻): Set of bounded linear operators on 𝐻. 

ℛ: The real part of a complex number.  

 〈𝓍, 𝓎〉 : Inner product of vectors  𝓍 and 𝓎 in a Hilbert space. 

‖𝓍‖ : Norm of a vector 𝓍. 

𝐴, 𝐵, 𝒯, 𝒮, 𝒱, 𝒲:  Operators acting on a Hilbert space.   

𝒯∗: Adjoint of  𝒯. 

𝐾𝑒𝑟 (𝒯): Kernel of  𝒯. 

𝐾𝑒𝑟 (𝒯) ≡ 𝑁(𝒮): Null space of  𝒮. 

𝑅𝑎𝑛 (𝒯) : Range of  𝒯.  

‖𝒯‖ : Norm of  𝒯.  

|𝒯| : Absolute value of  𝒯.  

𝜎(𝒯) : Spectrum of  𝒯.  

𝑊(𝒯) :  Numerical range of  𝒯. 

𝜔(𝒯): Numerical radius of  𝒯. 

𝜌(𝒯) : Resolvent set of  𝒯. 

{𝒯}´: Commutator of  𝒯. 

𝜎𝑝𝑜(𝒮): Posispectrum of  𝒮. 
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𝜎𝜋(𝒮∗): Approximate point spectrum of adjoint of  𝒮. 

⊕: Direct sum. 

∀: For all.  

𝑎. 𝑠: Almost similar. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background  

A Hilbert Space is a mathematical space named after David Hilbert. Hilbert spaces by 

David Hilbert, (20thcentury), generalize the notion of a Euclidean space, extending the 

methods of vector algebra and calculus from the two dimensional Euclidean plane and 

three dimensional spaces to spaces with any finite or infinite dimensions. Prior to the 

development of Hilbert spaces in first decade of the 20thcentury, Physicists and 

Mathematicians in 18th and 19th centuries used a generalized Euclidean idea of a space 

(abstract linear space), whose elements can be multiplied and added together by a scalar.  

The development of Hilbert Space was sequential. The first establishment arose on study 

of integral equations by David Hilbert and Erhard Schmidt. They showed that two square 

integrable real-valued functions 𝑓 and 𝑔 of an interval [𝑎, 𝑏] contain an inner product 

given by 〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑑𝑥
𝑏

𝑎
. This was followed by Lesbesgue Integral, an 

extension from Riemann Integral by Heine (1904), which made it possible to integrate a 

much broader class of functions. Frigyes and Ernst (1907) proved that the space 𝐿2 of 

square integrable functions is a complete metric space. It was further advanced to more 

general spaces by trigonometric series results, studied by Joseph Fourier, Friedrich Bessel 

and Marc-Antoine Parseval. Further basics were proved in the early 20th century by other 

scholars. John-Von Neumann used abstract Hilbert Space in his study on unbounded self-

adjoint (Hermittian) operators and foundations of quantum mechanics and demonstrated 

axiomatic results. This introduced Hilbert Space to many scholars since it offers the best 

mathematical formulations of quantum mechanics. Quantum mechanical systems are 
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vectors in a certain Hilbert Space classified easily with operators like self-adjoint, unitary 

and normal. Operators are frequently used to perform a specific mathematical operation 

on another function. They are also used in Physics and Chemistry to simplify complex 

equations like the Hamiltonian operator used to solve the Schrodinger wave equations to 

give energy associated with a given wave function. Hermann (1909) developed the 

classical Weyl theorem, a new concept in operator theory and proved that, for two given 

self-adjoint operators 𝐴 and 𝐵, then the spectrum of 𝐴 and 𝐴 + 𝐵 have equal limit points 

if 𝐵 is a compact operator. He further showed that the essential spectra of a self-adjoint 

operator is invariant under perturbations and that compact perturbation of an operator is 

in some sense small and summarized that Fredholm index is a topological quantity. 

According to Von Neumann (1935), if the spectra of self-adjoint operators 𝐴 and 𝐵 have 

the same limit points and given a compact operator 𝐾, then 𝐴 + 𝐾 and 𝐵 are unitarily 

equivalent. Generally, significant knowledge contribution has been done by varied 

scholars on relations among operators in Hilbert spaces which include similarity and 

quasimilarity but scantly on almost similarity. Jibril (1996) introduced this property of 

almost similarity. According to him, two operators 𝐴, 𝐵 ∈ 𝔅(𝐻) are almost similar if an 

invertible operator 𝒩 exists such that 

 𝐴∗𝐴 = 𝒩−1(𝐵∗𝐵)𝒩 and 𝐴∗ + 𝐴 = 𝒩−1(𝐵∗ + 𝐵)𝒩. This property on operators has 

been studied by other scholars and variety of results given which demonstrated metric 

equivalence and almost similarity to be equivalence relations. Also, almost similar 

operators have been found to preserve nullity and co-nullity of operators and almost 

similarity implies similarity.  
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1.2 Basic Concepts 

The following are terms which were employed in our research: 

Definition 1.2.1. A Hilbert space is a complete normed linear space with the structure of 

inner product defined on it. 

Definition 1.2.2. An operator is a mapping that acts on elements of a domain space to 

generate images of another space (relatively the same space).  

Definition 1.2.3. An operator  𝒯 ∈ 𝔅(𝐻) is bounded or enclosed if there exists 𝒞 > 0 

such that, 

 ‖𝒯𝓍‖   ≤ 𝒞 ‖𝓍‖, ∀ 𝓍 ∈ 𝐻 where, ‖𝒯‖ = inf {𝒞 >  0 ∶  ‖𝒯𝓍‖   ≤ 𝒞 ‖𝓍‖, ∀ 𝓍 ∈ 𝐻}. 

Definition 1.2.4. An operator 𝒯 ∈ 𝔅(𝐻) is an isometry if 𝒯∗𝒯 = 𝐼, where 𝐼 is the 

identity operator and it is partial isometry if  𝒯𝒯∗𝒯 = 𝒯 or equivalently, if  𝒯∗𝒯 is a 

projection. Thus, it is a distance-preserving transformation. Thus, it is a linear 

transformation which is isometric on the orthogonal complement of its kernel. 

Definition 1.2.5. Let ℒ: 𝒱 ⟶ 𝒲, where 𝒱 and 𝒲 are vector spaces, be a linear map. 

Then the set of all vectors 𝑣 for which ℒ(𝑣) = 0, with 0 denoting the zero vector in 𝒲, is 

the kernel of ℒ. That is, 𝐾𝑒𝑟 (ℒ) = {𝑣 ∈ 𝒱 ∶ ℒ(𝑣) = 0} .Thus, kernel is simply a null 

space. 

Definition 1.2.6. For an operator 𝐴 ∈ 𝔅(𝐻), its nullity, denoted by 𝑛𝑢𝑙(𝐴), is defined as   

𝑛𝑢𝑙(𝐴) = dim (ker(𝐴)) and its co-nullity is the dimension of ker (𝐴∗). 

Definition 1.2.7. Let 𝐴 ∈ ℬ(𝐻1, 𝐻2). Then 𝐴 is said to be an invertible operator if there 

exists an operator 𝐴−1 ∈ ℬ(𝐻2, 𝐻1) such that,  𝐴−1𝐴𝓍 = 𝓍 and 𝐴𝐴−1𝓎 = 𝓎 for every 𝓍 ∈

𝐻1 and for every 𝓎 ∈ 𝐻2 respectively.  Then the operator 𝐴−1 is referred to as the inverse 

of  𝐴. 
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Definition 1.2.8. Let 𝐴 ∈ 𝔅(𝐻). Then A is said to be positive normal or simply 

posinormal if there exist a positive operator 𝑃 ∈ 𝔅(𝐻) such that, 𝐴𝐴∗ = 𝐴∗𝑃𝐴. If 𝐴∗ is 

posinormal, then 𝐴  is said to be coposinormal. 

Definition 1.2.9 Let 𝒯 ∈ 𝔅(𝐻). The posispectrum of  𝒯, denoted by P(𝒯), is the set 

 { 𝜆 ∶ 𝒯 − 𝜆  is not posinormal}. 

Definition 1.2.10. A bounded linear operator  𝐴 ∈ 𝔅(𝐻) is said to be hyponormal if 

𝐴𝐴∗ ≦ 𝐴∗𝐴 and quasinormal if  𝐴 commutes with 𝐴∗𝐴. 

Definition 1.2.11. An operator 𝐴 ∈ 𝔅(𝐻) is heminormal if 𝐴 is hyponormal and 𝐴∗𝐴 

commutes with 𝐴𝐴∗. 

Definition 1.2.12. An operator 𝒯 ∈ 𝔅(𝐻) for which  𝒯∗𝒯 and 𝒯 + 𝒯∗ commute is called 

a         𝜃-operator. The class of  𝜃-operators is denoted by 𝜃.  

Definition 1.2.13. Let  𝒯 ∈ 𝔅(𝐻). The spectrum of  𝒯, denoted by 𝜎(𝒯) is the set of all 

𝜆 ∈ ℂ, such that the operators 𝒯 − 𝜆𝐼 is not invertible. In finite-dimensional spaces 𝜎(𝒯), 

consists of the eigenvalues of  𝒯. 

Definition 1.2.14. The following are fundamental classes of operators which are 

significant to this study. An operator 𝒯 ∈ 𝔅(𝐻)  is said to be; 

 Hermitian or self-adjoint if  𝒯∗ = 𝒯,  

 Normal  if  𝒯∗𝒯 = 𝒯𝒯∗,  

 Unitary if  𝒯∗𝒯 = 𝒯𝒯∗ = 𝐼,  

 Skew adjoint if  𝒯∗ = −𝒯, 

 Binormal if  (𝒯∗𝒯)(𝒯𝒯∗) = (𝒯𝒯∗)(𝒯∗𝒯),  

 Orthogonal projection if  𝒯2 = 𝒯 and 𝒯∗ = 𝒯, 

 Isometric if  𝒯∗𝒯 = 𝐼,  
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 Partial isometry if  𝒯𝒯∗𝒯 = 𝒯, 

  𝐴 Self-adjoint if 𝒯∗ = 𝐴−1𝒯𝐴, for some operator 𝐴 which is self-adjoint and 

invertible. 

 Normaloid if  𝑟(𝒯) = ‖𝒯‖ or ‖𝒯𝑛‖ = ‖𝒯‖𝑛. 

 Cohyponormal if   𝒯𝒯∗ ≥ 𝒯∗𝒯 i.e its adjoint  is hyponormal   

 Subnormal if there exists a Hilbert Space 𝐾 containing 𝐻 and a normal 

operator 𝒩 acting on 𝐾 such that 𝐻 is 𝒩-invariant and  𝒯 is the restriction of 

𝒩 onto 𝐻. Thus, 𝒯 ∈ 𝔅(𝐻) is said to be a subnormal if 𝐻 is a subspace of a 

Hilbert space 𝐾 and with respect to the decomposition 𝐾 = 𝐻⨁𝐻⊥, the 

operator 𝑁 has the triangular block representation given by 𝑁 = (
𝒯 𝐵
0 𝐶

), 

where 𝐵: 𝐻⊥ ⟶ 𝐻 and 𝐶: 𝐻⊥ ⟶ 𝐻⊥. 

 𝑀-hyponormal if there exist a real number 𝑀 ≥ 0 such that 

 ‖(𝒯 − 𝑧𝐼)* 𝑥‖≤ 𝑀‖(𝒯 − 𝑧𝐼)║ ∀ 𝑥 ∈ 𝐻 and for every complex number 𝑧. 

 Dominant if for any complex number 𝜆, there exists a number 𝑀𝜆 ≥ 1 such 

that (𝒯 − 𝜆𝐼)(𝒯 − 𝜆𝐼)∗ ≤ 𝑀𝜆
2(𝒯 − 𝜆𝐼)∗(𝒯 − 𝜆𝐼). Equivalently 

 𝑅𝑎𝑛(𝒯 − 𝜆𝐼) ⊂ 𝑅𝑎𝑛(𝒯 − 𝜆𝐼)∗, ∀  𝜆 ∈ 𝜎(𝒯).  

 Semi normal if either 𝒯 or 𝒯∗ is hyponormal.  

Hence we have the following class inclusions;  

       (𝑖) {Unitary operators}  ⊆ {isometric operators}  ⊆ {partial isometries}. 

{Unitary operators} ⊆ {co-isometric operators} ⊆ {partial isometries}. 

             (𝑖𝑖)  {Normal operators} ⊆{Quasinormal operators} ⊆ {Binormal operators}  

            (𝑖𝑖𝑖) {Positive operators}⊆{Self-adjoint operators}⊆{Normal operators}⊆ 
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                 { 𝜃-operators}. 

            (𝑖𝑣){projection}⊆{positive}⊆{self-adjoint}⊆{Normal}⊆{Hyponormal operators} 

                    ⊆{M-hyponormal}⊆{Dominant operators} ⊆ {Posinormal operators}. 

Definition 1.2.15. Two operators 𝐴, 𝐵 ∈ 𝔅(𝐻) are similar, denoted by 𝐴~𝐵, if there 

exists an invertible operator 𝑋 such that 𝑋𝐴 = 𝐵𝑋 or equivalent 𝐴 = 𝑋−1𝐵𝑋. 

Similarly, two operators 𝐴, 𝐵 ∈ 𝔅(𝐻) are unitarily equivalent and denoted by 𝐴 ≅ 𝐵 if 

there is a unitary operator 𝑈 such that 𝑈𝐴 = 𝐵𝑈 i.e, 𝐴 = 𝑈∗𝐵𝑈 or 𝐵 = 𝑈𝐴𝑈∗.  

Computation shows that similarity is a equivalence relation in 𝔅(𝐻) and also that similar 

operators in 𝔅(𝐻) have the same: 

i. Spectrum, denoted by 𝜎(𝒯) = {𝜆 ∈ ℂ: (𝒯 − 𝜆𝐼) is not  invertible}. 

The complement of the spectrum of 𝒯 is called the resolvent set of  𝒯. 

ii. Point spectrum, denoted by 

 𝜎𝑝(𝒯) = {𝜆 ∈ ℂ: 𝐾𝑒𝑟(𝒯 − 𝜆𝐼) ≠ (0)} 𝑖. 𝑒 𝒯𝓍 = 𝜆𝓍 , 𝑓𝑜𝑟 𝓍 ∈ 𝐻. 

iii. Approximate point spectrum, denoted by 𝜎𝑎𝑝(𝒯), if there exists a sequence of unit 

vector {𝓍𝑛} such that, ‖(𝒯 − 𝜆𝐼)𝓍𝑛‖ ⟶ 0. 

Definition 1.2.16. An operator 𝒯 ∈ 𝔅(𝐻) is referred to as a quasiaffinity if 𝒯 is both one-

one and has dense range. Quasiaffinity is also referred to as a quasi-invertible.  

Definition 1.2.17. Two operators 𝐴 ∈ 𝔅(𝐻) and 𝐵 ∈ 𝔅(𝐾) are quasisimilar if there are 

quasi-invertible operators 𝑋 from 𝐾 to 𝐻 and 𝑌  from 𝐻 to 𝐾 which satisfy the equations; 

 𝑋𝐴 = 𝐵𝑋 and 𝐵𝑌 = 𝑌𝐴. In all classes of operators, quasisimilarity is an equivalence 

relation.  
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Definition 1.2.18. Let two operators 𝐴, 𝐵 ∈ 𝔅(𝐻). Then 𝐴 and 𝐵 are almost similar and 

denoted as 𝐴 ≈
𝑎.𝑠𝐵, if an invertible operator 𝒩 exists such that 𝐴∗𝐴 = 𝒩−1(𝐵∗𝐵)𝒩 and 

 𝐴∗ + 𝐴 = 𝒩−1(𝐵∗ + 𝐵)𝒩. 

1.3. Statement of the problem 

A number of authors have studied the concepts of similarity and quasisimilarity of 

operators in Hilbert spaces. In the recent past, studies have also been done on the concept 

of almost similarity of operators, unitarily equivalent operators and metrically equivalent 

operators which established some relationships between them. Almost similarity has also 

been shown to be an equivalence relation. However, there is little known in literature on 

properties of almost similarity on partial isometries, θ-operators and posinormal 

operators. The conditions under which almost similarity give equality of spectra had not 

been established. This research therefore sought to investigate almost similarity property 

on partial isometries, 𝜃-operators, posinormal operators and conditions under which 

almost similarity gives equality of spectra.  

 

1.4. Objectives of the Study 

1.4.1 Main objective 

 The main objective of this research was to extend the study on similarity and 

quasisimilarity to that of almost similarity of operators in Hilbert spaces. 

1.4.2 Specific objectives 

The specific objectives of this research were as follows;  

i. To investigate properties of almost similarity on partial isometries. 

ii. To investigate properties of almost similarity on θ-operators. 
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iii. To investigate properties of almost similarity on posinormal operators.   

iv. To look for conditions under which almost similarity property yields equal spectra 

for such operators.  

1.5 Significance of the study 

The understanding of almost similarity properties on the partial isometries, θ-operators 

and establishing conditions in which this property yields equality of spectrum will be 

significant in knowledge value addition on interpretation of operator relations on Hilbert 

spaces. Operators form the most intrinsic part of the formulation of theories in quantum 

mechanics, spectral analysis of functions including theories of wavelength, partial 

differential equations such as formulation of the Dirichlet problems and unitary group 

representations. Also, studies on Hilbert spaces not only clarify but also generalize the 

concept of Fourier expansion and certain linear transformations such as the Fourier 

transform. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction  

Since the conception of Hilbert spaces, significant studies have been done to establish 

structural composition and relations under different operators in this space as highlighted 

below;  

Hoover (1972) researched hyperinvarint subspaces and proved the result that, for two 

operators 𝒮, 𝒯 ∈ 𝔅(𝐻) such that, if 𝒮 and 𝒯 are quasisimilar operators acting on Hilbert 

spaces 𝐻 and 𝐾  respectively, then 𝒯 has a hyperinvariant subspace whenever 𝒮 has. 

Also, if 𝒮 is normal, then the lattice of hyperinvariant substances for 𝒯 contains a sub-

lattice which is lattice isomorphic to the lattice of spectral projection for 𝒮. 

Hoover further showed some properties of operators that are preserved by 

quasisimilarity and those that are not. He also showed that quasisimilar normal operators 

are unitarily equivalent, quasisimilar isometries are unitary equivalent and finally 

quasisimilarity doesn't preserve spectra and compactness. 

Kubrusty (1997) studied hyperinvariance and demonstrated that similarity preserves 

nontrivial subspaces while quasisimilarity preserves hyperinvariant subspaces.  

Douglas (1969) proved the equality of spectra of quasisimilar normal operators. This was 

then extended to two pairs of quasisimilar, hypernormal operators by Halmos (1976).  

Clary (1975) showed that quasisimilar-hypernormal operators have equal spectra. 

Stampfli (1981) proved the result on quasisimilar hyponormal operators to be an 

inclusion for the spectra of quasisimilar operators satisfying Dunfords condition. 
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Lambert (2001) extensively showed that any two unilateral weighted shifts which are 

Quasisimilar are similar but if unilateral shift is bilateral as by L.A Fialkow the result 

failed. 

Williams (1980) showed that quasisimilar-hyponormal operators have equal spectra and 

established results relating hyponormal and quasisimilarity operators. He further justified 

that if one of the quasiaffinities of two hyponormal operators is compact, then they have 

equal essential spectra. 

Lee (1995) extended Williams result of equality of essential spectra of certain 

quasisimilar-quasihyponormal operators and also demonstrated that 

quasisimilarity preserves the Fredholm property. 

Jeon and Duggal (2004) showed that normal part of quasisimilar p-hyponormal operators 

are unitarily equivalent and also that a p-hyponormal spectral operator is normal. They 

also extended similar results to quasisimilar injective. P-quasihyponormal operators were 

also shown to have the same spectra and essential spectra. 

The property of almost similarity on classes of operators was first introduced by Jibril 

(1996). 

Nzimbi et al. (2008) proved that the property of almost similarity is an equivalence 

relation. They further studied the concept of almost similarity and established that 

similarity implies almost similarity under certain conditions.  

 Nzimbi et al. (2013) introduced the concept of metric equivalence and proved that metric 

equivalence is also an equivalence relation. They also discussed the spectral picture of 

metrically equivalent operators and further gave conditions under which the metric 

equivalence of operators implies unitary equivalence of operators. 



14 
 

 
 

Nzimbi et al. (2016) showed that almost similarity and metric equivalence preserve 

nullity and co-nullity of operators. They further showed that quasisimilar and quasiaffine 

normal operators have equal spectra.  

Kipkemboi (2016) studied almost similarity and other related equivalence relations of 

operators in Hilbert Spaces. He also showed that two orthogonal projections acting on a 

Hilbert space are Murray-von Neumann equivalent. Further, he showed almost similar 

operators are equivalent if any only if there exists a partial isometry acting on the two 

operators. He also proved that unitary equivalent operators are stably unitarily equivalent. 

In reference to all these results, it is evident that there are gaps on properties of almost 

similarity on partial isometries, θ-operators, posinormal operators among others, and also 

conditions under which almost similarity gives equality of spectra. This research is 

intended to attempt the above problem and make appropriate conclusions based on the 

results obtained at the end. 
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2.2. Research Methodology 

The knowledge of properties of operators in Hilbert space including adjoints, spectrum, 

invariant subspaces, sesquilinear maps, quadratic forms, projections and θ-operators was 

used in this study. Also, the basic properties of Functional Analysis on norms, the 

spectral radius formula, open mapping theorem, the uniform boundedness principle and 

Riesz representation theorem are core foundation for this research. Finally, basic Measure 

Theory on bounded convergence theorem and Von-Neumann Schatten ideals were 

utilized as well in comparing, analyzing and making conclusions in this research. 
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CHAPTER THREE 

ALMOST SIMILARITY PROPERTY ON PARTIAL ISOMETRIES 

3.1 Introduction 

In this chapter we determined whether two almost similar operators belong to the same 

class with consideration to the class of partial isometries together with its subclasses 

which are as follows; {Unitary} ⊆ {Isometry} ⊆ {Partial Isometry} and {Unitary} ⊆ 

{co-isometry} ⊆ {Partial isometry}.The question of whether such operators have equal 

spectra were considered.  

However, we first investigated the general properties and unitary equivalence for such 

operators.  

3.2. General properties of partial isometries 

The following results had been established in this area:                

Lemma 3.2.1(Skoufranis, 2014). If  𝒯 ∈ 𝔅(𝐻) is an isometry, then 

  ⟨𝒯𝓍, 𝒯𝓎⟩ = ⟨𝓍, 𝓎⟩ , ∀ 𝓍, 𝓎 ∈ 𝐻. 

Proof: Given that  𝓍, 𝓎 ∈ 𝐻, then it follows that; 

‖𝓍‖2 + 2𝑅𝑒(⟨𝓍, 𝓎⟩) + ‖𝓎‖2 = ⟨  𝓍+𝓎, 𝓍 + 𝓎⟩ 

                                              = ‖ 𝓍 + 𝓎‖2 

                                                    = ‖𝒯(𝓍 + 𝓎)‖2 

                                                                  = ⟨ 𝒯(𝓍+𝓎), 𝒯(𝓍 + 𝓎)⟩ 

                                                                                          = ‖𝒯𝓍‖2 + 2𝑅𝑒(⟨𝒯𝑥, 𝒯𝓎⟩) + ‖𝒯𝓎‖2 

                                                                                            = ‖𝓍‖2 + 2𝑅𝑒(⟨𝒯𝓍, 𝒯𝓎⟩) + ‖𝓎‖2. 

Hence, 𝑅𝑒(⟨𝓍, 𝓎⟩) = 𝑅𝑒(⟨𝒯𝓍, 𝒯𝓎⟩). 
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By replacing 𝓎 with 𝑖𝓎 and repeating the process above, it yields; 

 𝐼𝑚(⟨𝓍, 𝓎⟩) = 𝑅𝑒(−𝑖⟨𝓍, 𝓎⟩) 

                                                                                = 𝑅𝑒(−𝑖⟨𝒯𝓍, 𝒯𝓎⟩) 

                                                                                     = 𝐼𝑚(⟨𝒯𝓍, 𝒯𝓎⟩).   

 We therefore conclude that ⟨𝒯𝓍, 𝒯𝓎⟩ = ⟨𝓍, 𝓎⟩ as desired.                                               ∎ 

Proposition 3.2.2 (Nzimbi et al., 2008). An operator  𝒯 ∈ 𝔅(𝐻) is an isometry if and 

only if  𝒯∗𝒯 = 𝐼.  

Proof: If  𝒯 ∈ 𝔅(𝐻) is an isometry, then for  𝓍, 𝓎 ∈ 𝐻, we have; 

⟨𝒯𝑥, 𝒯𝑦⟩ = ⟨𝓍, 𝓎⟩ ∀ 𝓍, 𝓎 ∈ 𝐻. Thus, 

〈(𝐼 −  𝒯∗𝒯)𝓍, 𝓎〉 = 0, ∀ 𝓍, 𝓎 ∈ 𝐻.  

Hence,  𝒯∗𝒯 = 𝐼. Also, for 𝓍 ∈ 𝐻, then we have  ‖𝒯𝓍‖2 = ⟨𝒯𝓍, 𝒯𝓍⟩ 

                                                                                                   = 〈  𝒯∗𝒯 𝑥, 𝑥〉 

                                                           = 〈𝓍, 𝑥〉 

                                                          = ‖𝑥‖2 

Hence, ‖𝒯𝑥‖ = ‖𝑥‖, ∀ 𝑥 ∈ 𝐻. This shows that 𝒯 is an isometry.                                    ∎ 

From this proposition, we now consider the general properties of partial isometries in the 

next theorem.  

Theorem 3.2.3. (Salhi and Zerovali, 2019). For 𝒯 ∈ 𝔅(𝐻), the following statements are 

equivalent; 

(i) 𝒯 is a partial isometry, 

(ii) 𝒯∗ is a partial isometry, 

(iii)  𝒯𝒯∗ is a projection, 

(iv)  𝒯∗𝒯  is a projection, 
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(v)  𝒯∗𝒯 𝒯∗ =  𝒯∗  

(vi)  𝒯𝒯∗𝒯 = 𝒯. 

The range of 𝒯 is closed,  𝒯𝒯∗ is a projection onto 𝑟𝑎𝑛 (𝒯) and  𝒯∗𝒯 is the projection 

onto 𝑘𝑒𝑟(𝒯)⊥ 

Proof: If  𝒯 is a partial isometry, (i) ⟹ (v). For an element 𝓍 ∈ 𝐻 and considering 

⟨𝒯∗𝒯𝒯∗𝓍, 𝓎⟩ and ⟨𝒯∗𝓍, 𝓎⟩, for 𝓎 ∈ 𝐻. Therefore, if 𝓎 ∈ 𝑘𝑒𝑟 (𝒯), then  

                                                       ⟨𝒯∗𝒯𝒯∗𝓍,𝓎⟩ = ⟨𝒯∗𝒯𝓍, 𝒯𝓎⟩ 

                                                                             = 0 

                             = ⟨𝓍, 𝒯𝓎⟩ 

Since 𝒯 is an isometry then ker  (𝒯)⊥ = 𝑟𝑎𝑛 (𝒯∗). Thus, the inner product of two 

elements of  𝑟𝑎𝑛 (𝒯∗) is shown. 

Supposing 𝓎 ∈ ker (𝒯)⊥ = 𝑟𝑎𝑛(𝒯∗), then, ⟨𝒯∗𝒯𝒯∗𝓍, 𝓎⟩ = ⟨𝒯(𝒯∗𝓍), 𝒯𝓎⟩ 

                                                                                             = ⟨𝒯∗𝓍, 𝓎⟩.  

For ker (𝒯) ⊕ ker (𝒯)⊥ = 𝐻, it follows that ⟨𝒯∗𝒯𝒯∗𝓍, 𝓎⟩ = ⟨𝒯∗𝓍, 𝓎⟩ ∀ 𝓍, 𝓎 ∈ 𝐻.  

Hence, 𝒯 ∗𝒯𝒯∗ = 𝒯∗ if and only if  𝒯 = (𝒯∗)∗ = (𝒯∗𝒯𝒯∗)∗ = 𝒯𝒯∗𝒯. 

 Thus, (v)  ⟹ (vi). 

If  𝒯𝒯∗ is self-adjoint, then 𝒯𝒯∗𝒯𝒯∗ = 𝒯(𝒯∗𝒯𝒯∗) 

                                                            = 𝒯𝒯∗. 

Therefore, (iii) and (iv) are also consequence of (v). Hence, 𝒯 𝒯∗ is a projection. 

Equivalently, if  𝒯𝒯∗ is self-adjoint, then we have 

𝒯∗𝒯𝒯∗𝒯 = (𝒯∗𝒯𝒯∗)𝒯 

      = 𝒯∗𝒯. 

Thus, 𝒯∗𝒯 is also a projection. 
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Finally, taking  ker  (𝒯)⊥ = 𝑟𝑎𝑛(𝒯∗),̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  then for a projection  𝒯𝒯∗, there exists a sequence  

(𝓍𝓎)𝓎≥1 ∈ 𝐻, such that,  𝑙𝑖𝑚𝓎⟶∞𝒯∗𝓍𝓎 = 𝓍. Therefore, 

           ‖𝒯𝓍‖2 = 𝑙𝑖𝑚𝓎⟶∞‖𝒯𝒯∗𝓍𝓎‖2 

                                     = 𝑙𝑖𝑚𝓎⟶∞〈𝒯𝒯∗𝓍𝓎, 𝒯𝒯∗𝓍𝓎〉 

                                    = 𝑙𝑖𝑚𝓎⟶∞〈(𝒯𝒯∗)2𝓍𝓎, 𝓍𝓎 〉 

                              = 𝑙𝑖𝑚𝓎⟶∞〈𝒯𝒯∗𝓍𝓎, 𝓍𝓎 〉 

                         = 𝑙𝑖𝑚𝓎⟶∞‖𝒯𝒯∗𝓍𝓎‖2 

                                                                                = ‖𝓍‖2. 

Thus, 𝒯 is a partial isometry,  ‖𝒯𝓍‖ = ‖𝓍‖ , ∀ 𝓍 ∈ ker  (𝒯)⊥.                                          ∎ 

We then have the following remark. 

Remark 3.2.4. For an operator 𝒯 ∈ 𝔅 (𝐻) such that,  𝒯𝒯∗ is a projection, we have that 

the adjoint of 𝒯 is a partial isometry.  

3.3 Unitary equivalence of subclasses of partial isometries  

The following results outline the general properties of unitary equivalence on subclasses 

of partial isometries. 

Theorem 3.3.1. (Luketero and Khalagai, 2020). Let 𝒮 ∈ 𝔅(𝐻) be a partial isometry and 

𝒯 be any other operator such that either,  

(𝑖) 𝒮 = 𝑈𝒯𝑈∗ where 𝑈 is an isometry or  

(𝑖𝑖) 𝒮 = 𝑈∗𝒯𝑈 where 𝑈 is a co-isometry.  

Then, 𝒯 is also a partial isometry.  

Proof: (𝑖) If 𝒮 = 𝑈𝒯𝑈∗ then 𝒮∗ = 𝑈𝒯∗𝑈∗. Since 𝒮 is a partial isometry, then we have 

 𝒮 = 𝒮𝒮∗𝒮. Therefore, 
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                      𝒮 = 𝒮𝒮∗𝒮 

                          = 𝑈𝒯𝑈∗𝑈𝒯∗𝑈∗𝑈𝒯𝑈∗  

                          = 𝑈𝒯𝒯∗𝒯𝑈∗ 

                          = 𝑈𝒯𝑈∗ 

Thus,  

 𝑈𝒯𝒯∗𝒯𝑈∗ = 𝑈𝒯𝑈∗                                                                                                                       (1) 

Now pre-multiplying by 𝑈∗ and post-multiplying by 𝑈 in (1) above, we obtain; 

𝒯𝒯∗𝒯 = 𝒯. Therefore 𝒯 is also a partial isometry. 

(𝑖𝑖) Again, if  𝒮 = 𝑈∗𝒯𝑈 then  𝒮∗ = 𝑈∗𝒯∗𝑈.  

Since 𝒮 is a partial isometry, we have that  𝒮 = 𝒮𝒮∗𝒮. It therefore, follows that  

     𝒮 = 𝒮𝒮∗𝒮 

                                  = 𝑈∗𝒯𝑈𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈 

                 = 𝑈∗𝒯𝒯∗𝒯𝑈 

         = 𝑈∗𝒯𝑈 

Thus, 

         𝑈∗𝒯𝒯∗𝒯𝑈 = 𝑈∗𝒯𝑈                                                                                                              (2) 

 Pre-multiplying by 𝑈 and post-multiplying by 𝑈∗ in (2) above, 𝒯𝒯∗𝒯 = 𝒯 is obtained.  

Therefore, 𝒯 is also a partial isometry.                                                                               ∎ 

Corollary 3.3.2. Let 𝒮 ∈ 𝔅(𝐻) be a partial isometry and 𝒯 be any other operator such 

that either  𝒮 = 𝑈𝒯𝑈∗ or  𝒮 = 𝑈∗𝒯𝑈 where 𝑈 is unitary. Then 𝒯 is also a partial 

isometry.  

Proposition 3.3.3. (Nzimbi et al., 2016). An operator 𝒮 ∈ 𝔅(𝐻) is quasi-unitary if and 

only if (𝐼 − 𝒮) is unitary.  
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Proof: If  𝒮 is quasi-unitary, then (𝐼 − 𝒮)∗(𝐼 − 𝒮) = (𝐼 − 𝒮)(𝐼 − 𝒮)∗ = 𝐼.  

Hence, 𝐼 − 𝒮 is unitary. 

 Conversely, suppose 𝐼 − 𝒮 is unitary, then we have; 

𝐼 − (𝒮 + 𝒮∗) + 𝒮∗𝒮 = 𝐼 − (𝒮∗ + 𝒮) + 𝒮𝒮∗ = 𝐼. Thus, 𝒮∗𝒮 = 𝒮𝒮∗ = 𝒮 + 𝒮∗. If 

 Ѵ = 𝐼 − 𝒮, then Ѵ∗Ѵ = ѴѴ∗ = 𝐼.This implies that it is unitary.  

Again, suppose 𝐼 − 𝒮 is unitary, i.e.  (𝐼 − 𝒮)∗(𝐼 − 𝒮) = (𝐼 − 𝒮)(𝐼 − 𝒮)∗ = 𝐼, which can 

be simplified as follows; 𝐼 − 𝒮 − 𝒮∗ + 𝒮∗𝒮 = 𝐼 − 𝒮 − 𝒮∗ + 𝒮𝒮∗ = 𝐼        

                             −(𝒮 +  𝒮∗) + 𝒮∗𝒮 = −(𝒮 +  𝒮∗) + 𝒮𝒮∗ = 0. 

Then, 𝒮∗𝒮 = 𝒮 +  𝒮∗ and  𝒮∗𝒮 = 𝒮𝒮∗ = 𝒮 + 𝒮∗. Hence 𝒮 is quasi-unitary.                    ∎ 

3.4 Almost similarity of subclasses of partial isometries. 

Proposition 3.4.1. (Nzimbi et al., 2008). Unitarily equivalent operators are almost 

similar. 

Proof: Let 𝒮, 𝒯 ∈ 𝔅(𝐻) be unitarily equivalent. Then there exist a unitary operator 𝑈 

such that  

 𝒮 = 𝑈∗𝒯𝑈 . This implies that, 𝒮∗ = 𝑈∗𝒯∗𝑈.  

Thus,  𝒮∗𝒮 = 𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈 

                     = 𝑈−1𝒯∗𝒯𝑈       and  

  𝒮∗ + 𝒮 = 𝑈∗𝒯∗𝑈 + 𝑈∗𝒯𝑈 

                = 𝑈∗(𝒯∗ + 𝒯)𝑈 

                =  𝑈−1(𝒯∗ + 𝒯)𝑈. 

 Hence,  𝒮 ~
𝑎.𝑠 𝒯.                                                                                                                   ∎ 
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Proposition 3.4.2. (Jibril, 1996a). Let 𝒮, 𝒯 ∈ 𝔅(𝐻). If  𝒮  ~
 𝑎.𝑠 𝒯 and 𝒯 is isometric, then 𝒮 

is isometric. 

Proof: Since  𝒮   ~
𝑎.𝑠 𝒯 then 𝒮∗𝒮 = 𝒩−1(𝒯∗𝒯)𝒩 and 𝒮∗ + 𝒮 = 𝒩−1(𝒯∗ + 𝒯)𝒩. Since 𝒯 

is an isometry, i.e, 𝒯∗𝒯 = 𝐼, it follows that 𝒮∗𝒮 = 𝒩−1(𝐼)𝒩. Hence, 𝒮 is isometric.     ∎                                                                                                                                                                              

Proposition 3.4.3. (Jibril, 1996a). An operator 𝒯 ∈ 𝔅(𝐻) is isometric if and only 

if, 𝒯   ~
𝑎.𝑠 𝑈, for some unitary operator 𝑈. 

Proof: Supposing that 𝒯   ~
𝑎.𝑠 𝑈, for some unitary operator 𝑈 then an invertible operator 𝒩 

exists such that, 𝒩−1(𝒯∗𝒯)𝒩 = 𝑈∗𝑈 = 𝐼. This implies that, 𝒯∗𝒯 = 𝒯𝒯∗ = 𝐼.  

Hence, 𝒯 is isometric. From 𝒯∗𝒯 = 𝒯𝒯∗ = 𝐼, it follows that  𝒯∗𝒯 = 𝒯−1(𝒯∗)∗𝒯∗𝐼    and  

𝒯∗ + 𝒯 = 𝒯 + 𝒯∗. Thus, 𝒯∗ + 𝒯 = 𝐼−1[(𝒯∗)∗𝒯∗] 𝒯. Hence, 𝒯  ~
𝑎.𝑠𝒯∗ = 𝒯−1.  

However, if  𝒯 ∈ 𝔅(𝐻) is such that, 𝒯  ~
𝑎.𝑠 𝒯−1, then 𝒯 is not necessarily unitary.           ∎ 

Remark 3.4.4. The following corollary is immediate from the Proposition 3.4.4 above. 

Corollary 3.4.5. (Nzimbi et al., 2008). An isometry which is almost similar to a unitary 

operator is itself unitary. 

Proposition 3.4.6. (Jibril, 1996a). If 𝒯 ∈ 𝔅(𝐻) is invertible, such that  𝒯  ~
𝑎.𝑠𝑈, for some 

unitary operator, 𝑈 ∈ 𝔅(𝐻) then 𝒯 is unitary. 

Proof: Given that 𝒯  ~
𝑎.𝑠𝑈, then there exist an invertible operator 𝒩 such that 

 𝒯∗𝒯 = 𝒩−1𝑈∗𝑈𝒩 = 𝐼. Therefore,  𝒯∗−1𝒯∗𝒯𝒯−1 = 𝒯∗−1𝒯−1.  

Since, 𝒯∗−1𝒯∗𝒯𝒯−1 = 𝐼, we have  𝒯∗−1𝒯−1 = (𝒯𝒯∗)−1and thus  𝒯𝒯∗ = 𝐼. Hence, 

 𝒯∗𝒯 = 𝒯𝒯∗ = 𝐼. This shows that 𝒯 is unitary.                                                                 ∎ 

Proposition 3.4.7. (Jibril, 1996b). If two operators 𝒮, 𝒯 ∈ 𝔅(𝐻) are such that, 𝒮  ~
𝑎.𝑠 𝒯, 

and 𝒮 is a partially isometric, then so is 𝒯. 
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Proof: For 𝒮  ~
𝑎.𝑠 𝒯, then an invertible operator 𝒩 exists such that  𝒩−1(𝒯∗𝒯)𝒩 = 𝒮∗𝒮. 

Since 𝒮 is partially isometric, i.e. (𝒮∗𝒮)2 = 𝒮∗𝒮, it implies that,     

[𝒩−1(𝒯∗𝒯)𝒩][𝒩−1(𝒯∗𝒯)𝒩] = 𝒩−1(𝒯∗𝒯)𝒩. 

Thus, 𝒩−1𝒯∗𝒯𝒯∗𝒯𝒩 = 𝒩−1(𝒯∗𝒯)𝒩. 

 It follows that (𝒯∗𝒯)2 = 𝒯∗𝒯. Hence, 𝒯∗𝒯 is a projection, justifying that, 𝒯 is partially 

isometric.                                                                                                                           ∎ 

Theorem 3.4.8. Let 𝒮, 𝒯 ∈ 𝔅(𝐻) such that 𝒮  ~
𝑎.𝑠 𝒯. If 𝒮2 is a partial isometry and 𝒯 is  

self-adjoint, then 𝒯2 is also partially isometric.  

Proof: Since 𝒮2 is a partial isometry, we have 𝒮2 = 𝒮2𝒮∗2𝒮2 and by projection property, 

we also have  𝒮𝒮∗ = 𝒮𝒮 = 𝒮2.  

𝒮  ~
𝑎.𝑠 𝒯, implies there exists an invertible operator 𝒩 such that 

𝒯∗𝒯 = 𝒩−1𝒮∗𝒮𝒩                                                                                                                         (3)  

and 

𝒯∗ + 𝒯 = 𝒩−1(𝒮∗ + 𝒮)𝒩                                                                                                          (4) 

From 𝒮𝒮∗ = 𝒮𝒮 = 𝒮2, then (3) becomes, 

            𝒯∗𝒯 = 𝒩−1𝒮2𝒩.  

Consequently, 𝒯∗𝒯 = 𝒯2 and thus, 𝒯2 = 𝒩−1𝒮2𝒩. It follows that, 𝒯2 = 𝒯2𝒯∗2𝒯2, 

which is equivalent to         𝒯2 − 𝒯2𝒯∗2𝒯2 = 0  

                                                 𝒯2(1 − 𝒯∗2𝒯2) = 0.  

Implying that  𝒯∗2𝒯2 = 1,  or 𝒯∗𝒯 = 1 

Using (4), it follows that, (𝒯∗ + 𝒯)2 = 𝒯∗2+2𝒯2 + 𝒯2 = 4𝒯2. 

Hence, 𝒯2 is a partial isometry as claimed.                                                                       ∎ 
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CHAPTER FOUR 

ALMOST SIMILARITY PROPERTY ON 𝜽-OPERATORS 

4.1 Introduction. 

In this chapter, almost similarity property on 𝜃-operators is investigated. Further, we 

study  𝛼- almost similarity concept on these 𝜃-operators. The subclasses are as follows: 

{Projection operators}⊆{Positive operators}⊆{Self-adjoint operators}⊆{Normal 

operators}⊆{𝜃-operators}. 

The following theorems explain the significant basic properties of 𝜃-operators. 

4.2. General properties of 𝜽-Operators 

The following entails results on general properties of 𝜃-operators; 

Recall, an operator 𝒯 ∈ 𝔅(𝐻) is referred to as a θ − operator, if  𝒯∗𝒯 commutes with 

𝒯∗ + 𝒯. 

For an operator 𝒮 ∈ θ, 4𝒮∗𝒮 − (𝒮∗ + 𝒮)2 ≥ 0. 

Define 𝒯 = 𝒮∗ + 𝒮 + 𝑖√4𝒮∗𝒮 − (𝒮∗ + 𝒮)2/2. Then 𝒯 is normal and 𝜎(𝒮) is contained 

in the closed upper half plane. It follows that  

 𝒯∗𝒯 = 𝒮∗𝒮 and 𝒯∗ + 𝒯 = 𝒮∗ + 𝒮. 

Therefore, for an operator 𝒮 ∈ 𝔅(𝐻), if 𝒮 is self-adjoint, then 𝒮∗𝒮 commute with 𝒮∗ + 𝒮.  

This can be easily illustrated as discussed below; 

(𝒮∗𝒮) (𝒮∗ + 𝒮) = (𝒮∗ + 𝒮)(𝒮∗𝒮). So,  (𝒮∗𝒮)(𝒮∗ + 𝒮) = (𝒮∗𝒮𝒮∗ + 𝒮∗𝒮𝒮).  

Let 𝒮∗𝒮 = 𝐴. Then we have  𝒮∗𝒮𝒮∗ + 𝒮∗𝒮𝒮 = 𝐴𝒮∗ + 𝐴𝒮 

                        = (𝒮∗ + 𝒮)𝐴 

                                                                                  = (𝒮∗ + 𝒮)(𝒮∗𝒮). 
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 An example to this is as follows;  

Example 4.2.1. Let 𝒮 = (
1 2
2 3

) be an operator on the two-dimensional Hilbert space 𝐻2. 

Show that 𝒮 is a  θ-operator. 

Solution: Since 𝒮 is self-adjoint, then 𝒮∗ = (
1 2
2 3

). For θ-operator property, we need to 

establish if   (𝒮∗𝒮) (𝒮∗ + 𝒮) = (𝒮∗ + 𝒮)(𝒮∗𝒮). So,   

                (𝒮∗𝒮) = (
1 2
2 3

) (
1 2
2 3

) 

                                                                                = (
5 8
8 13

)        And 

                                                               (𝒮∗ + 𝒮) = (
1 2
2 3

) + (
1 2
2 3

) 

                                                                                  = (
2 4
4 6

). 

Thus, (𝒮∗𝒮)(𝒮∗ + 𝒮) = (
5 8
8 13

) (
2 4
4 6

) 

                                         = (
42 68
68 110

)     and 

(𝒮∗ + 𝒮)(𝒮∗𝒮) = (
2 4
4 6

) (
5 8
8 13

) 

                             = (
42 68
68 110

).  

Hence, (𝒮∗𝒮)(𝒮∗ + 𝒮) = (𝒮∗ + 𝒮)(𝒮∗𝒮).  

Remark 4.2.2. θ-operators form a ring since they are defined by two operations. 

Remark 4.2.3. The following lemma shows that normal operators are θ-operators. 

Lemma 4.2.4. If an operator 𝒯 ∈ 𝔅(𝐻) is normal, it is also a θ-operator. 

Proof: Assuming 𝒯 is normal, then 𝒯 = 𝒯𝒯∗𝒯. From the property of θ-operator, now we 

have 𝒯∗𝒯 = 𝒯∗𝒯(𝒯∗ + 𝒯) 
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         = 𝒯∗𝒯𝒯∗ + 𝒯∗𝒯𝒯                                                                                                            (5) 

Again, 

 (𝒯∗ + 𝒯)𝒯∗𝒯 = 𝒯∗𝒯∗𝒯 + 𝒯𝒯∗𝒯                                                                                             (6) 

From R.H.S of equation (5), we have 

 𝒯∗𝒯𝒯∗ + 𝒯∗𝒯𝒯 = 𝒯∗𝒯∗𝒯 + 𝒯∗𝒯𝒯 

                                = 𝒯∗2
𝒯 + 𝒯∗𝒯2 (since 𝒯 and 𝒯∗ commute)  

                                = 𝒯∗2
𝒯 + 𝒯𝒯∗𝒯,  

which is similar to the R.H.S of equation (6).  

Therefore, every normal operator is a θ-operator.                                                            ∎ 

Theorem 4.2.5. (Arun, 1975). If an operator   𝒮 ∈ 𝔅(𝐻)  is an idempotent, then 𝒮 is self-

adjoint. 

Proof: It’s first shown that the null space of  𝒮, denoted by,  𝑁(𝒮) reduces 𝒮 and is 

invariant under 𝒮∗. For 𝒮 ∈ 𝔅(𝐻) then 𝒮2 = 𝒮. It follows that, 𝒮∗𝒮𝒮∗ = 𝒮𝒮∗𝒮, thus for 

𝓎 ∈ 𝑁(𝒮), we have  𝒮∗𝒮𝒮∗𝓎 = 0. Then (𝒮𝒮∗)
1

2𝓎 = 0. Since 𝒮𝒮∗ > 0, 𝒮𝒮∗𝓎 = 0 ⇒

𝒮∗𝓎 ∈ 𝑁(𝒮). 

Thus, under 𝒮∗,  𝑁(𝒮) is invariant. 

 It follows the assertion that  𝒮∗ = 𝒮∗𝒮.  Therefore, we have 𝒮(𝐼 − 𝒮)𝓎 = 0 for 𝓎 ∈ 𝐻, 

since 𝒮2 = 𝒮. Thus, (𝐼 − 𝒮)𝓎 ∈ 𝑁(𝒮). Hence,  𝒮∗(𝐼 − 𝒮)𝓎 ∈ 𝑁(𝒮) as 𝑁(𝒮) reduces 𝒮.  

Therefore,  𝒮𝒮∗(I − 𝒮)𝓎 = 0. Thus, 𝒮∗(I − 𝒮)𝓎 = 0 as 𝑁(𝒮𝒮∗) = 𝑁(𝒮∗). 

 Hence,  𝒮∗ = 𝒮∗𝒮.                                                                                                             ∎ 

Theorem 4.2.6. (Campbell, 1972). Let 𝐴, 𝐵 ∈ 𝔅(𝐻). If 𝐴 is normal operator and 𝐵 is a 

projection, then the following conditions hold;  

 (𝑖)  𝐴∗(𝐼 − 𝐵) = (𝐼 − 𝐵)𝐴∗(𝐼 − 𝐵)(𝐼 − 𝐵), {𝐵𝐴∗(𝐼 − 𝐵) = 0} 
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(𝑖𝑖)  𝐴𝐵 = 𝐵𝐴𝐵, i.e (𝐼 − 𝐵)𝐴𝐵 = 0 

 (𝑖𝑖𝑖) 𝐵∗(𝐴 − 𝐴∗)(𝐼 − 𝐵) = 0 

Proof: If 𝐴 and 𝐵 satisfy the above three conditions, then by third and first condition we 

have; 

 𝐵∗𝐴∗2(𝐼 − 𝐵) = 𝐵∗𝐴∗(𝐼 − 𝐵)𝐴∗(𝐼 − 𝐵) 

                          = 𝐵∗𝐴(𝐼 − 𝐵)𝐴∗(𝐼 − 𝐵) 

            = 𝐵∗𝐴𝐴∗(𝐼 − 𝐵) 

Supposing that 

 𝒮 = 𝐴𝐵 + 𝐴∗(𝐼 − 𝐵)                                                                                                              (7)  

Then 𝒮 ∈ 𝜃. Thus, it follows that;  

                    𝒮 + 𝒮∗ = 𝐴𝐵 + 𝐴∗(𝐼 − 𝐵) + 𝐵∗𝐴∗ + (𝐼 − 𝐵)𝐴 

                                                                     = 𝐴∗ + 𝐴 + [𝐴𝐵 − 𝐴∗𝐵 + 𝐵∗𝐴∗ − 𝐵∗𝐴] 

But,             𝐴𝐵 − 𝐴∗𝐵 + 𝐵∗𝐴∗ − 𝐵∗𝐴 = (𝐴 − 𝐴∗)𝐵 + 𝐵∗(𝐴∗ − 𝐴) 

               = (𝐴∗ − 𝐴)𝐵 + 𝐵∗(𝐴∗ − 𝐴)𝐵 

                                                             = (𝐼 − 𝐵∗)(𝐴 − 𝐴∗)𝐵 

                                                                     = 0 

Thus, 𝒮 + 𝒮∗ = 𝐴 + 𝐴∗  ⇒ 𝒮∗ = 𝐴 + 𝐴∗ − 𝒮, or  

𝒮∗ = 𝐴∗𝐵 + 𝐴(𝐼 − 𝐵)                                                                                                                    (8) 

Using (7) and (8), it yields; 

𝒮∗𝒮 = [𝐴∗𝐵 + 𝐴(𝐼 − 𝐵)][𝐵𝐴𝐵 + (𝐼 − 𝐵)𝐴∗(𝐼 − 𝐵)] = 𝐴∗𝐴. Hence, 𝒮 ∈ 𝜃.                 ∎ 

Theorem 4.2.7. (Campbell, 1972). Let 𝐴 ∈ 𝔅(𝐻), 𝒮 ∈ 𝜃 and σ(𝒮) ∩ ℛ = ∅. If 𝐵 is a 

projection obtained by integrating (𝜆 − 𝒮)−1 in the upper half-plane, then 𝐴 and 𝐵 satisfy 

the conditions in theorem 4.2.6 below and 𝒮 = 𝐴𝐵 + 𝐴∗(𝐼 − 𝐵). 
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Proof: Since (𝜆 − 𝒮∗)(𝜆 − 𝒮) = (𝜆 − 𝐴∗)(𝜆 − 𝐴)∀𝜆 ∉ σ(A)⋃σ(𝐴∗), then we have 

 (𝐴 − 𝐴∗)𝐵 = (𝜆 − 𝒮)−1 = [((𝜆 − 𝐴)−1) − (𝜆 − 𝐴∗)−1](𝜆 − 𝒮∗). By integrating on the 

upper portion of σ(𝒮) and consequently on the lower portion of  σ(𝒮), it yields 

  𝐴 − 𝐴∗ = (𝐴 − 𝒮∗) or   

𝐵 = (𝐴 − 𝐴∗)−1(𝐴 − 𝒮∗) and (𝐴 − 𝐴∗)(𝐼 − 𝐵) = −(𝐴∗ − 𝒮∗) or  

 𝐼 − 𝐵 = (𝐴 − 𝐴∗)−1(𝒮∗ − 𝐴∗) .  

From definition of 𝐵, we have 𝒮𝐵 = 𝐵𝒮. It then follows that,  

𝐴𝐵 = 𝐴(𝐴 − 𝐴∗)−1(𝒮 − 𝐴∗)   

         = (𝐴 − 𝐴∗)−1(𝐴𝒮 − 𝐴∗𝐴) 

      = (𝐴 − 𝐴∗)−1(𝐴 − 𝒮∗)𝒮 

                                                        = 𝐵𝒮 

                                                               = 𝒮𝐵.  

Thus, condition (𝑖𝑖) of theorem 4.2.6 hold.  

Similarly, 𝐴∗(𝐼 − 𝐵) = (𝐼 − 𝐵)𝒮 = 𝒮(𝐼 − 𝐵). 

Thus, 𝒮 = 𝐴𝐵 + 𝐴∗(𝐼 − 𝐵) and for condition (iii) we have; 

  𝐵∗(𝐴 − 𝐴∗)(𝐼 − 𝐵) = (𝐴∗ − 𝒮)(𝐴∗ − 𝐴)−1(𝐴 − 𝐴∗)(𝐼 − 𝐵) 

                                                                 = −𝐴∗(𝐼 − 𝐵) + 𝒮(𝐼 − 𝐵) 

                                                                 = 0.                                                                            ∎ 

Theorem 4.2.8 (Campbell, 1980). Two operators 𝐴, 𝐵 ∈ 𝔅(𝐻) satisfying conditions of 

theorem 4.2.6 and 𝐵 be a projection onto ℛ1 along ℛ2, for  ℛ1 being invariant space of 𝐴 

and 

  ℛ2 = (𝐴 − 𝐴∗)−1, such that σ(A) ⊆ 𝑈𝐻𝑃, then 𝒮 = 𝐴𝐵 + 𝐴∗(𝐼 − 𝐵) ∈ 𝜃. 
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Proof: It is clear that  ℛ1 is 𝐴 invariant, and thus ℛ2 is  𝐴∗ invariant since   ℛ1
⊥ is 𝐴∗ 

invariant. Suppose (𝐴 − 𝐴∗)1/2 denote the square root (𝐴 − 𝐴∗), then 

(𝐴 − 𝐴∗)
1

2 ℛ1 ⊕ (𝐴 − 𝐴∗)−
1

2  ℛ1
⊥ = 𝐻. On multiplying by (𝐴 − 𝐴∗)−

1

2,  we obtain; 

  ℛ1 + ℛ2 = 𝐻 (direct sum). This shows that 𝐵 is a bounded and thus the first and second 

condition of 4.2.6 hold while third condition is equivalent to (𝐴 − 𝐴∗) ℛ2 ⊆   ℛ1
⊥.         ∎                           

4.3. Unitary equivalence of subclasses of 𝛉 − 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫𝐬 

In this subsection, some results on subclasses of  θ − operators are outlined in the 

following theorems:  

Theorem 4.3.1. Let 𝒮, 𝒯 ∈ 𝔅(𝐻) be such that 𝒯 is a 𝜃-operator and 𝒮 = 𝑈𝒯𝑈∗ where 𝑈 

is an isometry. Then 𝒮 is also a 𝜃-operator.  

Proof: Since 𝒯 is a 𝜃-operator, then   

  𝒯∗𝒯(𝒯∗ + 𝒯) = (𝒯∗ + 𝒯)𝒯∗𝒯   i.e 

            𝒯∗𝒯𝒯∗ + 𝒯∗𝒯2 = 𝒯∗2𝒯 + 𝒯𝒯∗𝒯                                                                                  (9)  

But 𝒮 = 𝑈𝒯𝑈∗ thus  𝒮∗ = 𝑈𝒯∗𝑈∗ 

Therefore, 𝒮∗𝒮 = 𝑈𝒯∗𝑈∗𝑈𝒯𝑈∗ = 𝑈𝒯∗𝒯𝑈∗ and 𝒮 ∗ + 𝒮 = 𝑈𝒯∗𝑈∗ + 𝑈𝒯𝒯𝑈∗. Thus we 

have,  

𝒮∗𝒮(𝒮∗ + 𝒮) = 𝑈𝒯∗𝒯𝑈∗(𝑈𝒯∗𝑈∗ + 𝑈𝒯𝑈∗) 

                         = 𝑈𝒯∗𝒯𝒯∗𝑈∗ + 𝑈𝒯∗𝒯2𝑈∗                                                                               (10) 

Also, (𝒮∗ + 𝒮)𝒮∗𝒮 = (𝑈𝒯∗𝑈∗ + 𝑈𝒯𝑈∗)𝑈𝒯∗𝒯𝑈∗ 

                                   = 𝑈𝒯∗2𝒯𝑈∗ + 𝑈𝒯𝒯∗𝒯𝑈∗                                                                      (11) 

Using (9) we have that,  𝑈𝒯∗𝒯𝒯∗𝑈∗ + 𝑈𝒯∗𝒯2𝑈∗ = 𝑈𝒯∗2𝒯𝑈∗ + 𝑈𝒯𝒯∗𝒯𝑈∗. 

From (10) and (11) we have 𝒮∗𝒮(𝒮∗ + 𝒮) = (𝒮∗ + 𝒮)𝒮∗𝒮. Hence, 𝒮 is also a 



30 
 

 
 

 𝜃-operator.                                                                                                                         ∎   

Theorem 4.3.2. Let 𝒮, 𝒯 ∈ 𝔅(𝐻) be such that  𝒯 is a 𝜃-operator and 𝒮 = 𝑈∗𝒯𝑈 where 𝑈 

is a co-isometry. Then 𝒮 is also a 𝜃-operator.  

Proof: Since  𝒯 is a 𝜃-operator we have that; 

                𝒯∗𝒯(𝒯∗ + 𝒯) = (𝒯∗ + 𝒯)𝒯∗𝒯 

               𝒯∗𝒯𝒯∗ + 𝒯∗𝒯2 = 𝒯∗2𝒯 + 𝒯𝒯∗𝒯                                                                             (12) 

But 𝒮 = 𝑈∗𝒯𝑈 implies 𝒮∗ = 𝑈∗𝒯∗𝑈. Therefore,  

    𝒮∗𝒮 = 𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈 

            = 𝑈∗𝒯∗𝒯𝑈     and 

      𝒮∗ + 𝒮 = 𝑈∗𝒯∗𝑈 + 𝑈∗𝒯𝑈. 

Thus we have,    𝒮∗𝒮(𝒮∗ + 𝒮) = 𝑈∗𝒯∗𝒯𝑈(𝑈∗𝒯∗𝑈 + 𝑈∗𝒯𝑈) 

                                                        = 𝑈∗𝒯∗𝒯𝒯∗𝑈 + 𝑈∗𝒯∗𝒯2𝑈                                                (13)  

and 

(𝒮∗ + 𝒮)𝒮∗𝒮 = (𝑈∗𝒯∗𝑈 + 𝑈∗𝒯𝑈)𝑈∗𝒯∗𝒯𝑈 

                       = 𝑈∗𝒯∗2𝒯𝑈 + 𝑈∗ 𝒯 𝒯∗𝒯𝑈                                                                              (14) 

From (12) we have that; 

 𝑈∗ 𝒯∗𝒯 𝒯∗𝑈 + 𝑈∗ 𝒯∗𝒯∗2𝑈 = 𝑈∗𝒯∗2𝒯𝑈 + 𝑈∗𝒯𝒯∗𝒯𝑈. Hence, from (13) and (14) we 

have;  

𝒮∗𝒮(𝒮∗ + 𝒮) = (𝒮∗ + 𝒮)𝒮∗𝒮. Thus 𝒮 ∈ 𝜃.                                                                        ∎  

Corollary 4.3.3. Let 𝒮, 𝒯 ∈ 𝔅(𝐻) be such that 𝒯 is a 𝜃-operator and either 𝒮 = 𝑈∗𝒯𝑈 or 

𝒮 = 𝑈𝒯𝑈∗, where 𝑈 is unitary .Then 𝒮 is also a 𝜃-operator.Thus 𝒮 and 𝒯 are unitarily 

equivalent  𝜃-operators and hence have equal spectra. 
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Proof: From the inclusions of classes of operators we note that every unitary operator is 

either an isometry or co-isometry. Hence by both theorems 4.3.1 and 4.3.2 above the 

result follows easily.                                                                                                           ∎ 

Theorem 4.3.4. (Campbell, 1980). Let 𝒮, 𝒯 ∈ 𝔅(𝐻).  If 𝒮 is normal and it is unitarily 

equivalent to 𝒯, then 𝒯 is normal. 

Proof: Since 𝒮 is normal, then 𝒯 = 𝑈∗𝒮𝑈, where 𝑈 is unitary operator. It then follows 

that; 

       𝒯∗𝒯 = (𝑈∗𝒮∗𝑈)(𝑈∗𝒮𝑈) = 𝑈∗𝒮∗𝒮𝑈 = 𝑈∗𝒮𝒮∗𝑈 = 𝒯𝑈∗𝒮∗𝑈 = 𝒯𝑈∗𝑈𝒯∗ = 𝒯𝒯∗.  

This proves the claim.                                                                                                         ∎ 

 Theorem 4.3.5. Let 𝒮, 𝒯 ∈ 𝔅(𝐻). If 𝒮 is unitarily equivalent to 𝒯, denoted by 𝒮 𝒯= 
~  and 

𝒮 is a θ-operator, then so is 𝒯. 

Proof: Since 𝒮 is unitarily equivalent to 𝒯, there exist a unitary operator 𝑈, such that    

              𝒮𝑈 = 𝒯𝑈. i.e, 𝒮 = 𝑈∗𝒯𝑈 and  𝒮∗ = 𝑈∗𝒯∗𝑈. Thus,  

    (𝒮∗𝒮) = (𝑈∗𝒯∗𝑈)(𝑈∗𝒯𝑈) 

        = 𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈 

= 𝑈∗𝒯∗𝒯𝑈 

= 𝑈∗𝒯∗𝑈𝒯 

                                                                       = 𝑈∗𝑈(𝒯∗𝒯), But 𝑈∗𝑈 = 𝐼, hence, 

                                                          (𝒮∗𝒮) = 𝒯∗𝒯                                                                       (15)                

   and 

                  (𝒮∗ + 𝒮) = 𝑈∗𝒯∗𝑈 + 𝑈∗𝒯𝑈 

                                    = 𝑈∗𝑈𝒯∗ + 𝑈∗𝑈𝒯 

                                                                                   = 𝑈∗𝑈(𝒯∗ + 𝒯). Hence, 
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                                                                         𝒮∗ + 𝒮 = 𝒯∗ + 𝒯                                                 (16) 

Again, 𝒮∗𝒮(𝒮∗ + 𝒮) = 𝒮∗𝒮𝒮∗ + 𝒮∗𝒮𝒮 

                                      = 𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈𝑈∗𝒯∗𝑈 + 𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈𝑈∗𝒯𝑈 

                                      = 𝑈∗𝒯∗𝒯𝒯∗𝑈 + 𝑈∗𝒯∗𝒯𝒯𝑈 

                                      = 𝑈∗𝑈𝒯∗𝒯𝒯∗ + 𝑈∗𝑈𝒯∗𝒯𝒯 

                                      = 𝑈∗𝑈(𝒯∗ + 𝒯)                                                                                      (17)   

and  

              (𝒮∗ + 𝒮)𝒮∗𝒮 = 𝒮∗𝒮∗𝒮 + 𝒮𝒮∗𝒮 

                                       = 𝑈∗𝒯∗𝑈𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈 + 𝑈∗𝒯𝑈𝑈∗𝒯∗𝑈𝑈∗𝒯𝑈 

                                       = 𝑈∗𝒯∗𝒯∗𝒯𝑈 + 𝑈∗𝒯𝒯∗𝒯𝑈 

                                       = 𝑈∗𝒯∗𝑈 + 𝑈∗𝒯𝑈 

                                     = 𝑈∗𝑈(𝒯∗ + 𝒯)                                                                                     (18) 

From (15) and (16) and comparing the R.H.S of equation (17) and the R.H.S of equation  

(18), they are equal. Hence, 𝒯 is also a θ-operator.                                                            ∎                                                                                      

 4.4. Almost similarity of  𝛉 − 𝐨𝐩𝐞𝐫𝐚𝐭𝐨𝐫𝐬  

Proposition 4.4.1. (Musundi et al., 2013). For an operator  𝒮 ∈ 𝔅(𝐻), we have  𝒮 ∈ θ if 

and only if  𝒮   ~
𝑎.𝑠 𝒯 for some normal operator 𝒯. 

Proof: Let 𝒮 ∈ θ. Then we have  4𝒮∗𝒮 − (𝒮∗ + 𝒮)2 ≥ 0. Therefore, 

𝒯 = 𝒮∗ + 𝒮 + 𝑖√4𝒮∗𝒮 − (𝒮∗ + 𝒮)2/2  is normal with 𝒯∗𝒯 = 𝒮∗𝒮 and 

 𝒯∗ + 𝒯 = 𝒮∗ + 𝒮 . Then it follows that, 

 𝒮∗𝒮 = 𝐼−1 𝒯∗𝒯𝐼                                                                                                                        (19)   

and 

 𝒮∗ + 𝒮 = 𝐼−1(𝒯∗ + 𝒯)𝐼                                                                                                            (20) 
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From  (19) and (20) it justifies that 𝒮   ~
𝑎.𝑠 𝒯. 

Conversely, let 𝒮   ~
𝑎.𝑠 𝒯. Then an invertible operator 𝒩 exists such that 

   𝒮∗𝒮 = 𝒩−1 𝒯∗𝒯𝒩 and 

  𝒮∗ + 𝒮 = 𝒩−1( 𝒯∗ + 𝒯)𝒩. It follows that 

    𝒮∗𝒮(𝒮 ∗ + 𝒮) = 𝒩−1 𝒯∗𝒯( 𝒯∗ + 𝒯)𝒩                                                                             (21) 

and 

(𝒮 ∗ + 𝒮)𝒮 ∗𝒮 = 𝒩−1( 𝒯∗ + 𝒯) 𝒯∗𝒯𝒩                                                                               (22) 

 Therefore, 𝒯 ∈ θ since it is normal. Thus, the right hand sides of (21) and (22) are equal.  

Hence, (𝒮 ∗ + 𝒮)𝒮∗𝒮 = 𝒮∗𝒮(𝒮 ∗ + 𝒮), showing that 𝒮 ∈ θ.                                             ∎ 

Proposition 4.4.2. (Nzimbi et al., 2008). If two operators 𝒮, 𝒯 ∈ 𝔅(𝐻) are such that, 

𝒮   ~
𝑎.𝑠 𝒯, then (𝒮 + 𝜆𝐼)  ~

𝑎.𝑠 (𝒯 + 𝜆𝐼) ∀ 𝜆 ∈ ℝ. 

Proof: Since 𝒮   ~
𝑎.𝑠 𝒯, then there exists an invertible operator 𝒩 such that  

       𝒮∗ + 𝒮 = 𝒩−1(𝒯∗ + 𝒯)𝒩                                                                                               (23)   

 and 

       𝒮∗𝒮 = 𝒩−1𝒯∗𝒯𝒩                                                                                                                (24)  

It follows from (23) that, 

 𝒮∗ + 𝒮 = 𝒩−1𝒯∗𝒩 + 𝒩−1𝒯𝒩, ⇒ 𝒮∗ + 𝒮 + 2𝜆 = 𝒩−1𝒯∗𝒩 + 𝒩−1𝒯𝒩 + 2𝜆.  

Thus,   (𝒮∗ + 𝜆𝐼) + (𝒮 + 𝜆𝐼) = 𝒩−1(𝒯∗ + 𝜆𝐼)(𝒯∗ + 𝜆𝐼)𝒩 + 𝒩−1(𝒯 + 𝜆𝐼)𝒩 

                                                 = 𝒩−1[(𝒯 + 𝜆𝐼)∗ + (𝒯 + 𝜆𝐼)]𝒩, 

                                                      = 𝒩−1[(𝒯∗ + 𝜆𝐼) + (𝒯 + 𝜆𝐼)]𝒩                                      (25)  

Which can be further be simplified to yield; 

𝜆𝒮∗ + 𝒮𝜆 + 𝜆2 = 𝒩−1𝜆𝒯∗𝒩 + 𝒩−1𝜆𝒯𝒩 + 𝒩−1𝜆2𝒯𝒩                                               (26). 

By summing (24) and (26), we obtain 
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 𝒮∗𝒮 + 𝜆𝒮∗ + 𝒮𝜆 + 𝜆2 = 𝒩−1𝜆𝒯∗𝒩 + 𝒩−1𝜆𝒯𝒩 + 𝒩−1𝜆2𝒯∗𝒩 + 𝒩−1𝒯∗𝒯𝒩.  

This implies that, 

 (𝒮∗ + 𝜆𝐼) + (𝒮 + 𝜆𝐼) = 𝒩−1[(𝒯 + 𝜆𝐼)∗(𝒯 + 𝜆𝐼)]𝒩. It follows that,  

(𝒮 + 𝜆𝐼)∗(𝒮 + 𝜆𝐼) = 𝒩−1[(𝒯 + 𝜆𝐼)∗(𝒯 + 𝜆𝐼)]𝒩                                                            (27) 

Hence, from (25) and (27), we thus conclude that (𝒮 + 𝜆𝐼)  ~
𝑎.𝑠 (𝒯 + 𝜆𝐼) as desired.      ∎ 

Corollary 4.4.3. (Sitati, 2011). If two projection operators 𝒮, 𝒯 ∈ 𝔅(𝐻) are such that  

𝒮   ~
𝑎.𝑠 𝒯 and  (𝒮 + 𝜆𝐼) ~

 𝑎.𝑠 (𝒯 + 𝜆𝐼), ∀ 𝜆 ∈ ℝ, then, 𝜎𝑝(𝒮) = 𝜎𝑝(𝒯). 

Proof: 𝒮   ~
𝑎.𝑠 𝒯 implies there exists an invertible operator 𝒩 such that 

𝒮∗𝒮 = 𝒩−1𝒯∗𝒯𝒩                                                                                                                   (28)  

and 

𝒮∗ + 𝒮 = 𝒩−1(𝒯∗ + 𝒯)𝒩                                                                                                   (29). 

 It follows that equation  (29) can be expressed as 2𝒮 = 𝒩−12𝒯𝒩, since 𝒮∗ = 𝒮 and 

𝒯∗ = 𝒯. Thus, 𝒮 = 𝒩−1𝒯𝒩. i.e, 𝒩𝒮 = 𝒯𝒩, thus, 𝜎𝑝(𝒮) = 𝜎𝑝(𝒯).  

Again, (28) can also be expressed as 𝒮2 = 𝒩−1𝒯2𝒩 since 𝒮∗ = 𝒮 = 𝒮2 and 

 𝒯∗ = 𝒯 = 𝒯2, ⇒ 𝒮 = 𝒩−1𝒯𝒩. It therefore follows that, 𝜎𝑝(𝒮) = 𝜎𝑝(𝒯).                     ∎  

Remark 4.4.4. Corollary 4.4.3 above provides us with a situation where two almost 

similar operators have equal spectrum. 

Proposition 4.4.5. If two unitary operators 𝒮, 𝒯 ∈ 𝔅(𝐻) are such that 𝒮   ~
𝑎.𝑠 𝒯 and 𝒮 is a 

 θ-operator, then 𝒯 is also a θ-operator. 

Proof: 𝒮   ~
𝑎.𝑠𝒯 implies that, an invertible operator 𝒩 exists such that 

  𝒮∗𝒮 = 𝒩−1𝒯∗𝒯𝒩                                                                                                                  (30)  

and 

 𝒮∗ + 𝒮 = 𝒩−1(𝒯∗ + 𝒯)𝒩                                                                                                    (31) 



35 
 

 
 

From (30), we have 

                                   𝒮 = 𝒮𝒩−1𝒯∗𝒯𝒩 

                                       = 𝒮𝒩−1𝒩𝒯∗𝒯 

                                       = 𝒮𝒯∗𝒯 and thus,  𝒮∗ = (𝒮𝒯∗𝒯)∗ = 𝒯∗𝒯𝒮∗. 

Applying the property of  θ-operator, we have; 

 𝒮∗𝒮 = 𝒯∗𝒯𝒮∗𝒮𝒯∗𝒯 = 𝒯∗𝒯𝒯∗𝒯 = (𝒯∗𝒯)2 = 𝒯∗𝒯  (projection property). Also, 

𝒩−1(𝒯∗ + 𝒯)𝒩 = 𝒮∗ + 𝒮 = 𝒯∗𝒯𝒮∗ + 𝒮𝒯∗𝒯. But 𝒮 = 
~ 𝒯, then it implies there exists a 

unitary operator 𝑈, such that 𝒮 = 𝑈∗𝒯𝑈 and 𝒮∗ = 𝑈∗𝒯∗𝑈. 

Thus,   𝒮∗ + 𝒮 = 𝒯∗𝒯𝒮∗ + 𝒮𝒯∗𝒯 

                           = 𝒯∗𝒯𝑈∗𝒯∗𝑈 + 𝑈∗𝒯𝑈𝒯∗𝒯 

                           = 𝒯∗𝒯𝒯∗𝑈∗𝑈 + 𝑈∗𝑈𝒯𝒯∗𝒯 

                           = 𝒯∗𝒯𝒯∗ + 𝒯𝒯∗𝒯 

                           = 𝒯∗𝒯(𝒯∗ + 𝒯), but 𝒯∗𝒯 = 𝐼, thus  

                           = 𝒯∗ + 𝒯. 

This shows that 𝒯 is also a θ-operator.                                                                               ∎                                                                         

Remark 4.4.6. If 𝒮, 𝒯 ∈ 𝔅(𝐻) are such that 𝒮   ~
𝑎.𝑠 𝒯 and if 𝒮 is normal then 𝒯 is also 

normal since normal operators are contained in θ-operators.  

4.5 On 𝜶 −Almost Similarity of 𝜽-Operators 

We extend the well-known property of almost similarity to another property called 

 𝛼 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 in this subsection.   

According to Amjad & Laith, (2019), Two operators 𝒮, 𝒯 ∈ 𝔅(𝐻) are 𝛼 −

𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟, denoted as 𝒮  ≈
 𝛼 𝒯 if there exists an invertible operator 𝒩, such that 

conditions 
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𝒮∗𝒮 = 𝒩−1𝒯∗𝒯𝒩          and 

  𝒮∗ + 𝛼𝒮 = 𝒩−1(𝒯∗ + 𝛼𝒯)𝒩, ∀ 𝛼 ∈ ℝ  hold.  

Remark 4.5.1. If  𝒮, 𝒯 ∈ 𝔅(𝐻) are 𝛼 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 and if  𝛼 = 1, then 𝒮 and 𝒯 are 

almost similar.  

Remark 4.5.2. For 𝛼 ≠ 1, 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 and 𝛼 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 are independent. 

Proposition 4.5.3. (Amjad & Laith, 2019). If two self-adjoint operators 𝒮, 𝒯 ∈ 𝔅(𝐻) 

are 𝑠𝑖𝑚𝑖𝑙𝑎𝑟, i.e  𝒮 ~ 𝒯, then 𝒮 ≈ 
𝛼 𝒯 for every 𝛼 ∈ ℝ. 

Proof: 𝒮~ 𝒯 implies there exist an invertible operator 𝒩 such that 𝒩𝒮 = 𝒯𝒩   

𝑖. 𝑒, 𝒮 = 𝒩−1𝒯𝒩.  

From the property of almost similarity and since 𝒮 and 𝒯 are self-adjoint, we have 

𝒮∗𝒮 = 𝒩−1𝒯∗𝒯𝒩                                                                                                                       (32)   

and 

       𝒮∗ + 𝛼𝒮 = 𝒮 + 𝛼𝑆 

                        = 𝒩−1𝒯𝒩 + 𝛼𝒩−1𝒯𝒩 

                        = 𝒩−1(𝒯 + 𝛼𝒯)𝒩 

                        = 𝒩−1(𝒯∗ + 𝛼𝒯)𝒩                                                                                           (33) 

Thus, it follows from (32)  and (33) that  𝒮 ≈ 
𝛼 𝒯.                                                              ∎ 

Proposition 4.5.4. (Amjad & Laith, 2019). Two self-adjoint operators 𝒮, 𝒯 ∈ 𝔅(𝐻) are 

 𝛼 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 if and only if they are 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 and 𝛼 ≠ −1. 

Proof: If 𝒮 and 𝒯 are 𝛼 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟, then there exist an invertible operator 𝒩 

such that, 

       𝒮∗𝒮 = 𝒩−1𝒯∗𝒯𝒩                                                                                                               (34)          

and 
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  𝒮∗ + 𝛼𝒮 = 𝒩−1(𝒯∗ + 𝛼𝒯)𝒩                                                                                                 (35)  

For 𝒮 and 𝒯 being self-adjoint, then 𝒮 =   𝒮∗ and 𝒯 =  𝒯∗.Therefore, (33) above can be 

expressed as  (1 + 𝛼)𝒮 = (1 + 𝛼)𝒩−1𝒯𝒩.  

By pre-multiplying both sides by 
2

1+𝛼
, where  𝛼 ≠ −1, it yields 2𝒮 = 2𝒩−1𝒯𝒩 and thus, 

𝒮 and 𝒯 are similar. 

Conversely, assume 𝒮 and 𝒯 are almost similar, then 

    𝒮 + 𝒮∗ = 𝒩−1(𝒯 + 𝒯∗)𝒩                                                                                                   (36) 

It follows from (34) and (36) that 𝒮 and 𝒯 are almost similar. 

Since 𝒮 and 𝒯 are self-adjoint then (36) can be expressed as 2𝒮 = 2𝒩−1𝒯𝒩. 

 Again pre-multiplying it with  
1+𝛼

2
 on both sides, it yields (1 + 𝛼)𝒮 = (1 + 𝛼)𝒩−1𝒯𝒩, 

and thus 

 𝒮 + 𝛼𝒮 = 𝒩−1(𝒯 + 𝛼𝒯)𝒩 and consequently, 

  𝒮∗ + 𝛼𝒮 = 𝒩−1(𝒯∗ + 𝛼𝒯)𝒩, showing that  𝒮 and 𝒯 are 𝛼 − 𝑎𝑙𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟.           ∎ 

Proposition 4.5.5. (Amjad & Laith, 2019). If 𝒮, 𝒯 ∈ 𝔅(𝐻) are projections such that  

𝒮 ≈
 𝛼 𝒯 and (𝒮 + 𝜆𝐼) ≈

 𝛼 (𝒯 + 𝜆𝐼), then 

 𝜎(𝒮) = 𝜎(𝒯), 𝜎𝑝(𝒮) = 𝜎𝑝(𝒯)  and 𝜎𝑎𝑝(𝒮) = 𝜎𝑎𝑝(𝒯). 

Proof: For 𝒮 ≈
 𝛼 𝒯, implies there exist an invertible operator 𝒩 such that 

   𝒮∗𝒮 = 𝒩−1(𝒯∗𝒯)𝒩                                                                                                                (37)     

and 

 𝒮∗ + 𝛼𝒮 = 𝒩−1(𝒯∗ + 𝛼𝒯)𝒩                                                                                                 (38) 

 𝒮 and 𝒯 are self-adjoint  since they are both projections. Thus (38) can be expressed as 

 (1 + 𝛼)𝒮 = 𝒩−1(1 + 𝛼)𝒯𝒩.  Then 𝒮 = 𝒩−1𝒯𝒩, i.e, 𝒮~𝒯.  

Hence, from [Kipkemboi, (2016), Proposition 2.3.27], it follows that 
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 𝜎(𝒮) = 𝜎(𝒯), 𝜎𝑝(𝒮) = 𝜎𝑝(𝒯) and 𝜎𝑎𝑝(𝒮) = 𝜎𝑎𝑝(𝒯). 

Remark 4.5.6. The result above gives us another situation where two almost similar 

operators have not only equal spectrum but also equal point and approximate spectra.  

Remark 4.5.7. We note that apart from normal operators, there are several other classes 

which satisfy Putnam-Fugede theorem property which states that, for operators 𝐴, 𝐵, 𝒱 ∈

𝔅(𝐻), where 𝐴 and 𝐵 are normal and 𝐴𝒱 = 𝒱𝐵, then 𝐴∗𝒱 = 𝒱𝐵∗ . For example, M-

hyponormal operators, P-hyponormal operators etc.  

Theorem 4.5.8. (Amjad & Laith, 2019). Let 𝒮, 𝒯 ∈ 𝔅(𝐻) and 𝛼 ∈ ℝ. If 𝒩𝒮 = 𝒯𝒩 and 

𝒩𝒮∗ = 𝒯∗𝒩, for an invertible operator 𝒩, then 𝒮 ≈
 𝛼 𝒯. 

Proof: Supposing that 𝒩𝒮 = 𝒯𝒩 and 𝒩𝒮∗ = 𝒯∗𝒩, then we have  𝒮 = 𝒩−1𝒯𝒩 and  

 𝒮∗ = 𝒩−1𝒯∗𝒩. It therefore follows that, 

 𝒮∗𝒮 = (𝒩−1𝒯∗𝒩)(𝒩−1𝒯𝒩 ) = 𝒩−1𝒯∗(𝒩𝒩−1)𝒯𝒩 = 𝒩−1𝒯∗𝒯𝒩 and  

𝒮∗ + 𝛼𝒮 = 𝒩−1𝒯∗𝒩 + 𝒩−1(𝛼𝒯)𝒩 = 𝒩−1(𝒯∗ + 𝛼𝒯)𝒩. 

 Hence, 𝒮 ≈
 𝛼 𝒯 as desired.  

In the next result, we show how similarity holds for 𝛼 −almost similar.                           ∎ 

 Corollary 4.5.9. Let 𝒮, 𝒯 ∈ 𝔅(𝐻) and 𝒩 be an invertible operator such that 𝒩𝒮 = 𝒯𝒩 

where 𝒮 and 𝒯 satisfy the Putnam-Fuglede property. Then 𝒮 and 𝒯 are 𝛼 −almost 

similar. 

Proof: If  𝒮 and 𝒯 satisfy the Puntam-Fuglede property, then 𝒩𝒮 = 𝒯𝒩  and this 

implies 𝒩𝒮∗ = 𝒯∗𝒩 and the result follows from Theorem 4.5.8 above.                          ∎ 
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CHAPTER FIVE 

ALMOST SIMILARITY PROPERTY ON POSINORMAL OPERATORS 

 5.1 Introduction. 

In this chapter we investigate almost similarity property on posinormal operators together 

with its subclasses which are as follows:  

{Projection operators}⊆{Positive operators}⊆{Self-adjoint operators}⊆ 

{Normal operators}⊆{Hyponormal }⊆{M-hyponormal}⊆{Dominant }⊆{Posinormal }. 

We first consider results on general properties of posinormal operators as proved by 

various authors in the following subsection. 

5.2 General properties of posinormal operators.  

Posinormal operators have been studied by some authors. On the very essential 

characteristics, the following theorems are outlined:  

Theorem 5.2.1. (Rhaly, 2013). An interrupter 𝑃 of a posinormal operator 𝒯 is unique if  

𝒯 has a dense range.  

Proof: Considering  𝑃1 and  𝑃2  to serve as interrupters for 𝒯, then; 

 𝒯∗𝑃1𝒯 = 𝒯𝒯∗ = 𝒯∗𝑃2𝒯 . Thus, 𝒯∗(𝑃1 − 𝑃2)𝒯 = 0. Since 𝒯 has dense range, 𝒯∗ is one 

to one and consequently, (𝑃1 − 𝑃2)𝒯 = 0. By the fact that 𝒯 has dense range, then it is 

easily concluded that, (𝑃1 − 𝑃2) = 0 . Hence, with 𝒯 having dense range and 𝒮 serving 

as an interrupter for 𝒯, then  𝒯 is posinormal and the interrupter 𝒮 is positive and unique.  

Theorem 5.2.2. (Rhaly, 2013). For a posinormal operator  𝒯 with interrupter  𝑃, we have; 

 (i) 𝒯 is hyponormal if and only if the restriction  𝐼 − 𝑃 to 𝑅𝑎𝑛 𝒯 is a positive operator.  

(ii) If ║𝑃║ = 1, then 𝒯 is hyponormal.  
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Proof; (i) it follows that; 〈[𝒯∗𝒯] 𝑓, 𝑓〉 = 〈(𝐼 − 𝑃)𝒯𝑓, 𝒯𝑓〉 , ∀ 𝑓 ∈ 𝐻. 

           (ii) ║𝑃║ = 1, then also, ║√𝑃║ = 1. Thus, ║𝒯∗𝑓║ ≦ ║√𝑃║ = ║𝒯𝑓║, which is 

one of the equivalent conditions for the hyponormality of  𝒯.                                           ∎  

Theorem 5.2.3. (Rhaly, 2013). The following statements are equivalent for  𝒯 ∈ 𝔅(𝐻); 

(i) 𝒯 is posinormal.   

(ii) 𝑅𝑎𝑛 𝒯 ⊆ 𝑅𝑎𝑛 𝒯∗ 

(iii) 𝒯𝒯∗ ≦ 𝜆2𝒯∗𝒯, for some 𝜆 ≧ 0. 

(ⅳ) There exist an operator  𝐴 ∈ 𝔅(𝐻) such that 𝒯 = 𝒯∗𝐴. 

Also, if (i), (ii), (iii) and (ⅳ) holds, then a unique operator A exist such that;       

 (a) ║𝐴║
2

= inf  {
𝜇

𝑇𝑇∗ ≦ 𝜇𝑇𝑇∗}    

(b)  𝐾𝑒𝑟 𝑇 = 𝐾𝑒𝑟 𝐴    

 (c) 𝑅𝑎𝑛 𝐴 ⊆ (𝑅𝑎𝑛 𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

Theorem 5.2.4. (Campbell, 1972). An operator 𝒯 ∈ 𝔅(𝐻) is positive normal if and only 

if there exist a positive operator  𝑃, such that 𝒯𝒯∗ ≤ 𝒯∗𝑃𝒯.  

Proof: For any 𝓎 ∈ 𝐻 then          ‖𝒯∗𝓎‖2 = 〈𝒯𝒯∗𝓎, 𝓎〉 

   ≤ 〈𝒯∗𝑃𝒯𝓎, 𝓎〉 

                                                                    = 〈√𝑃𝒯𝓎, √𝑃𝒯𝓎〉 

                                                                     = ║√𝑃𝒯𝓎║
2
  

                                                                     ≤ ║√𝑃║
2
║𝒯𝓎║

2
  

Hence, for any 𝓎 ∈ 𝐻 we have ║𝒯∗𝓎║ ≤ ║√𝑃║║𝒯𝓎║.  
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Suppose we let 𝜆 = ║√𝑃║. Then for any 𝓎 ∈ 𝐻, we have  ║𝒯∗𝓎║ ≤ 𝜆║𝒯𝓎║ for some 

𝜆 ≥ 0. By [Douglas, (1966), theorems 1 and 2], there exist an operator  𝐴 ∈ ℬ(𝐻) such 

that, 𝒯 = 𝒯∗𝐴.  

Therefore, 𝒯𝒯∗ = (𝒯∗𝐴)(𝐴∗𝒯) = 𝒯∗(𝐴𝐴∗)𝒯. Thus, 𝒯 is a positive-normal operator with 

an interrupter 𝐴𝐴∗. Taking 𝑃 = 𝐼 on this theorem, it implies that every hyponormal 

operator is positive normal.                                                                                                ∎  

Proposition 5.2.5. (Campbell, 1972). If  𝒯 ∈ 𝔅(𝐻)  is positive normal, then 

 𝐾𝑒𝑟 (𝒯) = 𝐾𝑒𝑟 (𝒯2). 

Proof: It suffices to show that 𝐾𝑒𝑟(𝒯2) ⊂ 𝐾𝑒𝑟(𝒯). If 𝓎 ∈ 𝐾𝑒𝑟(𝒯2), then 𝒯2𝓎 = 0. 

Thus,  

𝒯𝓎 ∈ 𝐾𝑒𝑟(𝒯). Since  𝐾𝑒𝑟(𝒯) ⊂ 𝐾𝑒𝑟(𝒯∗), 𝑡ℎ𝑒𝑛,   𝒯𝓎 ∈ 𝐾𝑒𝑟(𝒯∗). Hence, 

 𝒯∗𝒯𝓎 = 0. Now, ‖𝒯𝓎‖2 = 〈𝒯𝓎, 𝒯𝓎〉 

                                                 = 〈𝒯∗𝒯𝓎, 𝓎〉 

                                                 ≤ ‖𝒯∗𝒯𝓎‖ ‖𝓎‖ 

                                                 = 0.  

Thus, 𝒯𝓎 = 0 and so we have, 𝓎 ∈ 𝐾𝑒𝑟(𝒯).                                                                    ∎              

Theorem 5.2.6. ( Halmos, 1982b). Let 𝒮1, 𝒮2 ∈ 𝔅(𝐻)  be hyponormal operators. If 

𝒮1 commutes with the positive part of  𝒮2 and 𝒮2 commutes with the positive part of 𝒮1
∗, 

then 𝒮1𝒮2 and 𝒮2𝒮1 are hyponormal. 

Proof: Hyponormality of 𝒮1𝒮2 is proved first. Assuming  𝒮1
∗(𝒮2

∗ 𝒮2) = (𝒮2
∗ 𝒮2)𝒮1

∗ and  

𝒮2
∗(𝒮1 𝒮1

∗) = (𝒮1 𝒮1
∗)𝒮2

∗ , and since for a positive operator 𝑃, 𝑄∗𝑃𝑄 is a positive operator 

for every operator 𝑄, then we can have; 

(𝒮1𝒮2)∗(𝒮1𝒮2) − (𝒮1𝒮2)(𝒮1𝒮2)∗ = 𝒮2 
∗ 𝒮1

∗𝒮1𝒮2 − 𝒮1𝒮2𝒮2
∗𝒮1

∗     
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                                                                                      ≥ 𝒮2
∗ 𝒮1𝒮1

∗𝒮2 −   𝒮1𝒮2𝒮2
∗𝒮1

∗  

                                                                                      ≥ 𝒮1𝒮1
∗𝒮2

∗𝒮2 − 𝒮1𝒮2
∗𝒮2𝒮1

∗    

                                                                                      ≥ 𝒮1𝒮1
∗𝒮2

∗𝒮2 − 𝒮1𝒮1
∗𝒮2

∗𝒮2  

                                                                                  = 0 

Next, the hyponormality of 𝒮2𝒮1 is established.  

For an operator  𝐴 ∈ 𝔅(𝐻) and 𝓎 ∈ 𝐻 we have; 

‖𝐴𝓎‖2〈𝐴𝓎, 𝐴𝓎〉 = 〈𝐴∗𝐴𝓎, 𝓎〉 

                                 = 〈(𝐴∗𝐴)
1
2𝓎〉  

║A𝓎║2 〈A, A𝓎〉 = 〈𝐴∗A𝓎, 𝓎〉 = 〈(𝐴∗A)
1

2 𝓎, (𝐴∗A)
1

2 𝓎〉 

                                                =║ (𝐴∗A)
1

2 ║2.  

Therefore, 

                                        ║(𝒮2𝒮1)∗ 𝓎║= ║𝒮1
∗ 𝒮2

∗ 𝓎║ 

                                                              = ║(𝒮1𝒮1
∗)

1

2 𝒮2
∗ 𝓎║ 

                                                              = ║𝒮2
∗(𝒮1𝒮1

∗)
1

2 𝓎║ 

                                                               ≤ ║𝒮2(𝒮1𝒮1
∗)

1

2 𝓎║ 

                                                               =  ║(𝒮2
∗𝒮2)

1

2 (𝒮1𝒮1
∗)

1

2 𝓎║ 

                                                             = ║𝒮1
∗(𝒮2

∗𝒮2)
1

2 𝓎║   

                                                             ≤ ║𝒮1(𝒮1 
∗ 𝒮1)

1

2 𝓎║  

                                                             = ║𝒮2𝒮1𝓎 ║                                                          ∎ 
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Corollary 5.2.7. (Halmos, 1982b). Let 𝒯1, 𝒯2 ∈ 𝔅(𝐻) be normal operators. Then each of 

𝒯1 and 𝒯2 commutes with the positive part of the other if and only if 𝒯1  𝒯2 and 𝒯2 𝒯1 are 

normal. 

Proof: Since the positive part of 𝒯1 and  𝒯2 are the same as 𝒯1
∗ and 𝒯2

∗ respectively, it 

follows that 𝒯1𝒯2 and (𝒯1𝒯2)∗ =  𝒯2
∗𝒯1

∗  are both hyponormal operators yielding the 

normality of  𝒯1𝒯2 and the normality of   𝒯2𝒯1 follows similarly. Conversely, 

 let 𝐴, 𝐵 ∈ 𝔅(𝐻), such that 𝐴 and 𝐴𝐵 are normal, then 𝐵𝐴 is normal.                               ∎ 

Corollary 5.2.8 (Halmos, 1982b). Let 𝒯𝑗 = 𝑈𝑗𝑃𝑗( 𝑗 = 1,2, … ) be normal operators in their 

polar decomposition and suppose that  𝑈1𝑃2 = 𝑃2𝑈1, 𝑈2𝑃1 = 𝑃1𝑈2 and 𝑃1𝑃2 = 𝑃2𝑃1, then 

𝒯1𝒯2 and 𝒯2𝒯1 are normal.  

Proof: If  𝒯1𝑃2 = 𝑈1𝑃1, 𝑃2 =  𝑈1𝑃2, 𝑃1 = 𝑃2𝑈1 and  𝑃1 =  𝑃2𝒯1.Thus 𝒯1 commutes with 

the positive part of  𝒯2 and vice versa. Hence, 𝒯1  𝒯2 and 𝒯2 𝒯1 are normal.                       ∎  

Corollary 5.2.9. (Halmos,1982b). Let 𝑄, 𝑃 ∈ 𝔅(𝐻) be self-adjoint operators, with 𝑃 

positive.Then the following are equivalent; 

 (𝑖) 𝑃𝑄 = 𝑄𝑃 

  (𝑖𝑖) 𝑄𝑃 is normal. 

Proof: If 𝑄𝑃 is normal, then (𝑃𝑄)∗ = 𝑄𝑃, thus normal. Since 𝑃(𝑄𝑃) = (𝑃𝑄)𝑃, it 

implies that 𝑃2𝑄 = 𝑄𝑃2. Therefore, by Putman-Fuglede theorem and 𝑃 being positive, 

then we have 

 𝑃𝑄 = 𝑄𝑃. The converse is obvious.                                                                                  ∎ 

Theorem 5.2.10. (Halmos, 1982a). Let 𝒯1, 𝒯2 ∈ 𝔅(𝐻) be operators with one of them 

normal. If 𝒯1𝒯2
∗ = 𝒯2

∗𝒯1, then each of  𝒯1  and 𝒯2 commutes with positive part of the other, 

but not conversely. 
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Proof: If  𝒯1 is normal, then by the Fuglede’s theorem, we have the relation 𝒯1𝒯2
∗ = 𝒯2

∗𝒯1. 

Thus it follows that  𝒯1
∗𝒯2

∗ = 𝒯2
∗𝒯1

∗ so that,  𝒯1𝒯2  = 𝒯2𝒯1. Thus,  

𝒯1(𝒯2
∗𝒯2) = (𝒯1𝒯2

∗)𝒯2 

                   =  𝒯2
∗(𝒯1𝒯2) 

                                                                                = (𝒯2
∗𝒯1)𝒯1. Also, 

𝒯2(𝒯1
∗𝒯1) = (𝒯2𝒯1

∗)𝒯1 

                     =  𝒯1
∗( 𝒯2𝒯1) 

                                                                       = (𝒯1
∗𝒯1)𝒯2 . 

But the converse doesn’t hold as can be seen by taking 𝒯1  and  𝒯2  to any two non-

commuting unitary operators.                                                                                             ∎ 

Theorem 5.2.11 (Rhaly, 1994). Every invertible operator is posinormal. 

Proof: If an operator  𝒲 ∈ 𝔅(𝐻) is invertible, then 

 𝒲∗ = 𝒲∗(𝒲−1𝒲) = (𝒲∗𝒲−1)𝒲. Thus, 𝒲∗ ∈ [𝒲].                                                 ∎ 

Corollary 5.2.12. (Rhaly, 1994). Every invertible operator is coposinormal. 

Theorem 5.2.13. (Rhaly, 2013). If 𝒮 ∈ 𝔅(𝐻) is coposinormal, satisfying 

 𝒮∗𝒮∗ = 𝒮𝑄𝒮∗, for some positive operator 𝑄 ∈ 𝔅(𝐻) and 𝑃 is a positive operator such 

that   𝑄 ≥ 𝑃 ≥ 1, then 𝑋 ≡ √𝑃𝒮√𝑃 is hyponormal. 

Proof: Let  [𝒳∗𝒳] ≡ 𝒳∗𝒳 − 𝒳𝒳∗, then it follows that,    

〈[𝒳∗𝒳]𝑓, 𝑓〉 = 〈(𝑃 − 𝐼)𝒮√𝑃𝑓〉 + 〈(𝑄 − 𝑃)𝒮∗√𝑃𝑓〉 ≥ 0, ∀ 𝑓 ∈ 𝐻2, so 𝒳 is hyponormal.  

We recall that, an operator 𝒯 ∈ 𝔅(𝐻) is said to be an M-hyponormal operator if there 

exist a real number 𝑀 such that 

 ║(𝒯 − 𝑧𝐼)∗𝓎║ ≤ 𝑀║(𝓎 − 𝑧𝐼)∗𝓎║, ∀  𝓎 ∈ 𝔅(𝐻) and 𝑧 ∈ ℂ.  
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Also notable is that, if  𝒯 is an M-hyponormal operator, then 𝑀 ≥ 1 and 𝑀 is 

hyponormal if and only if  𝑀 = 1.                                                                                      ∎ 

Theorem 5.2.14. (Sitati et al., 2015). Let 𝒮 ∈ 𝔅(𝐻) be an M-hyponormal operator and 

 𝑃 ∈ 𝔅(𝐻) be a hermitian operator. If 𝒮𝑃 is a contraction, then ║𝑃𝒮║ ≤ 𝑀,  

where  𝑀 ∈ ℝ. 

Proof: If 𝒮 is M-hyponormal and  ║𝑃𝒮║ ≤ 1, then  ║𝒮∗𝑃𝓎║ ≤ 𝑀║𝓎║. 

Hence,║𝑃𝒮║ = ║(𝑃𝒮)∗║ = ║𝒮∗𝑃║ ≤ 𝑀. This implies that, for a hyponormal 𝒮, then 

𝑃𝒮 is a contraction.                                                                                                             ∎ 

Theorem 5.2.15. (Sitati et al., 2015). If 𝒮 ∈ 𝔅(𝐻) is an M-hyponormal then, there exists 

operators 𝐴, 𝐵 ∈ 𝔅(𝐻) which satisfy the following:      

    (𝑖)  𝐵 ≥ 𝐴 ≥ 0,  

    (𝑖𝑖)  ║𝒮║ ≤ 𝑀, 𝑀 ≥ 1,  

    (𝑖𝑖𝑖)  𝒮∗𝐴𝒮 = 𝑀. Thus, 𝒮 can be expressed as 𝒮 =
1

𝑀
(𝐴

1

2 + 𝜆𝐼), for some complex 

number 𝜆. 

Proof: Let 𝒮 be M-hyponormal operator taking 𝒮 − 𝑧𝐼 = 𝒲, where 𝑧 is any complex 

number. Let 𝒲∗ = 𝑈(𝒲𝒲∗)
1

2 be polar decomposition of  𝒲∗. If 𝐴 = 𝒲𝒲∗ and  

 𝐵 = 𝑀2𝒲∗𝒲, then we have     𝐵 ≥ 𝐴 ≥ 0 , since 𝒮 is M-hyponormal. Also,  

𝐵 = 𝑀2𝒲∗𝒲 = 𝑀2𝑈(𝒲𝒲∗)
1

2 (𝒲𝒲∗)
1

2 𝑈∗ = 𝑀2𝑈𝒲𝒲∗𝑈∗ = 𝑀2𝑈𝐴𝑈∗. 

Let 𝒯 = 𝑀𝑈∗. Then ║𝒯║ ≤ 𝑀 and 𝐵 = 𝒯∗𝐴𝒯. Now, 

𝒮 = 𝑉 + 𝑧𝐼 = (𝒲𝒲∗)
1

2 𝑈∗ + 𝑧𝐼 = (
𝐼

𝑀
)𝐴

1

2 𝒯 + 𝑧𝐼 =
𝐼

𝑀
(𝐴

1

2 𝒯 + 𝑧𝐼), where 𝜆 is some 

complex number. This establishes the proof.                                                                     ∎ 
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Theorem 5.2.16 (Veluchamy & Thulasimani, 2010). Let 𝐴, 𝐵, 𝒮 ∈ 𝔅(𝐻) be operators, 

then the operator 𝒯 = 𝐴
1

2 𝒮 is a positive-normal operator if the following holds; 

(𝑖)𝐵 ≥ 𝐴 ≥ 0 

(𝑖𝑖)║𝒮║ ≤ 1 

(𝑖𝑖𝑖) 𝐵 = 𝒞2𝒮∗𝐴𝒮, for 𝒞 > 0.  

Proof: By definition, an operator 𝒯 ∈ 𝔅(𝐻) is posinormal if 𝒯𝒯∗ ≤ 𝒞2𝒯∗𝒯, where 𝒞 >

0. If there exits operators 𝐴, 𝐵, 𝒮 ∈ 𝔅(𝐻) which satisfies the above conditions, then; 

   𝒞2(𝐴
1

2 𝒮)∗(𝐴
1

2 𝒮) − ( 𝐴
1

2𝒮)(𝐴
1

2 𝒮)∗ = 𝒞2(𝒮∗𝐴
1

2𝐴
1

2 𝒮) − (𝐴
1

2 𝒮𝒮∗𝐴
1

2)                                                                      

                                                                    = 𝒞2𝒮∗𝐴𝒮 − 𝐴
1

2 𝒮𝒮∗𝐴
1

2 

                                                                    = 𝐵 − 𝐴
1
2 𝒮𝒮∗𝐴

1
2 

                                                               ≥ 𝐴 − 𝐴
1

2𝒮𝒮∗𝐴
1

2 

                                                             = 𝐴
1

2(𝐼 − 𝒮𝒮∗)𝐴
1

2  

                                                                     ≥ 0.  

Thus, 

      𝒞2(𝐴
1

2 𝒮)∗(𝐴
1

2 𝒮) ≥ (𝐴
1

2 𝒮)(𝐴
1

2 𝒮)∗, implying that 𝐴
1

2 𝒮 is positive-normal.                ∎ 

Theorem 5.2.17. (Veluchamy & Thulasimani, 2010). An operator 𝒯 ∈ 𝔅(𝐻) such that 

𝒯 = 𝐴
1

2 𝒮 and satisfying the following; 

(𝑖) 𝐵 ≥ 𝐴 ≥ 0 

(𝑖𝑖) ║𝒮║ ≤ 1 

(𝑖𝑖𝑖) 𝐵 = 𝒞2𝒮∗𝐴𝒮, for 𝒞 > 0, is coposinormal, thus 𝒯∗ is positive normal. 

Proof: If   𝒯∗𝒯 ≤ 𝒞2𝒯𝒯∗, it follows that 𝒯 is posinormal. Thus, 
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  𝒞2𝒯𝒯∗ − 𝒯∗𝒯 = 𝒞2(𝐴
1

2 𝒮)(𝐴
1

2 𝒮)∗ − (𝐴
1

2 𝒮)∗(𝐴
1

2 𝒮)   

                            = 𝒞2𝐴
1

2 𝒮𝒮∗𝐴
1

2 − 𝒮∗𝐴𝒮  

                            = 𝒞2𝐴
1

2 𝒮𝒮∗𝐴
1

2 −
𝐵

𝒞2 

                            = 𝒞2𝐴
1

2 𝒮𝒮∗𝐴
1

2 − 𝐴 

                            = 𝐴
1

2(𝒞2𝒮𝒮∗ − 𝐼)𝐴
1

2  

                            ≥ 0.   

 This shows that, 𝒯 is posinormal.                                                                                      ∎                                                                                                     

Theorem 5.2.18. (Veluchamy & Thulasimani, 2010). Let 𝐴, 𝐵, 𝒮 ∈ 𝔅(𝐻) be normal 

operators. If  𝒯 ∈ 𝔅(𝐻) such that  𝒯 = 𝐴
1

2𝒮 and satisfies the following; 

(𝑖)      𝐵 ≥ 𝐴 ≥ 0 

(𝑖𝑖)    ‖𝒮‖ ≤ 1 

(𝑖𝑖𝑖)  𝐵 = 𝒞2𝒮∗𝐴𝒮 , for 𝒞 > 0, is heminormal. 

Proof: From definition, a normal operator, 𝒯 ∈ 𝔅(𝐻) is heminormal if 𝒯 is hyponormal 

and 𝒯∗𝒯 commutes with 𝒯𝒯∗. Thus,  

            𝒯∗𝒯𝒯𝒯∗ = (𝐴
1
2𝒮)∗(𝐴

1
2𝒮)(𝐴

1
2𝒮)(𝐴

1
2𝒮)∗ 

          = 𝒮∗𝐴𝒮𝐴
1
2 𝒮𝒮∗𝐴

1
2  

    =
𝐵

𝒞2
𝐴

1
2𝒮𝒮∗𝐴

1
2  

and  

                     𝒯𝒯∗𝒯∗𝒯 = (𝐴
1
2𝒮)(𝐴

1
2𝒮)∗(𝐴

1
2𝒮)∗(𝐴

1
2𝒮) 

                 = 𝐴
1
2 𝒮𝒮∗𝐴

1
2 𝒮∗𝐴𝒮 
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           = 𝐴
1
2𝒮𝒮∗𝐴

1
2

𝐵

𝒞2
 

This shows that, 𝒯∗𝒯𝒯𝒯∗ = 𝒯𝒯∗𝒯∗𝒯. Hence, 𝒯 is herminormal.                                   ∎ 

Theorem 5.2.19 (Rhaly, 1994). Let an operator 𝒮 ∈ 𝔅(𝐻) be a posinormal with 

interrupter 𝑃, then for every 𝜆 ≠ 0, we have; 

(𝑖) 𝜆𝒮 is posinormal. 

(𝑖𝑖) The translate 𝒮 + 𝜆 need not be posinormal. 

Proof: (𝑖) (𝜆𝒮)(𝜆𝒮)∗ = │𝜆│2𝒮𝒮∗ = 𝒮∗𝑃𝒮 = (𝜆𝒮)∗𝑃(𝜆𝒳), where 𝑃 is an interrupter. 

            (𝑖𝑖) On the case where 𝒮 = 𝑈∗ − 2 and 𝜆 = 2, (where 𝑈∗ is the adjoint of 

unilateral shift), then  According to [Halmos,(1982), problem 82], it is established that 

 2 ∉ 𝜎(𝑈∗). Thus 𝒮 is posinormal but 𝒮 + 2 = 𝑈∗ is not posinormal.  

We recall that for a posinormal operator 𝒮 ∈ 𝔅(𝐻) the posispectrum of 𝒮 denoted by  

𝜎𝑝𝑜(𝒮) is the set 𝜎𝑝𝑜(𝒮) = {𝜆: 𝜆𝐼 − 𝒮 is not posinormal }.                                              ∎ 

5.3. Unitary Equivalence on Subclasses of Posinormal Operators. 

Rhaly (1994), in his paper on posinormal operators noted without proof that, for a 

posinormal operator 𝐴 with an interrupter 𝑃 and an isometry 𝒲, then it can be checked 

that 𝒲 ∗𝐴𝒲  is posinormal with interrupter 𝒲𝑃𝒲 ∗ and that posinormality is a unitary 

invariant. We consequently provide proof of this in the following results:   

Theorem 5.3.1. Let 𝒯 ∈ 𝔅(𝐻) be posinormal and 𝒮 be any operator such that 

 𝒯 = 𝒲𝒮𝒲∗ where 𝒲 is an isometry. Then 𝒮 is also posinormal. 

Proof: Since 𝒯 is posinormal, we have 𝒯𝒯∗ = 𝒯∗𝑃𝒯, where 𝑃 is an interrupter.  

From  𝒯 = 𝒲𝒮𝒲∗, it follows that  𝒯∗ = (𝒲𝒮𝒲∗)∗ 

                                                                       = 𝒲𝒮∗𝒲∗.  
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Therefore, 

                          𝒯𝒯∗ = 𝒲𝒮𝒲∗𝒲𝒮∗𝒲∗  

                                  = 𝒲𝒮𝒮∗𝒲∗                                                                                                (39) 

and 

                          𝒯∗𝑃𝒯 = 𝒲𝒮∗𝒲∗𝑃𝒲𝒮𝒲∗ 

                                     = 𝒲𝒮∗(𝒲∗𝑃𝒲)𝒮𝒲∗                                                                         (40)  

From (39) and (40) it follows that,   

                      𝒲𝒮𝒮∗𝒲∗ = 𝒲𝒮∗(𝒲∗𝑃𝒲)𝒮𝒲∗                                                                     (41)  

Now pre-multiplying (41) by 𝒲∗ and post-multiplying by 𝒲, we have 

                                  𝒮𝒮∗ = 𝒮∗(𝒲∗𝑃𝒲)𝒮, where 𝒲∗𝑃𝒲 ≥ 0 

Hence,  𝒮 is posinormal as desired.                                                                                    ∎ 

Theorem 5.3.2. Let 𝒯 ∈ 𝔅(𝐻) be posinormal and 𝒮 be an operator such that  

𝒯 = 𝒲∗𝒮𝒲  where, 𝒲 is a co-isometry. Then 𝒮 is also posinormal. 

Proof: Since 𝒯 is posinormal, we have  𝒯𝒯∗ = 𝒯∗𝑃𝒯 , where 𝑃 is an interrupter.  

From 𝒯 = 𝒲∗𝒮𝒲, it follows that       𝒯∗ = (𝒲∗𝒮𝒲)∗ 

                                                                           = 𝒲∗𝒮∗𝒲. 

 Therefore, 

                𝒯𝒯∗ = 𝒲∗𝒮𝒲𝒲∗𝒮∗𝒲  

                                                                    = 𝒲∗𝒮𝒮∗𝒲                                                       (42) 

 and  

                                                                    𝒯∗𝑃𝒯 = 𝒲∗𝒮∗𝒲𝑃𝒲∗𝒮𝒲 

                                                                               = 𝒲∗𝒮∗(𝒲𝑃𝒲∗)𝒮𝒲                             (43) 

 From (42) and (43), it follows that,   
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             𝒲∗𝒮𝒮∗𝒲 = 𝒱∗𝒮∗(𝒲𝑃𝒲∗)𝒮𝒲                                                                             (44) 

Now pre-multiplying (44) by 𝒲 and post-multiplying by 𝒲∗ we have             

𝒮𝒮∗ = 𝒮∗(𝒲∗𝑃𝒲)𝒮 , but 𝒲∗𝑃𝒲 ≥ 0 .This establishes that 𝒮 is posinormal.                ∎ 

Remark 5.3.3. The following corollary is immediate from Theorem 5.3.1 and Theorem 

5.3.2 above.  

Corollary 5.3.4. If for any two operators 𝒮, 𝒯 ∈ 𝔅(𝐻) such that 𝒯 = 𝑈∗𝒮𝑈 or 

 𝒯 = 𝑈𝒮𝑈∗, where 𝑈 is unitary, then 𝒯 is posinormal whenever 𝒮 is. 

Proof: It easily follows from the proofs of Theorem 5.3.1 and Theorem 5.3.2 above since 

every unitary operator is either isometry or co-isometry.                                                  ∎ 

Remark 5.3.5. The corollary above shows that posinormal operators are unitarily 

invariant. 

5.4 Almost similarity property on subclasses of posinormal operators 

Recall that, according to Jibril (1996), two operators 𝐴, 𝐵 ∈ 𝔅(𝐻) are almost similar if 

the following two conditions hold; 

 (𝑖) 𝐴∗𝐴 =  𝒩−1(𝐵∗𝐵)𝒩      and 

(𝑖𝑖) 𝐴∗ + 𝐴 =  𝒩−1(𝐵∗ + 𝐵)𝒩, where 𝒩 is an invertible operator. This property has 

been studied on various subclasses of posinormal operators as outlined in the following 

theorems: 

Proposition 5.4.1. (Nzimbi et al., 2008). If two operators 𝒮, 𝒯 ∈ 𝔅(𝐻) are such that  

𝒮  ~
𝑎.𝑠 𝒯 and 𝒮 is a projection, then so is  𝒯. 

Proof: For 𝒮  ~
𝑎.𝑠 𝒯, there exist an invertible operator 𝒩, such that 

𝒮∗𝒮 =  𝒩−1(𝒯∗𝒯)𝒩                                                                                                                 (45) 

and 
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𝒮∗ + 𝒮 =  𝒩−1(𝒯∗ + 𝒯)𝒩                                                                                                       (46) 

 𝒮 is hermitian, (𝒮∗ = 𝒮) since it is a projection. 

 Thus, it follows from proposition 4.1.3, that 𝒯 is also hermitian. Thus, from (45) and 

 (46) above, we get 𝒮2 = 𝒮 = 𝒩−1𝒯2𝒩 and 2𝒮 = 𝒩−12𝒯𝒩 respectively.  

Thus, 𝒮 = 𝒩−1𝒯𝒩 showing that 𝒩−1𝒯2𝒩 = 𝒩−1𝒯𝒩 . Hence 𝒯 is a projection.       ∎ 

 Proposition 5.4.2. (Nzimbi et al., 2008). If 𝒮, 𝒯 ∈ 𝔅(𝐻) such that  𝒮   ~
𝑎.𝑠 𝒯 and 𝒯 is 

hermitian, then 𝒮 is hermitian.  

Proof: Given that  𝒮   ~
𝑎.𝑠 𝒯, then there exist an invertible operator 𝒩, such that, 

 𝒮∗𝒮 = 𝒩−1(𝒯∗𝒯)𝒩, which implies that,  

4𝒮∗𝒮 = 𝒩−1(4𝒯∗𝒯)𝒩                                                                                                             (47)  

Also, 𝒮   ~
𝑎.𝑠 𝒯 implies that, 

 𝒮∗ + 𝒮 = 𝒩−1(𝒯∗ + 𝒯)𝒩. It follows that, 

 [𝒩−1(𝒯∗ + 𝒯)𝒩] [𝒩−1(𝒯∗ + 𝒯)𝒩] = (𝒮 + 𝒮∗)2. Thus, 

 𝒩−1(𝒯 + 𝒯∗)2𝒩 = (𝒮 + 𝒮∗)2                                                                                               (48) 

Since 𝑇 is hermitian, then we have that,            

  (𝒯 + 𝒯∗)2 = (2𝒯)2 = 4𝒯2 = 4𝒯∗𝒯. Substituting this in equation (48) above, it yields;    

𝒩−1(4𝒯∗𝒯)𝒩 = (𝒮 + 𝒮∗)2                                                                                                    (49)  

Thus, by inspection on equation (47) and (48), it is easily deduced that 

 4𝒮∗𝒮 = (𝒮 + 𝒮∗)2. 

This establishes that 𝒮 is hermitian.                                                                                    ∎ 

Proposition 5.4.3. (Nzimbi et al., 2008). If 𝒮, 𝒯 ∈ 𝔅(𝐻) such that 𝒮  ~
 𝑎.𝑠 𝒯 and if  𝒮 is 

hermitian, then 𝒮 and 𝒯 are unitarily equivalent.                                     

Poof: Since  𝒮   ~
𝑎.𝑠 𝒯 then, there exist an invertible operator 𝒩 such that 
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 𝒮∗ + 𝒮 = 𝒩−1(𝒯∗ + 𝒯)𝒩. Since 𝒮 is normal, then they are unitarily equivalent.         ∎ 

This establishes condition for which almost similarity of operators implies similarity.       

Remark 5.4.4. We note from Proposition 5.4.3 above that, such operators 𝒮 and 𝒯 have 

equal spectrum.  

Proposition 5.4.5. (Nzimbi et al., 2008). If an operator 𝒯 ∈ 𝔅(𝐻) is normal, 

then  𝒯   ~
 𝑎.𝑠 𝒯∗. 

Proof: If  𝒯 is normal, there exist a unitary operator 𝑈, such that, 𝒯∗ = 𝑈𝒯 and thus, 

 𝒯 = 𝒯∗𝑈∗ . It then follows that; 

 𝒯∗𝒯 = 𝑈(𝒯𝑈∗)𝑈∗ and 

 𝒯∗ + 𝒯 = 𝑈𝒯 + 𝒯∗𝑈∗ = 𝑈𝒯∗𝑈∗ + 𝑈𝒯𝑈∗ = 𝑈(𝒯 + 𝒯∗)𝑈∗ . 

Thus 𝒯 is almost unitarily equivalent and hence, almost similar to 𝒯∗.                             ∎ 

Theorem 5.4.6. Let 𝒮, 𝒯 ∈ 𝔅(𝐻). If 𝒮   ~
𝑎.𝑠 𝒯 and 𝒮 is posinormal, then 𝒯 is also 

posinormal. 

Proof: Since 𝒮 is posinormal, it implies that, 𝒮𝒮∗ = 𝒮∗𝑃𝒮, where 𝑃 is an interrupter. 

Also, since 𝒮   ~
𝑎.𝑠 𝒯, then there exist an invertible operator 𝒩 such that 𝒯∗𝒯 = 𝒩−1𝒮∗𝒮𝒩 

and 

 𝒯∗ + 𝒯 = 𝒩−1(𝒮∗ + 𝒮)𝒩. 

Assuming 𝒮 is an isometry, then from 𝒮𝒮∗ = 𝒮∗𝑃𝒮, we have   𝒮 = 𝒮∗𝑃𝒮𝒮 and therefore,  

𝒮∗ = (𝒮∗𝑃𝒮𝒮)∗ = 𝒮∗𝒮∗𝑃∗𝒮.  

Hence,            

 𝒯∗𝒯 = 𝒩−1𝒮∗𝒮∗𝑃∗𝒮𝒮∗𝑃𝒮𝒮𝒩  

   = 𝒩−1𝒮∗𝒮∗𝑃∗𝑃𝒮𝒮𝒩  

                                                               = 𝒩−1𝒮∗𝒮∗𝒮𝒮𝒩 
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                                                                      = 𝒩−1𝒮∗𝒮𝒩   and 

     𝒯∗ + 𝒯 = 𝒩−1(𝒮∗𝒮∗𝑃∗𝒮 + 𝒮∗𝑃𝒮𝒮)𝒩. 

                    = 𝒩−1(𝒮∗𝒮∗𝒮𝑃∗ + 𝑃𝒮∗𝒮𝒮)𝒩. 

             = 𝒩−1𝒮∗𝒮(𝒮∗𝑃∗ + 𝑃𝒮)𝒩. 

                                                               = 𝒩−1(𝒮∗𝑃∗ + 𝑃𝒮)𝒩, but 𝑃 ≥ 0, thus we have 

                                                              = 𝒩−1(𝒮∗ + 𝒮)𝒩, 

Since the posinormality of  𝒮 justifies the almost similarity property with 𝒯 and vice 

versa, then 𝒯 is posinormal. Hence, any posinormal operators which are similar and 

unitarily equivalent are also almost similar.                                                                       ∎ 

Theorem 5.4.7. Let 𝒮, 𝒯 ∈ 𝔅(𝐻) be almost similar operators with their polar 

decompositions as 𝒮 = 𝑈|𝒮| and 𝒯 = 𝒱|𝒯| where 𝑈 and 𝒱 are unitary. Then 𝒮 is 

invertible implies 𝒯 is also invertible.  

Proof: Since 𝒮  ≈
𝑎.𝑠 𝒯, then an invertible operator 𝒩 exists such that 𝒮∗𝒮 = 𝒩−1 𝒯∗𝒯𝒩 

and 

 𝒮∗ + 𝒮 = 𝒩−1 (𝒯∗ + 𝒯)𝒩. Now 𝒮 is invertible implies that 𝒮∗ is also invertible which 

also implies that  𝒮∗𝒮 is invertible. But 𝒮∗𝒮 is similar to 𝒯∗𝒯 which implies 

that 𝜎(𝒮∗𝒮) = 𝜎(𝒯∗𝒯). Thus 𝒯∗𝒯 is an invertible positive operator which implies that 

√𝒯∗𝒯 = |𝒯| is also invertible. Hence 𝒯 is invertible.                                                       ∎  

Remark 5.4.8. We note that the class of invertible operators is contained in the class of 

posinormal operators as Theorem 5.2.11 shows.  
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5.5    Spectral properties of posinormal operators. 

In this subsection, the spectral properties of posinormal operators are investigated. Some 

general results on this area are outlined below:  

Lemma 5.5.1. (Asamba, 2016). Let 𝒮 ∈ 𝔅(𝐻) be posinormal operator. Supposing 

 𝜇 ∈ 𝜎𝑝(𝒮), for 0 < 𝑝 <
1

2
, then �̅� ∈ 𝜎𝑝(𝒮∗).   

Proof: If 0 ∈ 𝜎𝑝(𝒮), then there exist a vector  𝓎 ∈ 𝐻, where 𝓎 ≠ 0 such that  

𝒮𝓎 = 0. Following that║𝒮║
2

𝓎 = 𝒮∗𝒮𝓎 = 0 and║𝒮║ ≥ 0, then we have 

 (𝒮∗𝒮) 𝑘2
1

𝓎 = 0, (𝑘 = 1,2, … ). For 𝓍 ∈ ℕ, such that,  
1

𝓍
< 𝜌. It follows that (𝒮∗𝒮) 𝑥2

1
𝓎 = 0 

and (𝒮∗𝒮) 𝜌2
1

𝓎 = 0. Since 𝒮 is posinormal, then we have, (𝒮∗𝒮)𝜌𝓎 = 0. Hence, 

 𝒮∗𝒮𝓎 = 0. Next, supposing that, 𝜇 ∈ 𝜎𝑝(𝒮), for 𝜇 ∈ ℂ, where 𝜇 ≠ 0 . It therefore 

follows that if exist 𝑚 ∈ 𝐻 such that 𝑚 ≠ 0 then we have, 𝒮𝑚 = 𝜇𝑚. If we let  

𝒮 = 𝑈║𝒮║be a polar decomposition of 𝒮 and 𝑈 being a unitary operator, for  

║𝒮║𝑚 = 𝜇𝑚, it follows that 

 ║𝒮║
1

2𝑈║𝒮║
1

2║𝒮║
1

2𝑚 = 𝜇║𝒮║
1

2𝑚. We know that �̃� = ║𝒮║
1

2𝑈║𝒮║
1

2 and consequently, 

 �̃�∗ = ║𝒮║
1

2𝑈∗║𝒮║
1

2𝑚 = �̅�║𝒮║
1

2𝑚.  

Therefore, 𝒮∗ = (║𝒮║𝑚) = �̅�║𝒮║𝑚. Since ║𝒮║𝑚 ≠ 0, then �̅� ∈ 𝜎𝑝(𝒮∗).                    ∎      

Theorem 5.5.2. (Asamba,2016). Let 𝒮 ∈ 𝔅(𝐻) be posinormal operator. Then  

𝜎(𝒮) = {𝜇 ∶ �̅� ∈ 𝜎𝜋(𝒮∗)}. 

Proof: For 𝜎(𝒮) = 𝜎𝜋(𝒮) ∪ {𝜇: �̅� ∈ 𝜎𝜋(𝒮∗)}, it suffices to show that  
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𝜎(𝒮) = { 𝜇: �̅� ∈ 𝜎𝜋(𝒮∗)}. Supposing that, 𝜇 ∈ 𝜎𝜋(𝒮), then we have 𝜇 ∈ 𝜎𝑝(𝒯(𝒮), where 

𝒯 is a mapping. It follows that �̅� ∈ 𝜎𝑝(𝑇(𝑆∗)) since 𝒯(𝒮) is posinormal. Since  

𝜎𝑝(𝒯(𝒮∗)) = 𝜎𝜋(𝒮∗), it follows that �̅� ∈ 𝜎𝜋(𝒮∗).                                                             ∎ 

Lemma 5.5.3. (Asamba, 2016). Let 𝕊 = (𝒮1, … 𝒮𝑛) be doubly commuting 𝑛 −tuple of 

posinormal operator on 𝐻. Supposing  𝜇 = (𝜇1, … 𝜇𝑛) ∈ 𝜎𝑝(𝕊), then 

 �̅� = (�̅�1, … , �̅�𝑛) ∈ 𝜎𝜋(𝕊∗), where 𝕊∗ = 𝑆1
∗, … , 𝑆𝑛

∗ . 

Proof: For a vector 𝓎 ∈ 𝐻, where 𝓎 ≠ 0 , such that 𝒮𝑖𝓎 = 𝜇𝑖 𝓎 (𝑖 = 1, … , 𝑛), We 

therefore assume that 𝜇𝑖 , … 𝜇𝑘  are zero norm and 𝜇𝑘+1=…= 𝜇𝑛 = 0. Thus 

 𝒮𝑘+1
∗ = 𝒮𝑦

∗ = 0 is obtained. Again, 𝒮1
∗(║𝒮║𝓎) = �̅�1 ║𝒮𝑖║𝓎, where 𝒮𝑖 > 0 in a polar 

decomposition 𝒮𝑖 = 𝑈𝑖║𝒮𝑖║, where 𝑖 = 1, … , 𝑘. 

If ║𝒮1║…║𝒮𝑘║𝓎 = 0 and since (𝒮1, … , 𝒮𝑘) is doubly commuting k-tuple of posinormal 

operators, then 𝑈𝑖  and ║𝒮𝑖║commute with 𝑈𝑗  and║𝒮𝑗║, for every 𝑖 ≠ 𝑗. Therefore, we 

have 𝒮1𝒮2 … 𝒮𝑘𝓎 = 0 and it follows that 𝜇1, … 𝜇𝑘 = 0, since every 𝜇𝑖 ≠ 0, where 𝑖 =

1, … , 𝑘. 

 Hence, ║𝒮1║…║𝒮𝑘║𝓎 ≠ 0,  and 

 consequently  𝒮𝑖
∗(║𝒮1║…║𝒮𝑘║𝓎) = ║𝒮1║…║𝒮𝑖−1║║𝒮𝑖+1║…║𝒮𝑘║║𝒮𝑖

∗║║𝒮𝑖║𝓎 

                                                                  = �̅�1(║𝒮1║…║𝒮𝑘║𝓎. 

We again have the following since 𝒮𝑖 also commute with, ║𝒮1║…║𝒮𝑘║; 

𝒮𝑖
∗(║𝒮1║…║𝒮𝑘║𝓎) = 0, 𝑖 = 𝑘 + 1, … , 𝑛. Hence, �̅� = (�̅�1, … , �̅�𝑛) ∈ 𝜎𝑝(𝕊∗).               ∎ 

Theorem 5.5.4. (Asamba, 2016). Let 𝕊 = (𝒮1, … 𝒮𝑛) be doubly commuting 𝑛-tuple of 

posinormal operators on 𝐻. Then 𝜎(𝕊) = {(𝜇1, … 𝜇𝑛) ∈ ℂ𝑛: (�̅�1, … , �̅�𝑛) ∈ 𝜎𝜋(𝕊∗)}. 
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Proof: Given 𝕊 is a doubly commuting 𝑛-tuple, we have (𝜇1, … 𝜇𝑛) ∈ 𝜎(𝕊). If there 

exists some partition {𝑖1, … , 𝑖𝑚} ∪ {𝑗1, … , 𝑗𝑠} = {1, … , 𝑛} and also a sequence { 𝓎𝑘} of 

vectors in 𝐻 such that (𝒮𝑖𝜏 − 𝜇𝑖𝜏)𝑦𝑘 → 0 and (𝒮𝑗𝑣 − 𝑍𝑗𝑣)∗𝑦𝑘 → 0 as 𝑘 → ∞, for 

 𝜏 = 1, … , 𝑚 and 𝑣 = 1, … , 𝑠 , then for a mapping  𝒯 such that (𝒮𝑖1, … 𝜇𝑗𝑚 ,

�̅�𝑗1, … , �̅�𝑗𝑠) ∈ 𝜎𝜋(𝒯(𝒜), we thus have  𝒯(𝒜) = (𝒯(𝒮𝑖1, … , 𝒯(𝒮𝑗𝑖
∗ ).  

Since 𝒯(𝒮𝑖) is a posinormal operator, it follows that (�̅�1, … , �̅�𝑛) ∈ 𝜎𝑝(𝒯(𝒮∗)). Hence, 

 (�̅�1, … , �̅�𝑛) ∈ 𝜎𝜋(𝒮∗). Thus it is clear that, 𝜎𝜋(𝒮∗) ⊂  𝜎(𝒮) and so 

 𝜎(𝕊) = {(𝜇1, … 𝜇𝑛) ∈ ℂ𝑛: (�̅�1, … , �̅�𝑛) ∈ 𝜎𝜋(𝕊∗)}.                                                            ∎                                     

Corollary 5.5.5. (Rhaly, 1994). Supposing 𝒮 ∈ 𝔅(𝐻) and 𝜆 ∉ 𝜎(𝒮), then 𝒮 − 𝜆 is 

posinormal.  

Proposition 5.5.6. (Rhaly, 2016). The following properties hold true for 

posispectrum, 𝜎𝑝𝑜(𝒮): 

(𝑖)  𝒮 is dominant if and only if 𝜎𝑝𝑜(𝒮) = ∅, i.e. if 𝒮 is normal or hyponormal, then 

𝜎𝑝𝑜(𝒮) = ∅. 

(𝑖𝑖)  𝒮 is posinormal if and only if 0 ∉ 𝜎𝑝𝑜(𝒮). 

(𝑖𝑖𝑖) 𝜋1(𝒮) ⊆ 𝜎𝑝𝑜(𝒮) ⊆ 𝜎(𝒮). 

(𝑖𝑣) There exists operators for which the posispectrum is topologically large in that it 

may contain a nonempty open set.  

(𝑣)𝜎𝑝𝑜(𝒮) = 𝜎𝑝𝑜(𝒮∗)∗

⟺ {𝑅𝑎𝑛 (𝜆𝐼 − 𝒮) ⊆ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) ⟺ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) ⊆ 𝑅𝑎𝑛 (𝜆𝐼 − 𝒮)} 

       ∀ 𝜆 ∈ ℂ.  Also,  

       𝑅𝑎𝑛 (𝜆𝐼 − 𝒮) ⊆ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) ⟺ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) = 𝑅𝑎𝑛 (𝜆𝐼 − 𝒮), ∀𝜆 ∈ ℂ. 
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(𝑣𝑖) 𝜎𝑝𝑜(𝒮) = 𝜎𝑝𝑜(𝒮∗) = ∅ ⟺ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) = 𝑅𝑎𝑛 (𝜆𝐼 − 𝒮), for every 𝜆 ∈ ℂ. 

Thus 𝒮  is dominant and codominant.  

Proof: Properties (𝑖) and (𝑖𝑖) are direct. Therefore, by range inclusion criterion we 

obtain;  

𝜎𝑝𝑜(𝒮) = {𝜆 ∈ ℂ: 𝜆𝐼 − 𝒮 is not posinormal }.  

              = {𝜆 ∈ ℂ: 𝑅𝑎𝑛 (𝜆𝐼 − 𝒮) ⊈ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗)} .  

Since 𝒮 is dominant if and only if 𝜆𝐼 − 𝒮 is posinormal, 𝜆 ∈ ℂ. This shows by the range 

inclusion criterion that, 

𝑅𝑎𝑛 (𝜆𝐼 − 𝒮) ⊆ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗), ∀ 𝜆 ∈ ℂ. This shows that 𝒮 is dominant ⟺ 𝜎𝑝𝑜(𝒮) = ∅ 

and 

 𝒮 is posinormal ⟺ 0 ∉ 𝜎𝑝𝑜(𝒮). Particularly, if  𝒮 is normal or hyponormal, 

then  𝜎𝑝𝑜(𝒮) = ∅. 

For (𝑖𝑖𝑖), Since every invertible operator is posinormal and since 𝜆 ∈ ℂ for which 𝜆𝐼 − 𝒮 

is invertible lies in the complement of the spectrum it thus follows that 𝜎𝑝𝑜(𝒮) = 𝜎(𝒮).  

It is also notable that 

 𝜋0(𝒮) = {𝜆 ∈ ℂ: 𝐾𝑒𝑟(𝜆𝐼 − 𝒮) = {0}} = {𝜆 ∈ ℂ = 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗)− ≠  𝐻}, and 

 𝜋1(𝒮) = {𝜆 ∈ 𝜋0(𝒮): 𝑅𝑎𝑛(𝜆𝐼 − 𝒮) = 𝐻} 

             = {𝜆 ∈ ℂ: 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗)− ⊂ 𝑅𝑎𝑛 (𝜆𝐼 − 𝒮) = 𝐻}. 

Since 𝑅𝑎𝑛 (𝒮) is closed if and only if 𝑅𝑎𝑛 (𝒮∗) is closed for every 𝒮 ∈ 𝔅(𝐻), then the 

above proper inclusion can be rewritten as 𝜋1(𝒮) = {𝜆 ∈ ℂ: 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) ⊂

𝑅𝑎𝑛 (𝜆𝐼 − 𝒮) = 𝐻}. Thus, 𝜋1(𝒮) ⊆  𝜎𝑝𝑜(𝒮) as required.  
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For (𝑖𝑣), since it is known fact that 𝜋1(𝒮) is always open subset of ℂ and also that there 

are Hilbert space operators 𝒮 for which 𝜋1(𝒮) is nonempty , therefore, (𝑖𝑣) follows from 

(𝑖𝑖𝑖). 

For (𝑣), considering the set 𝜎𝑝𝑜(𝒮∗)∗ = {𝜆 ∈ ℂ: 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗)𝑅𝑎𝑛 (𝜆𝐼 − 𝒮)} and taking 

𝜌𝑝𝑜(𝒮) = ℂ\𝜎𝑝𝑜(𝒮) = {𝜆 ∈ ℂ: 𝑅𝑎𝑛(𝜆𝐼 − 𝒮) ⊆ 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗)}, 

𝜌𝑝𝑜(𝒮∗)∗ = ℂ\𝜎𝑝𝑜(𝒮∗)∗ = {𝜆 ∈ ℂ: 𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) ⊆ 𝑅𝑎𝑛 (𝜆𝐼 − 𝒮)}. Therefore, 

 𝜎𝑝𝑜(𝒮) = 𝜎𝑝𝑜(𝒮∗)∗ ⇔ 𝜌𝑝𝑜(𝒮) = 𝜌𝑝𝑜(𝒮∗)∗ ⇔ {𝑅𝑎𝑛(𝜆𝐼 − 𝒮) ⊆ 𝑅𝑎𝑛(�̅�𝐼 −

𝒮∗)𝑅𝑎𝑛(�̅�𝐼 − 𝒮∗) ⊆ 𝑅𝑎𝑛 (𝜆𝐼 − 𝒮) ∀ 𝜆 ∈ ℂ. This establishes the proof. 

Finally for (𝑣𝑖), it follows from (𝑖) since 𝜎𝑝𝑜(𝒮) = 𝜎𝑝𝑜(𝒮∗) = ∅ if and only if both 𝒮 

and 𝒮∗ are dominant.                                                                                                           ∎ 
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CHAPTER SIX 

SUMMARY AND RECOMMENDATIONS 

6.1 Summary  

This research studied almost similarity property considerably on partial isometries, 𝜃- 

operators and posinormal operators, where chapters one and two are devoted to 

introduction and literature review respectively.  

In chapter three, we have exhibited a number of results on the property of almost 

similarity involving subclasses of partial isometries see (Theorem 3.2.3, Corollary 3.3.2, 

Proposition 3.4.1, 3.4.2 and 3.4.5).  

We further showed that for any two operators 𝒮, 𝒯 ∈ 𝔅(𝐻), such that 𝒮  ~
 𝑎.𝑠 𝒯 if 𝒮2 is a 

partial isometry and 𝒯 is self-adjoint, then 𝒯2 is also partially isometric, see Theorem 

3.4.9. 

 In chapter four, it is shown that for a 𝜃-operator 𝒯 ∈ 𝔅(𝐻) and either 𝒮 = 𝑈𝒯𝑈∗, with 𝑈 

isometry or 𝒮 = 𝑈∗𝒯𝑈, with 𝑈 a co-isometry then 𝒮 is also a 𝜃-operator, see (Theorems 

4.3.1 and 4.3.2).  In Theorem 4.3.5, it is shows that if two operators are unitarily 

equivalent and one of them is a 𝜃-operator, then so is the other.  

We have also shown through Proposition 4.4.4 that if two operators 𝒯 and 𝒮 are almost 

similar and 𝒮 is a 𝜃-operator, then so is 𝒯. On this class of 𝜃-operators, we also extended 

the property of almost similarity to that of ∝-almost similarity. To this end we showed 

that if  𝒯 and 𝒮 are projections which are ∝-almost similar, then under further condition 

we get that they have not only equal spectra but also equal approximate point spectrum, 

see (Proposition 4.5.6). 
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Lastly, Corollary 4.5.10 shows that for two operators 𝒮, 𝒯 ∈ 𝔅(𝐻) and 𝒩 be an 

invertible operator such that 𝒩𝒮 = 𝒯𝒩 where 𝒮 and 𝒯 satisfy the Pantum-Fuglede 

property. Then 𝒮 and 𝒯 are 𝛼 −almost similar. 

In chapter five, it is shown that for two operators 𝒮, 𝒯 ∈ 𝔅(𝐻) such that 𝒮 is a 

posinormal and either 𝒮 = 𝑈𝒯𝑈∗ or 𝒮 = 𝑈∗𝒯𝑈, where 𝑈 is unitary, then 𝒯 is also 

posinormal, see (Theorem 5.3.1 and theorem 5.3.2). Thus, 𝒮 and 𝒯 are unitarily 

equivalent posinormal operators.  

Therefore, the classes of 𝜃-operators and posinormal operators are not only unitarily 

invariant but also isometrically and co-isometrically invariant. Also, with respect to 

almost similarity of operators, if two operators are similar with one of them a 𝜃-operator, 

then the other is also a 𝜃-operator. Also, Lemma 5.5.1, Theorem 5.5.2, Theorem 5.5.4 

and Proposition 5.5.6 give essential information about spectral properties of operators. 

6.2 Recommendations  

The following are recommended for further studies; 

(i) In both chapter three and four we have managed to show that if two operators are 

almost similar and one of them is either partial isometry or 𝜃- operator then so is the 

other operator. However, in chapter five we have not succeeded in showing the same 

result for posinormal operators. This is an area for further investigation.  

(ii) In all the three chapters (3, 4 & 5), we have only shown that equality of spectra is 

realized when the two given operators are unitarily equivalent or similar but not when 

they are almost similar .This can also be investigated further. 
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(iii) In this thesis we have studied the property of almost similarity on three different 

classes of operators namely Partial isometries, 𝜃- operators and Posinormal operators. 

The same study can be undertaken on different sets of classes of operators.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

 
 

REFERENCES 

Amjad, H. Abdul Majeed and Laith, K.Shaakir. (2019). 𝛼-Almost Similar Operators.  

                  𝑇𝑖𝑘𝑟𝑖𝑡 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝑃𝑢𝑟𝑒  𝑆𝑐𝑖𝑒𝑛𝑐𝑒. Vol. 24(5). DOI: 24.2019.094. http://

                  dx. doi. org/10.25130/tjps.24.2019.094 

 Arun, B. (1975). On Binormal Operators. Department of Mathematics, University of 

                  Delhi, DELHI. 

Asamba, S.K. (2016). On Numerical Ranges and Spectra of Posinormal Operators. M.Sc.  

                  Thesis, K isii University. 

Brailey, S. and Michael, R. (2008). An introduction to Hilbert Spaces. Pp 1-28. 

Campbell, S.L. (1972). Linear Operators for which T*T and TT* Commute. American 

                   𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑐𝑖𝑒𝑡𝑟𝑦. Vol 34.  

Campbell, S.L. and Gellar, R. (1977). Linear Operators for which T*T  𝑎𝑛𝑑 T+T* 

                   Commute(II). 𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑐𝑖𝑒𝑡𝑦. Vol 226.  

                   Pp 305 − 319. 

Campbell, S.L. (1978). Linear Operators for which T*T and T+T* commute (II). 

                    𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠. Vol.76. 

Campbell, S.L. (1980). Linear operators for which T*T and TT* commute (II). 

                   𝑃𝑎𝑐𝑖𝑓𝑖𝑐 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠. 

Clary, W.S. (1975). Equality of spectra of quasisimilar hyponormal operators, Pro. 

                 𝐴𝑚𝑒𝑟. 𝑀𝑎𝑡ℎ.  𝑆𝑜𝑐. Vol 53, Pp 89 − 90. 

Crawford, R.H. Jr. (1994). Posinormal operators, Journal of the Mathematical 𝑆𝑜𝑐𝑖𝑒𝑡𝑦 

               𝑜𝑓 𝐽𝑎𝑝𝑎𝑛. Vol 46.  No 4, 587 − 605.  

Debnath, L. and Mikusinski, P. (2005)Introduction to Hilbert spacesapplications,    



63 
 

 
 

Third   Edition. 𝐸𝑙𝑠𝑒𝑣𝑖𝑒𝑟 𝐴𝑐𝑎𝑑𝑒𝑚𝑖𝑐 𝑃𝑟𝑒𝑠𝑠. M10 13 –  580 pages. https:    /

/books. google. co. ke/book? id = ADfBjTHyDRMC&source

= gbs_similarbooks 

Douglas R.G. (1966). On majorization, factorization and range inclusion of operators on 

                Hilbert  spaces. 𝑃𝑟𝑜𝑐𝑒𝑒𝑑𝑖𝑛𝑔𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑐𝑖𝑒𝑡𝑦.  

                 Vol 17. Pp 413 − 415    

Douglas, R.G. (1969). On operator equation  𝒮∗𝒳𝒯 = 𝒳 and related topics, Acta. Sci.  

                𝑀𝑎𝑡ℎ𝑠   (𝑆𝑧𝑒𝑔𝑒𝑑). Vol 30. 𝑃𝑝19 − 32. 

Garrett, P. (2005). Operators on Hilbert Spaces. http://www.math.edu/garrett/ 

Gong, W. and Han, D. (1994). Spectrum of products of operators and compact 

                  perturbations, 𝑃𝑟𝑜. 𝐴𝑚𝑒𝑟. 𝑀𝑎𝑡ℎ. 𝑆𝑜𝑐. Vol 120 No 3, Pp 755 − 760.  

Halmos, P.R. (1982a). A Hilbert Space Problem Book [9684-9330-]. 

Halmos, P.R. (1982b). A Hilbert Space Problem Book, second Edition. Springer-Verlag,   

                   Berlin.  

Halmos, P. R. (1976). A Hilbert Space Problem Book.Van Nostrand, Prince-ton, N. J.    

                   𝑀𝑅  348176. 

Hoover, T.B. (1972). Quasisimilarity of Operators. Illinois. Math. Vol 16. Pp 678-688. 

Jeon, I. H. , Duggal, B. P. (2004), P-Hyponormal Operators and Quasisimilarity. Integral 

                𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 𝑎𝑛𝑑 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑇ℎ𝑒𝑜𝑟𝑦. Vol 49, 379 − 403. 

Jeon, I.H., Kim, S.H., Ko, E. and Park, J.E. (2002). On Positive-normal operators. Bull 

                𝐾𝑜𝑟𝑒𝑎𝑛 𝑀𝑎𝑡ℎ. 𝑆𝑜𝑐. Vol. 39, no 1. Pp33 − 41. 

Jibril, A.A. (1996). On Almost Similarity Operators. Arabian Journal for Science and         

                𝐸𝑛𝑔𝑖𝑛𝑒𝑒𝑟𝑖𝑛𝑔 (𝐴𝐽𝑆𝐶). Vol 21. Pp. 443 − 449.  

https://books.google.co.ke/book?id=ADfBjTHyDRMC&source=gbs_similarbooks
https://books.google.co.ke/book?id=ADfBjTHyDRMC&source=gbs_similarbooks
https://books.google.co.ke/book?id=ADfBjTHyDRMC&source=gbs_similarbooks


64 
 

 
 

Kubrusly C.S.(1997). An Introduction to Models and Decomposition in Operator Theory. 

               Birkhauser. 

Kipkemboi, T.S. (2016). On Almost Similarity and Other Related Equivalence 

                Relations on Operators in Hilbert Spaces. M. Sc. Thesis, University of Nairobi. 

Lee, M. S. (1995). A Note on Quasisimilar Quasihyponormal Operators. Journal of the 

              𝐾𝑜𝑟𝑒𝑎𝑛 𝑆𝑜𝑐𝑖𝑒𝑡𝑦 𝑜𝑓 𝑀𝑒𝑡ℎ𝑎𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 𝑆𝑒𝑟𝑖𝑒𝑠 𝐵: 𝑇ℎ𝑒 𝑃𝑢𝑟𝑒 𝑎𝑛𝑑 𝐴𝑝𝑝𝑙𝑖𝑒𝑑      

                        𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠.Vol 2(2), Pp 91-95.       

Lee, W.Y. (2008), Lecture Notes on Operator Theory, Seoul National University, Korea.  

Luketero, S.W. and Khalagai, J.M. (2020). On unitary equivalence of some classes of 

         operators  in Hilbert spaces.  𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 𝑎𝑛𝑑 𝐴𝑝𝑝𝑙𝑖𝑒𝑑  

              𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠,   Vol 5(2), Pp 35 − 37. 

Musundi, S.W., Sitati, N.I., Nzimbi, B.M. and Murwayi, A.L. (2013). On Almost 

                Similarity Operators Equivalence Relation. 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝑅𝑒𝑐𝑒𝑛𝑡 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 

 𝑎𝑛𝑑 𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑆𝑡𝑢𝑑𝑖𝑒𝑠 (𝐼𝐽𝑅𝑅𝑆). Vol15(3). Pp 293 − 299. 

 Masuo, I. (2000). Characterization of Posinormal Operators. Nihonkai Mathematical         

                      𝐽𝑜𝑢𝑟𝑛𝑎𝑙. Vol 11.  Pp 97 − 101.  

Nzimbi, B.M., Luketero, S.W., Sitati, I.N., Musundi, S.W. and Mwenda, E. (2016). 

         On Almost Similarity and Metric Equivalence of Operators. 𝑃𝑖𝑜𝑛𝑒𝑒𝑟 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠  

        𝑎𝑛𝑑 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠. http://www.researchgate.net/publication/325065641. 

 Nzimbi, B.M., Pokhariyal G.P. and Moindi S.K. (2013). A note on Metric Equivalence 

             of Some Operators. 𝐹𝑎𝑟 𝐸𝑎𝑠𝑡 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓  𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠 (𝐹𝐽𝑀𝑆). 

                    Vol 75(2). ISSN: 301318. 



65 
 

 
 

 Nzimbi, .B.M., Pokhariyal, G.P. and Khalaghai, J.M. (2008). A note on Similarity 

                     and     Equivalence of Operators. 𝐹𝑎𝑟 𝐸𝑎𝑠𝑡 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓  𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠 (𝐹𝐽𝑀𝑆). 

                     Vol. 28 No. 2.  Pp. 305 − 317. 

Rhaly Jr., H.C. (2013). A Comment on Coposinormal Operators. Journal of the  

          𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙     𝑆𝑜𝑐𝑖𝑒𝑡𝑦 𝑜𝑓 𝐽𝑎𝑝𝑎𝑛. Vol LXVIII.    Pp83 − 86. DOI: 10.4418/

 2013.68.1.7. 

Rhaly Jr., H.C. (1994). Posinormal Operators. Journal of the Mathematical          

                  𝑆𝑜𝑐𝑖𝑒𝑡𝑦 𝑜𝑓 𝐽𝑎𝑝𝑎𝑛. Vol 46, No. 4 Euclid. jmsj. 1227104. pdf 

Salhi, A. and Zerovali, E.H. (2019). Decomposition of Partial Isometries with Finite 

Ascent.                 𝑇𝑢𝑠𝑖 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑅𝑒𝑠𝑒𝑎𝑟𝑐ℎ 𝐺𝑟𝑜𝑢𝑝. https://doi.org/10.1007/s43036-

019.00004-1. 

Sitati, N.I. (2011). On Equivalence of Some Operators in Hilbert 

                 Space. M. Sc. Thesis, University of Nairobi.  

Sitati, N.I. (2019). Results on A-Unitary, A-Normal and A-Hyponormal Operators. 

              𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑠 𝑇𝑟𝑒𝑛𝑑𝑠 𝑎𝑛𝑑 𝑇𝑒𝑐ℎ𝑛𝑜𝑙𝑜𝑔𝑦 (𝐼𝐽𝑀𝑇𝑇). Vol 65(7).  

              ISSN: 2231 −  5373. htt://www. ijmttjournal. org  

Sitati, N.I., Musundi, S.W., Bernard, M.N. and Kikete, W.D. (2015). A Note on 

                Quasi Similarity of Operators in Hilbert Spaces. 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓  

                𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝐴𝑟𝑐ℎ𝑖𝑣𝑒(𝐼𝐽𝑀𝐴). Vol 6(7).  

Skoufranis Paul (2014). Normal limits of nilpotent operators in 𝐶∗-Algebras. Journal of 

                 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝑡ℎ𝑒𝑜𝑟𝑦. No 1,135 − 158. 

Stampfli J.G.(1981). Quasisimilarity of operators. Proceedings of the Royal Irish 

                    𝐴𝑐𝑎𝑑𝑒𝑚𝑦. 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 𝐴: 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑎𝑛𝑑 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙 𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠, Vol. 81A,  

https://doi.org/10.1007/s43036-019.00004-1
https://doi.org/10.1007/s43036-019.00004-1


66 
 

 
 

                    No. 1 (1981) Pp 109 − 119. 

Sunder, V.S. (2014). Operators on Hilbert Spaces. Institute of Mathematical Sciences, 

                𝑀𝑎𝑑𝑟𝑎𝑠 6001𝐵, 𝐼𝑁𝐷𝐼𝐴. Pp. 1 − 25. 

Veluchamy, T. and Thulasimani, T. (2010). Factorization of Posinormal Operators. 

                   𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐽𝑜𝑢𝑟𝑛𝑎𝑙 𝑜𝑓 𝐶𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑦 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑐𝑖𝑒𝑛𝑐𝑒𝑠.  

               Vol 5. No 26, 1257 − 1261.   

Williams L.R. (1980). Equality of essential spectra of certain quasisimilar seminormal 

               operators. 𝑃𝑟𝑜𝑐𝑒𝑒𝑑𝑖𝑛𝑔𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛 𝑀𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑐𝑖𝑒𝑡𝑦. No78,    

203 − 209 

 

 

 

 

 

 

 

 

 

 

 

  



67 
 

 
 

Appendix I 

SIMILARITY REPORT 

 


