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ABSTRACT 

Many schools of thought tend to suggest that the central assumption in classical fisheries 
models may not necessarily hold and thus there is need to explore new approaches such as 
Bayesian Belief Networks (BBN), Artificial Neural Networks (ANN), Nominal and 
Ordinal Logistic Regression. This study used non classical methods such as logistic 
regression, Bayesian Belief Network (BBN), Artificial Neural Network (ANN) and 
Weibull/Lognormal distribution to study food habits, production and recruitment of R. 
argentea in Lake Victoria for the first time. Significant ontogenic changes in stomach 
content was determined for Thermocyclops oblingatus, Brachionus falcatus and Moina 
macrourus (p<0.0005) as compared to the baseline (Epiphanes spp.) for the 30-50, 50 and 
30-50 mm length classes respectively. The odds ratio was 10.25-11.42 times for T. 
oblingatus and Moina macrurus as compared to Epiphanes. The BBN show that the Root 
Mean Square (RMS) change for Brachionus caudatus (0.00221), B. falcatus (0.00217), 
Epiphanes (0.00207), Keratella serrulata (0.00268), T. emini (0.00233), Bosmina 
longirostris (0.00217) and Daphnia lumholtzi (0.00258) and Trichocerca (0.00207) had 
the highest sensitivity of food items in the stomach as compared to the environment while 
B. calyciflorus, B. angularis and M. macrurus had the lowest sensitivity. Maximum 
Spawning Biomass (SB) and egg production was at a size between 40 and 60 mm TL. 
Egg production was best explained by a polynomial relationship of the fourth order with 
r2 of 0.959. Egg production, based on SB was significant for both Gamma and Weibull 
distribution (p<0.00005) according to the Shapiro-Wilks test. The location parameter was 
relatively consistent for both the Gamma (7,139) and Weibull (7,057) distributions, 
thereby providing similar recruitment threshold. Weibull distribution predicted a higher 
recruitment magnitude (scale parameter of 1,080,678) as compared to Gamma (354,600). 
The production modeling of R. argentea in Winam Gulf of Lake Victoria obtained the 
best ANN architecture of 10-9-1 based on environmental data and 12-6-1 based on fish 
catch statistics with 25 hidden layers and 30 hidden layers respectively, when the 
activation was based on the hyperbolic tangent function. Input importance analysis for 
environmental variables show that rainfall was the most significant variable (37%) 
followed by fisheries development classification (33%) and the lake level (17%) for 
environmental data. For fish catch statistics, the importance of fisheries development 
classification was 71.1%, Lates was 15.6%, Haplochromis was 6.6% and Bagrus was 
4.2%. The actual catches versus output from the network had an average Absolute Error 
(AE) of 2,072 and 3,843 and an average Relative Absolute Error (RAE) of 14.2% and 
20.7% for catch data and environmental data respectively. The ANN approach could be 
used to predict the catches of R. argentea in Lake Victoria during the different 
developmental stages of the fishery as well as projection of future production. Model data 
for both the environmental (r2 =0.852) and fish catches ((r2 =0.910) fitted well to the raw 
data. The non-classical methods offer robust alternatives for analysis of fisheries ecology 
data in light of data availability, nature of multispecies fishery and inadequacies of stock 
assessment models in tropical freshwater ecosystems. The study concludes that ordinal 
logistic regression best describes ontogenic changes in feeding while the BBN generated a 
stable feeding model for multiple food items. S-R relationship was best described by both 
Gamma and Weibull distributions for a given size at maturity, sex ratio, length-weight 
relationship and fecundity. The ANN consistently and adequately produced outputs that 
were consistent with target values from both environmental and catch data and could be 
used for predicting future values under varying fishing or environmental regime.  
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CHAPTER ONE 

 

1.0 INTRODUCTION 

 

This chapter introduces the fishery of Lake Victoria in the light of introduced Nile perch 

(Lates niloticus) in Lake Victoria, its phenomenal growth in the fishery, dominance and 

decline for a period spanning about 40 years. The changes in species composition and 

various attempts to carry out stock assessment using various classical methods have 

yielded varying results. The chapter specifically gives an overview of stock assessment 

in the lake using classical methods, the challenges in using these methods and provides 

an insight into possible application of some non-classical methods that can be used in 

the analysis of ecology and fishery of Rastrineobola argentea in Lake Victoria. The 

advantages of these non-classical methods over the traditional and classical methods are 

provided as a basis for this study. 

 

1.1 The Traditional Fisheries of Lake Victoria 

 

Until the mid 1990s, the commercial fishery of Lake Victoria was dominated by high 

catches of the introduced Nile perch (Lates niloticus Linnaeus 1758) (CIFA, 1988; 

Getabu, 1988) which contributed about 95% of the total fish landing by weight. The 

trends of Rastrineobola argentea (Pellegrin 1904) fishery has seen a progressive increase 

as reflected in the catches from  4.5% in 1960s (CIFA, 1988) to 30% in 1980s (Ogari, 

1985: Acere, 1988; Bwathondi, 1988) to about 40% in the 1990s (Asila et al., 1990) and 

over 50% in the 2000s (GoK, 2009).  According to GoK (2009), R. argentea is currently 
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dominating in catches by biomass (54%) as compared to Nile perch (42%) and Nile 

tilapia (Oreochromis niloticus Linn 1758).  

 

The earliest indication of  in drastic decline in catch rates in Lake Victoria was attributed 

to overfishing hence led to the introduction of minimum gillnet mesh size of 5” in 1931 

(Graham, 1929). Later on, the decline in fish stocks of Lake Victoria was attributed to 

predation by Nile perch and overfishing by destructive fishing methods (Whitehead, 

1958; 1959; van Someren, 1959); papyrus encroachment and habitat degradation (Balirwa 

and Bugenyi, 1980; Ochumba, 1984) and pollution (Ochumba, 1984; Ochumba and 

Kibaara, 1989). More recently, it has been suggested that the decline in Lake Victoria 

fishery is a result of inappropriate mechanism for controlling entry into the fishery of the 

primary elements of fishing effort, principally boats, gears and fishers; and the secondary 

factors like the fish processing factories, which influence fishing effort through market 

forces (Muhoozi, 2002; Tumwebaze et al., 2007) 

 

1.2 Changes in Lake Victoria Fisheries 

 

The development in the Lake Victoria commercial fishery is reflected in the artisanal 

catch statistics (Manyala, 2006).  Since comprehensive catch data collection started in 

Lake Victoria in 1968, the availabe catch data can be divided into five main periods of 

perturbation associated with ecological changes in the ecosystem according to Manyala 

(2006): 

i) Pristine: Before Nile perch explosion when the catch composition consisted of less 

than 1% Lates niloticus (1968-1970 benchmark) 
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ii) Growth: When Nile perch became increasingly significant, and catches consisted of 

up to 35%  Lates niloticus (1971 – 1980 benchmark) 

iii) Dominance: After the Nile perch explosion when the catch composition consisted of 

up to 54% Lates niloticus (1981 – 1990 benchmark) 

iv) Decline: The decline phase of Nile perch when the catch composition consists of 

50% Lates niloticus (1990 – 2000 benchmark) 

v) Collapse: Collapse period (2001 – 2007), recovery phase where Nile perch has 

reduced to less than 40% and the Native R. argentea  has increased to more than 

50% of the total annual landings 

 

Whereas 1968-1970 forms the baseline period before Nile perch explosion, 1981-1990 

forms the explosion phase of Nile perch and 1990-2000 is the start of decline in Nile 

perch (Manyala, 2006).  

 

1.3 Classical Methods of Stock Assessment in Lake Victoria and Challenges 

 

Stock Assessment in Lake Victoria has been carried out in the Winam Gulf of Lake 

Victoria from time to time using bottom trawls (Kudhongania and Cordone, 1974; Marten 

et al., 1976; Benda, 1981; Muller and Benda, 1981), catch assessment survey on artisanal 

fishery (Rabuor, 1988), length-frequency analysis (Getabu, 1988; Asila and Ogari, 1988; 

Manyala et al., 1995a) and fisheries hydroacoustics (Getabu et al., 2003). The main 

objectives of these assessments were to estimate the biomass of fisheries resource in the 

environment. However, all these assessments never answered the question of fisheries 

outputs (harvesting), and inputs (effort) and targets which form the basis and core of 
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fisheries management measures, inputs to decision support system and means of 

formulating alternative harvesting strategies. 

 

1.4 Non-Classical Methods and their Advantages 

 

Bayesian inference is an important statistical tool that is increasingly being used by 

ecologists (Ellison, 2004). In a Bayesian analysis, information available before a study is 

conducted is summarized in a quantitative model or hypothesis: the prior probability 

distribution. Bayesian inference uses the prior probability distribution and the likelihood 

of the data to generate a posterior probability distribution. Posterior probability 

distributions are knowledge based alternative to p-values and provide a direct measure of 

the degree of belief that can be placed on models, hypotheses, or parameter estimates 

(Ellison, 2004). 

 

Based on the EDA approach, a number of computational routines can be used to plot 

frequency data and determine the underlying type of distribution (Taylor, 2007) other 

than direct fitting of S-R data to a pre-determined model. 

 

To overcome difficulties of non linearity in ecological data, Artificial Neural Network 

(ANN), which are known to be efficient in dealing with heterogeneous data sets constitute 

a relevant alternative tool to traditional fisheries assessment and statistical methods (Lek 

et al., 2000). ANN is an interconnected group of artificial neurons that uses a 

mathematical model or computational model for information processing based on a 

connectionist approach to computation (Reuter and Möller, 2010; Li et al., 2011). 
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Raymond et al. (1999) showed that Artificial Neural Network (ANN) could be used to 

predict fish yields in 59 African lakes using a three-layered feed-forward a ANN. 

 

The use of non-classical methods in ecology and fisheries data analysis therefore offers 

a number of advantages over the classical methods: 

i) Bayes models have the advantage of using full posterior probability distributions 

(van Gils et al. 2003) to analyze feeding models. According to Maynard-Reid and 

Chajewska (2001), Salamó and López-Sánchez (2011) and Yang et al. (2011), 

BBN accurately represents the interaction between food items and can be used to 

determine stability, assess extinction risk and resilience to perturbation in an 

ecosystem for any fish species. According to Ainsworth et al. (2010), attaching a 

confidence limit to diet estimates offer a heuristic advantage when evaluating 

seasonal or onto-genetic shifts in diet, as the degree of overlap between sizes can 

be used to objectively determine the differences. Bayesian information-theoretic 

methods provide robust measures of the probability of alternative models, and 

multiple models can be averaged into a single model that reflects uncertainty in 

model construction and selection (Dickson and Ellison, 1996; Wade, 2001). 

ii) No assumptions are required for EDA and unlike classical analysis, EDA does 

not impose any model (normality, linearity, etc.) and the analysis, estimation, 

and testing that follows are not focused on the parameters of that model. For 

EDA, the data collection is not followed by a model imposition; rather it is 

followed immediately by analysis with a goal of inferring what model would be 

appropriate (Minitab, 1997).  
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iii) A typical ANN can exhibit complex global behaviour, determined by the 

connections between the processing elements and element parameters (Reuter 

and Möller, 2010; Li et al., 2011). While a neural network does not necessarily 

have to be adaptive they are designed to alter the strength (weights) of the 

connections in the network to produce a desired signal flow (Ruck et al., 1990; 

Bishop, 1992; Mohammadzaheri et al., 2012). They can be used to model 

complex relationships between inputs and outputs or to find patterns in data 

(Bishop, 1992; Ruck et al., 1990). 

 

1.3 Justification 

 

There are a number of new approaches to dealing with various types of fish ecology, 

biology and fisheries data that seem to defy and negate the classical approaches. One of 

the central assumptions in classical fisheries data analysis is the steady state or 

equilibrium condition (Sparre et al., 1989); a condition that is both difficult to determine 

and is often violated in many classical models. Many schools of thought tend to suggest 

that the central assumption in classical fisheries models may not necessarily hold and 

there is need to explore new approaches such as Bayesian Belief Networks (BBN) 

(Ellison, 2004; Wade, 2001), Artificial Neural Networks (ANN) (Lek et al., 2000, Brosse 

et al., 2001),  Nominal and Ordinal Logistic Regression (Manel et al., 1999; He et al., 

2003), time series analysis like Auto Regressive Moving Average (ARIMA) (Manyala, 

2000) and many other multivariate approaches (Grossman et al., 1998; Guégan et al., 

1998; Manel et al., 1999). Since most of the information is R. argentea is available and 

the approaches to be used in collating, correlating and synthesis are model based, this 
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study proposed and used an input-response or input-feedback mechanism in which any 

change in generated fisheries random variables can be simulated as many times as 

possible with an assumption that most of the data follows a stochastic process. 

 

1.4  Problem Statement 

 

Most of the stock assessment studies in Lake Victoria have been based on the use of 

classical models to predict possible biological and economic reference points. However, 

fisheries management, decision support system and management alternatives require 

analysis of input and outputs of the fishery in terms of effort corresponding yield. These 

classical models therefore requires reliable data on catch and the effort but 

unfortunately for Lake Victoria, there is a consistent collection of catch data but long 

term effort is difficult to get. Secondly, the classical models work best with single- 

species single-gear fisheries unlike the multi-gear multi-species nature of the Lake 

Victoria fisheries. The application of classical models makes very strong assumptions 

about the state of dynamic equilibrium in the fishery; a situation that is generally 

difficult to attain in the multi-gear multi-species fishery. This situation has resulted in 

resilience of the endemic cyprinid R.argentea in Lake Victoria that defies these classical 

models. In addition to the environmental changes observed in Lake Victoria in the last 

twenty years, it has not been possible for fisheries biologists working on stock 

asseement in the lake to provide unequivocal advice on stock status, biological 

reference points and optimal harvest strategies. 
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This study sets out to provide an alternative to analysis of ecology and fisheries data 

using non-classical methods which are known to have several advantages over their 

classical counterparts on the basis of making no assumptions, use of probability 

abbroaches and exploratory data analysis procedures. 

 

1.5 Objectives of the Study 

 

1.5.1 General Objective 

 

The general objective of this study was to synthesize the available scientific information 

on the ecology and fishery of R. argentea based specifically on the available data in 

Kenya and generally in the region using non-classical modeling approaches. 

 

Available datasets for the analyses included: 

i) Count of food items in stomach and environment (Manyala, 1994)  

ii) Data sources on sex ratio, fecundity, L-W relationship (Okedi, 1971; 1973; 

Wandera, 1992; Manyala et al., 1992; Wanink, 1989; Manyala et al., 1995a; 

1995b; LVFO, 2005). 

iii)  Catch Assessment Survey (CAS) data (GoK, 2008) with catch data from 1968 to 

2007, environmental variables such as average annual temperature, rainfall, river 

discharge and lake level (Mwirigi et al., 2005) for 1950 to 2005 were obtained but 

only matching time series data from 1968 to 2005 (with projections for 2006 and 

2007) 
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1.5.2 Specific Objectives 

 

The specific objectives of this study were based on the following: 

 

1.5.2.1 Food and feeding habits 

 

i) Determine the relative change in each food items with size, using ordinal logistic 

regression. 

ii) Develop a feeding model based on probabilities of food items in both the stomach 

and environment using Bayesian Belief Network. 

 

1.5.2.2 Sexual stage of maturity, size at maturity and fecundity 

 

i) Estimate recruitment threshold, magnitude and elasticity using information on 

sexual stage of maturity, sex ratio and fecundity to estimate recruitment threshold, 

magnitude and elasticity. 

ii) Determine the best stock-recruitment relationship based on a family of distributions 

such as Log-normal, Gamma and Weibull. 

 

1.5.2.3 Catch Analysis and Production 

 

i) Develop artificial neural network to needed predict production of R. argentea in 

Lake Victoria, based on specific environmental and catch data. 
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CHAPTER TWO 

 

2.0 LITERATURE REVIEW 

 

Chapter 2 of this study reviews literature on Lake Victoria, its limnology, the general 

biology of R. argentea, classical and non-classical methods in fisheries, covering the 

analysis of food and food habits, recruitment and production modeling. 

 

2.1 Geographical Location and Size of Study Area 

 

The data used in this study were gathered from various studies and reports on Lake 

Victoria and its fisheries. The major portion of Kenyan waters of Lake Victoria is a 

narrow gulf, known to various authors by several names such as the Victoria Nyanza 

(Graham, 1929), Kavirondo Gulf (Copley, 1953; Muller and Benda, 1981), Nyanza Gulf 

(Ogari and Dadzie, 1988) and the Winam Gulf (Okach and Dadzie, 1988). The Winam 

Gulf has an area of approximately 1920 km2 with a length of about 60 km and width 

varying between 6 and 30 km. The Winam Gulf lies between 34° 13' and 34° 52' East of 

latitude 0°, 0° 4' and 0° 32' South of the equator. The gulf has a mean depth of 6 m and a 

maximum depth of 43 m while its surface is at an elevation of 1136 m above sea level.  Its 

irregular shoreline is about 300 km, with several large bays. The major affluent rivers 

include the Kibos and Nyando to the East and Sondu, Awach, Mogus and Lambwe to the 

South (Okach and Dadzie, 1988). 
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Water exchange with the rest of the lake takes place through the Mbita channel while the 

major outflow from the lake is the river Nile. Bottom deposits found within Winam Gulf 

include hard substrates of sand, gravel and bedrock in exposed areas and mud, silt and 

clay deposits in areas adjacent to the river mouths. Large quantities of both living and 

dead gastropods and bivalves are common in sheltered bays (Ogari and Dadzie, 1988). 

  

2.2 Limnology of Lake Victoria 

 

Limnological research in Lake Victoria was mainly done in the northern part near Jinja 

(Fish, 1957; Talling, 1957; 1966; 1969), and in the Mwanza Gulf (Akiyama et al., 1977); 

the brief visits of Worthington (1930); Melack (1976; 1979) and Kalff (1983) in the 

Nyanza Gulf and observation in Kenyan open Lake Victoria by Ochumba and Kibaara 

(1989). Apart from the works of Fish (1957); Newell (1960); Kitaka (1971) and Kite 

(1981), no detailed hydrographic description of the lake over a long period of time 

covering dry and rainy seasons is available. Although the above works  provide a baseline 

for the limnological characterization of the lake, they are short of indicating hydrological 

factors affecting biological productivity on a long term basis. 

 

The first limnological studies (Talling, 1957, 1966, 1969) were focused on the 

seasonality of phytoplankton photosynthesis and abundance, and their relationship to 

thermal and oxygen regimes.  These classic studies provide the historic benchmark 

against which many ecological changes in Lake Victoria has been gauged. In the 1980s 

and 1990s the Kenya Marine and Fisheries Research Institute carried out extensive 

research and laboratory tests in the Winam Gulf of Lake Victoria (Ochumba and 
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Kibaara, 1989; Calamari et al., 1995). Ochumba and Kibaara (1989) observed that the 

blue-green algal blooms in the open waters of Lake Victoria were caused by a 

combination of high temperature, release of nutrients from river inflows, upwelling and 

from sediment re-suspension into the euphotic zone.  The results of this investigation 

also showed that the blooms declined as a result of physical flushing, temperature 

reduction associated with rainy season and nutrient exhaustions. 

 

Hecky (1993) examined changes in the lakes environmental parameters – temperature, 

oxygen, chlorophyll, silicon, nitrogen and phytoplankton biomass. His findings 

indicated that environmental degradation resulted from high human population in the 

catchment, biomass burning, shallow mixing depths as a result of changing regional 

climate, and low flushing times. This study concluded that enormous effort, social 

transformation and investment from the international community would be required to 

stem the damage.  Preliminary assessment of pollution levels in Winam Gulf conducted 

by Calamari et al. (1995), quantified urban industrial and agricultural loads, and related 

these to geographic and climatic condition. Extensive measurements of water currents, 

temperature dissolved oxygen and winds on the Kenyan waters of the lake were done by 

Worthington (1930), Fish (1957) and Talling (1966) have shown low hypolimnion 

temperatures below 24ºC. Hecky et al. (1994) concluded that low oxygen conditions are 

now more extensive and persistent than previous investigators had found. 

 

Zooplankton dynamics in Lake Victoria were outlined by Bransrator et al. (1996), who 

suggested that the composition of cladocerans, calanoid copepods and cyclopoid 

capepods in the modern community were largely unchanged from historical conditions 
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although the proportions may have changed. The results of this study also showed that 

changes in the fish community of Lake Victoria may have led to the establishment of 

Daphnia lumnoltzi var. monacha in the zooplankton community. 

 

The phytoplankton community structure in the Kenya waters of Lake Victoria have 

been described and related to environmental conditions (Lung’ahyia et al., 2000).  

These authors identified 103 species of phytoplankton with blue-green algae 

(Cyanophyceae) being the most diverse, followed by diatoms (Bacillariophyceae), green 

algae (Chlorophyceae) and dinoflagellates (Dinophyceae).  Seasonal variations in the 

gulf and open lakes were observed. Chlorophyll concentrations confirmed increasing 

phytoplankton biomass in Lake Victoria since the 1960s. 

 

The ecosystem changes in Lake Victoria as reflected in sedimentary lithostratigraphic 

units and anthropogenic organic compounds were studied by Hecky (1984). The study 

showed that organic rich sediments have been deposited for the last 200 years but that 

the nature of the organic matter and diatom microfossils had changed over the past 40 

years likely due to eutrophication affecting the lake. The detailed palaeolimnological 

records (Hecky, 1984) showed that increases in phytoplankton production developed 

from the 1930s onwards, which parallels human-population growth and agricultural 

activity in the Lake Victoria drainage basin. Hecky et al. (1994) noted a dominance of 

bloom-forming cyanobacteria since the late 1980s which coincided with a relative 

decline in diatom growth, which could be attributed to the depletion of dissolved silica 

resulting from 50 years of enhanced diatom growth and burial (Hecky et al., 1994).  

Further, eutrophication-induced loss of deep water oxygen started in the early 1960, and 
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may have contributed to the 1980s collapse of indigenous fish stocks by eliminating 

suitable habitat for certain deep water cichlids (Gikuma-Njuru and Hecky, 2005; Stager 

et al., 2009). 

 

According to Gor et al. (2005), Abira et al. (2005) and Tamatamah et al. (2005), the 

main lake (including the littoral stations) had higher PO4-P (56.5 µg l-1) as compared to 

the gulf (19.4 µg l-1) while the spatial analysis of NO3-N concentration revealed three 

zones with similar concentration (88.9 to 90.8 µg l-1). SiO2-Si average concentration 

decreased along the gulf from 4.51mg l-1 to 1.28 mg l-1 while the values in the main lake 

ranged between 0.6 mg l-1 to 0.84 mg l-1. Total nitrogen and total phosphorus showed 

opposite spatial variation along the gulf into the main lake while Dissolved Organic 

Phosphorus (DOP) ranged between 0.022 and 0.046 mg l-1 and was higher in the main 

lake than in the gulf but Dissolved Organic Nitrogen (DON) was higher in the gulf than 

in the main lake and had values ranging between 0.34 and 0.47 mg l-1 (Gikuma-Njuru 

and Hecky, 2005). 

 

Limnological studies in the 1980s (Hecky, 1984) and early 1990s (Hecky, 1993) 

showed that conductivity was higher in the gulf than in the main lake, showing a 

decreasing trend from 161.8 µS cm-1 to 98.2 µS cm-1 but remained at an average value 

of 101.1 µS cm-1 in the main lake. The sudy by Hecky et al. (1994) showed that water 

transparency (Secchi depth) was higher in the open water (2 - 3.5m) than in the inshore 

areas (0.4 – 1.6 m) and varied exponentially with Total Suspended Solids (TSS) and 

chlorophyll-a. In the shallow littoral stations (<20 m), dissolved oxygen was higher 

throughout the water column (>5mg l-1) than in the deep pelagic stations, where it 
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reduced with depth and was anoxic below 30m during stratification period (January-

March and August-November). Many limnological studies in the 21st Century have 

concentrated on nutrient loading from urban and municipal environments (Abira et al., 

2005), non-point loading (Gor et al., 2005), monitoring of the pelagic, littoral, river 

mouths and near shore urban environments (Mwirigi et al., 2005) for nutrients, physico-

chemical parameters, phytoplankton, zooplankton, micro-invertebrates, primary 

productivity, hydrodynamics and thermals.  

 

Phytoplankton biomass (chlorophyll-a) showed a reducing trend along the gulf into the 

main lake with the highest average value of 21.1 µg l-1 and lowest value of 6.9 µg l-1 

Silsbe et al. (2006). Chlorophyll-a had a maximum value of 13.9 µg l-1 at about 3m 

depth in the gulf but decreased to 5.4 µg l-1 at 50m. The main lake had an average value 

of 18.18 µg l-1. The maximum biomass in the gulf and the in the main lake was 

observed in August-October (29.6 µg l-1 and 15.8µg l-1 respectively). According to 

Silsbe et al. (2006) and Hecky et al. (2010), chlorophyll-a showed a negative variation 

with PO4-P and Inorganic Nitrogen (IN) compounds, but varied randomly with SiO2-Si. 

The pH increased with chlorophyll-a in the upper depth (0-5m) and Dissolved Oxygen 

(DO) decreased with depth from 5m depth (7.4 to 3.2 mg l-1). Both the studies show that 

in both littoral and pelagic areas, Cyanobacteria was the most abundant, contributing 

between 45 and 65% of the total phytoplankton abundance and diatoms contributed 

between 20 and 40% of total abundance. The main lake had higher relative diatom 

abundance than the gulf. Littoral stations recorded the highest density of phytoplankton 

(320.6±86.6 individuals l-1). 
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2.3 General Biology and Ecology of R. argentea 

 

The food and feeding habits of R. argentea in Lake Victoria has been studied by Wanink 

(1989) and Wandera (1992). The species is reported to feed on zooplankton (mainly 

copepoda) during the day but peak feeding periods have been reported during the night. 

Differential feeding patterns between the juveniles and adults however still remains 

poorly investigated, which is partially attributed to vertical migration in response to diel 

vertical zooplankton migration. Similar observations have been made on the 

haplochromis species (Kudoja et al., 1992). Very few published studies are available on 

the food and feeding habits of R. argentea from 1994 onwards (Manyala, 1994). 

 

Most of R. argentea caught in the lake range between 26 and 40 mm SL. The length at 

50 % maturity is at 38 mm SL for females and 39 mm SL for males (Wanink, 1989; 

Wandera, 1992; Manyala et al., 1992; LVFO, 2005). Okedi (1971) analyzed 604 

specimens from Winam Gulf, Mwanza Gulf, Bukoba and Musoma and found a female 

to male sex ratio of 1.6:1. Okedi (1971) also found that out of 2952 specimens 

examined in Ugandan waters 1027 were males and 1925 were females, giving a sex 

ratio of 1.8:1, while Wandera (1992) found an overall sex ratio of two females to one 

male (2:1). 

 

The maximum length attained by R. argentea in various regions of the lake varies 

between 64 and 69 mm SL; Uganda waters with 69 mm SL (Wandera, 1990; 1992) and 

Kenya waters with 64 mm SL (Manyala et al., 1992; 1993;) respectively. There is also 

variation of size at maturity with sex, with most studies indicating that females mature 
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at bigger sizes than males. Studies also reveal that the size at 50% maturity amongst 

females decreases from inshore to offshore waters (Wanink, 1995; Wandera, 1999; 

LVFO, 2005). 

 

Rastrineobola argentea produces floating eggs in the lake (Graham, 1929). Earlier 

works have reported that egg production (fecundity) of R. argentea increased with fish 

size (Okedi, 1971). Okedi (1971) estimated mean fecundity at 2292 ova (range 582 - 

4771) while Wanink (1989) found that the fecundity of R. argentea was related to the 

total length (TL) according to the relationship: 

 

Fecundity (number of eggs) = 0.005875  TL2.95  Equation 1 

 

Manyala et al. (1992) found egg production to vary from 170 to 1350 eggs for 

specimens of 4l-60 mm SL with the relationship expressed as: 

 

Fecundity (number of eggs) = 3.3  10-7  TL5.376  Equation 2 

 

According to Wanink (1989) the Apparent Fecundity (AF) based on Standard Length 

(SL mm) other than Total Length (TL mm) was expressed as: 

 

AF = 0.0092SL2.97 Equation 3 

 

Rastrineobola  argentea nursery grounds are in the shallow sheltered areas of the lake. 

In the Kenya waters most of the larvae were found mostly in the sheltered bays such as 
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Kisumu, Homa and Asembo Bays and near river mouths (Manyala and Ojuok, 2007). 

Wanink (1989) reported that in Mwanza Gulf,  juveniles of about 10 mm SL are present 

at depths between 0-30 m. After spending their larval stage in the shallow areas, 

juvenile R. argentea are thought to migrate away from the shore with highest densities 

of adults occurring at a distance of 2 km from shore (Wanink et al., 2002). Observations 

made in Uganda waters of the lake show that R. argentea do not move far offshore and 

different populations occur over short distances (Wandera, 1990; 1992; LVFO, 2005). 

Tumebwaze (2003) and Tumebwaze et al. (2007) however showed lakewide 

distribution of R. argentea using hydroacoustic assessment method, thereby shedding 

light into the constraints imposed by limited sampling in earlier studies. 

 

Earlier studies by Okedi (1973) indicated that the species breeding season spreads from 

June to August on a lake-wide basis. Based on the condition factor (Kn) of R. argentea, 

Manyala et al.  (1995b) reported maxima of breeding in April/May and 

December/January in the Winam Gulf. However, Wandera (1992) observed that R. 

argentea breeds throughout the year with peaks in April/May and August/September in 

The Machison Bay.  

 

Several workers have reported on the population and growth parameters of R. argentea in 

Lake Victoria. Table 1 provides a summary of the available information on these aspects 

of the species biology which is highly variable between studies.  
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Table 1: Growth characteristics of rastrineobola argentea in Lake Victoria, 
where L (mm) is asymptotic length,  K yr-1 is growth curvature, M 
yr-1 is natural mortality coefficient, F yr-1 is fishing mortality 
coefficient, Ø’ is growth performance index and Z yr-1 is total 
mortality coefficient 

 
 

L∞  K M F Ø’  Z Region Author(s) 
67.8 0.58 0.88 1.98 2.86  Winam Gulf Manyala et al., 1995a 
64.5 0.92 2.37 1.22 3.59   Uganda waters Wandera, 1992 
63.4 0.94     3.23 Winam Gulf Manyala et al., 1992 
52.0 1.14      Mwanza Gulf Wanink, 1989 
59.0 0.74 1.12  1.89 3.47  Winam Gulf Manyala et al., 1995a 
62.0 0.74 1.12 1.39 2.97   Winam Gulf Manyala et al., 1995a 
58.0 0.68 1.07 1.80 3.38   Winam Gulf Manyala et al., 1995a 
62.0 0.66 1.04 1.45 3.03   Mbita Area Manyala et al., 1995a 
58.0 0.63 0.99 1.77 3.35   Open lake Manyala et al., 1995a 
61.0 1.42     General Study Wanink, 1989 
53.0 3.00     Station G 1988 Wanink, 1989 

 

2.4 Review of Classical Methods in Fisheries 

 

This section reviews the existing knowledge, methods approaches and application of 

classical methods in the study of food and feeding habits in fishes, Stock-Recruitment 

(S-R) relationships and surplus production models including; Virtual Population 

Analysis (VPA), Cohort Analysis and Yield Per Recruit Model. The chapter further 

traces the development of fisheries models along the age-structured and size-structured 

approaches. The summary of the chapter observes that fisheries research has utilized a 

series of tools in the past, focusing on biological research instead of addressing 

technological advances and environmental interactions in the fishery sector. 
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2.4.1 Food Types and Food Selection 

 

Food selection in fishes is often analyzed using the Ivlev's Index of Electivity (E) (Ivlev, 

1961) or Forage Ratio. The Vanderploeg and Scavia's Electivity Index (Vanderploeg and 

Scavia, 1979) has been successfully used to examine spatio-temporal variability in 

planktivore predation by Coregonus hoyi and Alosa pseudoharengus in Lakes Michigan 

and Ontario respectively. The Vanderploeg and Scavia's Electivity Index is a weight 

based version of the the Chesson (1978) alpha selectivity coefficient. The most important 

food items in fish can also be determined by using the Index of Relative Importance (IRI) 

of Pinkas et al. (1971) and Chabot and Maly (1986) or the Jacob's Electivity Index 

(Jacobs, 1974) which is a version of the Ivlev's Electivity Index. 

 

Several workers have noted some shortcomings of using classical methods for food 

analysis. For example, Strauss (1979) and Paloheimo (1979) have pointed out that Ivlev's 

Electivity Index and the Forage Ratio are significantly biased when the sizes of the prey 

samples from the gut of the predator and the habitat are unequal. The statistical reliability 

of each index was found to be a function of the absolute and relative sample sizes and the 

relative abundances of the prey species in the environment. Strauss (1979) has proposed a 

linear index of food selection which avoids most of the statistical and mathematical 

inadequacies of traditional electivity indices. Paloheimo (1979) also proposed an index of 

the preference that is independent of the prey abundance based on standardized forage 

ratios; standardized so that the forage ratios for the different prey species sum to one. 

According to Lecowicz (1982), quantification of feeding preferences is necessary for 

determining optimum foraging and for quantitative description of feeding ecology. 
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Despite the frequent use of all the food electivity indices, no comprehensive comparisons 

of their characteristics have been made.  

 

2.4.2 Stock-Recruitment Relationship 

 

Despite the earliest attempt to mathematically describe the stock-recruitment relationship 

(Thompson and Bell, 1934), it was Ricker (1954) who developed the classical stock-

recruitment model while Paulik (1973) developed the generalized stock-recruitment 

relationships. Thereafter, many stock-recruitment models have had strong linkages to 

Baranov (1918) and Beverton and Holt (1956) age structured type of stock models. 

Stock–recruitment theory was first applied to the North American salmon (Ricker, 1954; 

Larkin and Ricker, 1964), where salmon runs could be readily censused and adult catches 

compared with smolt production in the progeny generation. 

 

According to Ricker  (1954), recruitment occurs when the fish reach a size where they can 

be caught by conventional gear. There is a close relationship between gear selectivity and 

recruitment. In the early models, the selection length equals the length at which 50% of 

the fish are caught. Age at recruitment (tr) or length at recruitment (Lr), is normally equal 

to the lowest practical selection length. Ricker (1954) and Beverton and Holt (1957) state 

that the relation between parent stock size and recruitment is one of the most crucial 

factors in the regulation of a fishery but noted that it was still not possible to formulate a 

satisfactory model to predict recruitment. 
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2.4.3 Catch and Production Models 

 

According to Caddy (1999), the origins of three schools of thought in fish stock 

assessment and some of their linkages date back to the first two decades of 1900s. The 

first school of thought is the global models based on whole populations under fishing 

pressure, derived from models of human demography or the analytical cohort model 

(Hjort and Petersen, 1905; Baranov, 1918). This school of thought linked recruitment 

success to parental stock size through the integrated theory of fishing and culminated to 

the yield per recruit model of Thompson and Bell (1934). 

 

The second school of thought was based on the concept of whole population and was 

developed into the logistic model using the North Sea groundfish (Graham, 1935). The 

logistic model gave rise to the Schaefer (1954) surplus production model and the Gordon 

(1954) economic model. There are a number of further elaboration approaches of the 

Schaefer-Gordon models using variable geometry and error structure of production (Pella 

and Tomlinson, 1969), incorporation of mortality rates in production (Csirke and Caddy, 

1983), delay of the impact of fishing effort on stocks (Deriso, 1980; Schnute, 1985; 1987) 

and observation error or time series fitting of production functions (Hillborn and Walters, 

1992). Thus the second school of thought is associated with the surplus production 

models and relies on mortality and delay of the impact of fishing on the fish stocks. 

 

The third school of thought focused on the analytical models, using size and age structure. 

This school of thought is associated with the von Bertalanffy (1938) growth model, the 

Virtual Population Analysis (VPA) (Fry, 1949) and the general analytical theory of 
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population dynamics (Beverton and Holt, 1956). The catch-curve approach (Ricker, 1949) 

developed in parallel and at the same historical time period as the VPA. The VPA concept 

was further picked up and perfected by Gulland (1983), further developed into cohort 

analysis (Pope, 1972) and multispecies VPA (Pope and Knight, 1982).  

 

According to Caddy (1999), the surplus production theory found its first management 

context in fisheries such as that for Pacific tunas, where age reading is impossible but 

catch and effort data are readily available. The surplus production model provided the 

only target reference point mentioned in the Law of the Sea Convention, the Maximum 

Sustainable Yield (MSY), which until the 1970s was regarded in most world areas as 

the appropriate target for management. The broad generality provided by this simple 

biomass model allowed early application of economic theory (Gordon, 1954) and led to 

the Maximum Economic Yield (MEY) as a ‘target reference point’ to the left of MSY 

on the fishing effort axis. The MSY/MEY approach gave rise to the concept of 

management by ‘escapement’ (Ricker, 1954; Larkin and Ricker, 1964).  

 

The three schools of thought on age structured models, the surplus production models and 

the analytical models tend to be associated with corresponding management modes:  

i) Production modelling is used to generate Total Allowable Catch (TAC) but more 

logically points to fishing effort as the control variable and hence advocates for 

constant exploitation strategies  

ii) Yield Per Recruit (Y/R) analysis and VPA provide a theoretical basis for quota 

management;  
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iii) Stock–recruitment models lead directly to management by an optimal level of 

escapement. As such, stock–recruitment models form the basis for ‘minimum 

Spawning Biomass’ (SB) limits in many fisheries 

 

There are still a number of challenges in using classical fisheries stock assessment 

methods. According to Frøysa et al. (2002), the classical `book-keeping' methods 

assume that the reported catch numbers at age are exact. They also utilize assumptions 

about natural mortality and about relationships between abundance indices and stock 

size. On the other hand, age-structured assessment models sometimes termed statistical 

“Catch at Age Analysis” (CAGEAN) (Fournier and Archibald, 1982; Deriso et al., 

1985) fits a self-contained population model to the data. This is different from the 

commonly used VPA-based methods, where the stock abundance numbers and fishing 

mortalities are derived directly from catches-at-age. In particular, the reported catch 

numbers at age are not assumed to be exact. 

 

The conversion of early age-based methods (Beverton and Holt, 1956) into size-based 

methods greatly developed due to computation power of modern computers. The size-

based methods (Sims, 1985; Thiam, 1986; Sparre, 1987; Sparre et al., 1989) are 

therefore technology-driven. Many of the computer-based methods are still based on the 

‘book keeping’ mechanical aids such as log paper (Bhattacharya, 1967). Despite the 

increased application of stock assessment methodology and tools, more attention is still 

placed on biological research instead of the rapid technological changes that are 

revolutionizing the fishing sector. The situation therefore calls for a new approach based 

on variables that are dependent on both technological advances and environmental 
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information. Besides, the same technological advances would provide the required 

technological capabilities to deal with the complex fishery-environment interaction and 

the non-classical methods offer an alternative way of analyzing many types of fisheries 

data. 

 

Fitzpatrick (1995) estimated the relative value of the "technology coefficient" calculated 

for 13 different types of fishing vessels ranging from super trawlers (of 120 meters) to 

pirogues (of 10 meters) in 1965, 1980, and 1995, taking the value of the coefficient in 

1980 as a basis. On average, this coefficient increased from 0.54 and 0.26 in 1965 to 1.0 

in 1980 (the basis) and 2.0 to 0.9 in 1995. Improved knowledge of fleet–stock 

interactions at the appropriate ecosystem scale is necessary to build and parameterize 

the integrated models required for integrated ecosystem assessment  (Levin et al., 2009) 

and operating models in management strategy evaluation frameworks (Peterman, 2004) 

or to address more general questions such as the ecological impact of rising fuel costs 

(Sumaila et al., 2008). In a single-stock, single-fleet perspective, classical population 

dynamics models provide appropriate answers. But when it comes to multispecies, 

multi-fleet fisheries, fleets depend on several fish stocks (Daurès et al., 2009), and 

stocks are exploited by several competing fleets (Rijnsdorp et al., 2008). Fleet 

behaviour changes in response to various factors, including technological progress, 

management regulations, and resource availability (Baelde, 2001; Christensen and 

Raakjær, 2006). 
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2.5 New Approaches in Analysis of Fishery Data 

 

In recent times, there are quite a number of new approaches in fisheries biology and 

ecology and many such approaches tend to revolve around artificial intelligence, 

probability theory and non-conventional distributions applicable to bio-physical systems. 

 

2.5.1 Food Types and Selection 

 

Many of the non-classical methods still require distributional assumptions that should be 

evaluated before analysis. Resource selection functions (Manly et al., 1972) provide a 

unifying theoretical framework for selection study techniques, including many of the 

methods in use. For a given study design and data type, functions are defined that yield 

estimates of the probability, or a value proportional to the probability that a resource unit 

will be selected. There have been recent attempts to obtain estimates of true probability of 

selection based on use-availability data, but these methods require evaluation of complex 

likelihoods using Monte Carlo methods (Johnson et al., 2008; Lele, 2007; Horne et al., 

2008) or machine learning tools (Phillips et al., 2006). 

 

The non-classical approaches to food habits and food selection include logistic regression 

(Manly et al., 1972), polytomous logistic regression (North and Reynolds, 1996), 

matched-pair logistic regression and Mahalanobis distances (Clark et al., 1993; Knick 

and Rotenberry, 1998), Discriminant Analysis (Dunn and Braun, 1986), Principal 

Components Analysis,  animal telemetry locations by means of General Linear Model 

(GLM), Poisson or Negative Binomial distributions (Marzluff et al., 2004), discrete 
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choice models (McDonald et al., 2006), and a linear model regressing the height of the 

estimated utilization distribution on habitat characteristics (Marzluff et al., 2004). These 

methods allow for exploratory analyses and provide information to researchers about 

which characteristics or resources are selected.  

 

A comparison of top-down and bottom-up trophic food selection models has been 

attempted by using non-classical Bayesian Information Criterion (BIC) with weighs 

improvement (Claeskens and Hjort, 2008; Argeant et al., 2012). It was found that BIC 

provides more consistent model selection as model complexity increases as compared to 

the more common Akaike’s Information Criterion (AIC). BIC applies a higher penalty 

than AIC for adding more parameters in the model estimation (Claeskens and Hjort, 

2008; Burnham et al., 2011) and is more conservative than AIC in the presence of model 

uncertainty. Existing literature tends to promote the use of information-based decision 

methods for food selection studies using probability approaches such as model selection 

procedures (Johnson and Omland, 2004), Markov Chain Monte Carlo (MCMC) 

(Johnson et al., 2008), Bayesian Belief Network (BBN) (Kaedi and Ghasem-Aghaee, 

2011) with case-based reasoning or logistic regression (North and Reynolds, 1996)  

 

2.5.2 Stock-Recruitment Relationship 

 

The application of non-normal distributions such as lognormal and gamma for fisheries 

data analysis has also been used mainly in recruitment (R) and spawners (S) relationships 

(Myers and Pepin, 1990). Myers et al. (1995) further outlined the interpretation of S-R 

relationship for the the classical Stock-Recruitment (S-R) models such as the Power, 
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Ricker, Beverton and Holt and the Shepherd models (Bellows, 1981). All these studies 

proposed many other functional forms for the relationship between spawners and 

recruitment such as Lognormal, Gamma and Weibull, with 3 to 4 parameters. Since the 

alternatives usually have more parameters which are difficult to estimate, there is scarcity 

of their application in fisheries. However, with modern computational power of the 

modern digital computers and softaware (Caddy, 1999), it has become easier to apply and 

test many alternative fisheries models including S-R relationships (Myers et al., 1995). 

Specifically, a number of routines (Ahrens and Dieter, 1982; Choi, 1994; Limpert et al., 

2001; Swamee, 2002) and computer software (Taylor, 2007) are now available for 

analysis of probability and statistical sistributions. 

 

Among the many other functional forms of probability distribution, the following families 

of distributions have a potential of describing the spawners-recruitment function:  

1. Lognormal distribution: In probability theory and statistics, the logistic 

distribution is a continuous probability distribution (Holgate, 1989; Swamee, 2002; 

Park et al., 2009). Its cumulative distribution function is the logistic function, which 

appears in logistic regression and feed-forward neural networks.  

2. Weibull distribution: The Weibull distribution (named after Waloddi Weibull) 

(Weibull, 1951) is a continuous probability distribution. The Weibull distribution 

is often used in the field of life data analysis due to its flexibility; it can mimic the 

behavior of other statistical distributions such as the normal and the exponential.  

3. Gamma distribution: The variance-gamma distribution is a continuous probability 

distribution that is defined as the normal variance-mean mixture where the mixing 

density is the gamma distribution. The tails of the distribution decrease more slowly 
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than the normal distribution. It is therefore suitable to model phenomena where 

numerically large values are more probable than is the case for the normal 

distribution. The distribution was introduced in literature by Madan and Seneta 

(1990). The variance-gamma distributions form a sub-class of the generalized 

hyperbolic distributions. The advantage of Gamma distribution is that there is a 

simple expression for the moment generating function which implies that simple 

expressions for all moments are available.  

 

2.5.3 Catch and Production 

 

Raymond et al. (1999) showed that Artificial Neural Network (ANN) could be used to 

predict fish yields in 59 African lakes using a three-layered feed-forward a ANN. The 

empirical approach for the selection of the network consisted of a test for the number of 

different possible configurations and the selection of the one that provided the best 

compromise between bias and variance according to Geman et al. (1992) and Kohavi 

(1995). Results from the study were compared to multiple linear regression using a leave 

one out procedure (Efron and Gong, 1983; Jain et al., 1987) and showed more consistent 

prediction. The leave one out procedure is similar to the Jacknife Sampling (Sokal and 

Rohlf, 1995). 

 

The true power and advantage of neural networks lies in their ability to represent both 

linear and non-linear relationships and in their ability to learn these relationships directly 

from the data being modelled (Cybenko, 1989). Traditional linear models are also 
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inadequate when it comes to modeling data that contains non-linear characteristics as 

compared to neural network according to (Hornik et al., 1989). 

 

The most common neural network model is the Multi-Layer Perceptron (MLP) (Callan, 

1999; Luger, 2005). This type of neural network is known as a supervised network 

because it requires a desired output in order to learn. The goal of this type of network is to 

create a model that correctly maps the input to the output using historical data so that the 

model can then be used to produce the output when the desired output is unknown (Luger, 

2005).  
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CHAPTER THREE 

 

This chapter describes describes the physical characteristics of Lake Victoria and 

summarizes the economic importance of its fisheries. The non-classical methods used 

for analysis of food and feeding habits such as multinomial logistic regression and BBN 

are described. The chapter also describes how stock-recruitment relationship was 

analyzed through simulation and concludes by describing the use and procedures in 

ANN for modeling production based on environmental and catch data. 

 

3.1 Physical Characteristics of the Lake Victoria and Fish Production 

 

Lake Victoria is the largest of the African Great Lakes, with a surface area of 68,800 

km2 and contains about 2,750 km3 of water. The lake receives its water primarily from 

direct precipitation and thousands of small streams. The largest stream flowing into this 

lake is the Kagera River, the mouth of which lies on the lake's western shore (vanden 

Bossche and Bernacsek, 1990). Two rivers leave the lake, the White Nile (known as the 

"Victoria Nile" as it leaves the lake), flows out at Jinja, Uganda on the lake's north 

shore, and the Katonga River flows out at Lukaya on the western shore connecting the 

lake to Lake George. Lake Victoria occupies a shallow depression in Africa and has a 

maximum depth of 84 m and an average depth of 40 m. Its catchment area covers 

184,000 km2. The lake has a shoreline of 4,828 km, with islands constituting 3.7% of 

this length, and is divided among three countries: Kenya (6% or 4,100 

km2 ), Uganda (45% or 31,000 km2 ) and Tanzania (49% or 33,700 km2 ) according to 

Prado et al. (1991). This study is focused on the Kenya portion of Lake Victoria. 
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Lake Victoria is the most productive freshwater fishery in Africa.  Fishery yield from 

the lake is of the order of magnitude of 800,000 – 1,000,000 mt valued at US $ 350 – 

400 million at the beach, with export earnings estimated at US $ 250 million. The 

fishery is supported by three main important fish stocks, the Nile perch (L. niloticus), R. 

argentea and Nile Tilapia (Oreochromis niloticus). Over 75% of the Nile perch is 

directly to the fish processing factories for export while R. argentea and tilapia are 

serving the regional and local markets (GoK, 2010). 

 

3.2 Food and Feeding Habits 

 

3.2.1 Nominal Logistic Regression of Food Type by Fish Size 

 

In the present study, ontogenic changes in food habits of R. argentea in Lake Victoria 

were analyzed based on numerical counts of zooplankton species in the stomach of 

different sizes of R. argentea (Table 2).  
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Table 2: Food selection data in numbers used in logistic regression (Source: 
Manyala, 1994) 

 

Food item 
Fish Size range (mm) 

10 -20 21 - 30 31 - 40 41 - 50 >50 

Thermocyclops emini 0 39 308 28 0 
T. oblingatus 63 259 636 1860 2359 
D. lumhortzii 11 8 0 3 0 
Ceriodaphnia riguadi 0 0 0 20 0 
Moina macrourus 0 8 380 1641 2626 
Bosmina longirostris 3 8 162 74 34 
Brachionus caudatus 28 105 28 31 2 
B. falcatus 1 20 2 0 0 
B. calyciflorus 0 2 12 0 0 
B. angularis 0 30 4 12 0 
Keratella serrulata 0 8 7 12 0 
Epiphanes sp. 0 145 4 7 4 
 

The regression was performed using multinomial logistic regression equation (Minitab, 

1997; Brown 1982; Agresti, 1984; 1990) given as: 

1,...,1,)(  kixg jij   Equation 4 

where: 

k  = 
the number of distinct values of the response or the number of possible 
events 

j   = 
the cumulative probability up to and including event i for the jth 
factor/covariate pattern 

)( jg   = the link function (described below) 

i   = the constant associated with the ith distinct response value 

jx   = 
a vector of predictor variables associated with the jth factor/covariate 
pattern 

   = a vector of coefficients associated with the predictors 

 
 
The ordinal logistic regression was used with the logit link function given as: 

))1/(()( jjej Logg     Equation 5 
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Application of logistic regression on numerical count data of various prey shown in 

Table 2 (Manyala, 1994) resulted in response information for each prey (Table 3). 

Response information displays the number of observations that fall into each of the 

response categories (zooplankton food items). The response value that has been 

designated as the reference event is the first entry under value for prey items, defined as 

Epiphanes sp. 

 

Table 3: Response information for the ordinal logistic regression of food 
items versus length size (Source of raw data: Manyala, 1994) 

 

Response variable value Count  
Epiphanes sp. 160 (Reference Event) 
Keratella serrulata 27  
Brachionus angularis 46  
Brachionus calyciflorus 14  
Brachionus falcatus 23  
Brachionus caudatus 194  
Bosmina longirostris 281  
Moina macrourus 4,655  
Ceriodaphnia riguadi 20  
Daphnia lumholtzi 22  
Thermocyclops oblingatus 5,177  
Thermocyclops emini 375  
Total   10,994  
 

Among the prey items, the copepod Thermocyclops oblingatus (5,177) and the 

cladopceran Moina macrourus (4,655) were the most abundant in the stomach. The 

copepod Themocyclops emini (375) and the cladocera Bosmina longirostris (281) were 

found in moderate numbers. 

 

The only rotifers found in moderate quantities were Brachionus caudatus (194) and 

Epiphanes sp. (160). The other two cladocera, Ceriodaphnia riguadi and Daphnia 
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lumholtzi were found in relatively low numbers in the stomach. Factor Information in 

the model was considered to be the length-classes 10 mm, 20 mm 30 mm, 40 mm and 

50 mm resulting into 5 levels for the factor (Table 4). The factor level that has been 

designated as the reference even is the first entry under values which is 10 mm. Here, 

the default coding scheme defines the reference level as 10 mm using alpha-numeric 

order. The length-classes was based on life cycle strategies to examines the food of 

immature specimen (<35 mm) and mature specimen (≥35 mm) TL. 

 

Table 4: Factor information for the ordinal logistic regression of food items 
versus length size (Source: Author) 

 

Factor information   Value   Count  
Group      10 mm     106 (Reference event) 
           20 mm     632  
           30 mm    1,543  
           40 mm    3,688  
           50 mm    5,025  
           Total   10,994  
 

3.2.2 Bayesian Belief Network (BBN) 

 

The mean numerical counts in both the environment within the Winam Gulf of Lake 

Victoria and in the stomach of R. argentea were converted to proportions (Table 5) in 

order to satisfy the requirements for application of Bayesian Belief Networks (BBN) 

(Ellison, 2004; Dickson and Ellison, 1996; Olsson and Holmgren, 1999). 

  

This analysis provided the posterior probabilities of food selection given the prior and 

conditional probabilities of the occurrence of different species in both the environment 
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and the stomach of R. argentea. The BBN provided a dynamic model that was capable of 

recalculating new probabilities wherever there is any change in one or more food items in 

the environment. Both datasets used in the analysis came from Manyala (1994) as shown 

in Table 2 and 5. 

 

Table 5: The average numerical abundance of food items in the stomach of R. 
argentea and the environment and the respective calculated 
proportions Ri and Pi (Source: Manyala, 1994) 

 

 Food items Stomach Environmnt Ri Pi 

Thermocyclops emini 2.65 29.31 0.00788 0.64779 

Thermocyclops oblingatus 173.56 8.53 0.51585 0.18843 

Daphnia lumhortzii 0.08 5.20 0.00024 0.11489 

Moina macrourus 151.17 0.00 0.44930 0.00000 

Bosmina longirostris 4.45 0.00 0.01323 0.00000 

Brachionus caudatus 1.30 1.74 0.00385 0.03836 

Brachionus falcatus 0.12 0.00 0.00034 0.00000 

Brachionus calyciflorus 0.12 0.41 0.00034 0.00907 

Brachionus. angularis 0.53 0.00 0.00158 0.00000 

Keratella serrulata 0.37 0.00 0.00111 0.00000 

K. quadrata 0.00 0.07 0.00000 0.00146 

Trichocerca sp. 0.11 0.00 0.00032 0.00000 

Epiphanes sp. 1.99 0.00 0.00591 0.00000 

K. cochlearis 0.02 0.00 0.00005 0.00000 
 

A Bayesian feeding model was constructed by creating nodes that represented each of 

the food items and two additional nodes that represented the proportion of food items in 

the environment and in the stomach thereby representing all the variables or food items. 

An arcs represent statistical dependence relations among the food items and local 

probability distributions for each food item, given values of its parents was then created 

between each food item, its proportion in the environment and also the proportion in the 

stomach and all the nodes representing each food item. 
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The created Bayesian Belief Network (BBN) consequently represented the dependence 

of each of the food items in the stomach and its dependence on the food items in the 

environment with a given prior probability and on condition that the food item occurs in 

the stomach with a given prior probability, thereby providing a conditional/joint 

probability for that food item.  Statistically, for each food item Xi, i= 1 to n, and a set of 

parent variables denoted by parents (Xi), the conditional probability distribution of the 

variables is product of the local distributions: 

 

  Equation 6 

 

3.3 Modelling Fecundity and Recruitment of R. argentea 

 

Historical data (Table 6) on sex ratio (Okedi, 1973; Wandera, 1992), fecundity 

relationship (Manyala et al., 1992) and length-weight relationship (Manyala, 2005b) were 

used to determine female parental breeding biomass from sample data. The sample 

length-frequency sample data of R. argentea in Lake Victoria were obtained from the 

LVFO (2005) lakewide survey on the gear selectivity, maturity and catch rates.  

 

Appendix I give details of the sample length-frequency data and how the processing was 

carried out before modeling of stock-recruitment relationship. All samples were grouped 

into 1 mm size classes according to recommendations of LVFO (2005).  

 



38 
 

 

 

Table 6: Biological parametes used in stock-recruitment analyses and their 
sources (Source: Author) 

 

Parameter Equation Location Author 
Sex ratio: 1.6:1 Tanzania Okedi (1973) 
 1.8:1 Uganda Okedi (1973) 
 2.0:1 Uganda Wandera (1992) 
Fecundity: 2292 (582-4771) Tanzania Okedi (1971) 
 860 (170 - 1350 Kenya Manyala et al. (1992) 
 F=5.875•10-3•TL2.95 Tanzania Wanink (1989) 
 F = 3.3•10-7•TL5.376 Kenya Manyala et al. (1992) 
L-L relationship: TL=1.74+1.11•SL Kenya Manyala et al. (1995a) 
L-W relationship: W=0.0000025•TL3.4 Kenya Manyala et al. (1995a) 
 

Since the data were collected using Standard Length (SL mm), the entire individual SL 

measurements were converted to Total Length (TL mm) according to Manyala et al. 

(1995b). The weight (g) for each TL (mm) was then computed from the relationship 

W=0.0000025•TL3.4 (Manyala et al., 1995b).  

 

The frequency distribution was split into equal parts for males and female based on a sex 

ratio of approximately 2:1 (Okedi, 1973; Wandera, 1992; Manyala et al., 1992). The 

number of mature females was calculated from the original LVFO (2005) survey data and 

used to calculate the percentage of mature fish for each size class in the sample. The total 

biomass for each size class was calculated by multiplying the number of all female fish in 

that size class by the individual weight of fish in the same size class. The mature biomass 

was obtained by calculating the percentage of mature biomass as a proportion of the total 

biomass for each size class. The values under mature biomass column in Table 5 provide 

the independent variable in the Stock-Recruitment relationships of R. argentea. 

Relationship between size class and Spawning Stock Biomass (SSB) and between length 
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size and egg production were compared graphically. The resulting relationship between 

spawning biomass and egg production provided a basis for further analysis of the SSB 

(stock) and recruitment (egg production). The SSB was considered to be based on the 

cumulative biomass from size TLi to TLn and was calculated for every size class in the 

breeding category as: 

i

nTL

iTL
i NW



  
Equation 7 

where, 

Wi = Weight of fish of length TLi 

TL = Total length of the fish 

Ni = Number of fish in length TLi 

 

The resulting potential stock-recruitment data in terms of egg production and cumulative 

SB was used to determine the best distribution of recruitment potential and to generate the 

parameters for Gamma (Banneheka and Ekanayake, 2009), Weibull (Weibull, 1951) or 

Lognormal (Holgate, 1989; Limpert et al., 2001; Swamee, 2002) family types of 

distribution. The preliminary distribution parameters of egg production frequency were 

used to simulate and generate a large amount of egg production frequencies (10,000) for 

recruitment analysis and modeling. This approach allowed the determination of three 

parameter model for recruitment to describe the magnitude, elasticity and biological 

reference point for maximum recruitment, on the basis of SSB and egg production. 

 

Based on the descriptive statistical summary of the frequency distribution of egg 

production and on a sample data, 10,000 new datasets were generated based on 
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Lognormal, Weibull and Gama family of distribution, their parameters (Location, Shape 

and Scale) determined and tested for consistency using the Skewness-Kurtosis all Tests 

(Taylor, 2007). Using the mean, standard deviation, skewness and kurtosis, the 10,000 

new data set were generated according the the following procedures: 

 

The generalized three parameter gamma: where ε>0 is the location parameter, λ>0 is the 

scale parameter and η>0, the shape parameter were used for parameter estimation 

according to Marsaglia and Tsang (2000). This method applied the probability density 

function: 

0,
)/(

)/(
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  Equation 8 

to first generate partial sums Z∼N(0,1) and U∼U(0,1) independently. If the partial 

sum Z > −1/c and the logarithm of the uniform variate logU < ½Z2 + d – dV + 

d×lnV, then the random variable wa generated as X=d×V. V is an independent 

variate describing the times the random variable is generated. In this procedure: 

V=(1+cZ)3)  Equation 9 

3
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Equation 10
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   Equation 11 

 

The probability density function of the generalized 3-parameter Weibull distribution 

was calculated using the relationship: 
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according to Weibull (1951) for x≥ε and f(x;η,σ,ε) = 0 and for x < ε, where η > 0 is the 

shape parameter, σ > 0 is the scale parameter and ε is the location parameter of the 

distribution. 

 

Given a random variate U drawn from the uniform distribution in the interval (0, 1), 

provided a direct variate according to the following relationship: 

 
1

))ln(( UX 
 

 Equation 13 

 

which had a Weibull distribution with parameters η and σ. In generating random 

numbers belonging to (0,1), zero values were excluded to avoid the undefined natural 

log of zero. 

 

3.4 Catch and Production 

 

Based on the number of major commercial species, a self propagating feedforward 

Artificial Neural Network (ANN) based on the outline of Raymond et al. (1999), was 

used to determine the output production layer over a period of time for R. argentea, 

predict future yields and compare these with actual data from Catch Assessment Survey 

(CAS) data (GoK, 2008) with catch data from 1968 to 2007 (Appendix II). Environmental 

variables such as average annual temperature, rainfall, river discharge and lake level 

(Mwirigi et al., 2005) for 1950 to 2005 were obtained but only matching time series data 

from 1968 to 2005 (with projections for 2006 and 2007) were used as explanatory 

variables for developing environmental based networks (Appendix II). The following 

sections provide description of the procedures followed in the analyses. 
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3.4.1 Analysis 

 

The methods of analysis of catch and environmental data followed the outline in the 

NeuroDimension (Lafebre et al., 2005) and Alyuda Neurointelligence (Alyuda Research, 

2005). The datasets that were accepted for the network were partitioned into three sets: 

the Training set (68.6%), the Validation set (15.7%) and the Test set (15.7%) based on the 

recommendation of automatic partitioning (Alyuda Research, 2005). This partitioning 

method was based on the concept that at least 70% of the data provided enough 

representation for training to identify the specific patterns in the datasets and allowed 

generalization of the ANN results: 

i) The Training set was part of the input dataset used eventually for neural network 

training, i.e. for adjustment of network weights for maximizing predictive ability and 

minimizing forecasting error according to Williams and Zipser (1989). 

ii)  The Validation set was part of the data used to tune network topology or network 

parameters other than weights. The Validation set was used to calculate generalization 

loss and retain the best network (the network with the lowest error on Validation set) 

according to Lafebre and Principe (1992). 

iii) The Test set was part of the input data set used only to test how well the neural 

network would perform on new data. The Test set was used after the network was 

already trained, to test what errors occurred during the training and that would occur 

during future network application. This set was not used during training and thus was 

considered as consisting of new data for the neural network application (Lafebre and 

Principe, 1992). 
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3.4.2 Preprocessing and Post-processing 

 

Data preprocessing involved the modification of the original data before input to the 

Artificial Neural Network. Preprocessing transformed the data by scaling to values 

between -1 and +1 to make it suitable for neural network. Post-processing means 

modifying the neural network output to make it understandable by user and/or suitable for 

computation (Jacobs, 1988). 

 

Numeric columns were automatically scaled during data preprocessing. The numeric 

values were scaled using the following formulae: 

 

i) SF = (SRmax-SRmin)/(Xmax-Xmin)  Equation 14 

ii) Xp = SRmin + (X-Xmin)* SF  Equation 15 

 

where: 

X =  actual value of a numeric column 

Xmin =  minimum actual value of the column 

Xmax =  maximum actual value of the column 

SRmin =  lower scaling range limit 

SRmax =  upper scaling range limit 

SF =  scaling factor 

Xp =  preprocessed value 
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For both the input and the target columns, scaling range was -1 to +1,  based on the 

Hyperbolic Tangent activation function with a sigmoid curve for catch data (Appendix 

III) and environmental data (Appendix IV). Data post-processing report briefly produced 

results about the number of columns and records analyzed as well as about encoded 

columns. It included columns number before and after preprocessing, column type, 

scaling range and factors for numeric columns and number of categories for categorical 

columns. 

 

3.4.3 Network Design 

 

For the network design, Alyuda NeuroIntelligence Ver. 2.2 Software was used, with a 

built-in search method to determine the network architecture (number of hidden layers 

and units in each layer) and network properties. This procedure allowed the creation of 

a feed-forward fully-connected Artificial Neural Network (Multi-Layer Perceptron - 

MLP). A Heuristic Search (large search range) was used since the problem complexity 

was not known, according to the procedure of Williams and Zipser (1989) and Werbos 

(1990).  The Artificial Neural Network architecture was then subjected to testing using 

the Absolute Error (AE) and the best Artificial Neuraal Network selected based on the 

minimum AE between the training set and the testing set for further training and testing. 

Absolute Error (Zar, 1984) indicated the quality of the Artificial Neural Network and 

was calculated by subtracting the observed values (current output) with the predicted 

values (network output). The Absolute Error was applied as the sum of the squared 

differences between the actual value (target column value) and neural network output to 

avoid the errors cancelling out to zero as a standard statistical procedure (Zar, 1984). The 
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number of hidden units found by the Heuristic search was used as a medium point to 

determine a new and narrower search range, also known as exhaustive search (Alyuda 

Research, 2005).  

 

3.4.4 Training Networks 

 

The network training (Anderson and Rosenfed, 1990) was monitored and assessed 

through progress bar, training graphs and training parameters according to the 

procedures in Alyuda NeuroIntelligence and NeuroDimension (Lafebre et al., 2005). 

The real-time dataset error, correlation and r2 were used to determine when the optimum 

network training was achieved. The second monitoring tool involved a plot of the 

network error or network error improvement against the number of iteration on the 

training set and involved checking on the: 

i) Graphs that plotted both the correlation and r2 for training and/or validation set. 

ii) Dataset errors graph used to plots the average absolute dataset error against the 

number of iteration on training and/or validation set. 

 

3.4.5 Testing Networks 

 

Network testing was carried out after training completion in which the Actual versus 

Output Table was produced and a testing summary report. The Actual versus Output 

Table showed error values for each record from the input dataset, whether for training, 

testing or validation. The Absolute Error (AE) and Absolute Relative Error (ARE) 

represented the difference between the actual value of the target column and the 
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corresponding network output. The difference was computed as absolute values and in 

percentage terms. 

 

3.4.6 Querying and Applying Networks 

 

The trained network was queried with new data using the query mode. New data were 

entered in columns with names taken from the input data file and used as captions for 

the query entry cells. The new data was based on weight of input columns determined 

during the network training.  For numerical inputs, minimum and maximum values 

were used to determine the minimum and maximum values that were presented to the 

neural networks during training and guided the entry of new values for the queries. 

 

3.4.7 Network Validation and Testing 

 

In order to avoid overfitting, it was necessary monitor the progress of the training and 

stop training early enough when the minimum AE, RAE and high R2 were obtaine and 

when further training was not resulting in better generalization. Finally, the model was 

validated by testing its ability to to generalize by evaluating its performance on a set of 

data not used for training, which is assumed to approximate the typical unseen data that 

a model will encounter (the validation set) and by querrying the network with a set of 

new data in the range and outside the range of the original datasets. All the queries were 

tagged to the class benchmark to produce a new table of simulated output independent 

of the original environment and catch data. The results of the network query were then 

compared between the environment and catch data for validation. 
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CHAPTER FOUR 

 

4.0 RESULTS 

 

4.1 Food Type and Food Selection 

 

The Logistic Regression results shows the estimated coefficients (parameter estimates), 

standard error of the coefficients, z-values, and p-values (Table 7). The positive 

coefficients, odds ratios higher than 1.000 and P<0.0005 indicated for Thermocyclops 

oblingatus, T. emini and Moina macrourus shows that R. argentea is likely to select 

these species at a higher rate as compared to Epiphanes as the size increases. For T. 

oblingatus, the odds ratio is 10 times for 50 mm as compared to 10 mm fish whereas for 

M. macrourus, the odds ratio is 11 times for 50 mm as compared to fish of 10 mm. The 

95% confidence interval for the odds ratio provided the level of uncertainty that could 

be attached to the odds ratio in 95 percent of the times based on the data used in the 

analysis.  

 

The coefficient associated with the length sizes (predictors) is the estimated change in 

the logit with a one unit change in the predictor (length size), assuming that all other 

factors and covariates are constant. Only logit 3, 8 and 11 showed significant changes in 

the odds ratio. 
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Table 7: Logistic regression table showing logits with p-values less than 0.05 
marked with asterix for groups of length classes (Source: Author)  

 

Predictor Coef SE Coef Z P 
Odds 
Ratio 

95% CI 
Lower Upper 

Logit 1: (Keratella serrulata / Epiphanes sp) 
Constant                 <-0.000005  0.0659380  <-0.05  1.000    
Group:        
 20 mm  -0.154151  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm           <0.0000005  0.0922740   <0.05  1.000   1.00   0.83 1.20 
 40 mm            <0.0000005  0.0882955   <0.05  1.000   1.00   0.84 1.19 
 50 mm              <0.0000005  0.1126110   <0.05  1.000   1.00   0.80 1.25 
Logit 2: (B. angularis / Epiphanes sp) 
Constant             <-0.000005  0.0659380  <-0.05  1.000    
Group:        
 20 mm               -0.121361  0.0859610  -1.41  0.158   0.89   0.75 1.05 
 30 mm         <-0.000005  0.0922740  <-0.05  1.000   1.00   0.83 1.20 
 40 mm          <0.0000005  0.0882955   <0.05  1.000   1.00   0.84 1.19 
 50 mm           <0.0000005  0.1126110  <0.05  1.000   1.00   0.80 1.25 
Logit 3: (T. oblingatus / Epiphanes sp) 

Constant     <-0.000005  0.0659380  <-0.05  1.000    
Group:        
 20 mm        0.0555699  0.0844260   0.66  0.510   1.06   0.90 1.25 
 30 mm*          0.628609  0.0868462   7.24  <0.005   1.88   1.58 2.22 
 40 mm*          1.33318  0.0807868  16.50  <0.005   3.79   3.24 4.44 
 50 mm*         2.32728  0.0944510  24.64  <0.005   10.25   8.52 12.33 
Logit 4: (B. calyciflorus / Epiphanes sp) 
Constant       <-0.000005  0.0659380  <-0.05  1.000    
Group:        
 20 mm          -0.154151  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm          <0.0000005  0.0922740   <0.05  1.000   1.00   0.83 1.20 
 40 mm           <0.0000005  0.0882955   <0.05  1.000   1.00   0.84 1.19 
 50 mm          <0.0000005  0.1126110   <0.05  1.000   1.00   0.80 1.25 
Logit 5: (B. falcatus / Epiphanes sp) 
Constant        <-0.000005  0.0659380  <-0.05  1.000    
Group:        
 20 mm           -0.154151  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm           <-0.000005  0.0922740  <-0.05  1.000   1.00   0.83 1.20 
 40 mm           <0.0000005  0.0882955   <0.05  1.000   1.00   0.84 1.19 
 50 mm            <0.0000005  0.112611   <0.05  1.000   1.00   0.80 1.25 
Logit 6: (Brachionus caudatus / Epiphanes sp) 
Constant         -0.0000000  0.0659380  <-0.05  1.000    
GROUP        
 20 mm           -0.154151  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm            0.0408220  0.0918213   0.44  0.657   1.04   0.87 1.25 
 40 mm      <0.0000005  0.112611   <0.05  1.000   1.00   0.80 1.19 
 50 mm            <0.0000005  0.112611   <0.05  1.000   1.00   0.80 1.25 
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Table 7 (contd): Logistic regression table showing significant logits having p-
values less than 0.05 marked with asterix for groups of size 
classes (Source: Author) 

 
 

Predictor Coef SE Coef Z P 
Odds 
Ratio 

95% CI 
Lower Upper 

Logit 7: (Bosmina longirostris / Epiphanes sp)  
Constant    <-0.000005  0.0659380  <-0.05  1.000    
Group:        
 20 mm        -0.1541510  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm      0.1177830  0.0910111   1.29  0.196   1.13   0.94 1.34 
 40 mm     0.0339016  0.0879695   0.39  0.700   1.03   0.87 1.23 
 50 mm      <-0.000005  0.1126110  <-0.05  1.000   1.00   0.80 1.25 
Logit 8: (Moina macrourus / Epiphanes sp)  
Constant     <0.0000005  0.0659380   <0.05  1.000    
Group:        
 20 mm       -0.154151  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm*       0.377294  0.0886551   4.26  <0.005   1.46   1.23 1.74 
 40 mm*       1.257680  0.0810072  15.53  <0.005   3.52   3.00 4.12 
 50 mm*     2.435070  0.0942309  25.84  <0.005   11.42   9.49 13.73 
Logit 9: (Ceriodaphnia riguadi / Epiphanes sp) 
Constant      <-0.000005  0.0659380  <-0.05  1.000    
GROUP        
 20 mm         -0.1541510  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm      <0.0000005  0.0922740   <0.05  1.000   1.00   0.83 1.20 
 40 mm      <0.0000005  0.0882955   <0.05  1.000   1.00   0.84 1.19 
 50 mm       <0.0000005  0.1126110   <0.05  1.000   1.00   0.80 1.25 
Logit 10: (D. lumholtzi / Epiphanes sp) 
Constant    <-0.000005  0.0659380  <-0.05  1.000    
Group:        
 20 mm       -0.1541510  0.0862732  -1.79  0.074   0.86   0.72 1.02 
 30 mm      <0.0000005  0.0922740   <0.05  1.000   1.00   0.83 1.20 
 40 mm        <0.0000005  0.0882955   <0.05  1.000   1.00   0.84 1.19 
 50 mm       <0.0000005  0.112611   <0.05  1.000   1.00   0.80 1.25 
Logit 11: (Thermocyclops emini / Epiphanes sp) 
Constant     <0.0000005  0.0659380   <0.05  1.000    
Group:        
 20 mm          -0.1213610  0.0859610  -1.41  0.158   0.89   0.75 1.05 
 30 mm*      0.3772940  0.0886551   4.26  <0.005   1.46   1.23 1.74 
 40 mm         0.0339016  0.0879695   0.39  0.700   1.03   0.87 1.23 
 50 mm       <-0.0000050  0.1126110  <-0.05  1.000   1.00   0.80 1.25 
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Logit 3 between Thermocyclops oblingatus and Epiphanes sp: 

i) Table 7 shows a p-values of <0.0005 for length-class of 30 mm, indicating that 

there is sufficient evidence to conclude that a change in length-class from 10mm 

to 30mm affected the quantity of T. oblingatus as compared to Epiphanes in the 

stomach contents of R. argentea. The positive coefficient of 0.629 and an odds 

ratio of 1.88 indicates that T. oblingatus is likely to occur 1.88 times more than 

Epiphanes in in the stomach contents as the size-class changes from 10 mm to 30 

mm. 

ii) Table 7 also shows a p-values of <0.0005 for length-class of 40 mm, indicating 

that there is sufficient evidence to conclude that a change in length-class from 10 

mm to 40 mm affected the quantity of T. oblingatus as compared to Epiphanes in 

the stomach contents of R. argentea. The positive coefficient of 1.333 and an odds 

ratio of 3.79 indicates that T. oblingatus is likely to occur 3.79 times more than 

Epiphanes in the stomach contents as the size-class changes from 10 mm to 

40mm. 

 
For Logit 8 between Moina macrourus and Epiphanes sp: 

i) The p-values of <0.0005 for length-class of 30 mm (Table 7), indicate that there is 

sufficient evidence to conclude that a change in length-class from 10 mm to 30 

mm affected the quantity of M.macrourus as compared to Epiphanes in the 

stomach contents of R. argentea. The positive coefficient of 0.377 and an odds 

ratio of 1.46 indicates that M. macrourus is likely to occur 1.46 times more than 

Epiphanes in the stomach contents as the size-class changes from 10 mm to 30 

mm. 
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ii) Table 7 shows a p-values of <0.0005 for length-class of 40 mm, indicating that 

there is sufficient evidence to conclude that a change in length-class from 10 mm 

to 40 mm affected the quantity of M. macrourus as compared to Epiphanes in the 

stomach contents of R. argentea. The positive coefficient of 1.258 and an odds 

ratio of 3.52 indicate that M. macrourus is likely to occur 3.52 times more than 

Epiphanes in the stomach contents as the size-class changes from 10 mm to 40 

mm. 

iii) The p-values of <0.0005 for length-class of 50 mm (Table 7), further indicate that 

there is sufficient evidence to conclude that a change in length-class from 10 mm 

30 mm, 10mm to 20 mm and 10 mm to 50 mm affected the quantity of M. 

macrourus as compared to Epiphanes in in the stomach contents of R. argentea. 

The positive coefficient of 2.435 and an odds ratio of 11.42 indicate that M. 

macrourus is likely to occur 11.42 times more than Epiphanes in in the stomach 

contents as the size-class changes from 10 mm to 50 mm. 

 

For Logit 8 between T. emini and Epiphanes sp: 

i) The p-values of <0.0005 for length-class of 30 mm (Table 7), indicate that there is 

sufficient evidence to conclude that a change in length-class from 10 mm to 30 mm 

affected the quantity of T. emini  as compared to Epiphanes in the stomach contents 

of R. argentea. The positive coefficient of 0.377 and an odds ratio of 1.46 indicates 

that M. macrourus is likely to occur 1.46 times more than Epiphanes in the stomach 

contents as the size-class changes from 10 mm to 30 mm. 
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The Chi-square analysis between pairs of the zooplankton species (Table 8) showed 

significant differences in the stomach contents among pairs of zooplankton for logit 3, 

7, 8 and 11 with Epiphanes as the reference. The quantity of zooplankton species 

observed in the stomach of R. argentea was heterogeneous with respect to fish size for 

T oblingatus (2
0.05,4=992.89; p<0.0005), B. longirostris (2

0.05,4=11.46; p=0.022), M. 

Macrourus (2
0.05,4=1175.41; p<0.0005) and T. emini (2=40.94; p<0.0005) as 

compared to Epiphanes. 

 

Table 8: Chi-square (2) tests for terms for all the Logits with more than 1 
degree of freedom and showing the significant pairs with asterix 
(Source: Author) 

 
 
Term  (2) DF p-value 
Logit 1: (Keratella serrulata / Epiphanes sp) 5.62 4  0.230 
Logit 2: (B. angularis / Epiphanes sp) 3.53   4  0.474 
Logit 3: (T. oblingatus / Epiphanes sp)* 992.89   4  <0.005 
Logit 4: (B. calyciflorus / Epiphanes sp) 5.62   4  0.230 
Logit 5: (B. falcatus / Epiphanes sp) 5.62   4  0.230 
Logit 6: (Brachionus caudatus / Epiphanes sp) 6.77   4  0.148 
Logit 7: (Bosmina longirostris / Epiphanes sp)* 11.46   4  0.022 
Logit 8: (Moina macrourus / Epiphanes sp)* 1175.41   4  <0.005 
Logit 9: (Ceriodaphnia riguadi / Epiphanes sp) 5.62   4  0.230 
Logit 10: (D. lumholtzi / Epiphanes sp) 5.62   4  0.230 
Logit 11: (Thermocyclops emini / Epiphanes sp)* 40.94   4  <0.005 
 

The log-likelihood ratio, calculated as G-statistic was 6220.024 (DF = 44; p-value 

<0.0005), indicating that all the slopes are not zero. The G-statistic was used to test the 

null hypothesis that all the coefficients associated with predictors equal zero versus 

them not all being zero where predictors are the different size classes used in the logistic 

regression. The log-likelihood ratio is applicable to goodness-of-fit analysis in 

circumstances having data for which chi-square may be employed. The log-likelihood 
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ratio, considers the ratio between likelihoods or probabilities of two food items. Twice 

the log-likelihood is the G-statistic. 

 

The calculated probabilities of food items in the environment (Ri2) and in the stomach of 

R. argentea were highest for P. oblingatus and M. macrourus by a magnitude of 10s to 

1000s as compared to all other species. The proportion of the food items in the 

enviroment (Pi) were higher for T. emini (0.6478), T. oblingatus (0.1884) and Daphnia 

lumholtzii (0.1149) in the order of 100s to >1000s as compareded to others species 

(Table 9). 

 

Table 9: Semi processed data for BBN based on stomach content species (Ri2) 
and the environment (Pi) (Source: Author) 

 
 
 Food items Stomach Environment Ri2 Pi2 
Thermocyclops emini 2.64 29.31 0.0079 0.6478 
T. oblingatus 173.56 8.53 0.5158 0.1884 
Daphnia lumholtzi 0.08 5.20 0.0002 0.1149 
Moina macrourus 151.17 0.00 0.4493 0.0000 
Bosmina longirostris 4.45 0.00 0.0132 0.0000 
Brachionus caudatus 1.30 1.74 0.0039 0.0384 
B. falcatus 0.12 0.00 0.0003 0.0000 
B. calyciflorus 0.12 0.41 0.0003 0.0091 
B. angularis 0.53 0.00 0.0016 0.0000 
Keratella serrulata 0.37 0.00 0.0011 0.0000 
K. quadrata 0.00 0.07 0.0000 0.0015 
Trichocerca sp. 0.11 0.00 0.0003 0.0000 
Epiphanes sp. 1.99 0.00 0.0059 0.0000 
 K. cochlearis 0.02 0.00 0.0001 0.0000 
 

The BBN developed from the prior probalility of the food items in the stomach and in the 

environment provided the posterior probabilities of each food in the stomach (Fig. 1) 
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based on joint/marginal probabilities of the food items in both the stomach and the 

environment. 

 

Figure 1 provided the posterior probabilities in percentage of getting each food item in  

the stomach of R. argentea such as Bosmina longirostris (67%) in the stomach on 

condition that it occurs in the environment 80% of the times and also in the stomach 90% 

of the time (joint probability) but also on condition that some other food items also occur 

in both the environment and the stomach with given probabilities. The relationship is 

represented by: 

  Equation 16 

where we can update our belief in hypothesis H; probability of B. longirostris in the 

stomach) given its prior probability in the environment (evidence E) and the 

background information c (its proportion among the cladocera in the environment). The 

left-hand term, P(H|E,c) is the "posterior probability," or the probability of H after 

considering the effect of E given c. The term P(H|c) is called the "prior probability" of 

H given c alone. The term P(E|H,c) is the "likelihood" and gives the probability of the 

evidence assuming the hypothesis H and the background information c is true. Finally, 

the last term P(E|c) is called the "expectedness", or how expected the evidence is given 

only c. It is independent of H and can be regarded as a marginalizing or scaling factor. 

All these probabilities are conditional and they specify the degree of belief in 

propositions based on the assumption that some other propositions are true. This 

procedure applies to each and every food item in the network.  
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Figure 1: Bayesian Belief Network (BBN) for food items in the environment and in the stomach (Source: Author) 
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Network sensitivity of the findings was analyzed to determine how much the beliefs and 

the mean value of the target node could be influenced by a single finding at each of the 

other nodes in the network (each called a "findings node"). The results show how much 

the findings node can affect the target node using different sensitivity measures (Table 10) 

for stomach content and the prior probabilities. The Minimum and maximum real are the 

lowest and highest probabilities of the food item at a given node (0.0759 – 0.0791), 

thereby indicating minimal changes in the model 

 

For the BBN, the percentage variance reduction of 3.14 x 10-3, is the expected reduction 

in variance of the probability of any food item due to finding in other node.  This is the 

square of RMS change, a small measure of variance in the belief that the feeding model 

is stable at all nodes. 

 

The belief variance of 4.9 x 10-4, is the probability obtained under the assumption that a 

posterior distribution on the uncertainty of any food item in the stomach can be 

approximated by its prior distribution. The belief variance percentage is only 0.0491% 

thereby strengthening the belief that the network is stable.  

 

The percentage entropy reduction of 1.38% is the sum of the products of the posterior 

probabilities and the logarithm of the error value on each expected food item in the 

stomach. High entropy indicate disorder (unstable) feeding model while low entropy 

indicate a stable feeding model.  
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Table 10: Sensitivity of environment to findings in stomach contents (Source: 
Author) 

 
 

Species Min Current Max RMS Change 

Thermocyclops emini 0.07233 0.07633 0.08421 0.00233 
Thermocyclops oblingatus 0.07470 0.07704 0.08273 0.00165 
Daphnia lumholtzi 0.07277 0.07662 0.08069 0.00258 
Moina macrourus 0.07369 0.07783 0.08078 0.00157 
Bosmina longirostris 0.07079 0.07723 0.08145 0.00217 
Brachionus caudatus 0.07075 0.07606 0.08148 0.00221 
Brachionus falcatus 0.07444 0.07703 0.08289 0.00217 
Brachionus calyciflorus 0.07164 0.07734 0.07923 0.00142 
Brachionus angularis 0.07512 0.07713 0.08107 0.00155 
Keratella serrulata 0.07161 0.07707 0.08314 0.00268 
Keratell quadrata 0.07257 0.07652 0.07979 0.00174 
Trichocerca spp. 0.07363 0.07681 0.08076 0.00202 
Epiphanes spp. 0.07219 0.07700 0.08148 0.00207 

Mean of Real Value: 0.07590000 0.07738000 0.07907000 0.00097520 
Variance reduction% =  0.00000095 0.00314000     
Entropy reduction % =  0.00051230 0.01380000     
Belief Variance  %  =  0.00000419 0.00049100     
 

The highest Root Mean Square (RMS) (0.00268 and 0.00258) was recorded for Keratella 

serrulata and D. lumholtzii respectively.  The RMS, also known as the quadratic mean, is 

a statistical measure of the magnitude of a varying quantity from the base level. The base 

level in the network is considered to be no change in prey abundance in the stomach 

regardless of the density of prey in the environment. The RMS results indicate that these 

two species were more sensitive to changes of abundance in the environment. Lower  

RMS changes (0.00142, 0.00155 and 0.00157) were recorded for Brachionus 

calyciflorus, B. angularis and M. macrourus thereby indicating that these species were 

less sensitive to the changes in abundance in the environment. The higher the RMS, the 

more sensitive is the prey species found in the stomach to the density in the 

environment.  
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4.2 Fecundity and Recruitment of R. argentea 

 

The estimate of spawning stock biomass and egg production (Fig. 2) show that both 

have a maximum at a length of 46 mm with data from different source (length 

frequency distribution (LVFO, 2005), sex ratio of 2 females: 1 male (Okedi, 1973; 

Wandera, 1992), fecundity (Manyala et al., 1992) and length-weight relationship 

(Manyala et al., 1995b).  

 

 
 
 
Figure 2: Spawning stock biomass (SB) and egg production as a function of 

sizes of R. argentea in Lake Victoria based on length frequency 
distribution (LVFO, 2005), sex ratio of 2 females: 1 male (Okedi, 
1973; Wandera, 1992), fecundity (Manyala et al., 1992) and length-
weight relationship (Manyala et al., 1995b) 

 

Both the SSB and egg production start increasing just below 40 mm. The maximum egg 

production SSB is realized between 40 mm and 60 mm. This size range is also where 
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most of the fish are found (Appendix I and Fig. 2). Due to this heavy pressure, local 

overfishing has been reported in some parts of Winam Gulf (Manyala et al., 1995; 

Manyala and Ojuok, 2007) but the species has survived probably due to its r-selecion 

strategy, high P/B ratio and high reproductive potential. 

 

The cumulative spawning biomass provided “biomass indices” for modeling the actual 

egg production by size against the cumulative spawning of all sizes reaching sexual 

maturity. Based on these indices, the relationship between the spawning biomass and 

the egg production (Fig. 3) showed a polynomial distribution of order 4: 

 

Egg Production=2.2-11SSB4 - 1.1-6SSB3 + 0.02SSB2 + 35.7SSB (R2 = 0.959). 

 Equation 17 

 

Equation 16 has a zero intercept, indicating that if there is no SSB, then there is no 

recruitment. The error term is also not included since the data do not represent a 

population. A polynomial distribution in the context of stock-recruitment implies that 

there are a number of approximately normal distribution and rescaling the polynomial 

distribution provides the exact distribution of the random variates being generated. 

Combining the descriptive statistics and the polynomial stock-recruitment relationship 

resulted in the determination of the scaling parameters (skewness and kurtosis). 

 



60 
 

 

 
 
 
Figure 3: Relationship between spawning biomass and egg production of R. 

argentea in Lake Victoria (Source: Author) 
 

Descriptive statistics of the egg production (Table 11) showed that the egg production 

data was not normally distributed, hence demanding for further analysis of egg 

production as a proxy to recruitment. The results indicate a skewness of 1.2 and a 

kurtosis of 5.6.  

 

Table 11: Descriptive statistics of egg frequency distribution of R. argentea 
(Source: Author) 

 
 

 Variable Eggs  
 n 2,419  
 Mean 992,139  
 SE Mean 17,070  
 StDev 839,551  
 Skewness 1.20  
 Kurtosis 5.6  
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The estimated minimum egg production generated was a minimum of 179,239 and 

maximum of  3,590,778 for Gamma distribution and a minimum of 198,030 and 

maximum of  3,966,603 for the Weibull distribution (Fig. 4) following the procedures 

outlined in the methodology according to Marsaglia and Tsang (2000) and Weibull 

(1951) respectively. 

 

 
 
 
Figure 4: Frequency of egg frequency based simulation of 10,000 data points 

for Gamma and Weibull distributions (Source: Author) 
 

The random variables generated showed a positive skewness for both Gamma and the 

Weibull distribution with heavy tails at the beginning and thin tails at the end (Table 12). 

The maximum frequency observed was between 700,000 and 1,100,000 million eggs for 

the Gamma distribution and between 600,000 and 900,000 for the Weibull distribution. 

Whereas the Gamma distribution was terminating at about 3,600,000 million eggs, the 

Weibull terminated at 4,000,000 egss occurring at extremely low frequencies.  
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Table 12: Random variables generated for egg production for Gamma and 
Weibull distributions (Source: Author) 

 
Bin Gamma distribution Weibull distribution 

         100,000  0 101 
         200,000  7 320 
         300,000  85 472 
         400,000  213 559 
         500,000  478 642 
         600,000  751 699 
         700,000  973 701 
         800,000  1035 681 
         900,000  1056 699 
       1,000,000  1052 641 
       1,100,000  985 619 
       1,200,000  748 550 
       1,300,000  659 545 
       1,400,000  504 463 
       1,500,000  370 444 
       1,600,000  349 349 
       1,700,000  205 312 
       1,800,000  176 257 
       1,900,000  107 208 
       2,000,000  85 156 
       2,100,000  52 154 
       2,200,000  34 88 
       2,300,000  28 84 
       2,400,000  18 57 
       2,500,000  8 52 
       2,600,000  10 42 
       2,700,000  1 29 
       2,800,000  4 23 
       2,900,000  1 15 
       3,000,000  3 11 
       3,100,000  1 5 
       3,200,000  1 8 
       3,300,000  0 2 
       3,400,000  0 8 
       3,500,000  0 0 
       3,600,000  1 0 
       3,700,000  0 0 
       3,800,000  0 3 
       3,900,000  0 0 
       4,000,000  0 1 
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Based on the range of estimates of the maximum egg production and maximum 

frequency, both the Weibull and Gamma distributions adequately fitted the data and the 

variations reflect difference mostly in the shape parameter. The total egg production 

estimates were 10,381,900,000 and   10,503,200,000 for Gamma and Weibull 

respectively, thereby providing a good fit both the distributions. 

 

The random variables so generated were subject to the Skewness-Kurtosis All Test to 

determine their consistency and generate the three distribution parameters that would 

explain recruitment (Table 13). The Skewness-Kurtosis all Test yielded p-values of 

0.0001 for both the Gamma and Weibull distribution, indicating that they were 

significantly different from normal distribution.  

 

Table 13: Egg data distribution analysis based on 10,000 generated datasets 
for each distribution and the location, scale and shape parameters 
(Source: Author) 

 
 

 Raw Data Gamma Weibull 
Mean      992,139          992,139  
SD      591,000          713,500  
Skewness 1.2 1.2 
Excess Kurtosis 2.16 1.85 
Location parameter (          7,139              7,057  
Scale parameter (      354,600       1,080,678  
Shape parameter ( 2.78 1.4 
     
Test Results   
Mean       986,272        997,367  
SD       584,605        688,364  
Skewness 1.14 1.23 
Excess Kurtosis 1.78 20.8 
p-value (Skewness-Kurtosis all Test) 0.0001 0.0001 
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4.3 Catch and Production 

 

4.3.1 Network Data Processing 

 

The network data processing for catch data and class benchmark categories produced 13 

columns. The 13 columns represent the 8 species (including R. argentea) used in the 

analysis and the 5 categories (pristine, growth, dominance, decline and collapse) used in 

the class benchmarks. All the 13 columns were scaled during the processing and the 

outputs for each record of class benchmaks was either 1 for positive category or -1 for 

negative category. The 8 columns were also scaled during processing and all the values 

produced were between -1 and 1 using the Hyperbolic Tangent function (Appendix IV) 

 

The network data processing for environmental data and class benchmark categories 

produced 11 columns. The 11 columns represent the 5 environmental variables 

(discharge (cusecs), rainfall (mm), evaporation (mm), outflow (cusecs) and lake level 

(m.a.s.l.)) and R. argentea as the target used in the analysis and the 5 categories 

(pristine, growth, dominance, decline and collapse) used in the class benchmarks. All 

the 11 columns were scaled during the processing and the outputs for each record of 

class benchmaks was either 1 for positive category or -1 for negative category. The 6 

environmental columns and the target species column (R. argentea) were also scaled 

during processing and all the values produced were between -1 and 1 using the 

Hyperbolic Tangent function (Appendix IV). 
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4.3.2 Artificial Neural Network Design 

 

The best Neural Network Architecture for the catches of R. argentea was 10-9-1 based 

on environmental variable and using Heuristic search method with Hyperbolic Tangent 

activation function for both input and output (Fig. 5). The output parameters were 

catches of R. argentea with sum-of squares error function.  Fitness criteria used to 

determine the best network was established for nine hidden layers [10-9-1] to be 

0.000194. 

 

The neural network input layer consisted of 5 categorical variables (pristine, growth, 

dominance, decline and collapse) and 5 numerical variables (discharge, rainfall, 

evaporation, outflow, level). There were 9 hidden layers and 1 output layer which 

represent the numerical target catch of R. argentea (Fig. 5). This combination of 

neurons produced the 10-9-1 architecture design. 

 

The best Neural Network Architecture for the catches of R. argentea was 12-6-1 based 

on fish catch data and using Heuristic search method with Hyperbolic Tangent 

activation function for both input and output (Fig. 6). The output parameters were 

catches of R. argentea with sum-of squares error function.  Fitness criteria used to 

determine the best network for six hidden layers [12-6-1] was 0.000214. 
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Figure 5: A 10-9-1 Artificial Neural Network architecture for production of R. 

argentea based on environmental variables (Source: Author) 
 

The neural network input layer consisted of 5 categorical variables (pristine, growth, 

dominance, decline and collapse) and 7 numerical variables (Bagrus, Clarias, 

Haplochromis, Lates, Mormyrus, Protopterus, Oreochromis) . There were 6 hidden 

layers and 1 output layer which represented numerical target catch of R. argentea (Fig. 

6). This combination of neurons produced the 12-6-1 architecture design. 
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Figure 6: A 12-6-1 Artificial Neural Network architecture for production of R. 
argentea based on fisheries variables (Source: Author) 

 

4.3.3 Artificial Neural Network Training 

 

A maximum of 50 iterations were carried out on the best 10-9-1 network architecture 

based on environmental variables and using the Quasi-Newton Training algorithm. The 

results indicate that the maximum r-squared error was obtained after 5 iterations for the 

training set error and the validation set error. Only 5 iterations gave the least error 

difference (0.05) between the training set (0.9) and the validation set (0.85) (Fig. 7). The 

high r-squared indicated that the training set can expain 90% of the observed target and 

85% of the validation can also explain the observed target catches of R. argentea in 

Lake Victoria using environmental data (Fig. 8). The minimum dataset error was also 



68 
 

 

obtained after 5 iterations for the training set (5,000) and the validation set (5,000). The 

5 iterations gave the least error difference (zero) between the training set and the 

validation set (Fig. 8). The training set, testing set and validation sets were all part of the 

original data set in order to avoid poor predictions. 

 

 

 
 
 

Figure 7: R-squared errors analysis for training and validation sets based on 
environmental variables after the network training (Source: Author) 

 

 

Number of Iterations 
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Figure 8: Dataset Errors analysis for training and validation sets, based on 
environmental variables after the network training (Source: Author) 

 

The jackknife procedure for the input importance showed that classification of the 

fisheries development (39.7%), lake level (39.4%) and evaporation (11.7%) constituted 

the most important environmental variables in determining catches of R. argentea in 

Lake Victoria (Fig. 9).  The input importance indicates that the class benchmark, lake 

level and evaporation account for 90.8% of the variations observed in the catches of R. 

argentea in Lake Victoria. In a typical jackknife applications, an empirical sampling 

distribution is generated by deleting a single data point (Efron and Gong, 1983), that is, 

by sampling n - 1 of the original observations. In general, sampling subsets that leave 

out one, two, or a whole group of observations, and then defining a distribution across 

such deletions, provides an empirical distribution based on the jackknife approach. 

 

Number of Iterations 
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Figure 9: Importance of environmental variable on the network architecture 
for R. argentea catches in Lake Victoria (Source: Author) 

 

A maximum of 50 iterations were carried out on the best 12-6-1 network architecture 

based on fisheries catch data and using the Quasi-Newton Training algorithm and the 

results indicate that the maximum r-squared error was obtained after 6 iterations for the 

training set and the validation set. Only 6 iterations gave the least error difference (0.05) 

between the training set (0.93) and the validation set (0.98) (Fig. 10). The high r-

squared has indicated that the training set can expain 93% of the observed target and 

98% of the validation can also explin the observed target catches of R. argentea in Lake 

Victoria using fisheries catch data. The minimum dataset error was obtained after 6 

iterations for the training set (4,000) and the validation set (2,500) for the best network 

(Fig. 11).  
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Figure 10: R-squared errors analysis for training and validation sets based on 

fisheries data after the network training (Source: Author) 
 

 
 
 
Figure 11: Dataset Errors analysis for training and validation sets, based on 

fisheries data after the network training (Source: Author) 
 

 

Number of iterations 

Number of iterations 



72 
 

 

The input importance analysis for fish catch statistics (Fig. 12) showed that Lates 

niloticus contributed (23%), classification of the fishery development (50%) and 

Haplochromis (17%) constituted the most important fisheries variables in determining 

catches of R. argentea in Lake Victoria. The class benchmark, L. niloticus and 

Haplochromis can explain 90% of the variation in catches of R. argentea in Lake 

Victoria. 

 

 
 
 
Figure 12: Importance of fisheries data on the network architecture for R. 

argentea catches in Lake Victoria (Source: Author) 
 
 
4.3.4 Artificial Neural Network Testing 

 

The training results produced an actual versus output table (Table 14), containing the 

following features: 

i) Input column values selected for the x-axis in the actual versus output graphs.  
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ii) Input Columns from the dataset.  

iii) Target - the target value that is taken from the input data file. 

iv) Output - the output produced by the network for each record, i.e. the target value 

produced by the network.  

v) AE and ARE - absolute error and absolute relative error %. Difference between 

the actual value of the target column and the corresponding network output.  

 

The absolute relative error (ARE) between the target and the output was from 0.9% to 

55% for the high catch values (9,321 to 69,134 tonnes) and 117% for the lower value 

(1,768 tonnes) for the testing set. For the training set, the ARE was between 0.4% to 

77.1% with one high value of 246.7% while for the validation set, the ARE was 0.6% 

and 59.9%. 

 

The actual versus output graphs were plotted on real time scale using the Serial 

Numbers (SN) as time index for environmental data. The graph so produced (Fig. 13) 

shows the target (observed) catch and the output (predicted) catch based on the network 

class benchmark and environmental variables; lake level, evaporation, discharge, 

rainfall and outflow. 
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Table 14: Real time actual versus output table for R. argentea catches in Lake 
Victoria (Kenya), showing the absolute error (AR) and the absolute 
relative error (ARE) for each estimate based on environmental data 
(Source: Author) 

 
 
SN Set Class Target Output AE ARE 
1 Testing Growth 1,768 3844 2076 117.4% 
2 Testing Growth 9,321 4219 5102 54.7% 
3 Testing Decline 69,134 45674 23460 33.9% 
4 Testing Decline 38,968 36185 2783 7.1% 
5 Testing Decline 35,414 35724 310 0.9% 
6 Training Growth 1,255 4351 3096 246.7% 
7 Training Growth 9,443 2161 7282 77.1% 
8 Training Dominance 7,635 13250 5615 73.5% 
9 Training Collapse 35,455 45433 9978 28.1% 
10 Training Growth 5,652 4200 1452 25.7% 
11 Training Pristine 731 553 178 24.4% 
12 Training Collapse 54,019 45433 8586 15.9% 
13 Training Decline 40,168 46526 6358 15.8% 
14 Training Collapse 57,929 50614 7315 12.6% 
15 Training Dominance 40,861 45949 5088 12.5% 
16 Training Decline 58,098 51109 6989 12.0% 
17 Training Growth 8,710 9594 884 10.1% 
18 Training Dominance 16,444 14953 1491 9.1% 
19 Training Dominance 25,866 23662 2204 8.5% 
20 Training Collapse 49,472 53241 3769 7.6% 
21 Training Growth 5,448 5034 414 7.6% 
22 Training Collapse 49,165 52666 3501 7.1% 
23 Training Decline 42,505 44003 1498 3.5% 
24 Training Pristine 520 537 17 3.3% 
25 Training Growth 6,704 6917 213 3.2% 
26 Training Decline 40,318 41405 1087 2.7% 
27 Training Dominance 45,464 44641 823 1.8% 
28 Training Pristine 524 533 9 1.7% 
29 Training Dominance 33,145 33699 554 1.7% 
30 Training Decline 42,336 42524 188 0.4% 
31 Training Decline 49,670 49684 14 0.0% 
32 Validation Collapse 31,659 50614 18955 59.9% 
33 Validation Growth 3,742 4187 445 11.9% 
34 Validation Decline 56,827 50569 6258 11.0% 
35 Validation Dominance 34,518 34282 236 0.7% 
36 Validation Dominance 19,437 19328 109 0.6% 

 



 

 

Figure 13: Actual versus output plot produced by network testing plotted on a 
real time scale using observation number 
(Source: Author)

 

All the environmental variable

when plotted in real time

similarity between the observed catch 

(Fig. 14). Results of the testing of rainfall 

per annum resulted in catches ranging 

compared to observed catch

 

When the target and output 

was a cyclic trend of catches with increasing rainfall 

values shown in the plot were not necessarity related t

results of the network training

rainfall values resulted from a comination of all the other environmental variables in 

addition to rainfall data. 

 
 

Actual versus output plot produced by network testing plotted on a 
real time scale using observation number of environmental data
(Source: Author) 

All the environmental variables gave the same trend in actual versus output graphs 

when plotted in real time. The use of rainfall data in testing the network gave close 

similarity between the observed catch (target) and the ANN predicted 

Results of the testing of rainfall time series in the range of 

per annum resulted in catches ranging from 535 to 53,241 metric tones per annum

catches ranging from 731 to 69,134 metric tones per annum

and output columns were plotted against detrended 

of catches with increasing rainfall (Fig. 15). The low 

values shown in the plot were not necessarity related to low or high rainfall but were the 

results of the network training. The recognized pattern of catch at different annual 

rainfall values resulted from a comination of all the other environmental variables in 

addition to rainfall data.  
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Actual versus output plot produced by network testing plotted on a 
environmental data 

gave the same trend in actual versus output graphs 

in testing the network gave close 

predicted or output catch 

in the range of 1,320 to 2,226 mm 

535 to 53,241 metric tones per annum as 

metric tones per annum. 

detrended rainfall data, there 

The low or high catch 

rainfall but were the 

pattern of catch at different annual 

rainfall values resulted from a comination of all the other environmental variables in 



 

 

Figure 14: Actual versus output plot produced by network testing plotted on a 
real time scale using rainfall data

 

Figure 15: Actual versus output plot produced by network testing plotted on a 
non real time sc

 
 
Table 15 is an actual versus output table based on 

6.2% and 43% for high values (8,710 to 69,134 tonnes) and upto 150.5% for one low 

value (1,255 tonnes). ARE for training set was between 0.2%

the validation set was between 9.6% and 56.3%.

 
 

Actual versus output plot produced by network testing plotted on a 
real time scale using rainfall data (Source: Author)

 
 

Actual versus output plot produced by network testing plotted on a 
non real time scale using the rainfall data (Source: Author)

is an actual versus output table based on catch data estimated ARE between  

6.2% and 43% for high values (8,710 to 69,134 tonnes) and upto 150.5% for one low 

ARE for training set was between 0.2% and 92.5% while that for 

the validation set was between 9.6% and 56.3%. 
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Actual versus output plot produced by network testing plotted on a 
(Source: Author) 

 

Actual versus output plot produced by network testing plotted on a 
(Source: Author) 

estimated ARE between  

6.2% and 43% for high values (8,710 to 69,134 tonnes) and upto 150.5% for one low 

and 92.5% while that for 
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Table 15: Real time actual versus output table for R. argentea catches in Lake 
Victoria (Kenya), showing the absolute error (AR) and the absolute 
relative error (ARE) for each estimate based on catch data (Source: 
Author) 

 

SN Set Class Target Output AE ARE 
1 Test Growth 1255 3144 1889 150.5% 
2 Test Growth 8710 12452 3742 43.0% 
3 Test Decline 69134 54876 14258 20.6% 
4 Test Dominance 34518 37918 3400 9.8% 
5 Test Collapse 57929 61525 3596 6.2% 
6 Training Growth 1768 3404 1636 92.5% 
7 Training Dominance 7635 10115 2480 32.5% 
8 Training Growth 3742 2753 989 26.4% 
9 Training Pristine 520 634 114 21.9% 
10 Training Pristine 524 633 109 20.8% 
11 Training Growth 5652 6443 791 14.0% 
12 Training Growth 9443 8209 1234 13.1% 
13 Training Pristine 731 643 88 12.0% 
14 Training Dominance 16444 14768 1676 10.2% 
15 Training Dominance 25866 23335 2531 9.8% 
16 Training Dominance 19437 20596 1159 6.0% 
17 Training Decline 49670 51520 1850 3.7% 
18 Training Decline 56827 55175 1652 2.9% 
19 Training Decline 42336 43537 1201 2.8% 
20 Training Decline 40318 39319 999 2.5% 
21 Training Dominance 33145 33897 752 2.3% 
22 Training Dominance 40861 41428 567 1.4% 
23 Training Decline 38968 38462 506 1.3% 
24 Training Collapse 35455 35860 405 1.1% 
25 Training Decline 35414 35013 401 1.1% 
26 Training Growth 9321 9421 100 1.1% 
27 Training Collapse 54019 53604 415 0.8% 
28 Training Collapse 49472 49214 258 0.5% 
29 Training Collapse 31659 31497 162 0.5% 
30 Training Decline 40168 40342 174 0.4% 
31 Training Dominance 45464 45535 71 0.2% 
32 Validation Growth 5448 2381 3067 56.3% 
33 Validation Growth 6704 4165 2539 37.9% 
34 Validation Decline 42505 49862 7357 17.3% 
35 Validation Decline 58098 50398 7700 13.3% 
36 Validation Collapse 49165 44432 4733 9.6% 

 
 
The actual versus output graphs were plotted on real time scale using the Serial 

Numbers (SN) as time index for fisheries based data. The graph so produced (Fig. 16) 



 

 

shows the target (observed) catch and the output (predicted) catch based on the network 

and fisheries catch data on the major species in the fishery since 1970 such as  

Clarias, Haplochromis, La

catch data showed the same trend in actual versus output graphs when plotted in real 

time (Fig. 17). The network produced similar output regardless of the species used in 

the plot after training. 

 
 

Figure 16: Actual versus output plot produced by network testing plotted on a 
real time scale using the observation number based of fisheries data
(Source: Author)

 

shows the target (observed) catch and the output (predicted) catch based on the network 

and fisheries catch data on the major species in the fishery since 1970 such as  

Clarias, Haplochromis, Lates, Mormyrus, Protopterus and Oreochromis

same trend in actual versus output graphs when plotted in real 

The network produced similar output regardless of the species used in 

 
 

Actual versus output plot produced by network testing plotted on a 
real time scale using the observation number based of fisheries data
(Source: Author) 
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shows the target (observed) catch and the output (predicted) catch based on the network 

and fisheries catch data on the major species in the fishery since 1970 such as  Bagrus, 

Oreochromis. The fisheries 

same trend in actual versus output graphs when plotted in real 

The network produced similar output regardless of the species used in 

 

Actual versus output plot produced by network testing plotted on a 
real time scale using the observation number based of fisheries data 



 

 

Figure 17: Actual versus output plot produced by network testing plotted on a 
real time scale using 

 

When the target and output 

niloticus, there was a generally increasing

niloticus (Fig. 18). The plot showed a possible linear relationship with increasing slope 

but instability between 30,000 and 58,000 catches of 

 

 

  

 

 
 

Actual versus output plot produced by network testing plotted on a 
real time scale using Lates data (Source: Author) 

and output columns were plotted against detrended 

generally increasing trend of catches with increasin

The plot showed a possible linear relationship with increasing slope 

instability between 30,000 and 58,000 catches of L. niloticus. 
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Actual versus output plot produced by network testing plotted on a 

detrended catches of L. 

trend of catches with increasing catches of L. 

The plot showed a possible linear relationship with increasing slope 



 

 

Figure 18: Actual versus output plot produced by network testing plotted on a 
non real time scale using the 

 

4.3.5 Querying and Applying the Networ

 

Querying the trained network was carried out using new data to produce outputs based 

on the best network architecture and for the classification variables: pristine, growth, 

dominance, decline and collapse. 

 

The network query was based on a record of valu

environmental data; class, rainfall and lake levels were used since they had the most 

significant influence on the network. The results of the network query for both 

environmental variables (

any value combination of input 

 

For the two queries (Table 1

dataset and the columns with highest contribution to the networks

 
 

Actual versus output plot produced by network testing plotted on a 
non real time scale using the Lates data (Source: Author)

Applying the Network 

Querying the trained network was carried out using new data to produce outputs based 

on the best network architecture and for the classification variables: pristine, growth, 

dominance, decline and collapse.  

The network query was based on a record of values for all input colu

class, rainfall and lake levels were used since they had the most 

significant influence on the network. The results of the network query for both 

nvironmental variables (Table 17) and fisheries data (Table 18) can be recalculated for 

any value combination of input columns.  

Table 17 and 18), the datasets used were initially based on the test 

dataset and the columns with highest contribution to the networks, which were
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Actual versus output plot produced by network testing plotted on a 
(Source: Author) 

Querying the trained network was carried out using new data to produce outputs based 

on the best network architecture and for the classification variables: pristine, growth, 

es for all input columns. For the 

class, rainfall and lake levels were used since they had the most 

significant influence on the network. The results of the network query for both 

) can be recalculated for 

), the datasets used were initially based on the test 

, which were varied to 
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generate the prediction of output indicated in the last column of both the tables. In both 

the queries, the catches of R. argentea were minimal during the pristine period and rose 

to maximum values when the Lates fishery was collapsing. For the environmental 

variable, the network predicts a catch of 1,196 tonnes to 2,583 tonnes in the pre Lates 

period and from 47,674 tonnes to 51,279 tonnes when Lates collapsed. For the fisheries 

based network, the output during pre Lates period was 805 tonnes to 809 tonnes while 

during the Lates collapse, the predicted catches were 65,249 tonnes to 65,783 tonnes.  

 

Table 16: Network query output table for R. argentea based on new simulated 
data and on environmental variables for the various classifications 
(Source: Author) 

 
 

Class Level Evaporation Discahrge Rainfall Outflow Rastrineobola 

Growth 1136  1543  967  1763  1503  3340  
Growth 1135  1543  967  1800  1503  4263  
Growth 1135  1543  967  1900  1503  6348  

Growth  1135  1543  967  2000   1503  9703  
Growth 1135  1543  967  2100   1503  14823  
Growth 1134   1543  967  2200   1503  25849  
Decline 1134  1479  927  1722    823  53845  
Decline 1135  1479  927  1800    823  51714  
Decline 1135  1479  927  1900   823  51207  
Decline 1135  1479  927  2000  823  50697  
Decline 1135  1479  927  2100  823  50188  
Decline 1136  1479  927  2200  823  48164  
Collapse 1135   1481   772  1810  1096  50488  
Collapse 1135   1481   772  1900  1096  49985  
Collapse 1135  1481   772  2000  1096  51279  
Collapse 1135  1481  772  2100  1096  49490  
Collapse 1136  1481  772  2200  1096  47674  
Pristine 1136  1525  1,213  2226  1384  1196  
Pristine 1135  1525  1,213  2000  1384  1287  
Pristine 1135   1525  1,213  2200  1384  2583  

Dominance 1135   1500  982  1952  1037  42471  
Dominance 1135  1500  982  2100  1037  43116  
Dominance 1135  1500  982  2200  1037  38790  
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Table 17: Network query output table for R. argentea based on new simulated 
data and on fisheries data for the various classifications (Source: 
Author) 
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Pristine 1147 1756 3743 1 53 2808 20 805  
Pristine 1147 1756 3743 10 53 2808 20 806  
Pristine 1147 1756 4000 25 53 2808 20 809  
Growth 856 2729 4700 40 80 1900 160 3739  
Growth 856 2729 3000 60 80 1900 160 3492  
Growth 856 2729 2500 200 80 1900 250 3486  
Growth 856 2729 2500 800 80 1900 250 3519  
Growth 856 2729 2500 1,000 80 1900 250 3530  
Dominance 62 1500 3 1,200 140 600 1000 3778  
Dominance 62 1500 5000 10,000 140 600 1000 9021  
Decline 62 1500 4100 50,000 140 600 1000 36770  
Decline 62 1500 4100 70,000 140 600 1000 45151  
Decline 62 1500 4100 85,000 140 600 1000 50672  
Collapse 88 4000 5000 103,000 160 202 18000 65783  
Collapse 88 4000 5100 100,000 160 202 18000 65719  
Collapse 88 4000 5100 88,000 160 202 18000 65249  
Collapse 88 4000 5100 95,000 160 202 18000 65536  
 

4.3.6 Comparison of Environmental and Fisheries Networks 

 

The two sets of networks: based on environmental variables and on fisheries data were 

compared first by plotting both the outputs on the same x-axis real time scale (Fig. 19). 

Both the ouputs could be described by polynomial equations of the third order: 

i) Environmental variables: Output = -2.986x3 + 147.9x2 - 4.571x  Equation 18 

ii) Fisheries data: Output = -2.465x3 + 130.6x2 + 269.4x  Equation 19 
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Figure 19: Real time output of catches of R. argentea in Lake Victoria (Kenya) 
based on environmental variables network and fisheries data 
network (Source: Author) 

 

Since there was no objective way of comparing such polynomial equations, the absolute 

values of each pair of outputs calculated from environmental variable and fisheries data 

were analyzed using a linear approach on non real time data. Individual regression of 

network output on target gave the following linear relationship for the environmental 

variables: Output = 1057 + 0.952Target (Fig. 20). The results of the regression 

coefficient (t=34.71; p<0.005, R2 = 97.3%) and the regression line (F(0.5, 1,34)=1204; 

p<0.0005) were both significant. 
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Figure 20: Comparison of network output and target of R. argentea catches 
from Lake Victoria based on environmental variables (Source: 
Author) 

 

Individual regression of network output on target gave the following linear relationship 

for the fisheries data: Output = 1,056.6 + 0.9515Target  Equation 20 

 

Regression of network output from fisheries data on network output from environmental 

variables gave the following linear relationship:  

 

OutputFisheries data  = 884 + 0.968 OutputEnvironmental variables  Equation 21 

 

The results show that the regression coefficient are statistically significant (t=20.68; 

p<0.005, R2 = 92.6%). The regression line was also significant (F(0.5, 1,34)=427.46; 

p<0.0005) (Fig. 21) 
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Figure 21: Comparison of network outputs of R. argentea catches from Lake 
Victoria determined from fisheries data and environmental data 
(Source: Author) 
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CHAPTER FIVE 

 

5.0 DISCUSSION 

 

5.1 Food Types and Food Selection 

 

Results from this study show that the number of food items in the stomach can be 

analyzed in two ways. The first method is independent of the food items in the 

environment to produce results on ontogenic changes in feeding habits based on 

probability approach while the second method uses the count of the food items in the 

environment per unit volume to determine food selection, based on prior probabilities. 

This study has shown that the changes in both food type and quantity consumed can be 

predicted using nominal logistic regression, which also provides the relative change in 

stomach content against fish size. Many reports on ontogenic changes in food and 

feeding habits are descriptive but this study provides an objective and quantitative way 

of explaining ontogenic changes in food in R. argentea from Lake Victoria as compared 

to food selection indices developed by Ivlev (1961) and Strauss (1979). 

 

The study shows that more of the larger sized zooplankton species among the copepods 

(Thermocyclops oblingatus), the rotifers (Brachionus falcutus) and the cladocera 

(Moina macrurus) are selected. This finding is in line with the feeding strategies that 

reduce the energy cost of prey capture and maximize the returns according to Ainsworth 

et al. (2010). The size dependent food selection strategy in this study is reflected by 

probability, providing an estimate of uncertainty other than the level of variation as 

provided by the classical food selection indices (Chesson, 1978; Strauss, 1979). 



87 
 

 

 

In view of the fact that R. argentea exhibits extended vertical migration for different 

size cases (Wanink, 1989), the shift in diet with size could also be interpreted as a 

feeding strategy in response to the vertical migration of zooplankton prey species. R. 

argentea is limited in vertical distribution in the water column and is more sensitive to 

hypoxia (1–2 mg O2 L
-1) than Nile perch (Wanink et al., 2002). It can then be argued 

that the oxycline-dwelling R. argentea are not seeking a predation refugium but that 

they are limited by low oxygen levels in reaching their traditional feeding areas near the 

bottom and hence have adopted a feeding strategy that is both predator and prey size 

dependent. Victor and Brown (1990) reported similar changes in diet in relation to size 

in Brycinus nurse and B. longipinnis in a perturbed river in Benin. Similarly, 

Oreochromis niloticus and fry of Sarathoredon melanotheron, Heterotis niloticus and 

Brycinus nurse in Asa reservoir in Nigeria all exhibit similar feeding behaviours 

(Akintunde, 1986; Ugwumba and Adebisi, 1992; Sailu, 2002).   

 

Whereas this study has made no assumptions about a feeding model, observed size-

related difference can be attributed to two possibilities: i) the encounter rate of R. 

argentea with prey ii) capture efficiency, i.e. the time and energy spent by R. argentea 

in pursuing a given prey type and successful pursit are the major determinants of prey 

selection. Drenner et al. (1978) found that the probability of escape was highest for 

Chaoborus and calanoid copepods, intermediate for cyclopoid copepods and lowest for 

cladocera in food selection of Xenomelaniris Venezuelae in Lake Valencia. The use of 

probability approach (BBN) in analysing the food selection of R. argentea in Lake 
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Victoria therefore offers a better option in dealing with ontogenti changes in food and 

feeding habits. 

 

The ability to use BBN in the analysis of stomach content has demonstrated that there is 

very little change in the uncertainty (0.051% to 0.014%), also known as entropy,   

associated with selection of all the food items. In information theory, entropy is a 

measure of the uncertainty associated with a random variable (Shannon, 1948) and in 

this context; the term quantifies the expected change in the value of the information on 

food selection (Brillouin, 2004). Equivalently, the Shannon entropy  is a measure of the 

average information content one is missing when one does not know the value of the 

different food items in either the stomach or the environment.    

 

5.2 Fecundity and Recruitment 

 

The basic assertion of recruitment is that if there is no spawning biomass (SSB), there 

would be no recruitment (Ricker, 1954). In view of the available data for this study, the 

conversion of length into weight and computation of spawning biomass was based on:  

i) sex ratio ii) size at maturity iii) the proportion of mature fish (Stage 3-6). The 

spawning biomass is therefore considered to be mature females of reproductive size that 

contribute to egg production and hence recruitment. The estimated spawning biomass 

index of 56,754 is 90% of the estimated total biomass (62,997) of active females in the 

fishery. With units in grammes and sample data, the results are indices of spawning 

stock biomass that can be converted to actual biomass fro reliable estimates such as 

hydroacoustics. This SSB index provides a possible explanation of the resilience of the 
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species in Lake Victoria. A number of models have set the reference point for spawning 

biomass at 40% of the total biomass (Pitcher et al., 1996). The high estimated spawning 

biomass of 90% determined in this study compared to the reference spawning biomass 

of 40% provides a good explanation for the resilience of R. argentea in Lake Victoria 

despite the shifts in species composition (Balirwa et al., 2005; Bayona et al., 2005; 

Masai et al., 2005; Manyala and Ojuok, 2007), changes in water quality and 

eutrophication (Hecky, 1984; 1993; Ochumba and Kibaara, 1989; Lung’ahyia et al., 

2000; Gikuma-Njuru and Hecky, 2005; Hecky et al., 2010) and water hyacinth invasion 

of the lake (Wawire and Ochiel, 2005; Njiru et al., 2005).  

 

The analysis presented in this study provides a method of determining SR relationship 

using egg production as a proxy and taking into consideration the limitation of egg and 

larval surveys in Lake Victoria. All the three classical approaches to egg production 

studies; annual egg production (Saville, 1980), daily egg production (Parker, 1985) and 

daily fecundity reduction (Lo et al., 1992), rely on egg and larval surveys and the 

estimation of fecundity. Even though the spawning stock biomass (SSB) is commonly 

used to fit such SR models, the SSB is often based on VPA and does not discriminate 

between the males and females (Beverton and Holt, 1956). VPA as classical method 

make the same assumptions of constant recruitment and constant mortality (state of 

dynamic equilibrium) that are never achieved in reality. The present study has attempted 

to move away from these classical methods to the alternative non-classical approaches 

and this means that present study can be applied to the biomass estimate without 

assuming constant mortality. 
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 This study used the Total Egg Production (TEP) that takes into account both the size-

dependent capacity of females to produce eggs and the demographical structure of the 

spawning stock. The TEP has been used and found to be a more relevant stock 

reproductive potential index for the European hake Merluccius merluccius (Mehault et 

al., 2010).  

 

It has been observed by Petterson (1999) and Frøysa et al. (2002) that regardless of any 

management measures instituted for any fisheries, if there is recruitment failure, then 

that stock or fishery faces an eminent collapse. However, it has not been possible to 

develop suitable recruitment models because data in egg and larval surveys in many 

stocks and many fisheries are scarce (Sparre et al., 1989). This study has attempted to 

bridge the gap using diverse sources of information that relate to fecundity (Okedi, 

1971; Wanink, 1989; Manyala et al., 1992), sex ratio (Okedi, 1973; Wandera, 1992; 

Manyala et al., 1992) and length-weight relationship (Manyala et al., 1995a) on length-

structured size frequency (LVFO, 2005) to model recruitment. This study has therefore 

shown that recruitment can be modelled using analytical methods and non-classical 

stock-recruitment models. This method can be applied on a geo-spatial scale if the 

biomass distribution of R. argentea is known since the conversion of size to weight 

(Manyala, 2005a) has been established and the relationship between egg production and 

size has also been established in this study. 

 

Obviously, there can be no recruits if no fish are left to mature, spawn and produce eggs 

which hatch and grow to become recruits. According to a review by Manyala and Ojuok 

(2007), the females of 27 fish species of Lake Victoria are extremely fecund, producing 
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thousands, even millions of eggs during their adult life. This enormous fecundity has 

generally given a false impression to fisheries biologists that even a very small parental 

stock should be able to rebuild the stock after each spawning season. In his review on 

fisheries management, Caddy (1999) observes that until S-R models developed by 

Ricker (1954), it was assumed that features of the abiotic environment are the major 

factors determining how many of the spawned eggs would survive to become recruits. It 

was believed that the spawning stock biomass (biomass of mature fish) was virtually an 

irrelevant factor for the determination or recruit numbers, except in cases of stock sizes 

close to zero. This lack of a definite S-R relationship in previous fisheries management 

models and measures was discussed in Beverton and Holt (1957) and Berverton (1963). 

Later works (Parrish, 1973 and Saville, 1980) suggested that many fish stocks do 

display S-R relationship and that recruitment overfishing (Murphy, 1977) was 

responsible for the depletion and subsequent collapse of many fisheries  

 

However, S-R relationships generally cannot be established directly by plotting the 

number of recruits (or some index of recruitment) on spawning stock biomass. Rather, it 

is necessary to simultaneously account for S-R relationship and the biotic and/or abiotic 

factors which may affect it (Csirke, 1980). The present study determined the threshold 

in recruitment of R. argentea as: Number of females times the average egg production 

to be an index between 7,057 and 7,139. This threshold in recruitment is adequately 

described in both the Ricker (1954) and Beverton and Holt (1957) S-R models. Both the 

Ricker (1954) and Beverton and Holt (1957) S-R models states that recruitment 

decreases from a maximum level towards zero as the production of eggs increases. Even 

though the two models seem to revolve around the same principles, the present study 
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follows more closely the Ricker (1954) model where there is always a relationship 

between spawning stock biomass as opposed to the Beverton and Holt (1957) model 

where no relationship axists above some spawning stock biomass. The present study 

showed clearly that recruitment in R. argentea does not follow a normal distribution as 

indicated by Skewness-Kurtosis tests. The three parameter Gamma or Weibull 

distribution best describes the S-R relationship of R. argentea in Lake Victoria. 

Unfortunately, classical S-R models also do not follow a normal distribution and the 

difficulty in using them arise from the lack of suitable techniques of estimating the 

parameters of a non-normal distribution when the probability density functions (pdf) are 

not proberly known. The pdf of both Gamma and Weibull are well known for given 

moment generating functions. 

 

From these results we can address the following issues: 

i) Can the survival and resilience of R. argentea in Lake Victoria be explained through 

its reproductive potential and ecological strategies? 

ii) How does the relative reproductive potential of R. argentea (based on weight) 

compare with that of Nile perch and other commercially important species? 

iii) Does the S-R relationship of R. argentea explain the resilience of this species in 

Lake Victoria? 

 

Wanink (1989) report that the absolute fecundity of R. argentea has halved since 

Okedi’s (1971) study and ascribes this to the dwarfing of this species in Lake Victoria. 

For this reason, the fecundity-length relationship of Manyala et al. (1992) was used in 

this study to account for the apparent reduction in the number of eggs per female. These 
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results showed that at a sex ratio of 1:1, and 22.5 million eggs from only 56 kg sample 

of mature fish in this study, egg production can be estimated at about 22.5 trillion eggs 

per spawning season. At about 400,000 eggs kg−1, we expect an annual production of 

2.25 × 1013 eggs from R. argentea at the current catch of about 50,000 tonnes in the 

Kenya part of Lake Victoria. However, at a production to biomass (P/B) ratio of 3 to 4, 

the actual egg production would only be ¼ to ⅓ of this estimate. This estimate could be 

used, together with mortality/survival rates, to estimate total annual recruitment of R. 

argentea in Lake Victoria.  

 

Due to predation and fishing, the increased mortality of R. argentea is probably 

responsible for reduction in its size at maturity in Lake Victoria according to Manyala 

and Ojuok (2007). The population growth characteristics of R. argentea in Lake 

Victoria show characteristic typical of r–selection with a high Von Bertalanffy growth 

coefficient (K), short lifespan (2–3 years), a high natural mortality rate independent of 

population size (rarely reaching the maximum carrying capacity), high rates of egg 

production at low trophic levels and high P/B ratio with small body size. The finding in 

this study of egg production distribution Kurtosis of up to 5.6 therefore statistically 

confirms that the species is highly fecund. Based on the results of this study, it is 

expected that translation of S-R from length to weight is adequate for direct estimation 

of S-R using SSB. 
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5.3 Catch and Production Analysis 

 

Since the network acts as a dynamic database, it can be queried with new datasets either 

in the range or outside the range of the original data but when out of range datasets is 

used for querying the network, larger errors are sometimes produced (Alyuda Research, 

2005). 

 

Assuming that environmental variables are limiting in the production of R. argentea in 

Lake Victoria, then the network would predict production when the fishing regime 

remains relatively constant over a long period of time. In such a case, productivity will 

be limited only by the physical environment. On the other hand, if the physical 

environment does not change over several years, then the production will be influenced 

by the fishing regime. Changes in catches reflected in the fishing regime are likely to be 

a consequence of absolute changes in gear types and gear-vessel combinations, spatial 

changes in the distribution of effort, changes in absolute effort or even changes in 

fishing power. 

 

Changes in fishing regime is also often related to socio-economic and technological 

factors. In a single-stock, single-fleet perspective, classical population dynamics models 

(Schaefer, 1934;  Ricker, 1949; Beverton and Holt, 1956) provide appropriate answers. 

But when it comes to multispecies, multi-fleet fisheries, fleets depend on several fish 

stocks according to Daurès et al. (2009) and the different coexisting fish stocks are 

exploited by many fleets of different design, efficiency and fishing power. It has been 

noted that fleet behaviour can change considerably changes in response to various 
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factors, including technological progress, management regulations, social needs and 

resource availability (Baelde 2001; Christensen and Raakjær, 2006), thereby affecting 

the overall yield or catch.  

 

For R.argentea in the Winam Gulf of Lake Victoria, there is a good advantage to 

fisheries management by specifying management objectives for each or any of the 

species used in the ANN model and possible alternative objective for R. argentea 

estimated by manipulating the fishing regime. Even though the use of ANN is rare in 

fish stock assessment, this study has shown that the method can be applied to Lake 

Victoria for R. argentea. It is also possible to use this approach for total catch on 

condition that there are no data gaps according to computational requirements. One 

method of handling missing data is to use the residuals with the mean value to estimate 

the missing observation. 
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CHAPTER SIX 

 

6.0 CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Conclusions 

 

6.1.1 Food Types and Food Selection 

 

Based on the results of the logistic regression and Bayesian Belief Network, the 

following conclusions are made: 

i) R. argentea is likely to significantly select the food items T. oblingatus and M. 

macrourus as compared to the food item Epiphanes. 

ii) The selection of the food item T. oblingatus and M. macrourus is 3.8 and 3.5 times 

respectively higher as compared to the food item  Epiphanes as the fish size change 

from 10 mm to 40 mm. 

iii) The selection of the food item T. oblingatus and M. macrourus is 10.3 and 11.4 

times respectively higher as compared to the food item Epiphanes as the fish size 

change from 10 mm to 50 mm. 

iv) The food selection was found to be heterogeneous between Epiphanes and T. 

oblingatus, B. lonirostris, M. macrourus and T. emini. 

v) The generated feeding model was found to be stable, based on minimum percentage 

entropy reduction, variance reduction and belief variance while the root mean 

square change was less then 0.0027 for all the prey items.. 
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6.1.2 Sexual Maturity, Fecundity and Recruitment 

 

From this study, it is concluded that: 

i) Modelling of maturity, fecundity, sex ratio and length-weight relationship provided 

a robust way of determining the S-R relationship in the study. 

ii) The best S-R relationship was provided by the Gamma and Weibull distributions 

while the Log normal distribution did not give consistent parameters. 

iii) The Gamma distribution produces a higher shape parameter as compared to the 

Weibull distribution hence higher recruitment over a narrow range of size classes 

while the Weibull distribution produces a relatively lower recruitment over a larger 

range of size classes. 

 

6.1.3 Catch and Production 

 

Based on the environmental variables and fisheries data, the study concludes that: 

i) Artificial Neural Networks developed from environmental and catch data 

adequately predicted catches of R. argentea in Lake Victoria. 

ii) The catches predicted by the ANN compare well with observed catches for both 

environmental and catch data. 

iii) For environmental data, the lake level and evaporation were the most important 

variables that determined the performance of the ANN. 

iv) Lates niloticus and Haplochromis catches were the most important species that 

determined the performance of the ANN. 
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v) For both environmental and catch data, the class benchmark was accounted for 

40% and 50% importance to the ANN respectively.  

 

6.2 Recommendations 

 

6.2.1 Food Types and Food Selection 

 

From this study and the results obtained, it is recommended that food and feeding habit 

studies of R. argentea in Lake Victoria should focus on the following: 

i) Structure and relationships between food items in the stomach and the 

environment using probability approaches such as BBN. 

ii) Logistic regression should be used as one of the methods of studying food habits 

and food selection to provide concrete evidence on size dependent intraspecific 

resource partitioning in R. argentea in Lake Victoria. 

iii) The study on food habits and prey selection based on comparison of the main 

species such as T. oblingatus, M. macrourus and T. emini with other prey species 

as well as among larger taxonomic groups (copepods, cladocera and rotifers). 

 

6.2.2 Fecundity and Recruitment 

 

In view of the approaches and results obtained in this study, it is recommended that: 

i) The results obtained in this study be used for planning of egg and larval surveys of 

R. argentea in Lake Victoria for the purposes of determining the Total Egg 
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Production (TEP) and Female Spawning Stock Biomass (FSSB) for the purpose of 

monitoring annual recruitment strength. 

ii) The management of R. argentea should be based on the annual recruitment estimate 

for setting fishing targets as well as on Biological Reference Points (BRP). 

 

6.2.3 Catch and Production 

 

Based on the dynamic predictive power of Artificial Neural Network, future analysis of 

production of R. argentea in Lake Victoria should: 

i) Concentrate on non-classical methods such as ANN using both catch and 

environmental data for R. argentea in Lake Victoria. 

ii) In the use of ANN method for analysis of catch and production, emphasis should be 

placed on the analysis of network errors and the importance of input variables in 

explaining the quality of the network. 

iii) Testing and querrying of the network should be done using the range of datasets in 

the range used for developing the network as well as datasets outside the range used 

so as to be able to analyze the sensitivity of different network architectures. 
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APPENDICES 
 

 

Appendix I: Processing of data for modeling of stock-recruitment relationship (Source: Author) 
 

SL mm TL mm Weight Frequency Males Females Mature %age Total Biomass Mature Biomass Fecundity Egg production 
20 23.9 0.12275 80 40 40 - - 5 - - - 
21 25.1 0.14320 60 30 30 - - 4 - - - 
22 26.2 0.16595 30 15 15 - - 2 - - - 
23 27.3 0.19113 30 15 15 - - 3 - - - 
24 28.4 0.21890 40 20 20 - - 4 - - - 
25 29.5 0.24940 580 290 290 - - 72 - - - 
26 30.6 0.28278 200 100 100 - - 28 - - - 
27 31.7 0.31920 270 135 135 - - 43 - - - 
28 32.8 0.35882 700 350 350 - - 126 - - - 
29 33.9 0.40178 570 285 285 - - 115 - - - 
30 35.0 0.44825 1600 800 800 - - 359 - - - 
31 36.2 0.49839 270 135 135 - - 67 - - - 
32 37.3 0.55236 900 450 450 - - 249 - - - 
33 38.4 0.61034 340 170 170 22.67 0.1333 104 14 276.65 6270.75 
34 39.5 0.67248 480 240 240 66.67 0.2778 161 45 300.93 20062.13 
35 40.6 0.73897 2160 1080 1080 475.20 0.4400 798 351 326.58 155191.64 
36 41.7 0.80996 750 375 375 225.00 0.6000 304 182 353.64 79568.21 
37 42.8 0.88563 1100 550 550 330.00 0.6000 487 292 382.13 126103.76 
38 43.9 0.96617 2680 1340 1340 786.52 0.5870 1295 760 412.11 324130.80 
39 45.0 1.05174 3100 1550 1550 1048.53 0.6765 1630 1103 443.59 465122.18 
40 46.1 1.14252 13240 6620 6620 5443.11 0.8222 7563 6219 476.63 2594369.21 
41 47.3 1.23870 5650 2825 2825 2340.71 0.8286 3499 2899 511.26 1196711.44 
42 48.4 1.34046 8950 4475 4475 4147.56 0.9268 5999 5560 547.51 2270821.68 
43 49.5 1.44798 7850 3925 3925 3700.71 0.9429 5683 5359 585.42 2166456.05 
44 50.6 1.56145 5540 2770 2770 2620.27 0.9459 4325 4091 625.02 1637718.72 
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Appendix I (Contd.): Processing of data for modeling of stock-recruitment relationship (Source: Author) 
 
SL mm TL mm Weight Frequency Males Females Mature %age Total Biomass Mature Biomass Fecundity Egg production 

45 51.7 1.68106 9820 4910 4910 4795.81 0.9767 8254 8062 666.35 3195709.45 
46 52.8 1.80699 3560 1780 1780 1780.00 1.0000 3216 3216 709.46 1262832.54 
47 53.9 1.93944 2800 1400 1400 1400.00 1.0000 2715 2715 754.36 1056107.81 
48 55.0 2.07860 2600 1300 1300 1300.00 1.0000 2702 2702 801.11 1041441.24 
49 56.1 2.22466 1810 905 905 905.00 1.0000 2013 2013 849.73 769005.85 
50 57.2 2.37782 4420 2210 2210 2210.00 1.0000 5255 5255 900.26 1989582.07 
51 58.4 2.53828 830 415 415 415.00 1.0000 1053 1053 952.74 395388.77 
52 59.5 2.70623 920 460 460 460.00 1.0000 1245 1245 1007.21 463315.67 
53 60.6 2.88188 640 320 320 320.00 1.0000 922 922 1063.69 340381.16 
54 61.7 3.06543 370 185 185 185.00 1.0000 567 567 1122.23 207612.40 
55 62.8 3.25707 730 365 365 365.00 1.0000 1189 1189 1182.86 431743.17 
56 63.9 3.45703 140 70 70 70.00 1.0000 242 242 1245.61 87192.93 
57 65.0 3.66549 30 15 15 15.00 1.0000 55 55 1310.53 19657.96 
58 66.1 3.88268 50 25 25 25.00 1.0000 97 97 1377.65 34441.15 
59 67.2 4.10880 20 10 10 10.00 1.0000 41 41 1446.99 14469.94 
60 68.3 4.34405 40 20 20 20.00 1.0000 87 87 1518.61 30372.24 
61 69.5 4.58866 30 15 15 15.00 1.0000 69 69 1592.53 23888.02 
62 70.6 4.84283 20 10 10 10.00 1.0000 48 48 1668.80 16687.97 
63 71.7 5.10678 20 10 10 10.00 1.0000 51 51 1747.44 17474.35 
64 72.8 5.38073 10 5 5 5.00 1.0000 27 27 1828.48 9142.42 
65 73.9 5.66489 20 10 10 10.00 1.0000 57 57 1911.98 19119.80 
66 75.0 5.95948 10 5 5 5.00 1.0000 30 30 1997.96 9989.79 
67 76.1 6.26472 10 5 5 5.00 1.0000 31 31 2086.45 10432.27 
68 77.2 6.58084 10 5 5 5.00 1.0000 33 33 2177.50 10887.51 
69 78.3 6.90805 10 5 5 5.00 1.0000 35 35 2271.14 11355.69 
70 79.4 7.24659 10 5 5 5.00 1.0000 36 36 2367.40 11836.99 
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Appendix II: Raw data used in the ANN modeling. Class is based on Manyala (2006), fisheries data (GoK, 2008) and 
environmental data (Mwirigi et al., 2005) 
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1968 Pristine 731 1147 1756 3743 1 53 2808 2141 1213.43 2226.06 1525.83 1383.80 1135.66 
1969 Pristine 520 966 1354 6427 17 73 1626 3951 744.41 1732.64 1523.63 1462.70 1135.94 
1970 Pristine 524 1091 1592 5357 28 82 1629 3686 837.07 1682.28 1519.04 1403.13 1135.83 
1972 Growth 1255 856 2729 4644 38 78 1915 1480 657.68 1719.92 1527.47 1183.45 1135.17 
1973 Growth 1768 1563 2885 5451 246 182 1841 792 650.53 1679.03 1561.87 1224.71 1135.18 
1974 Growth 3742 1103 2913 6013 136 89 2750 468 678.53 1807.13 1626.94 1117.22 1135.14 
1975 Growth 5448 1389 2989 4620 51 58 1935 230 672.00 1736.21 1521.15 1110.31 1135.02 
1976 Growth 5652 1025 2686 6368 97 89 941 470 507.89 1578.19 1567.86 1105.67 1134.88 
1977 Growth 6704 1141 1755 5378 203 102 773 507 972.62 1813.89 1487.77 1082.77 1134.86 
1978 Growth 8710 183 2047 6621 1066 132 653 2521 1160.32 2073.59 1497.01 1297.34 1135.31 
1979 Growth 9321 1769 3205 6599 4286 359 472 1056 966.66 1763.24 1542.83 1502.75 1135.61 
1980 Growth 9443 642 1223 3636 4310 333 370 1274 586.44 1343.19 1556.98 1303.81 1135.14 
1981 Dominance 7635 430 1328 916 22836 209 323 1997 820.20 1479.64 1489.38 1079.22 1134.82 
1982 Dominance 10419 2532 2062 2546 33134 2678 239 2980 929.20 1708.66 1477.66 1068.94 1134.70 
1983 Dominance 16444 1243 1336 612 55572 218 374 2904 768.72 1477.55 1481.64 1115.33 1134.79 
1984 Dominance 19437 88 877 41 44698 89 95 6235 520.16 1531.91 1614.39 1072.44 1134.50 
1985 Dominance 25866 61 590 6 53011 49 179 7615 892.74 1600.35 1543.62 934.16 1134.49 
1986 Dominance 34518 62 1697 3 58806 51 216 7853 654.67 1674.03 1550.59 888.84 1134.37 
1987 Dominance 33145 40 345 183 68545 12 58 9027 704.52 1720.84 1524.55 961.19 1134.53 
1988 Dominance 40861 75 300 1338 61210 300 25 16347 981.96 1952.18 1437.08 1037.78 1134.74 
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Appendix II (Contd.): Raw data used in the ANN modeling. Class is based on Manyala (2006), fisheries data (GoK, 2008) and 
environmental data (Mwirigi et al., 2005) 
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1989 Dominance 45464 
 

403 4759 56810 403 24 13101 797.94 2100.62 1510.00 1172.36 1135.01 
1990 Dominance 46738 134 507 1 71514 578 84 38305 1138.68 1675.68 1572.36 1085.70 1135.34 
1991 Decline 58098 174 2115 3615 51262 444 123 27475 783.40 1779.84 1514.87 1178.85 1135.23 
1992 Decline 35414 78 589 3018 77599 175 1544 16769 675.76 1340.18 1564.89 1048.42 1134.83 
1993 Decline 42505 34 264 3506 100037 102 146 12670 635.36 1443.84 1576.78 1009.27 1134.55 
1994 Decline 69134 2 263 4196 103995 150 202 11821 926.55 1721.54 1478.99 822.58 1134.31 
1995 Decline 56827 127 234 4822 102546 141 408 12363 880.05 1819.18 1455.52 924.27 1134.56 
1996 Decline 49670 157 405 3914 97145 113 119 10903 784.19 1745.49 1463.87 975.93 1134.76 
1997 Decline 40318 206 2049 2454 73549 53 1704 13953 1409.88 1943.97 1504.91 925.02 1134.63 
1998 Decline 42336 324 2586 2577 77967 57 1895 14652 1543.41 1795.63 1550.53 1224.66 1135.58 
1999 Decline 40168 57 1200 528 115324 4 776 23701 682.15 1753.21 1547.13 1158.38 1135.38 
2000 Decline 38968 60 1070 527 109221 4 733 23226 552.86 1320.17 1581.8 1118.56 1134.86 
2001 Collapse 49165 88 2063 1198 78939 21 1854 7292 771.60 1809.65 1481.13 1096.34 1134.70 
2002 Collapse 35455 57 1874 1029 59007 2 1178 16251 850.10 1813.21 1557.31 1178.93 1134.71 
2003 Collapse 31659 63 1545 1020 55175 14 867 15982 750.26 1775.91 1524.91 1203.17 1134.63 
2004 Collapse 34679 88 1710 1066 61440 14 854 18121 548.13 1713.58 1560.18 1329.33 1134.38 
2005 Collapse 54019 69 1353 4832 52368 9 777 22231 850.10 1813.21 1557.31 1178.93 1134.71 
2006 Collapse 57929 88 4387 5198 55706 23 2914 19038 750.26 1775.91 1524.91 1203.17 1134.63 
2007 Collapse 49472 150 2092 5690 47067 29 3146 13090 548.13 1713.58 1560.18 1329.33 1134.38 
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Appendix III: Pre-processed data – catch (Source: Author) 
 

Pristine Growth Dominance Decline Collapse Bagrus Clarias Haplochromis Lates Mormyrus Protopterus Oreochromis Rastrineobola 
1 -1 -1 -1 -1 0.28874 -0.26704 0.13025 -1.00000 -0.76923 0.78347 -1.00000 -0.99385 
1 -1 -1 -1 -1 0.08176 -0.46063 0.94137 -0.99972 -0.67873 0.02627 -0.99782 -1.00000 
1 -1 -1 -1 -1 0.22470 -0.34602 0.61801 -0.99953 -0.63801 0.02819 -0.99417 -0.99988 
-1 1 -1 -1 -1 -0.04403 0.20154 0.40254 -0.99936 -0.65611 0.21140 -0.99053 -0.97858 
-1 1 -1 -1 -1 0.76444 0.27667 0.64642 -0.99575 -0.18552 0.16400 -0.96591 -0.96362 
-1 1 -1 -1 -1 0.23842 0.29015 0.81626 -0.99766 -0.60634 0.74632 -0.97152 -0.90608 
-1 1 -1 -1 -1 0.56547 0.32675 0.39529 -0.99913 -0.74661 0.22422 -0.98674 -0.85636 
-1 1 -1 -1 -1 0.14923 0.18083 0.92354 -0.99834 -0.60634 -0.41256 -0.97079 -0.85041 
-1 1 -1 -1 -1 0.28188 -0.26752 0.62436 -0.99650 -0.54751 -0.52018 -0.96758 -0.81975 
-1 1 -1 -1 -1 -0.81361 -0.12690 1.00000 -0.98153 -0.41177 -0.59705 -0.93065 -0.76127 
-1 1 -1 -1 -1 1.00000 0.43077 0.99335 -0.92569 0.61539 -0.71300 -0.93138 -0.74346 
-1 1 -1 -1 -1 -0.28874 -0.52372 0.09792 -0.92527 0.49774 -0.77835 -0.91521 -0.73991 
-1 -1 1 -1 -1 -0.53116 -0.47315 -0.72409 -0.60398 -0.06335 -0.80846 -0.86611 -0.79261 
-1 -1 1 -1 -1 0.39851 -0.46930 -0.81596 -0.03626 -0.02262 -0.77579 -0.79778 -0.53584 
-1 -1 1 -1 -1 -0.92224 -0.69034 -0.98852 -0.22484 -0.60634 -0.95452 -0.55447 -0.44860 
-1 -1 1 -1 -1 -0.95312 -0.82856 -0.99909 -0.08067 -0.78733 -0.90071 -0.44979 -0.26120 
-1 -1 1 -1 -1 -0.95197 -0.29545 -1.00000 0.01983 -0.77828 -0.87700 -0.42939 -0.00901 
-1 -1 1 -1 -1 -0.97713 -0.94655 -0.94560 0.18873 -0.95475 -0.97822 -0.34409 -0.04903 
-1 -1 1 -1 -1 -0.93711 -0.96822 -0.59656 0.06152 0.34842 -0.99936 0.18390 0.17588 
-1 -1 1 -1 -1 -0.90852 -0.91861 0.43729 -0.01479 0.81448 -1.00000 -0.04710 0.31005 
-1 -1 -1 1 -1 -0.82390 -0.09415 0.09157 -0.11100 1.00000 -0.93658 1.00000 0.67832 
-1 -1 -1 1 -1 -0.93368 -0.82904 -0.08885 0.34575 -0.21720 -0.02627 0.22011 0.01711 
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Appendix III (Contd.): Pre-processed data – catch (Source: Author) 
 
Pristine Growth Dominance Decline Collapse Bagrus Clarias Haplochromis Lates Mormyrus Protopterus Oreochromis Rastrineobola 

-1 -1 -1 1 -1 -0.98399 -0.98555 0.05863 0.73488 -0.54751 -0.92185 -0.07849 0.22380 
-1 -1 -1 1 -1 -1.00000 -0.98603 0.26715 0.80353 -0.33032 -0.88597 -0.14034 1.00000 
-1 -1 -1 1 -1 -0.87764 -1.00000 0.45633 0.77840 -0.37104 -0.75400 -0.10086 0.64127 
-1 -1 -1 1 -1 -0.84334 -0.91765 0.18193 0.68473 -0.49774 -0.93914 -0.20721 0.43265 
-1 -1 -1 1 -1 -0.78731 -0.12593 -0.25929 0.27551 -0.76923 0.07623 0.01497 0.16006 
-1 -1 -1 1 -1 -0.65237 0.13268 -0.22212 0.35213 -0.75113 0.19859 0.06589 0.21888 
-1 -1 -1 1 -1 -0.95769 -0.53479 -0.84134 1.00000 -0.99095 -0.51826 0.72508 0.15568 
-1 -1 -1 1 -1 -0.95426 -0.59740 -0.84164 0.89416 -0.99095 -0.54580 0.69048 0.12070 
-1 -1 -1 -1 1 -0.92224 -0.11919 -0.63886 0.36899 -0.91403 0.17233 -0.47026 0.41793 
-1 -1 -1 -1 1 -0.95769 -0.21021 -0.68994 0.02332 -1.00000 -0.26073 0.18237 0.01831 
-1 -1 -1 -1 1 -0.95083 -0.36865 -0.69266 -0.04314 -0.94570 -0.45996 0.16278 -0.09234 
-1 -1 -1 -1 1 -0.94397 -0.46111 0.45935 -0.09182 -0.96833 -0.51762 0.61799 0.55942 
-1 -1 -1 -1 1 -0.92224 1.00000 0.56996 -0.03393 -0.90498 0.85138 0.38539 0.67339 
-1 -1 -1 -1 1 -0.85134 -0.10523 0.71865 -0.18375 -0.87783 1.00000 -0.04790 0.42688 
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Appendix IV: Pre-processed data – environmental 
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1 -1 -1 -1 -1 0.36268 1.00000 -0.06510 0.65024 0.65644 -0.99385 
1 -1 -1 -1 -1 -0.54319 -0.08936 -0.08828 0.88224 1.00000 -1.00000 
1 -1 -1 -1 -1 -0.36422 -0.20054 -0.13663 0.70707 0.86503 -0.99988 
-1 1 -1 -1 -1 -0.71070 -0.11744 -0.04783 0.06112 0.05522 -0.97858 
-1 1 -1 -1 -1 -0.72451 -0.20772 0.31455 0.18244 0.06749 -0.96362 
-1 1 -1 -1 -1 -0.67043 0.07510 1.00000 -0.13363 0.01841 -0.90608 
-1 1 -1 -1 -1 -0.68304 -0.08148 -0.11440 -0.15395 -0.12883 -0.85636 
-1 1 -1 -1 -1 -1.00000 -0.43035 0.37765 -0.16759 -0.30061 -0.85041 
-1 1 -1 -1 -1 -0.10242 0.09002 -0.46603 -0.23493 -0.32515 -0.81975 
-1 1 -1 -1 -1 0.26010 0.66338 -0.36869 0.39600 0.22699 -0.76127 
-1 1 -1 -1 -1 -0.11393 -0.02180 0.11398 1.00000 0.59509 -0.74346 
-1 1 -1 -1 -1 -0.84829 -0.94918 0.26304 0.41503 0.01841 -0.73991 
-1 -1 1 -1 -1 -0.39681 -0.64793 -0.44907 -0.24537 -0.37423 -0.79261 
-1 -1 1 -1 -1 -0.49623 -0.65254 -0.53060 -0.13919 -0.41104 -0.53584 
-1 -1 1 -1 -1 -0.97630 -0.53253 0.86780 -0.26530 -0.76687 -0.44860 
-1 -1 1 -1 -1 -0.25670 -0.38143 0.12230 -0.67191 -0.77914 -0.26120 
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Appendix IV: Pre-processed data – environmental 
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-1 -1 1 -1 -1 -0.71651 -0.21876 0.19572 -0.80517 -0.92638 -0.00901 
-1 -1 1 -1 -1 -0.62023 -0.11541 -0.07858 -0.59243 -0.73006 -0.04903 
-1 -1 1 -1 -1 -0.08438 0.39534 -1.00000 -0.36722 -0.47239 0.17588 
-1 -1 1 -1 -1 -0.43980 0.72306 -0.23186 0.02851 -0.14110 0.31005 
-1 -1 -1 1 -1 -0.46788 0.01485 -0.18055 0.04759 0.12883 0.67832 
-1 -1 -1 1 -1 -0.67578 -0.95582 0.34636 -0.33593 -0.36196 0.01711 
-1 -1 -1 1 -1 -0.75381 -0.72697 0.47161 -0.45105 -0.70552 0.22380 
-1 -1 -1 1 -1 -0.19140 -0.11387 -0.55852 -1.00000 -1.00000 1.00000 
-1 -1 -1 1 -1 -0.28121 0.10170 -0.80575 -0.70099 -0.69325 0.64127 
-1 -1 -1 1 -1 -0.46636 -0.06099 -0.71779 -0.54908 -0.44785 0.43265 
-1 -1 -1 1 -1 0.74210 0.37721 -0.28547 -0.69878 -0.60736 0.16006 
-1 -1 -1 1 -1 1.00000 0.04971 0.19509 0.18229 0.55828 0.21888 
-1 -1 -1 1 -1 -0.66344 -0.04395 0.15928 -0.01260 0.31288 0.15568 
-1 -1 -1 1 -1 -0.91315 -1.00000 0.52449 -0.12969 -0.32515 0.12070 
-1 -1 -1 -1 1 -0.49067 0.08066 -0.53597 -0.19503 -0.52147 0.41793 
-1 -1 -1 -1 1 -0.33906 0.08852 0.26651 0.04783 -0.50920 0.01831 
-1 -1 -1 -1 1 -0.53189 0.00617 -0.07479 0.11910 -0.60736 -0.09234 
-1 -1 -1 -1 1 -0.33906 0.08852 0.26651 0.04783 -0.50920 0.55942 
-1 -1 -1 -1 1 -0.53189 0.00617 -0.07479 0.11910 -0.60736 0.67339 
-1 -1 -1 -1 1 -0.92228 -0.13144 0.29675 0.49007 -0.91411 0.42688 

 


