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Abstract

Fluid flow in pipes is accompanied by major and minor friction losses.

Major friction losses are as a result of loss of energy in pipes due to

viscous effects of the fluids on pipe surfaces. Minor friction losses do

occur and give an account of the energy loss due to obstructions of the

fluid as a result of narrower and wider sections of the pipe. Friction loss

lead to head loss. The determination of these losses that occur in pipe

systems together with effect of additional components in the system such

as abrupt expansions, contractions and bends on the overall head loss is

investigated. Studies in head loss in pipe systems are important since they

give an idea of how long, thick or rough or the kind of fittings should be

used in a given pipe system to transmit fluid in pipe optimally. There are

in general two methods that are used in head loss prediction; use of tables

and formulas in pipes without fittings and the K-factor method together

with the equivalent length of pipe in linear fit method for head loss in pipes

and pipe fittings and valves. There is an exponential decrease in head loss

with the ratio of areas for sudden expansions and sudden contractions.

The head loss term increases exponentially with the fluid speed in the

pipe ad the corresponding length of the pipe.
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Chapter 1

Introduction

1.1 Background

There are two types of practical methods that are used to describe the

variety of fluid flow. These are finite control volume analysis and differen-

tial analysis of fluid flow. Distinction is made between the two analyses as

done by Morison(1982)[1] as follows: A finite control and volume analysis

of the behaviour of the contents to a finite region in space is called control

volume. The concept of a control volume and system occupying the same

region of space at an instant is a key element in the derivation of the

control volume analysis. The use of pipe bends may introduce increased

cross-sectional flow velocities thus making the flow more non-uniform at

the bend exit and causing flow separation. In fluid mechanics and ther-

modynamics a control volume is a mathematical abstraction employed in

the process of creating mathematical models of physical processes. In an

inertial frame of reference it is a volume fixed in space or moving with

a constant velocity through which the fluid (gas or liquid) flows. The

surface enclosing the control volume is referred to as the control surface

Ito (1966)[2]. At a steady state, a control volume can be thought of as an

arbitrary volume in which the mass of the fluid remains constant. Con-
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sider a bug that is moving through a volume where there is some scalar

quantity, for example pressure that varies with time and position.

P = P (t, x, y, z) (1.1)

If the bug during the time interval from t to t + dt moves from (x, y, z)

to (x + dx, y + dy, z + dz), then the bug experiences a change dP in the

scalar value given by

dP =
∂P

∂t
dt+

∂P

∂x
dx+

∂P

∂y
dy +

∂P

∂z
dz (1.2)

If the bug is moving with velocity V then the change in position

V dt = Vxdt+ Vydt+ Vzdt (1.3)

and we may write

dP = (
∂P

∂t
+ V.∇P )dt (1.4)

where ∇P is the gradient of the scalar field P. If the bug is just a fluid

particle moving with the fluid’s velocity field, the same formula applies,

but now the velocity vector is that of the fluid. Friction loss is the loss of

energy or ”head” that occurs in the pipe flow due to viscous effects gener-

ated by the surface of the pipe, Dimmock (2010)[4]. Friction is considered

as a ”major loss” which includes energy lost due to obstructions.
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1.2 Differential Analysis

The need to know how the velocity varies over the cross section of a pipe,

or how the pressure and shear stress vary along the surface of an air plane

wing. The development of a relationship that apply at a point, or at least

in a very small region (infinitesimal volume) within a given flow field is

necessary. Involvement of infinitesimal control volume instead of finite

control volume in differential analysis gives the governing equations as

differential equations. Although differential analysis has the potential for

supplying very detailed information about flow fields, the information is

not easily extracted. Nevertheless, this approach provides a fundamental

basis for the study of fluid flow. We also have some exact solutions for

laminar flow that can be obtained which have proved useful. For certain

types of flows, the flow field can be conceptually divided into two regions

• A very thin region near the boundaries of the system in which vis-

cous effects are important

• A region away from the boundaries in which the flow is essentially

inviscid

Flow fields in which the shearing stresses are zero are said to be inviscid,

non-viscous, or frictionless for fluids in which there are no shearing stresses

the normal stress at a point is independent of direction for an inviscid

flow in which all the shearing stresses are zero and the normal stresses

are replaced by −P ,

−P = σxx = σyy = σzz (1.5)
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The Navier-Stokes equations reduce to Euler’s equation.

ρg−∇P = ρ(
∂P

∂t
+ (V.∇)V) (1.6)

In Cartesian co-ordinates we have:

ρgx −
∂P

∂x
= ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
(1.7)

ρgy −
∂P

∂y
= ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
(1.8)

ρgz −
∂P

∂x
= ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
(1.9)

Starting from Euler’s equation, Bernoulli equations can be derived. For

inviscid, incompressible fluids,

P

ρ
+

v2

2
+ gz = constant (1.10)

Thus for any two points (1) and (2) along a streamline the equation

becomes

P1

γ
+

v21
2g

+ z1 =
P2

γ
+

v22
2g

+ z2 (1.11)

where γ = ρg, P is pressure ,V is velocity z is pipe elevation above some

datum and r is diameter relation. Equation (1.11) is restricted to inviscid,

steady, incompressible flow, flowing along a streamline, where P is the

pressure, v the fluid velocity, z is the pipe elevation above some datum

4



and γ is the diameter relation. , , ,

1.2.1 The Velocity Potential

For an irrotational flow:

∇×V = (
∂w

∂y
− ∂v

∂z
)i− (

∂w

∂x
− ∂u

∂z
)j+ (

∂v

∂x
− ∂u

∂y
)k = 0 (1.12)

So that ∂w/∂y = ∂v/∂z,∂w/∂x = ∂u/∂z, ∂v/∂z = ∂u/∂y This means

that;

V = ∇ϕ (1.13)

where ϕ is the velocity potential . The velocity potential is a consequence

of the irrotationality of the flow field, whereas the stream function is

a consequence of conservation of mass. The velocity potential can be

defined for a general three-dimensional flow, whereas the stream function

is restricted to two dimensional flows. For an incompressible flow we know

from the conservation of mass:

∇.V = 0 (1.14)

and therefore for incompressible flow, it follows that

∇2ϕ = 0 (1.15)
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The velocity potential satisfies the Laplace equation. In Cartesian co-

ordinates;

∂2ϕ

∂x2
+

∂2ϕ

∂y2
+

∂2ϕ

∂z2
= 0 (1.16)

and in cylindrical coordinates

1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
+

∂2ϕ

∂z2
= 0 (1.17)

1.3 Viscous flow in Pipes

Using the one-dimensional Bernoulli equation for viscous flow, the velocity

of the fluid is taken into account and the fatal energy head

H =
v2

2g
+

P

ρg
+ z (1.18)

is no longer constant along the pipe. In the direction of flow, due to

friction caused by viscosity of the fluid we have

v21
2g

+
P1

ρg
+ z1 >

v22
2g

+
P2

ρg
+ z2 (1.19)

So to restore the equality we must add some scalar quantity to the right

side of the inequality.

v21
2g

+
P1

ρg
+ z1 +

v22
2g

=
P2

ρg
+ z2 +△hls (1.20)

The scalar △hls is called the hydraulic loss. The hydraulic loss between

two different cross sections along the pipe is equal to the difference of
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total energy for this cross section.

△hls = H1 −H2 (1.21)

Always H1 > H2. In horizontal pipe when z1 = z2 and the diameter of

pipe is constant v1 = v2 hydraulic loss is equal to the head of pressure

drop or head loss.

△hls =
P1 − P2

ρg
(1.22)

The head loss hL is expressed by Darcy-Weisbach equation

hL = f
L

D

ν2

2g
(1.23)

For horizontal pipe with constant diameter. This loss may be measured

by height of the pressure drop ∆P/ρg = h. In general with v1 = v2 but

z1 ̸= z2 the head loss is given by

P1 − P2

ρg
= (z1 − z2) + f

L

D

ν2

2g
(1.24)

Part of the pressure change is due to elevation change and and part is due

to head loss associated with frictional effects, which are given in terms

of the friction factor f that depends on Reynolds number Re and relat-

ive roughness f = ϕ(Reϵ/D). It is not easy to determine the frictional

dependence of the friction factor on the Reynolds number and relative

roughness (ϵ/D). Much of this information is a result of experiments

conducted by Nikuradse(1933)[3] and amplified by many other since then.

Nikuradse( 1933)[3], used artificially roughened pipes produced by gluing

7



sand grains of known size onto pipe walls to produce pipes with sand

paper-type surfaces. In commercially available pipes the roughness is not

as uniform and well defined as in the artificially roughness pipes used by

Nikuradse (1933)[3]. However, it is possible to obtain a measure of the

effective relative roughness of typical pipes and thus to obtain the friction

factor.

1.4 Friction Loss

Most pipe systems consist of considerably more than straight pipes. The

additional components add to the overall head loss of the system, such

losses are generally termed minor losses with the apparent implication

being that the majority of the system loss is associated with the friction

in the straight portions of the pipes, the major losses or local losses. In

many cases this is true. And the minor losses are greater than the major

losses. The minor losses may be raised by

1. Pipe entrance or exit

2. Sudden expansion or contraction

3. Bends, elbows, tees and other fittings

4. Valves, open or partially closed

5. Gradual expansion or contractions

The major losses may not be so minor for example a partially closed

valve can cause a greater pressure drop than a long pipe. The losses

8



are commonly measured experimentally. The data especially for valves

are some what dependent upon the particular manufacturers design. The

most common method used to determine the head losses or pressure drop.

hL =
∆P

ρg
= KL

ν2

2g
(1.25)

whereKL means local loss coefficient. Although KL is dimensionless, it is

not cor-related in the literature with the Reynolds number and roughness

ratio but rather simply with the raw size of the pipe. Most data are

reported for turbulent flow conditions.

Studies carried out early showed that secondary vortices in the stream

wise direction downstream of the bend Harlock (1955)[5], the so-called

Dean motions, Mohanty (1994)[6], become turbulent. The strength of

the secondary motions is often described using the Dean number, which

is the ratio of the square root of the product of the inertia and centrifugal

forces to the viscous force.

Dϵ =

(√
D

2Rc

)
V D

ν
(1.26)

where D is the pipe diameter, Rc is the radius of curvature, V is the

area-averaged or bulk velocity, and ν is the fluid kinematic viscosity. In

the present work, De is equal to the Reynolds number.

ReD =
V

Dν
(1.27)

The flow at small Dean numbers has been studied widely because of its

appearance in, for example, arterial flows Boiron et al (1957)[7], but at
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high Dean numbers corresponding to turbulent flow where most industrial

applications are found there is only scattered evidence available. Studies

of the secondary flow in pipes with a 900 bend were conducted using hot

wire anemometry by Sudo et al(1998)[8] for Reynolds numbers of up to

6104, and their measurements revealed secondary flows that persisted 10

diameters downstream of the bend. However, in some cases, a high de-

gree of unsteadiness is observed, as in the study by Tunstall and Harvey

(1968)[9] at a high Reynolds number of about 1.8105, which may indicate

the presence of a single large streamwise vortex that is switching sign.

Our purpose is to provide high resolution velocity maps of the primary

and secondary flow upstream and downstream of a 900 bend, with Rc/R

(where Rc is the radius of the bend and R is the radius of the pipe).

The measurements were obtained using stereoscopic particle image ve-

locimetry (spiv) at Reynolds numbers up to 105 . One of the particular

areas of interest is the behaviour of the turbulent structure, specifically

the very large scale motions (VLSM), where we build on the recent work of

Helstrom et al (2011)[10] who investigated the three dimensional charac-

ter of the VLSM in fully-developed pipe flow (that is in the flow upstream

of the bend).

1.5 Statement of the Problem

Most pipes flow systems have straight pipes which incur frictional losses.

Components like valve, bends, elbows and tees contribute to the overall

head loss of the flow system. The energy losses arising from the flows

need to be considered in computing friction losses. The lose due to valve

10



and fittings, the loss due to bends and the loss due to the fluid leaving the

pipe system is to be analyzed. The determination and analysis of these

loses require considerations.

1.6 Objectives of the Study

The objectives of this study are

• To identify and discuss analytical methods that can give exact and

reliable solutions in the analysis of flow in pipe system components

particularly at contractions and expansions along horizontal pipes.

• model and discuss minor and major losses in straight pipe flows that

lead to head loss

1.7 Significance of the Study

• This study and results will create awareness to researchers and re-

search organizations to invest more as this will lead to improved

agricultural setups using irrigation

• The study has an academic benefit to universities, research institu-

tions, and industrial processes.
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Chapter 2

Literature Review

In the past, differential calculus studies were restricted to laminar flow and

interpretation of the complex functions such as Navier-Stoke’s equations

that define the general concept of flow motion Morison et al (1982) and the

suitable boundary conditions that simplifies the situation. In his classic

paper Taylor (1953)[11], pointed out that in the longitudinal dispersion

of soluble matter in a moving fluid, the solute is more slowly dispersed

by molecular or turbulent diffusion alone than the dispersion due to the

shear effect caused by the combined effects of convection and lateral dif-

fusion. Aris (1953)[12] subsequently proposed an idea of moment method

in solving the model removing restrictions imposed by Taylor (1953)[11].

Gill and Sankarasubrarian (1970)[13] used elegant α u-time approaches to

study the dispersion of passive solutes in Newtonian fluid flows. Regard-

ing the non-Newtonian fluid flows, Fan and Hwang (1965)[14], calculated

the time asymptotic longitudinal dispersion coefficient in the steady lam-

inar flow of the Ostwald-cle Waele fluid in laminar flow in a tube. Since

axial dispersion is enhanced by larger velocity gradients across the tube

flatter profiles for pseudoplastic fluids which are shear-thinning power law

fluids with power law index N exceeding unity result in a decrease in the

longitudinal dispersion coefficient. Taylor’s initiative approach was also

12



used by Fan andWang (1965)[14], to study the dispersion of solute in flows

of Birmingham plastic fluids. The exact method of analysis of convective

diffusion developed in Helstrom (2011)[10] was extended by Sankarasub-

rarian and Gill (1970)[13] to include the characteristic of non-Newtonian

flows. Results were given for specific case of dispersion of solute in steady

laminar flow of a non-Newtonian power law fluid which shows that the

constant coefficient Taylor dispersion model is inadequate for describing

the average concentration distributions for small values of time or for axial

locations close to the inlet. The friction dependence of the friction factor

on Reynold’s number and relative roughness were done in experiments by

Nikuradse (1933)[3], and has since been amplified by many others. One

difficulty lies in the determination of the roughness of the pipe. Nikur-

adse (1933)[3] used artificially roughened pipes produced by gluing sand

grains of known size onto pipe walls to produce pipe with sand paper-

type surface. Mei (2011)[15] correlated the original data for Nikuradse in

terms of the relative roughness of commercially available pipe materials

consequently a number of authors have attempted to model a number of

inviscid flow and the assumption of smooth channel sides improvement

in analytic techniques based on sound initial condition extension to three

dimensional calculation additional work on laminar flow in various types

of channels for example cracks analysis of pipe boundary functions as well

as experimental validation of these techniques is considered as a landmark

in analysis of flow of this type. Simplification of geometry and bound-

ary condition by employing suitable assumption are usually considered in

any model. However, in experiments and application next to laminar flow

(with low Reynold’s numbers) velocity changes causes considerable forces

13



on the parts of the pipe Ern and Lelievre (2011)[16] who gives a method of

procedure for calculating the magnitude and direction of this force. Prop-

erties of flow at the pipe system components have adopted the streamline

coordinate system in analysis of flow in the pipe. In the application of

fluid analysis theory of work and energy relationship Ern (2011)[16], con-

sidered fluid flow as stream of particles that can be considered for an

analysis independently hence generalizing entire flow. Turbulent flow in

pipe bends is of great practical interest due to the associated pressure

losses and the distortion of the velocity profile. Bends tend to introduce

secondary flows that lead to scour, and non-uniform heat transfer Berger

et al (1983)[17]. Much research has been done in the area of secondary

flows as it is a phenomena related to many fluid problems, including flow

through heat exchangers, industrial management piping systems, scouring

and river meandering. Early studies showed that secondary vortices in the

stream wise direction downstream of the bend had major losses Harlock

(1955)[5], the so-called Dean motions, Monty and Stewert (2007)[18].
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Chapter 3

Methodology

3.1 Mathematical Models for Pipe System Components

In this chapter we consider a number of mathematical models that de-

scribe fluid flow in various pipe configurations and the associated pressure

drops and the figures are produced using MATLAB software.

3.2 Expansion, Contraction and diverging pipe system

We consider the horizontal straight pipe with varying cross-sectional area

as shown in the figure below. The model diagram is as shown in figure

1 below. The letters A-F represent flow areas of the fluid. r and R are

the radii at respective sections and L is the length of the pipe. The pipe

is insulated against heat exchange and consequence heat changes. The

model used in this study analyses head loss or pressure drop in abrupt

expansion and contraction for a diverging pipe system. Fluid enters into

the pipe system of length L at point A with pipe radius r. It then diverges

into a bigger pipe of radius R at point B to D through C and eventually

converges again into same pipe of radius r at point E. The centre of axis is

along the horizontal axis. The fluid here flows into two distinct regions. A

15



11.png

Figure 3.1: A model of a horizontal straight pipe with a varying

cross sectional area

region of abrupt expansion from A to C and a region of abrupt contraction

from C to E.

3.2.1 Abrupt expansion, the diverging case

When the fluid suddenly leaves the smaller pipe and enters the wider part

of the pipe there is a sudden deceleration of the fluid and the fluid being

unable to move in sharp corners, it tears the boundary at the enlargement

so that eddy currents are developed and these eddies dissipate a large

amount of fluid energy and expansion losses occur. Hence from the law
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of conservation of mass

∑
F = ρnQ(V2 − V1) (3.1)

where V1 and V2 are fluid velocities at points 1 and 2 in the pipe. If A1

is the area between A and B and A3 is the area between D and E, then

for incompressible flow

A1V1 = A3V3 = Q (3.2)

If P1 and P2 are the pressures at A1 and A2, then

P1A3 − P3V3 = ρQ(V3 − V1) (3.3)

where ρ, A, and V refers to the fluid density, cross-sectional area of the

pipe and speed of fluid respectively. From the above equations we find

A3
P1 − P3

ρg
=

ρA3V3

ρg
(V3 − V1) (3.4)

P1 − P3

ρg
=

V3

g
(V3 − V1) (3.5)

Applying Bernoulli’s equation to a horizontal streamline along the centreline

of the pipe, and ignoring friction losses between the fluid and the pipe

walls, but including the head loss at the expansion hL, we find

P1

ρg
+

V 2
1

2g
=

P3

ρg
+

V 2
3

2g
+ hL (3.6)
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Thus

hL =
P1 − P3

ρg
+

V 2
1 − V 2

3

2g
(3.7)

and using equations (3.5) and (3.7) we have

hL =
(V1 − V3)

2

2g
(3.8)

The loss is a fraction of the square velocity as in turbulent flow. Exit flow

from a pipe into a large reservoir is similar to a sudden expansion with

V3 = 0. So the expression becomes

hL =
V 2
1

2g
(3.9)

2. Abrupt contraction At the point F in the pipe, the pressure P is

uniform, the equations of continuity, momentum, energy and stagnation

pressure becomes

A1V1 = A3V3 (3.10)

P1A1 = P2A3 − (P0(A1 − A3) = A1V1(V3 − V1) (3.11)

P1

ρg
+

V 2
1

2g
=

P3

ρg
+

V 2
3

2g
+ hL (3.12)
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and

V 2
1

2g
+

P1

ρ
=

P0

ρ
(3.13)

If D1 and D3 denote diameters at A1 and A3 respectively, then simplifying

hL = V1
A1V1/A3

2g
= (1− A1

A3

)2(1− A1

A3

) = 1− D2
1

D2
3

)2
V 2
1

2g
(3.14)

Thus the equation for the theoretical head loss is modified to the form

hL = k
V 2
1

2g
(3.15)

Where k is an experimental value equal to or less than and D is the

diameter of the pipe. From equation (3.9), the head loss between the

points Dand F is

hL =
V0

2g
− V0

Cc

(3.16)

where Cc =
Ac

A3
and Ac is cross-sectional area of vena contract coefficient

of contraction. For flow from a large reservoir through a pipe with square

entry

A3

A1

= 0.k =
1

2
(3.17)

Hence the final equation for calculating head loss arising from abrupt

contraction without any re-entry is given by

hL =
1

2
(1− A3

A1

)
V 2
3

2g
(3.18)
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where k = 1/2. As A1 → ∞ the value of k tends to 0.5 and this cor-

responds to flow from a large reservoir into a sharp edged pipe provided

that the end of the pipe does not protrude into the reservoir. The Table

below depicts the loss coefficient for sudden contraction.

Table 1: Loss coefficient for sudden contractions

A2

A1
0 0.1 0.2 0.3 0.4 0.6 0.8 1.1

k 0.5 0.46 0.43 0.36 0.30 0.18 0.06 0

3.2.2 Forms of Flow Resistance (Head loss due to friction)

One form of resistance to flow is due to the viscosity of the liquid. Vis-

cosity is the amount of work needed to move one ’box’ of liquid against

another ’box’ of liquid. Every liquid has its own value for this resistance

to flow. SAE 30 motor oil has a lower viscosity and flows much easier

than SAE 50 motor oil. The values for water are lower than for the mo-

tor oil. Another characteristic for any liquid is its attraction to a surface.

It attaches itself to a surface and cannot be moved. The liquid in the

’box’ on the very surface of a pipe does not flow or move. It always re-

mains stationary. The liquid in the ’box’ above it has to slide against

it and that requires an amount of energy to overcome friction between

the two ’boxes’. The higher the viscosity of the liquid is; the higher the

resistance to flow; therefore the higher the friction loss. A layer is formed

by this non-moving liquid and reduces the inside diameter of the pipe.

This increases the velocity of the liquid passing through it. The head loss

from friction is related to the velocity energy v2/2g of the liquid squared.
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The liquid is not moving at the pipe wall but has a much higher velocity

at the centre of the pipe.

hL =
v2

2g
(3.19)

The condition of the inside of a pipe also has a great effect on the head

loss of the flow of liquid. The rougher it is; the thicker the layer of

non-moving or slow moving liquid near the pipe wall. This reduces the

inside diameter of the pipe, increasing the velocity of the liquid. With

the increase in velocity comes an increase in friction losses.

3.2.3 Pipe Fittings

Any time a liquid flow changes direction, there is resistance. Since all

liquids have weight, they also have momentum. This means the liquid

will always try to continue moving in the same direction. When the

liquid encounters a change in direction (such as an elbow), its momentum

carries the flow to the outer edge of the fitting because the liquid is trying

to flow around the outer edge of the fitting, the effective area of the fitting

is reduced. The effect is similar to attaching a smaller diameter pipe in

the in the system. The velocity of the liquid increases and the head loss

due to friction increases. Pipe fittings and valves disturb the normal

flow of liquid, causing head loss due to friction. We have two methods

currently to predict the head loss in pipe fittings and valves. They are the

K factor and the Equivalent length of the pipe in linear feet methods. The

fittings such as elbows, tees, strainers, valves, have all been tested and

assigned ”K ” factors based on the head loss measured through them.
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These are normally found in pump handbooks including the hydraulic

Institute Data books. The pipe fittings and valves were tested and values

assigned for the head loss measured through them. Instead of assigning

a factor as in the ”K ” factor method, an ”equivalent length of pipe in

inner feet” valves was assigned. This means that a particular fitting will

have a head loss equal to a given length of straight pipe of the same size.

3.2.4 Turbulent Pipe flow through a 900 bend

We provide high resolution velocity maps of the primary and secondary

flow upstream and downstream of a 900 bend, with Rc/R = 1 (where Rc

is the radius of bend and R is the radius of the pipe). The measurements

were obtained using stereo- scopic particle image velocimetry (SP I V )

at Reynolds numbers up to 105 . One of the particular areas of interest is

the behaviour of the turbulent structure, specifically the very large scale

motions (V LSM ), where we build on the recent work of Helstrom et al

(2011) who investigated the three dimensional character of the V LSM in

fully-developed pipe flow (that is, in the flow upstream of the bend).

3.2.5 Energy Loss

Any time a liquid is compelled to change direction or to change velocity,

there is a change in energy. The energy lost by the liquid is converted to

heat created by friction. Since the amount of liquid exiting a pipe has to

equal the amount entering the pipe, the velocity must be equal. If the

velocity is equal, then the velocity energy (head) must be equal. This

only leaves one place for the energy to come from; pressure energy. The
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measured pressure entering the pipe will be higher than the measured

pressure exiting the pipe.

3.2.6 Friction Loss Tables

In an effort to easily predict the head loss in pipes and fittings, there were

a number of studies made many years ago. These have been published,as

formulas and tables for different size pipes; fittings; and flow ratings. the

most commonly used are ”Darcy, Weisbach” and ”Williams and Hazen”.

They are good predictors of head loss but have some basic differences.

The ”Darcy, Weisbach” tables are based on the head loss in clean pipe.

HL = F × (
L

D
)× (

V 2

2g
) (3.20)

where HL is the total head loss, F is friction factor related to the rough-

ness inside the pipe, L is the length of the pipe, D is diameter of the

pipe, V is average liquid velocity in the pipe, 2g is two times the uni-

versal gravitation constant. The ”Williams and Hazen” tables takes a

different approach. They are based on the head loss in ten-year old pipe.

Their values are adjusted for different pipe age and materials.

HL

100
= 0.2083× (

100

C
)1.85)× (

Q1.85

D4.8665
) (3.21)

where HL is head loss per 100 feet of pipe, C is correction factor to ac-

count for pipe roughness, Q is liquid flow rate in GP M , D is inside pipe

diameter. The tables are for ten-year old steel pipes. Variations of this,

such as new pipe, plastic pipe, cast iron pipe or other types are addressed

23



through the use of correction factors. Ten-year old steel pipe has a ’C’

value of 100 or a multiplier of 1.0 because that is what the tables are

based on. Clean new steel pipe has a ’C’ value above 100 or a multiplier

below 1.0, which translates to lower head loss. Based on testing for ten-

year old, steel pipe, the tables are ’divided by’ the different pipe sizes.

The following Table shows head losses at various rates of flow.

Table 2: Total head losses at various rates of flow

Qkg/s V1m/s V2m/s V 2
1 /2gmm V 2

2 /2gmm Expansion Contraction Bend

(1-2) (3-4) (5-6)

0.554 1.394 0.806 99.0 33.0 25 30 31

0.524 1.318 0.762 88.5 29.5 21 29 30

0.514 1.293 0.747 85.2 28.4 20 21 28

0.462 1.161 0.671 68.8 23.0 18 16 24

0.427 1.074 0.621 58.8 19.6 19 16 21

0.392 0.986 0.570 49.5 16.5 12 12 12

0.329 0.827 0.478 34.9 11.6 9 8 11

The friction head loss is estimated by choosing a suitable value of fric-

tion factor f for fully developed flow along a smooth pipe. The Prandtl

equation

rewritethisequation (3.22)

is used. Typical values derived from this equation are presented in the

table below.

Table 3: Friction factor f for smooth walled pipe
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104 ×Re 1 1.5 2 2.5 3 3.5

103 × f 7.73 6.96 6.48 6.14 5.88 5.67

3.2.7 Factors that affect Head Loss

1. Flow rate When the flow rate (GPM) increases the velocity of the

liquid increases at the same rate. The friction or resistance to flow

(due to viscosity) also increases. The head loss is related to the

square of the velocity so the increase in loss is very quick.

2. Inside diameter of the pipe When the inside diameter is made larger,

the flow area increases and the velocity of the liquid at a given flow

rate is reduced. When the velocity is reduced there is lower head

loss due to friction in the pipe. on the other hand, if the inside

diameter of the pipe is reduced, the flow area reduces the velocity

of the liquid increases and the head loss due to friction increases.

3. Roughness of the pipe wall As the roughness of the inside pipe wall

increases so does the thickness of the slow or non-moving boundary

layer of the liquid. The resulting reduction in flow area increases

the velocity of the liquid and increases the head loss due to friction.

4. Corrosion and Scale deposits Scale deposits and corrosion both in-

crease the roughness of the inside pipe wall. Scale build up has

the added disadvantage of reducing the inside diameter of the pipe.

All these added up to a reduction in flow area, an increase of the

velocity of the liquid and an increase in head loss due to friction.
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5. Viscosity of the liquid The higher the viscosity of the liquid the

higher the friction is from moving the liquid. More energy is re-

quired to move a high viscosity liquid than for a lower viscosity

liquid.

6. Length of the pipe head loss due to friction occurs all along a pipe.

It will be constant for each foot of pipe at a given flow rate.

7. Fittings: Elbows, tees, valves and other fittings are necessary to

a piping system for a pump. It must be remembered that fittings

disrupt the smooth flow of the liquid being pumped. When the

disruption occurs, head loss due to friction occurs. At a given flow

rate the losses for the fittings will be calculated using a factor that

must be multiplied by a velocity head figure, or as the head loss

equivalent to a straight length of the pipe.

8. Straightness of the pipe: Because of momentum, liquid wants to

travel in a straight line. If it is disturbed due to crooked pipe, the

liquid will bounce off the pipe walls and the head loss due to friction

will increase. There is no accurate way to predict the effects since

”crooked” can mean a lot of things.

3.2.8 Energy Equation and Concept of Heads

Assuming there is no shaft work or heat-transfer effects in a pipe-system,

the steady flow energy equation is

z1 +
P1

γ
+ α1 ×

V 2
1

2g
− hf − ΣhL = z2 +

P2

γ
+ α2 ×

V 2
2

2g
(3.23)
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where α1, α2 are kinetic energy correction factors which are dimensionless

V1, V2 are the cross-sectional average fluid velocities at points 1 an 2

respectively. g is acceleration due to gravity P1 and P2 are pressures at

points 1 and 2 respectively z1 and z2 are elevations above the datum at

points 1 and 2 respectively hf is head loss due to boundary shear and hL

are minor losses. The equation applies only for control volumes which are

single stream tubes i.e. Control volumes with only one inflow and one

one outflow and with the inflow rates equal to each other. The head is

defined as the rate at which kinetic and potential energies are transported

by the flow plus the rate at which the fluid does work against the internal

pressure, all divided by the rate at which the weight of the fluid is being

transported by the flow. That is

rewritethisequation (3.24)

Thus P or P = gh where h can be the frictional head loss, the pressure

head, the head from the pump, and P is the rate of doing work (against

shear stresses or pressure) or the power (from the pump) or the rate of

transport of energy (the rate at which kinetic energy is transported by

the fluid when the head is the velocity head). Since h is defined only for

single stream tubes and since h is obtained by dividing P by g, head is

like an intensity in that it is associated with each unit of fluid.

3.2.9 Frictional Head Losses

Frictional head losses are losses due to shear stress on the pipe walls.

The general equation for head loss due to friction is the Darcy-Weisbach
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equation,

hf = f
L

D

V 2

2g
(3.25)

, where f is Darcy-Weisbach friction factor L is length of the pipe, D is

pipe diameter V is cross-sectional average flow velocity. The equation is

valid for pipes of any diameter and for both laminar and turbulent flows.

For laminar flow,

flaminar =
64

Re

(3.26)

where Re is the Reynold’s number defined for pipe flow as

Re =
ρV D

µ
=

V D

ν
(3.27)

Substituting flaminar and Reynold’s number into the Darcy-Weisbach

equation yields

re− writethisequation (3.28)

for turbulent flow, the friction factor is obtained from a moody diagram

or from the Colebrook-White equation given by

rewritethisequation (3.29)

where Ks is the equivalent sand roughness and Ks is the relative rough-

ness. The values of f in the moody diagram and in the Colebrook-White

equation are empirical.
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3.2.10 Falling Head Viscometer

Substituting

rewriteequations3.31− 3.39 (3.30)

into V = Q and solving for Q, the result for a laminar flow can be written

as for a tank and tube shown in figure below, hflaminar=h if the entrance

loss and the velocity head at the downstream end of the tube are negligibly

small. Taking the tank as a control volume, the continuity equation gives

Since the depth of liquid in the tank is h minus a constant (Zb) and

since there is only one outflow, and separating variables, the result can

be written as Integrating with h = h0 at t = 0 gives where measuring h

as a function of time as a liquid drains from the tank and plotting h 0 on

a semi logarithmic graph produces a straight line when there is a laminar

flow in the tube. The slope of the line is f . Determination of f allows m

to be evaluated.

3.2.11 Losses in Pipe Bends

Bends are provided in pipes to change the direction of flow through it. An

additional loss of head, apart from that of due to fluid friction, takes place

in the course of flow through pipe bend. The fluid takes a curved path

while flowing through a pipe bend as shown in figure Whenever a fluid

flows in a curved path, there must be a force acting radially inwards on the

fluid to provide the inward acceleration, known as centripetal acceleration.

This results in an increase in pressure near the outer wall of the bend,
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starting at some point A and rising to a maximum at some point B.

There is also a reduction of pressure near the inner wall giving a minimum

pressure at C and a subsequent rise from C to D. Therefore between A and

B and between C and D the fluid experiences an adverse pressure gradient

(the pressure increases in the direction of flow). Fluid particles in this

region, because of their close proximity to the wall have low velocities

and cannot overcome the adverse pressure gradient and this leads to a

separation of flow from the boundary and consequent losses of energy in

generating local eddies. Losses also take place due to a secondary flow in

the radial plane of the pipe because of a change in pressure in the radial

depth of the pipe. This flow in conjunction with the main flow, produces

a typical spiral motion of the fluid which persists even for a down stream

distance of fifty times the pipe diameter from the central plane of the

bend. This spiral motion of the fluid increase the local flow velocity and

the velocity gradient at the pipe wall, and therefore results in a greater

frictional loss of the head than that which occurs for the same rate of flow

in a straight pipe of the same length and diameter. The additional loss of

head (apart from that due to usual friction) in flow through pipe bends is

known as bend loss and is usually expressed as a fraction of the velocity

head as KV 2/2g . where V is the average velocity of flow through the

pipe. The value of K depends on the total length of the bend and the ratio

of radius of curvature of the bend and pipe diameter R/D. The radius

of curvature R is usually taken as the radius of curvature of the centre

line of the bend. The factor K varies slightly with Reynold’s number Re

in the typical range of Re encountered, in practice, but increases with

surface roughness.
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Chapter 4

Numerical Computation

4.1 Numerical Computations

In this chapter we analyze and present graphical solutions of the mod-

els discussed in chapter three. The figures are produced by MATLAB

software.

4.1.1 Sudden expansion

The graph for sudden expansion is given in the figure below from equation

(2.10) where kL is the head loss.

4.1.2 Sudden Contraction

The graph for sudden contraction is given in the figure below from equa-

tion (2.19)
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41.png

Figure 4.1: sudden expansion

4.1.3 Scaled Energy Content

The figure below shows the scaled energy content using velocity vectors.

kL = (1− A2

A1

)2 (4.1)

4.1.4 Auto-correlation of Tangential Velocity

The figure below shows the auto-correlation of the tangential velocity,

taken in the center of one of the cells separated by the symmetry line. It

shows a highly oscillating trend and by choosing a velocity pair with a

temporal shift corresponding to either a negative or positive correlation,
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42.png

Figure 4.2: sudden contraction

we can visualize the corresponding flow structure.

4.1.5 Head losses in pipes

4.1.6 Head loss against pipe length from equation (2.28)

4.1.7 Head loss against velocity from equation (2.28)

4.1.8 Head loss due to bend in pipe
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Figure 4.3: Energy content
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44.png

Figure 4.4: Auto-correlation of tangential velocity
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45.png

Figure 4.5: Head Loss in pipes
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46.png

Figure 4.6: Head Loss against pipe length
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47.png

Figure 4.7: Head Loss against velocity
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48.png

Figure 4.8: Head Loss in pipe bends against velocity
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

In pipe flow, the head loss term kL gradually decreases with the ratio

of minimum to maximum areas of the pipe components used as seen in

figure 2 and figure 3 for sudden expansion and sudden contraction. We

have a slight ratio difference between maximum and minimum areas of

the pipe systems used. The energy flow structure of the fluid in the pipe

also decreases with distance. The head loss in pipe systems increases with

the speed of the flow as shown if figure 4. the higher the head loss, the

higher the speed. Figure 5 also shows that the head loss hL increases

with increasing length of the pipe. The head loss to bends in pipes have

gradual increasing speed when they are compared as seen in figure 6.

In this work, we developed and analyzed models for head loss in abrupt

expansion, contraction, friction, bends and pipe fittings. We modified

and simplified fluid flow models using general fluid mechanics concepts.

5.2 Recommendations

1. We recommend comprehensive research in fluid flow so as to make

the flow in pipe system more efficient
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2. The government and research institutions should find more research-

ers in this field of study.
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