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ABSTRACT 

Properties of free and interacting systems of bosons and fermions have been studied 

theoretically using canonical transformation. In the last few years (1995 to be exact), 

condensates have been obtained practically in the laboratories for a mixture of bosons 

and fermions, where optical lattice system is created to trap the mixture and study its 

properties at very low temperature. Theoretical studies on the properties of such a 

mixture were undertaken in this work, where a canonical transformation was developed 

in terms of canonical operators for bosons and fermions. The Hamiltonian H, for the 

mixture of interacting bosons and fermions was constituted assuming the possible 

interactions that can exist in the mixture such as boson-boson and boson-fermion 

interactions. However, the other possible interaction between fermion-fermion is 

disallowed by the Pauli’s principle. The scattering lengths between boson-boson (𝛼𝐵𝐵) 

and between boson-fermion (𝛼𝐵𝐹) give a measure of interaction strength between the 

interacting boson-boson and boson-fermion respectively. The values of 𝛼𝐵𝐵 and 𝛼𝐵𝐹 vary 

with the types of bosons and fermions in the mixture and can also be changed by the 

method of Feshbach resonance. In this thesis, the values of quasi-particle energy of the k
th

 

state (𝐸𝑘) were calculated for different values of 𝛼𝐵𝐵 and 𝛼𝐵𝐹 to determine their values 

for different mixtures. For 𝑅37
87 𝑏 + 𝐾19

40  mixture with 𝛼𝐵𝐹  of 150 × 10−8 𝑐𝑚,  162 ×

10−8 𝑐𝑚, 300 × 10−8 𝑐𝑚, and −209 × 10−8 𝑐𝑚, the corresponding calculated values of 

𝐸𝑘 were 1.237 × 10−12 𝑒𝑟𝑔𝑠, 1.337 × 10−12 𝑒𝑟𝑔𝑠, 2.475 × 10−12 𝑒𝑟𝑔𝑠, and −1.103 ×

10−12 𝑒𝑟𝑔𝑠. Similarly, for 𝐿𝑖 + 𝐿𝑖3
7

3
6  mixture with 𝛼𝐵𝐹  of 0.2158 × 10−8 𝑐𝑚 had 𝐸𝑘  of 

5.227 × 10−17 𝑒𝑟𝑔𝑠, while for 𝑁𝑎 + 𝐿𝑖3
6

11
23  mixture with 𝛼𝐵𝐹  of −1.45 × 10−8 𝑐𝑚  had 

𝐸𝑘  of −1.22 × 10−21 𝑒𝑟𝑔𝑠 . The negative values of 𝐸𝑘  mean that the interaction is 

attractive, where interacting species overlap, whereas positive values of 𝐸𝑘 mean that the 

interaction is repulsive, where the overlap of interacting species reduces.   
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the study  

The field of ultra-cold atomic physics has become sufficiently correlated with condensed 

matter physics in the last few decades (Bloch et al., 2008; Georges, 2007). This 

combination was made possible by a series of discoveries in cooling methods in the 

nineties, and this allowed experimentalists to bring a system of large number of atoms 

into the quantum regime. Some early successes were the observation of Bose- Einstein 

Condensation (BEC) of Rb87

37  (Anderson, et al., 1995), degenerate gas of Fermi atoms of 

K40

19  (DeMarco et. al., 1999) and the BEC of boson Na23

11 (Davis et al., 1995). Research 

was then extended to Fermi degeneracy and boson–fermion quantum degenerate 

mixtures, especially the study of boson-fermion quantum degenerate mixture of LiLi 7

3

6

3   

(Schreck et al., 2001), NaLi 23

11

6

3   (Hadzibabic et al., 2002) and RbK 87

37

40

19   (Modugno et 

al., 2002). The simultaneous superfluidity of a boson-fermion mixture was studied at 

unitarity (scattering length a ) and observed in 2014 (Delehaye, 2016).  

1.2 Bose Einstein Condensation (BEC) 

An Indian physicist Satyendra Nath Bose studied the statistical Mechanics of different 

types of particles and developed the Idea of quantum statistical mechanics (Einstein, 

1925). Based on the ideas of Bose, Albert Einstein predicted the condensation of bosonic 

gases, and this called Bose- Einstein -condensation (BEC). The fundamental idea of BEC 
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is that below a certain temperature, called the critical temperature or transition 

temperature, (Khanna, 1986), the lowest energy state (also called the Zero-momentum-

state; ZMS) get macroscopically occupied (Khanna and Mehrotra, 1975; Isaac, et. al., 

1980). As the temperature of the assembly is decreased, the deBroglie wavelength 

increases since it varies as . At the critical temperature, , or below, it becomes 

comparable to the average inter particle separation. At this temperature, the wave 

functions of the particles get smeared out so that there is sufficient overlap of the wave 

functions and a BEC is formed. Particles in the assembly must have some inter-particle 

interaction and any acceptable BEC theory must take this into account, whereas the 

Einstein prediction applicable to non-interacting particles (atoms) only. 

Since 1980, the BEC of dilute gases has been studied experimentally. The first series of 

experiments were done with Rubidium (Anderson, et. al., 1995, Bradley, et al., 1997), 

Sodium (Davis, et. al., 1995) and Lithium vapours (Schreck, et. al., 2001). Laser cooling 

techniques were developed to obtain BEC in dilute alkali atomic gases (Foot, et. 

al., 1991). In the magneto-optical trap (MOT), the gas is compressed and cooled to 

micro-Kelvin temperatures using laser cooling techniques. It was found that at a critical 

phase space density, BEC occurs. In such a condensate come, a macroscopic number of 

atoms, roughly of order of , collectively occupy the lowest energy state or ZMS 

(Kerson and Yang 1957). 
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1.3 Boson-Fermion Mixture 

Liquid  He4

2   (Helium), which is a boson, was cooled below its critical temperature at 

about 5.2 K, and on further cooling it was found that it condenses at about 4.2 K. 

Kamerlingh Onnes first liquified Helium He4

2  in 1908 (Lee et al., 1957). Further cooling 

to about KTC 2.2   (now this temperature is 2.176 K), he noted that the density becomes 

maximum at this temperature, and then it slightly decreases on further decrease of 

temperature. This was treated as a phase transition and the liquid helium was named as 

He-4 with very large conductivity. This phase was named as superfluid phase, and was 

considered as something similar to BEC in the Ideal Bose gas. By treating the system as 

an assembly of interacting bosons, a number of theories were proposed from time to time 

(Khanna, 1969) to explain the superfluid behavior of helium  . Later the experimental 

observation of BEC in dilute atomic vapour of 4He were done and observed. 

(Anderson et al., 1995). As the experimental techniques developed new methods for 

observing BEC, new techniques were developed for studying the properties of mixtures 

of boson and fermions, such as Na23

11 - K40

19  (Taylor, et. al., 2013), Na23

11 - Li6

3  (Cheng, et. 

al., 2010) and Rb87

37 - K40

19  (Deh, et. al., 2021). To study their low temperature behavior, 

they were cooled to quantum degeneracy temperature (Jee, et. al., 2012; Cornell and 

Wieman, 2002a; Dalfovo, et. al., 1999). These mixtures were quite stable close to 

Feshbach resonance of about 100 ms for Na23

11 - K40

19 (Taylor, et. al., 2013), and this time is 

enough to conduct experimental studies of the involved many-body physics, particularly 

to understand the properties of Bose-Fermi mixture as a function of interaction between 
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bosons and between fermions at temperatures 0T K. The interaction between fermion 

is not allowed due to Pauli principle. 

Studies have also shown that the mixtures of Bosons and Fermions could collapse when 

the inter particle interaction between bosons and fermions is attractive. Whereas when the 

interaction is repulsive, it could lead to a large variety of stable density configurations. 

(Pethik and Smith, 2002). 

1.4 Statement of the Problem 

It is now an established fact that BEC of the trapped ultracold atomic gases can be 

observed experimentally, and this includes pure boson gases, pure fermion gases, and a 

mixture of boson and fermion gases (Lee, et. al., 2006; Landau, 1933 and Macridui, et. 

al., 2018). There are a number of heteronuclear combinations of molecules that have been 

studied experimental, but theoretical studies of such systems have not been fully 

exhausted. A mixture of bosons and fermions trapped at very low temperature is studied 

theoretically to understand its properties. The parameters involved are the boson-boson 

scattering length ( ), the boson-fermion scattering length ( ) and the oscillator 

length of the trapping potential. A model of Hamiltonian is developed for a mixture of 

bosons and fermions and diagonalized by canonical transformation to obtain the quasi-

particle excitation spectrum energy . The dependence of  on various parameters was 

studied to understand the behavior of the system as the parameters are changed. 
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1.5 Objectives 

1.5.1 General Objective 

The general objective of this research was to establish the behavior of a mixture of 

bosons and fermions at cryogenic temperatures. 

1.5.2 Specific objectives 

The specific objectives were: 

i. To derive a canonical transformation that can diagonalize a model Hamiltonian 

for a boson -fermion mixture. 

ii. To apply the derived canonical transformation to the model Hamiltonian and 

calculate the quasi-particle excitation spectrum energy, , using diagonalized 

Hamiltonian. 

1.6 Justification of the study 

The study of interacting boson -fermion mixtures at very low temperatures may at some 

stage later be of great importance in solving and understanding some of the present 

unsolved problems in contemporary physics. In solid state physics or in real solid-state 

materials, how the impurities influence quantum phases and phase transitions is not 

clearly understood. The many-body quantum phase transition still needs to be well 

understood.  For instance, high-temperature superconductivity is observed in materials 

that are purposely doped with some impurity atoms, but their exact significance in the 
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mechanism that may be responsible for superconductivity is still not settled (Matus and 

Bavea, 2017). Now in this case the charge carriers are electrons that are fermions, and if 

the impurities are bosons, then the whole system will be an assembly of interacting 

boson-fermion mixture. The theory developed in this thesis could as well be used in 

future to study the problem of still unsolved high-temperature superconductivity. The 

crux of the problem is to write the model Hamiltonian. 

Another problem of the interacting boson-fermion system is known as the polaron 

problem (Pitaevskii and Saudro, 2003). The polaron is a bound state between an electron 

and its induced crystal lattice deformation which is called a phonon. Polaron is also 

called a self-trapped electron; it is assumed to be trapped in the harmonic potential of the 

lattice. The quanta of the harmonic potential are bosons. Hence an electron dressed by 

phonons (polaron) is an example of interacting boson-fermion system. The theory 

developed in this thesis could as well be used to study the polaron problem (Pethick and 

Smith, 2002). 

A real boson can under some physical process turn into fermions. This is what exactly 

happens in pair production when a photon (which is a real boson) turns into an electron 

and a positron which are fermions. Thus, we may have an assembly that is an interacting 

mixture of bosons and fermions (Molmer, 1998). This problem and some other systems 

that could be treated as interacting boson-fermion mixtures could be studied by the theory 

developed in this thesis.   

There is more interest in low temperature physics hence this study will contribute to the 

growing knowledge and literature in this field of research. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction 

In this chapter, using the principles of thermodynamics, the characteristics of trapped 

boson-fermion are discussed keeping in mind that the bosons and fermions may be 

interacting. However, the concept will be valid for a non-interacting system of particles. 

For fermions, S-wave interactions are not allowed by Pauli principle because of their half 

spins. In single-component assembly of ultra-cold fermions and the higher partial wave 

scattering interaction is energetically not allowed. Statistical thermodynamic behavior 

can be obtained experimentally for a free Fermi-gas. A similar non-interacting 

approximation can be obtained for bosons also. The thermodynamics of critical 

temperature for a weakly interacting Bose gas can also be studied, and such studies will 

lead to phenomena of condensation in dilute systems at very low temperature. 

2.2 Bosons and Fermions  

Scientists have been busy studying the stability conditions of interacting mixtures of 

bosons and fermions, both experimentally and theoretically. The interactions between 

bosons and fermions could be both repulsive and attractive, and using Feshbach 

resonance method, the scattering length can be changed from repulsive (scattering length 

positive) to attractive when the scattering length becomes negative, and vice -versa. The 

mixture is trapped harmonically since laser beams are used to trap them. (Roth, 2002 and 

Roth, et. al., 2003). 
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2.3 Statistical Mechanics of Gases 

The thermodynamic relations of interest to both theory and experiment are those that will 

display the occupation of single-particle states and symmetrization characteristics of 

bosons and fermions. The particle distribution  nf   is given by (Khanna and Mehrotra, 

1975),    

ae
f

n
n




 


1

1
)(        (2.1) 

where 
 e  is the fugacity, a parameter which is very often used instead of the 

chemical potential ;
kT

1   is a measure of temperature of the assembly. To get the 

occupation number of the system, Maxwell-Boltzmann, Bose-Einstein and Fermi Dirac 

statistics, the quantity '' a  in equation (2.1) has numerical values given as:  

















StatisticsDiracFermi

statisticsEisteinBose

statisticsBoltzmannMaxwell

a

1

1

0

   (2.2) 

Due to Pauli exclusion principle, occupation number of a single-particle state for 

fermions in the Fermi Dirac Statistics is only one. 

For bosons, since 1a , the denominator can be zero, and hence occupation number f  

can become infinity, and this is BEC. 

The thermodynamic relationships can be introduced which are relevant for harmonically 

trapped gases, where as in the simplest case of the homogeneous gas, it is a simple 
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relation. Generally, the three dimensional (3D) harmonic oscillator potential has the 

form: 

)(
2

1
)( 2

3

2

3

2

2

2

2

2

1

2

1 xmxmxmrV  


     
(2.3)  

The thermodynamic properties can be calculated by transforming from discrete 

energy level scheme to continuous energy level scheme. However, the ground state 

for an assembly of bosons is to be excluded from integration. 

As a function of energy , the density of state is written as (Roth, 2002 and Roth and 

Feldruieier, 2003).  

3

2

)(2
)(







g

                                                    

(2.4)  

In the case of bosons, the ground state can have very large number of particles, i.e., it 

can be occupied macroscopically, whereas in the case of fermions in the ground state, 

each state can have only one particle due to Pauli principle. 

The number of particles in the excited state, exN can be calculated by writing,  





0

)()(  dgfNex        (2.5) 

Substituting for  g  from Eq. (2.4) in Eq. (2.5), we can calculate the number of 

particles exN as, 

)(3

3




aLi
Tk

aN b
ex 










       

         (2.6) 



 

 

10 

 where n is a positive integer from Eq. (2.6) is a class of hypergeometric function with 

characteristics such that, 

     nn fLi 
       

(2.7) 

A plot of )(f against FE  is shown in Fig. 2.1  

 

 

 

 

 

Figure 2.1: Zero-temperature Fermi Distribution (Roth, 2002 and Roth and Feldruieier, 

H, 2003).  

Therefore, )(nLi  in Eq. (2.7) is then given as,  

             (2.8) 

and  ng is the Bose-Einstein function and can be written as a series, i.e.,   

       (2.9) 

 In order to get the value of exN in Eq. (2.6) the value of exN , can be evaluated 

(Roth, 2002 and Roth and Feldruieier, 2003).  using the following integral:  
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)()(
1

0

1

)1(













nx

n

Lindx
e

x

     

(2.10)  

2.3 Fermi Energy in Fermi -Dirac Statistics 

For Fermi-Dirac case, 1a  from Eq. (2.2) and single-state occupation is one only due 

to Pauli-principle such that: 

  
1

1






kTe

f




       

(2.11) 

At very low temperature,T ,  is close to Zero, or    and hence  f becomes 0 

or 1 on integrating Eq. (2.5) yields, 

   









F

F

Efor

Efor
f






0

1
)(

      

(2.12) 

Therefore, 

 
 



0 0

3

3

)(6
)()()(

FE

FE
dgdgfN





    

(2.13) 

From Eq. (2.13), we can write, 

3
1

)6( NEF         (2.14) 

And the Fermi temperature FT is given by, 

   

 3

1

6N
k

T
B

F


                          (2.15) 

since FBF TkE  . 
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If in trap the number of fermions 610N (Khanna, Das, and Sinha (1969), and 

,502 Hz  then KTF 26.0 . Eliminating particle numbers in Eq. (2.6) gives the 

following results of thermodynamic importance for an assembly of trapped fermions. 

33
)/(6

1
)(

FTT
Li




       

(2.16) 

2.4 Theory of Bose-Einstein condensation 

In the case of bosons for KT 0 , the excited states can accommodate  particles 

where, 

)1(3g
Tk

N b
ex 











       (2.17)  

The remaining particles will be in the ground state such that,  

exNNN  0           
(2.18)  

Where 0N  equals to the number of the particles in the ground state or ZMS, and this 

number is very large such that NN 0 . This phenomenon of macroscopic occupation of 

the ground state is known as Bose-Einstein condensation Khanna. (1969). The 

temperature of condensation can be obtained from Eq. (2.17) such that: 

 

3

1

3 1 











g

N

k
T

B

C



  

     (2.19) 

For the trap with  atoms (Khanna, Das,  and Sinha, 1969) and nKTHz C 226,50  . 

As a result of the interactions among particles, there will be small corrections to the 

https://www.sciencedirect.com/science/article/abs/pii/003189147490086X#!
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critical temperature (Roth, 2002).  In the condensed state, an important quantity is the 

condensate fraction n  given by (Roth and Feldruieier, 2002).  

3

0 1 











CT

T

N

N
n

      

(2.20) 

At the temperature , Kn 0 , which means that there are hardly any particles 

in the condensed state or ZMS. The relation between  and is of the form (Roth & 

Burnett, 2003). 

                  (2.21) 

In a typical mixture of ,87

37 Rb boson and ,40

19 K fermion, the number of bosons  is more 

than the number of fermions . Thus, we can conclude from Eq. (2.21) that, in general,  

 .  

2.5 Bose -Einstein condensate (BEC) in a wave form 

BEC refers to a macroscopic occupation of the ground state of a weakly interacting 

assembly of bosons. If 0N is the number of particles in the condensate state and 

represents its microscopic wave function (Khanna, & Phukan  (1972) then, 

    
2

0 )(rN 
       

(2.22) 
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2.6 Interacting mixtures 

So far, the behavior of degenerate bosonic and fermionic gases has been discussed. Now 

the properties of interacting mixtures of bosons and fermions are discussed. When bosons 

and fermions exist simultaneously in a harmonic or optical trap, simultaneous degeneracy 

of the mixture can be achieved, and the interactions between the particles of both the 

gases can fundamentally affect the behavior och waves then analyses for a BEC in 

sinusoidal external potential between bosons and fermion (Pethik and Smith, 2002). A 

lot of work were done theoretically as was documented (Rogel, 2001).   

The behaviour of the mixture of bosons and fermions can be uf the mixture. The 

interacting boson ns represented by scattering length BFa strongly affect the density 

profile of bosonic and fermionic clouds depending upon the strength and sign of  

BFa , whether the interaction is attractive or repulsive, phase separations can occur 

(Modugno, et. al., 2002 mixtures or boson-fermion mixtures in a trap are of great 

importance. Such mixtures can have many phases, and the trapped Bose-fermion 

and were first analyzed, Experiments were done using Blonderstood by writing 

modified system of equations (Minguzzi and Tosi, 2000; Bransde and Joachim, 1989 

and Goldwin, 2002). One of these equations is written as: 

 BFFBBBBB

B

rngrngrV
m









 )~()~()~(

2

2

   

(2.23) 

Where   is the potential for bosons and is the potential for Fermions. The 

second equation is…  
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 
2

3

32

2

3

)]()(max[
6

2
)( rngrV

m
rn BFBFF

F
F






 

    
(2.24) 

Where )(rFn  is the density of fermions and )(rBn
is the density of Bosons. 

The coupling parameters are defined by,  

   BBBBBB mag /2 2         25.2  

  .

2 /2 FBFBFB mag 
       

(2.26) 

Here BBm and FBm  are the reduced masses for boson-boson and fermion-boson interactions 

respectively. The Thomas-Fermi approximation leads to the bosonic and fermionic 

equations such that for )(rBn
  and )(rFn   we get, 

















2

3

32

2

3

)](.)(max[
6

)2(
)(

)]()(.max[
1

)(

rngrVm
m

rn

rVrngm
g

rn

BFBFF
F

F

BFFBB

BB

B











                  (2.27) 

 The particle number BN for bosons and FN for fermions fix the corresponding chemical 

potentials such that, 

  xdxmnN BBB

3

0

,





       (2.28) 





0

3),( xdxmnN FFF


        (2.29) 
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If the mixture of K40

19  and Rb87

37  is trapped magnetically then trapping potential           

( Ospelkaus, et. al., 2006) are 

Rb KV r V r
    

   
                      

(2.30) 

However, the trapped frequency ratio is, 

40/87//  KRbRbK mm      (2.31) 

And coordinates can be rescaled as, 

   iiF
F

i x
m

x .
2

~
,

  
    (2.32) 

In this case, FB VVr 2~ , where  represent the potential energy of the mixture. Thus, 

the coupled Thomas-Fermi problem becomes; 

])(.max[
1

)( 2rrngm
g

rn FFBB

BB

B




    

(2.33) 

  232

32

2
3

)]~(.~max[
6

2
)~( rngrm

m
rn BFBF

F
F 

    
(2.34) 

These values depend on )~~~(~ 2

31

2

2

2

1 xxxr  . In these set of coordinates, Eq. (2.28) 

gives, 














0

22

3

2
3

~)~(~4
)(

12
rdrnr

mm
N B

BB

B 

     

(2.35) 

And Eq. (2.29) gives, 
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












0

22

3

2
3

~)~(~4
)(

12
rdrnr

mm
N F

FF

F 

    

(2.36) 

where the spherical symmetry has been used in the problem in the new set of 

coordinates.  It is to be noted that the above problem is formulated solely in terms 

of potential energy 2r


of the mixture, and the trapping potential enters the 

calculation only through the geometric mean trapping frequency 3
3

21   . The 

fact that in the calculations the mean trapping frequency is used so that in different 

experiments becomes relevant and easy under certain conditions and the 

contemplated values of FF N,  can be written as (DeMarco, et. al., 2001), 

 
223

0

2

3

~)]~(~max[~4
rrngrmrdN BFBF

F

F 





   

(2.37)  

In Eq. (2.37), F is treated as Fermi energy and using the process of iteration results in 

the right-hand side of it is equal to FN . Similarly, the value of BN is written as 

(Ospelkaus, et. al., 2006(a),(b):  

23

0

2

32

3

)]~(~max[~

)(

44
rngrmrd

mg
N FFBB

FFBB

B 
















  

 38.2

 

 The value of the chemical potential B is fixed by solving Eq. (2.38), lead to the 

following possible results, 

I. Bosonic density converges (means finite), and fermionic density is zero at the centre 

of the trap this is a case of phase separation. 

II. Both boson  BN and fermion  FN values can diverge and lead to collapse  

https://scholar.google.com/citations?user=Ut0xhxwAAAAJ&hl=en&oi=sra
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III. Both densities can converge (have finite values) as in the self-consistent field 

approximation. 

IV. By fixing values of  BN ,  FN and  , BFBB aa ,  etc., the above-mentioned phases can 

be realized experimentally by the process of Feshbach resonance. The existence of 

phases will be determined by coupling ratio,   such that, 

BB

FB

g

g


       

(2.39) 

2.7   Non interacting Assembly of Bosons and Fermions 

When there is no interaction between bosons and fermions in an assembly of mixture, 

then ,0FBg and hence 0  in Eq. (2.39).   In such a case, the clouds of bosons and 

fermions move independently of each other. As we switch on interaction slowly, 

the value of   will change and this variation can be used to study the effect of one 

species on the other as   changes. The switching on of interaction will lead to 

change in density profile of bosons and fermions in the limit KT 0 . Such 

changes and the (BEC) are shown in Figure 2.2. 
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Figure 2.2: Thomas Fermi model Display of non-interacting Bose-Fermi mixture 

 (Star, et. al., 2004). 

The particle density of the BEC at the centre of the trap is around 
31410 cm and that 

of Fermionic gas is around 
314106.0  cm (it is diluted). Simultaneously, the spatial 

extension of Fermi cloud is very large compared to the size of BEC condensate. 

The spatial extension of BEC is of order of m8  for boson cloud and that of 

Fermion cloud it is around m23 . 

Changes in interaction between the bosons and fermions represented by variation 

in FBg  affect the density profiles of bosons  Bn and fermions  Fn . This leads to 

changes in the mean field potentials, BFBng  for boson, and FFBng  for fermions. 
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2.8 Attractive Interactions between Bosons and fermions in a trap 

 If the interaction between the bosons and fermions is attractive, say for 4 , the 

density profile for bosons and fermions in the trap is displayed as shown in Figure 2.3 

(Star, et. al., 2004). Up to a distance of about m9 there is sufficient overlap of bosons 

and fermions. This would mean that BFBFFB ngng   (Roth, 2002 and Roth and 

Feldruieier, 2003).  But the fermion cloud is spread out beyond this resulting in phase 

separation. It is clear that the stronger Bose-Fermi attraction greatly affects the density 

profiles Bn and Fn as shown in the Figure 2.3. 

 

Figure 2.3: Mixture of boson and fermion with smaller attractive  

interaction (Star, et. al., 2004). 
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2.9 Role of Repulsive heteronuclear Interactions in the Boson-fermion mixture in 

the trap 

When the heteronuclear interaction between bosons and fermions is weak  4 , The 

fermion density Fn in the centre of trap is large, and the boson density Bn is spread out as 

shown in Figure 2.4. This leads to phase separation. 

                                                                                                                                                                                                                         

 

 

 

 

 

 

Figure2.4: Mixture of Bosons and fermions with slightly repulsive interaction  

in the trap (Star, et. al., 2004). 

2.10 Experimental and Theoretical  information about Boson-Fermion mixtures 

Very impressive results, both experimentally and theoretically, have been obtained 

in the past about the boson-fermion quantum degenerate mixtures trapped by 

optical and magneto-optical trapping methods (Will, 2013; Santos, et. al., 2004). 
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Pauli blocking of collisions was also observed experimentally (Will, 2013). Boson-

Fermion quantum degenerate mixture of the LiLi 7

3

6

3 / , NaLi 23

11

6

3 /  and Rb87

37 / K40

19  

studies have been done. Quantum degenerate fermion mixtures in optical lattice 

potentials (Mathey, et. al., 2004) and also the interacting mixtures of bosons and 

fermions in optical lattice potentials have been studied to see how phase separation 

can occur (Bose, 1924 and Luhmann, et. al., 2009). 

The important parameters governing the Physics of interaction of the boson-

fermion mixtures, are the scattering length  for boson–boson interaction, and 

  boson-fermion scattering lengths. Large values of (a) in the quantum 

degenerate state will correspond to large effective interaction. Component phase 

separation occur for 0a  (repulsive interactions) (Rogel, 2001) and stable mixture 

can be obtained for 0a  (attractive interaction) (Modugno, et. al., 2002). In the 

trap, atomic densities Bn and Fn of the components play an important part in 

determining phase separation and stability of the mixtures. Temperature in the trap 

could be as low as mK2 , and the density of the gases in the mixture could vary 

substantially. They may lie between 39

0 103  cmn   to  313

0 10  cmn  (Khanna, & 

Phukan (1972). Similarly, the scattering length  and will depend on the 

density of the components and the temperature of the trap. They also depend on the 

depth and width of the trapping potential. The values of the scattering lengths BFa

can be changed from positive (repulsive) to negative (attractive) and vice-versa.  
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Total density (mass density) of the mixture is given by   i.e )()( TT FB    

where )(TB the density of bosons is and )(TF  is the density of fermions at any 

temperature (T ).  

2.11. Characteristics of Superfluidity   

The non-zero superfluid mass density (Cramer, 2011) is the defining characteristic 

of super fluids; 

1. Landau criteria for superfluid are neither necessary nor sufficient. 

2. Density )()( TT sn   [Two -Fluid model] where )(Tn is the density of 

normal component with velocity nV ;and )(Ts is the velocity of superfluid 

component with velocity sV . 

3. Mass current nnss VV   . 

4. Entropy current nSV   ( carried by normal fluid only) 

5. Superfluid density and condensate density are different: )(x  = Order 

parameter, 0n = condensate density 
2

 , where  is the wave function of 

the macroscopic ground state.  

Interactions between the particles in the ground state (ZMS) can excite the 

particles into excited finite momentum single particle states. In He4

2 , at KT 0 , 

1/ s and %]10[  of the particles are in condensate (Bruderer, et. al., 2008). In 
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superfluid 00 n  at CTT  . Near T ,  



TTs  , 03.067.0  . According to 

Landau Criteria for superfluidity (Gunter, et. al., 2006), smVcrit /60  for superfluid  

He4

2 . Landau Velocity, critV , for superfluidity means that if the superfluid tends to 

move with a velocity, ,V  greater than CV , superfluidity is destroyed (Cornell and 

Wiemann, 2002b). 

2.12 Landau Criteria for Super fluidity 

 According to the Landau criteria (Buonsante, et. al., 2008), the critical velocity in a 

single component condensate is given by the expression, 

    









k

kE
Vc



)(
min 0

       

(2.40) 

where )(0 kE  is the excitation spectrum in an immovable condensate and k  is the 

wave vector. Eq. (2.40) can be applied to a two-component condensate only in the 

case when both components move with the same velocity. 

The elementary excitation energy of the two components will depend on the 

velocities 1V of one component and 2V of the second component. Since energy is a 

scalar quantity, the total energy of the two-component will be simply the algebraic 

sum of the energies of each component. This is also known as the principle of 

positivity of energies of elementary excitations. However, if we calculate the 

quasi-particle energy )(0 kE of the two component Bose gases in the condensate 

state, then the condition that the velocities 1V and 2V of the two component Bose 
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gases must  be the same can be discarded, and Eq.(2.40) can be used to get the 

Landau’s  critical velocity for a stable superfluid two-component mixture of Bose 

gases. In such a case, the expression )(0 kE will be the quasi-particle energy of two 

component mixture of Bose gases in the superfluid (condensate) state. If 1m  is the 

mass of particle of one component and 2m  is the mass of particle of the second 

component, and 12a is the scattering length for the contact scattering, then the 

scattering potential energy will be 12g , such that, 

 
21

2112

2

12

)(2

mm

mma
g






                         

(2.41) 

The transition temperature CT for Bose -Einstein Condensation is given by  

km

n
TC 2

3
2

2

4

31.3




                (2.42) 

where n Critical particle number density
V

N
 , and N=Total number of particles 

in the volume V. 

The temperature CT
 
is the transition or critical temperature at which the addition of 

more particles leads to BEC or the superfluid state. Since CT  depends on the 

particle number density n , and the mass m  of the particles for a two -component 

state, CT  will be different for each component. For the same value of n , CT  will be 

lower for higher value of m . Thus, if 12 mm  , then 12 CC TT  , and the mixture will 

be superfluid if 2CTT  . However, if  2CTT  , but 1CTT  , then the component with 
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particle mass 1m  will be superfluid, and the component with mass 2m  will not be 

superfluid. This can lead to drag of component with mass 1m  and ultimately 

disappearance of superfluidity of the component with mass 2m .Thus, for two-

component system to be in the superfluid state, 2CTT  . Thus, demixing of the 

superfluid mixture can take place by changing CT . 

Now the quasi-particle energy excitation spectrum for each component maybe 

different and this will mean that the Landau Critical velocity for the superfluidity 

of each component will be different. If, however, we obtain the quasi-particle 

energy )(0 kE
 
of a system of two-component interacting mixture of bosons, we can 

get a unique value for the Landau’s Critical velocity for the superfluidity of the 

mixture. Similar criteria will apply to a superfluid mixture of bosons and fermions. 
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CHAPTER THREE 

THEORETICAL DERIVATIONS 

3.1 Introduction 

There have been a large number of attempts, both theoretical and experimental, to 

study the properties of an interacting mixture of bosons and fermions (Cramer, 

2011; Buonsante, 2008 and Regal, et. al., 2003). Quantum many-body theories have 

been used to study the properties of such systems, especially the role of scattering 

length, the optical potential well depth, the potential well width, and the particle 

number density of bosons and fermions in the interacting mixture. Another aspect 

that has been extensively studied was the role of attractive and repulsive 

interactions on phase separation. 

In most of the theories developed to study the properties of interacting boson-

fermion mixtures in the optical lattices (Cramer, 2011; Gunter, et. al., 2006 and Regal, 

et. al., 2003), a model Hamiltonian is written, and then the energy excitation 

spectrum is obtained in terms of parameters that affect the physical properties of 

the many body system. The existing theories depend on Bogoliubov canonical 

transformation for interacting bosons and fermions to finally obtain the quasi-

particles spectrum. 

To my knowledge, there is as yet no canonical transformation for an assembly of 

interacting bosons and fermions that is defined by the bosons-fermions scattering 

length BFa  . There are, however, canonical transformations for free bosons, free 
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fermions, interacting bosons and interacting fermions (Khanna, 1986; Khanna and 

Mehrotra, 1975). 

There had been successful experimental observation of the (BEC) of the ultracold atomic 

gas (Cubizolles, 2003), and then a progress (Jochim, et. al., 2003) has been made in the 

physics of quantum gases, and this includes mixtures of boson-boson, fermion-fermion 

and boson -fermion gases. Molecular formations have been performed experimentally in 

ultra-cold gases for two fermions K40

19 (Köhl, et. al., 2005; Wynar, 2000; Herbig, et. al., 

2003 and Greiner, et. al., 2002) two bosons ( Rb87

37 )(Mandel, et. al., 2003 and 

Batroni,1990) and boson fermion heteronuclear molecules; Rb87

37 - K40

19 (Star, et. al., 

(2004). Thus, many experimental and theoretical works have been done, for instance, on 

the superfluid-Mott insulator transition in bosons (Jaksch, et. al., 1998; Jack and 

Yamashita, 2003; Roati, et. al., 2004; Fujihara, et. al., 2007 and Miyawaka and Meystre, 

2006) fermionic (Morales, et. al., 2009 and Bogoliubov, 1995) and boson-fermion system 

(Khanna,1969 and Khanna, 2001). 

Many-body quantum calculations based on microscopic model have been done for 

boson-boson, fermion-fermion and boson -fermion mixtures, and calculations 

could include inter-particle interaction, especially atom-molecule and molecule-

molecule ones. Earlier systems of free fermions, free bosons were studied using 

the Bogoliubov canonical transformation (Khanna, 1986; Khanna and Mehrotra, 1975 

and Bogoliubov, 1995). It was used to approximately describe the system in terms of 

elementary excitations or quasi-particles. As a rule, the canonical transform serves 

to define quasi-particles. The canonical transformation is used to diagonalize the 

https://scholar.google.com/citations?user=QX3-GZYAAAAJ&hl=en&oi=sra
https://www.jstage.jst.go.jp/search/global/_search/-char/ja?item=8&word=Yusuke+Fujihara
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actual Hamiltonian for bosons and in the end, we obtain the energy excitation 

spectrum KE  for the quasi-particles. In the case of fermions, however, we obtain 

the value of KE  and also the expression for the energy gap  for the 

superconducting solution. All this exercise is meant for an assembly of pure 

bosons or an assembly of pure fermions of the same atomic structure, i.e, identical 

and indistinguishable particles. 

 There have been many successful experiments to trap and cool bosonic and 

fermionic species that have been reported. Ground state properties of a mixture of 

BN  bosonic and FN  fermionic atoms in an external trapping potential at zero 

temperature have been studied. The atoms are considered as inert interacting 

bosonic or fermionic particles. There could also be interaction between bosons and 

fermions. Since they (particles) are in a trapping potential, the system will be dilute 

mixture of bosons and fermions. One could also study a system with a very large 

number of bosons and fermions. In either case it will be a many-body problem of 

interacting bosons and fermions such that the total number of particles can be 

written as  

FB NNN          (3.1) 

 The Hamiltonian H of a binary boson-fermion mixture can be written as, 

BFFB HHHH         (3.2) 

Where the BH  involves only the bosonic component, FH  describes only the 

fermionic component, and  BFH  describes the interactions between two species. 
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+For a pure boson, or a pure fermion system, the Hamiltonian can be written in 

terms of creation and annihilation operators, then the Bogoliubov canonical 

transformation can be used to diagonalize the Hamiltonian to get the energy 

excitation spectrum . For the Hamiltonian given by Eq. (3.2) which stands for a 

mixture of bosons and fermions, we need a canonical transformation that should be 

applicable to such a mixture, and this canonical transformation is derived in 

section 3.2 (Roth, et. al., 2001). This transformation can be used to transform the model 

Hamiltonian H for a mixture of interacting bosons and fermions, and finally to get the 

quasi-particle energy of the mixture. 

3.2 Canonical Transformation for an interacting mixture of bosons and fermions 

In developing this canonical transformation, the boson creation (


Ba ) and 

annihilation operators ( Ba ) are to be combined with the fermion creation operator (



Fa ) and the fermion annihilation operator  Fa  . The new transformation operators, 

say represented by  will contain  ’s and ’s. The new operators s' , will be used 

to diagonalize the model Hamiltonian (H). The new operators  and the old operators Ba

and Fa  are combined in a transformation keeping in mind the commutation laws for 

boson operators, and the anti-commutation laws for fermion operators. 

First, we consider a mixture of free bosons and free fermions. If ka  and 


ka   are old 

annihilation and creation operators, respectively, for the k
th

 state, k  and 


k   are new 

annihilation and creation operators for the k
th

 state, then for fermions they are related to 

each other by the following transformation, 
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(3.3) 

Where k   refers to the energy of the k
th 

 energy level and   is the value of Fermi 

energy, i.e., F  . 

 Here the old operators sak '  satisfy anti - commutation relations, and it is easy to verify 

from equation Eq. (3.3) that the sk '  also satisfy the anti-commutation relations, and 

hence the transformation given by this equation is a canonical transformation. From Eq. 

(3.3), we can write  
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   (3.4) 

 The canonical transformation in Eq. (3.3) brings us to a new description of the free 

fermion system in terms of quasi- particles of which the creation and annihilation 

operators are


k and k , respectively. The transformation shows that for  k , a quasi-

particle of momentum k in the new description corresponds to an ordinary particle of 

momentum k in the old description. But for  k  , a quasi-particle of momentum k  in 

the new description corresponds to a hole of momentum ( k )  in the old description. 

For free bosons, there is nothing like fermi energy (Khanna,1986 and Khanna, 1969). 

Thus, the new and old operators will be related as, 

kBkB a         (3.5) 



 

 

32 

  kBkB a        (3.6) 

Thus, in a mixture of bosons and fermions, the energy levels below F will be occupied 

by fermions only whereas the energy levels above F  will be occupied by both bosons 

and fermions. This is a direct consequence of Pauli exclusion principle that forces the 

fermions to occupy 'excited' single - particle states, whereas the bosons in a BEC will 

occupy the ZMS and other exited states (Khanna and Mehrotra 1975).  

Energy levels against occupation by both bosons and fermions as shown in the Figure 3.1 

below 

 

Figure 3.1: The occupation of atoms above and below the Fermi surface. 

When the temperatures are very low, most of the fermions will fill the levels below F  , 

but a few may stray to levels above F  as illustrated in Figure 3.1. For bosons, F will be 

treated as the ZMS. Fermions that are locked in the energy levels below F   may play no 

role in determining properties of the mixture of bosons and fermions. Consequently, we 

can write the new operator for a mixture of free bosons and fermions as,  
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kFkBkFkBk aa        (3.7) 

For the transformation in Eq. (3.7) to be canonical, k ’s and ka ’s must satisfy the same  

commutation or anti-commutation laws. Here kBa  is the annihilation operator for bosons 

and will thus satisfy commutation laws, whereas kFa  is the annihilation operator for 

fermions and will thus satisfy anti- commutation laws hence we can write,  

     kFFkFkkFkkFkkF aaaaaa   ,,,,,   (Anti - commutation)  (3.7a) 

  kBBkBkkBkkBkkB aaaaaa   ,,,,,     (Commutation)     (3.7b) 

Now from Eq. (3.7) it can be written that, 











kFkBk

kFkBk

aa

aa





      
(3.8) 

  kkkkkkkk    ,,,,,
    

(3.9) 

Substituting from Eq. (3.7) and Eq. (3.8) in Eq. (3.9) yields, 

 

)()()(2

))(())((,

,,,,,,,,

,,,,,,,,

,,,,,,

kFFkFkkFkFBkBkkFkBFkFkkBkkBkkB

kFFkkBFkkFBkkBBkFkkFBkkFFkkBBkkB

kFkBFkBkFkBkkFkBkkkk

aaaaaaaaaaaaaa

aaaaaaaaaaaaaaaa

aaaaaaaa

















 (3.10)

 

Now if we assume that the product of a boson operator and a fermion operator leads to an 

operator that should obey anti – commutation laws, then for ,kk  , 

1 

kBkFkFkB aaaa        (3.11) 
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This is physically acceptable since if a boson and a fermion came together to form a 

molecule, then the molecule is a fermion. Similarly, the other term in Eq. (3.10) becomes 

1, thus,  

 
)2(2)2(2

)1(211112,









kBkBkB

kBkBkBkBkk

naa

aaaa

   (3.12)

 

 If, however, we assume that the product of a boson operator and a fermion operator leads 

to an operator that should obey commutation laws, then, 

,,,,
kk

kBFkFkkB aaaa  

      (3.13a)
 

Or  

1 

kBkFkFkB aaaa  for ,kk                      (3.13b) 

Corresponding to Eq. (3.13), i can also write, 

1 

kFkBkBkF aaaa
       (3.14)

 

Substituting from Eq. (3.13) and Eq. (3.14) in Eq. (3.10) for ,kk   yields, 

 
)1(2

1)12()12(12,









kBkFkFkBkBkB

kBkFkFkBkBkBkk

aaaaaa

aaaaaa

  (3.15)

 

Equating Eq. (3.12) to Eq. (3.15) becomes,  

2 

kBkFkFkB aaaa
       

(3.16) 

Because of the positive sign between the two terms, it is an anti-commutator. This is the 

commutation law between the old operators for boson and fermion when we have a 
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mixture of free bosons and fermions. The first term in Eq. (3.16) means that in the  k
th

 

level when a boson is destroyed, a fermion is created; and in the second term it means 

that in the k
th

 level when a fermion is destroyed, a boson is created. This leads to 

conservation of bosons and fermions in the k
th

 level, and thereby in the whole assembly. 

From Eq. (3.08) it can be shown that, 









kBkFkBkBkBk

kFkFkFkBkFk

aaaaa

aaaaa





     (3.17)  

which can be added to give, 

4

)()()(









kFkBkk

kBkBkFkFkBkFkFkBkBkFk

nn

aaaaaaaaaa





     

(3.18) 

Similarly, using Eq. (3.11) and similar equations that exist in Eq. (3.10), it can be shown 

that, 

))(()( kFkBkFkBkBkFk aaaaaa    

 Or   

        
)()( kBkFkFkBkFkFkBkBkk aaaaaaaa  

            

     KFkBkk nn 
     

(3.19) 

Using Eq. (3.08), Eq. (3.18) and Eq. (3.19), it can be shown that, 

   kkkBkkkk n  ,)2(2
    

(3.20) 
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Eq. (3.12) and Eq. (3.20) are identically equal. This confirms the correctness of the 

algebraic scheme that we have developed so far. 

Now suppose, 

kFkBkkBkk

kBkFkkFkBkk

aaVaU

aaVaaU













     

(3.21) 

Substituting Eq. (3.15) in Eq. (3.21) yields, 

     




























kBkFkkFkBkkFkBkkFkBkkBkFkkBk

kFkBkkBkkBkFkkFkBkkBkFkkBkkFkBkkFkBkkBkkFkBk

kBkFkkFkBkkFkBkkBkkFkBkkBkkBkFkkFkBk

aaVaaVaaUaaVaaVaU

aaUaUaaVaaVaaVaUaaVaaUaUaaU

aaVaaUaaVaUaaVaUaaVaaU

 

 

















kBkFkBkFk

kFkBkBkFkkkBkFkFkBkkkFkBkFkBk

kBkFkBkFkkFkBkBkk

kFkFkBkkkFkBkFkBkkkkkkk

aaaaV

aaaaVUaaaaVUaaaaU

aaaaVaaaaVU

aaaaVUaaaaU

kF

kB

2

2

2

2, 

   (3.22)

 

If we assume that kBa
 
and 

kFa  anti-commute, and similarly we assume that kFa  and 

kBa    

anticommute then it implies that they obey the following anti-commution law, 

 
  0,

0,









kFkBkBkFkBkF

kBkFkFkBkFkB

aaaaaa

aaaaaa

     

(3.23) 

Now evaluating the term in Eq. (3.22), and using Eq. (3.23) yields,  

  kBkFkBkFkBkFkBkFkFkBkFkB aaaaaaaaaaaa )(
   

(3.24) 

Similarly, the other terms in Eq. (3.22) can be re-written using Eq. (3.23). Using the 

terms like the one obtained in Eq. (3.24), Eq. (3.22) becomes, 
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  kkkkkkkkkk VUVU 2)(2, 22   
   

(3.25) 

Now for the transformation represented by sk

,  to be canonical, it must have 

  22222 )()(2)(21, kkkkkkkkkk VUVUVUVU   

Or 

    222 )(1 kkkk VUVU 
      

(3.26) 

Or 

 1)(2)( 2222  kkkkk VUUVU
     

(3.27)   

2222 )(21)( kkkkk VUVVU 
     

(3.27a) 

For 
2

1
 kk VU  the left and the right-hand side of Eq. (3.26) and Eq. (3.27) are equal. 

Other solutions could be  ;
2

1
,0  kk UV  and 

2

1
,0  kk VU , on using Eq. (3.26) 

and Eq. (3.27), the following values for kU  and kV  are obtained,  

2

1
,0  kk UV

     (3.28)   

2

1
,0  kk VU

         (3.29)          

   
 

From Eqs. (3.28) and (3.29). Equations Eq. (3.21) the old operators in terms of the new 

operators sk

,  can be solved to obtain, 
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)(
)(

1
22

 


 kkkk

kk

kBkF UV
VU

aa 

    (3.30) 

)(
)(

1
22

 


 kkkk

kk

kFkB VU
VU

aa 

    (3.31)

 

From Eq. (3.30) and Eq. (3.31) it can written respectively as: 

)(
)(

1
22 kkkk

kk

kBkF UV
VU

aa  


 

    (3.32)

 

)(
)(

1
22 kkkk

kk

kFkB VU
VU

aa  


 

     (3.33)  

This will make it easy when writing combinations of  a and a’s that are part of the new 

operators  . 

3.3 Quasi-Particle Energy, kE , of a Mixture of Interacting Bosons and Fermions 

In the recent past, mixtures of fermions in optical lattice (Bloch et al., 2008), mixtures of 

bosons in optical lattice Georges, 2007), and mixtures of interacting boson-fermion atoms 

(Anderson, et. al.,1995; DeMarco and Jin, 1999 and Bose, 1924) have been studied 

theoretically and experimentally to obtain stability conditions, and the conditions for 

demixing. In another experimental study, sympathetic cooling of bosonic and fermionic 

lithium gases was attempted to obtain conditions of quantum degeneracy (Schreck et al., 

2001). Properties of a quasi-pure Bose-Einstein Condensate immersed in a fermi sea have 

also been studied (Nygaard, et. al., 1999; Ryder, 1996 and Blassome, et. al.,1995). 
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Zero -temperature phase diagram of a gas mixture composed of bosonic and fermionic 

atoms interacting through a Feshbach resonance have been studied experimentally and 

theoretically. For such systems, phase diagrams showing separate phases were obtained, 

and they showed both first order and second order phase transitions. It was found that 

close to unitarity (when the scattering length ‘a’ becomes infinity, i.e., a ), there is a 

regime in which there is a phase separation among the systems of the mixture (which 

means that the core may be bosons surrounded by the fermions, or the core may be 

fermions and it is surrounded by bosons). This situation is known as phase separation of 

fermions and bosons. It should be understood that in the low temperature limit, the only 

interaction is in the S-channel. In this limit, the fermions do not interact due to Pauli 

exclusion principle. The bosons interact repulsively among themselves such that their 

scattering length ( BBa ); is positive and there may be attractive interaction between bosons 

and fermions with a negative scattering length ( FBa ). Such a situation can also be 

described by saying that if the energy of the bound state is made to cross the bottom of 

continuum i.e., the energy that the boson and fermion have when they are far apart and at 

rest), then the S-wave scattering length of the boson and fermion will diverge (means 

a ). Alternatively, when the system is in the bound state explicitly, the scattering 

lengths will be finite, and not diverge. There are a number of methods to obtain 

degenerate boson-fermion mixture in the limit of very low temperature. One of the 

methods is known as Feshbach resonance in which a bound state of a boson and fermion 

(boson -fermion) appears around zero energy. The bosons and fermions can interact by 

forming a molecule, heteronuclear boson-fermion mixtures were studied by Feshbach 
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resonance and were used to study especially the properties of Bose -Fermi mixture such 

as KRb 40

19

87

37  . 

Another experimental setup for studying degenerate Fermi-Bose mixtures is the so-called 

optical lattice method. Such mixtures have been studied theoretically also. In this thesis a 

degenerate heteronuclear mixture of bosons and fermions has been studied theoretically 

at very low temperatures. Degenerate mixtures of a bosonic and fermionic atomic gas in 

an optical lattice have been studied successfully. Such degenerate mixtures at very low 

temperatures cooled down to nanokelvin, or sometimes to picokelvin temperatures, to 

facilitate the experimental study of quantum phase transition in systems of mixed 

quantum statistics. 

A model Hamiltonian, H, for such an assembly is written in terms of the parameters of 

interactions involved, and it is then diagonalized by using the canonical transformation 

worked out in section 3.2 and given by Eq. (3.30)-Eq. (3.33). The resulting quasi-particle 

energy spectrum, kE , is obtained in terms of parameters that define the degenerate boson 

-fermion mixture. 

3.4 Model Hamiltonian H, and its Diagonalization 

H was given by Eq.32 and can now be written as 

      BkFkFkBkBFkF

k

kFkFkBkBkB aaaaGaaaa
12212

1


  
         (3.34)   

 

In the last term, momentum conservation is assumed so that the summation is carried 

over all values of 2121 ,,, kkkk    such that   2121 kkkk   



 

 

41 

In the above equation, a boson with momentum  
1k   is destroyed and a boson with 

momentum 
1k  is created or a particle with momentum  

1k   is destroyed and goes to 

reappear as a particle with momentum 
1k . The momentum transfer is 

11 kk  . Similarly, 

a fermion with momentum 
2k   is destroyed and reappears as a fermion with momentum 

2k . The momentum transfer is 
22 kk  . 

For the conservation of momentum of these two particles, the momentum transfer for 

both of these must be equal in magnitude but opposite in sign, i.e., 

  222211 kkkkkk     or 2121 kkkk              (3.35) 

In the boson – fermion interaction, a pair of boson –fermion may be destroyed, and a pair 

of boson – fermion may be created such that momentum is conserved; 
2121 kkkk  . 

Different combinations of k Values could be as follows: 

02121  kkkk . 

011  kk  and kkk  22
 or alternatively 022  kk  and kkk  11

 . 

These two possibilities will give a factor of 2 for identical particles 

021  kk  and kkk  21
 or alternatively 021  kk  and kkk  21

. These two 

possibilities will give a factor of 2 for identical particles 

021  kk  and kkk  21  or alternatively 021  kk  and  kkk  21  

Here, the invariance of the two - particle interaction under time reversal such that,   

    BFBFkk GorGGG       (3.36)  
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At a very low temperature, when the assembly of bosons and fermions is in the 

condensed phase, the Hamiltonian H  can be written as  

BkFFkB

k

k
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B
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kBkB
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


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


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











 

        (3.37)

  

In Eq. (3.37), the summation over k  is for all values of k except 0k  since the 

occupation of the 0k  has been taken care of separately. To transform Eq. (3.37) into 

new operators s  , we have to use Eq. (3.30) and Eq. (3.31) and Eq. (3.32) and Eq. 

(3.33). In fact, the last two terms in Eq. (3.37) can be dropped since these correspond to 

interaction between fermions trapped in the Fermi sea (k<0) and bosons at (k=0) or above 

(k=0). Such interactions are negligible thus Eq. (3.37) can be written as,  

kBkFFB

k

k

BFBFkFkB

k k

k

BFkBkBFBF

k

kFkFBBFFBBFkF

k

kFkFkB

k

kBkB
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
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 






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0
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2
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2

1

2

1

2

1


 (3.38)

  

In Eq. (3.38) the first term corresponds to the energy of bosons, the second term 

corresponds to the energy of fermions. The third term corresponds to the interaction  

energy of the bosons  and fermions  in the state above 0k  , the fifth term 

corresponds to the interaction  energy of the fermions in the ZMS and the bosons in 

the state above 0k , the sixth and seventh terms correspond to the interaction 

energy between bosons and fermions in the ZMS and all the levels above 0k  . 
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We are now to transform each term in Eq. (3.38) into new operators  ’s . For pure 

bosons (Khanna 1986),  



 kkkkkB VUa 
   (3.39)  

And for fermions, 

 kkkkkF VUa 
    (3.40) 

where 
  kkkkk aVaU
  

 

We can replace 

k by 

k since the particle in the states 0k  do not contribute to 

the physics of the problem or it can be written as, 

 kkkkkB VUa 
     (3.41) 

 

Values of kBa and  kFa  from Eq. (3.41) and Eq. (3.40) will be substituted in Eq. 

(3.38)  to convert H  into the new operators  + ’s. To diagonalize the Hamiltonian, 

H , the values have to be written term by  term. Thus, 

  

 
  kkkkkkkkkkkkk
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






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
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           (3.42)

  

And ;
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  

 

 kkkkkkkkkkkk

kkkkkkkkkkkkkkk

kkkkkkkkkkkkkk

kkkkkkkkkkkkkk

kkkkkkkkkFkF

VUVU

VVUVVUU

VUVVUU

VUVVUU

VUVUaa































22

222

22

22

1

               (3.43)

  

And       0000000000  VUVUVUVUaaaa kkkkkkkkBFkFkB  

         00000000  VUVUVUVU kkkkkkkk   
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   00

2

00000000000

2

0  VVUVUU  

= kkkUU  2

0

2

00 
+ 0000

2  

kkk VUU + 0000

2  kkk VUU 
+



kkkkVU  0

2

0

2
 

  00

2

00000000000

2

0  kkkkkkkkkkkkkkkk VVUVUVUVUVUUVU 

00

2

0  

kkkk UVU + 0000  

kkkk VUVU + 0000  kkkk VUVU +


00

2

0  kkkk VVU  

  00

2

0

2

0000

2

0000

2

00

2

0

2  kkkkkkkkkkkk VVVUVVUVUV
           (3.44)

  

And  

      kkkkkkkkkBkFFB VUVUVUVUaaaa  0000000000  

        kkkkkkkk VUVUVUVU  00000000  

    kkkkkkkkkkkkkk VUVVUUVUVVUU  22

00

2

00000000000

2

0

  kkkkkkkkkkkkk VUUUVUUUU  00

22

000

22

000

2

000

22

0

  kkkkkkkkkkkkkk VVUUVVUVUVUUVU  00

2

000000000000

2

00

  kkkkkkkkkkkkkk VUVUVUVVUUVUUV  00

2

000000000000

2

00

  kkkkkkkkkkkkkk VVUVVVUVUV  00

22

000

2

000

2

000

22

0           (3.45)
 



 

 

45 

In Eq. (3.42), Eq. (3.43), Eq. (3.44) and Eq. (3.45), we shall retain only the diagonal 

terms and put the non-diagonal terms equal to zero. To diagonalize the Hamiltonian H, 

the following are the diagonal terms in Eq. (3.42) to Eq. (3.45). This leads to, 
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Similarly, from Eq. (3.45) it also becomes, 
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Now the diagonalized Hamiltonian can be written as, 
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Eq. (3.50) is obtained by subtracting the diagonalized terms from Eq. (3.46) to Eq. 

(3.49) in Eq. (3.38) 

The non- diagonal terms of the Hamiltonian H, from Eq. (3.44) are, 
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(3.51) 

And from Eq. (3.45) the non-diagonal terms are, 
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(3.52) 

The sum of non-diagonal terms given by Eq. (3.51) and Eq. (3.52) is to be put equal to 

zero. This term is to be denoted by,  

02 H           (3.53)  

The energy Eigen-values for the assembly in the limit KT 0  are obtained from Eq. 

(3.50). Eq. (3.50) can now be written as, 
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The energy – Eigen value of the Hamiltonian H in Eq. (3.54) are, 
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The bosonic contribution to the energy density kB  is given by, 
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The fermionic contribution to the energy density kF  is given by (Roth et al., 2001, 

Nygaard et al., 1999), 
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where the first term represents the kinetic energy, the second term is the external trapping 

potential, and the third term is the p-wave fermion-fermion interaction. Eq. (3.58) is 

obtained by using the Thomas-Fermi approximation. Similarly, the Thomas – Fermi 

approximation can be used to calculate the contribution of the boson–fermion interaction 

to the energy density such that,  
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where the first term describes the s-wave and the second term the p-wave boson-fermion 

interaction. For fermion number 1000F , it is well known that Thomas-Fermi 

approximation is in good agreement with Hartree-Fock type calculation (Star et al.,2004). 

Here BFOa  is the interaction between bosons. Substituting from Eq. (3.56) to Eq. (3.59) in 

Eq. (3.55) yields,  
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         (3.60) 

Eq. (3.60) represents the energy of the system in the ground state or ZMS. 

Thus, 
FB nn  will refer to the boson and fermion numbers in the ZMS, i.e. BB nn 0  and 

FF nn 0 ; BU is trapping potential for boson and FU is the trapping potential for fermion. 

For simplicity the trapping potentials 
BU and

FU will be assumed to be the same if we 

restrict ourselves to parabolic trapping potentials with spherical symmetry, it can written 



 

 

49 

that 22

2

1
mU  , where   is  the oscillatory frequency and   oscillator length 

  2

1


 m       . 

2

2

2 



m
UU BF               (3.61)  

Where m is the mass of the particle and  is the corresponding oscillatory length for 

bosons and fermions, assumed to be the same for boson and fermions. There are two sets 

of values, 
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Using Eq. (3.61) and Eq. (3.62) in Eq. (3.60) leads to, 
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Using Eq. (3.61) and Eq. (3.63) in Eq. (3.60) results into two values of E, i.e., 
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(3.66) 

For ,0BFIa  and for fixed density in the trap when   0 xn  , Eq.(3.66) becomes, 
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(3.67)      

 

Where Bn number density of bosons in the mixture, Fn number density of fermions in 

the mixture, OBn number density of bosons in the ZM, OFn  number density of 

fermions in the ZMS (below the Fermi surface), BOa Boson-Boson, for S-waves., 

0BFa Boson-Fermion, for S-waves.  
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In Eq.(3.67), the first term refers to a homogeneous gas of interacting bosons and 

fermions. The second term is the trapping potential for the bosons. The third term is due 

to the boson -boson interaction via the S-wave scattering. The fourth and the sixth terms 

are due to the S-wave scattering between bosons and fermions. The fifth term is the 

trapping potential for the fermions. Term four refers to the isolated fermions  OFn  in the 

ZMS, and the term six refers to the isolated bosons  OBn  in the ZMS. Thus the existence 

of term four will demand that BF nn  , and the existence of term six will demand that 

FB nn  . Term four can mean demixing of interacting boson-fermion system from the 

isolated fermions in ZMS, and the term six can likewise mean 
FB mmm  demixing of 

interacting boson-fermion system from the isolated bosons in the ZMS. 

As a first approximation, values of different parameters could  be assumed and the 

oscillator length of the trapping potentials  .FB   Similarly  the values of bosons 

and fermions particles are .104 nnn FB   Assuming attractive boson – fermion 

interaction, and for a typical trap width length m1 , 
BFa is assumed to be, 

nmaBF 50 . Another assumption could be made by p – wave scattering lengths.  We 

can assume them to be very small  0BFIa  and hence the corresponding p –wave term 

can be neglected in Eq.(3.64), Eq.(3.65) and Eq.(3.66)  to calculate the value of E. With 

the above assumptions, Eq. (3.64) becomes, 
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(3.68) 

And similarly Eq. (3.66) becomes,  
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And Eq. (4.64) becomes, 
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 (3.70)

  

It is interesting to note that Eq. (3.68) and Eq. (3.69) are identical while Eq. (3.70) differs 

from both of them.  Eq. (3.68) corresponds to 
2

1
 kk VU , and Eq. (3.70)  correspond 

to 0kU  and ;
2

1
kV whereas Eq.(3.69)  correspond to 0kV  and 

2

1
kU . 

 Assuming the particle number density is fixed in the trap, and replacing   0 x , 

Eq.(3.68) and Eq.(3.70)  then gives,   
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   (3.71)  

The energy E is a polynomial in n since it has terms of the type .,,, 432 nnnn  

The expression for energy E in Eq. (3.71) contains the effect of Bose-Bose (BB) particle 

interaction and Bose –fermion particle interaction (BF), whereas Eq. (3.69) contains 

apparently the effects of BF interaction only. 

The expression for quasi-particle energy E of a trapped and interacting assembly of 

bosons and fermions has been derived Eq. (3.71). There are two important terms in this 

energy expression. One corresponds to the boson-fermion condensate surrounded by 
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fermions, and the other corresponds to the boson-fermion condensate surrounded by 

bosons. So far there is no any quasi particle energy expression in which this kind of 

segregation of condensates may have appeared after the canonical transformation that 

leads to quasi-particle energy expression. 

The first term in Eq. (3.71) is comparatively the largest term, and hence the quasi-particle 

energy of an assembly of interacting bosons and fermions in the lowest (superfluid state) 

state can be approximately written as, 

4
24

2

1
n

m

a
E BFO





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






        (3.72)

  

Eq.(3.72) is used to calculate  E  for a number of different  boson-fermion mixtures 

studied  so far experimentally since the experimental values of BFOa  will be needed in 

Eq.(3.72) to calculate E.   Eq.(3.72) shows that the value of the quasi-particle  energy  

depends on the boson-fermion scattering length BFOa , the density of number of particles 

,n and the reduced mass m of the mixture. In fact,   224 )( BF nnn   where Fn and Bn are 

different. 
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1 Introduction 

In this chapter, the results are presented and discussed. 

4.2 Derivation of canonical transformation 

In this thesis, a model of Hamiltonian that contains the energy for free interacting bosons, 

free interacting Fermions and further the interaction between fermions and bosons is 

developed and represented by Eq. (3.3) and Eq. (3.33). It is further diagonalized to arrive 

at Eq. (3.72) which is used to calculate the quasi-particle energy of the mixture. 

 4.3 Calculation of quasi-particle energy spectrum 

The expression for kE  contains various parameters like the scattering length BBa  

and BFa , that determines the properties of such a system of combination of 

fermions and bosons. The values of kE  have been calculated for various 

combinations of boson and fermion mixtures using the experimental values for BBa

and BFa for the corresponding combinations.  

Eq. (3.72) is used to calculate the quasi-particle energy of a mixture of bosons and 

fermions. For a mixture composed of Li7

3  (boson) and Li6

3  (fermion), 
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cmAnmaBFO

8106.216.2116.2 


  410n ; gm 2410   

The value of E will be,  

16

24

854

10)
10

106.21104
(

2

1








E   

2210 erg. 

The results show that, ultimately, the phase separation depends on the sign and 

magnitudes of the scattering length BFa and BBa . This kind of separation and demixing 

appears in Eq.(4.64b), and it is a consequence of canonical transformation developed in 

this thesis and then used for diagonalization to obtain the quasi-particle energy E of the 

boson-fermion mixture. Now for the different mixtures the values for BFOam,,,  and 

BOa
 
were selected from past experimental work.  

In another set of experiments (Roth, 2012), the following data was obtained for different 

boson -fermion mixtures. For ,6

3

7

3 LiLi  BFa  is positive  )()( 6

3

7

3 fermionLiBosonLi   

First set 

nmanma BFB 16.2;46.1   attractive )(0 veaB   and   )(0 veaBF  repulsion 

  ;1 mlB   
44 105.2;10  FB NN  

Second set 

nmanma BFB 01.2;27.0   repulsive, mlB 15.0   (reduce the overlap of the two 

species) 
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Third set 

KRb 40

19

87

37    , nmaBF 25.5 (Repulsive)   ; nmaBF 8.13 (Attractive) 

Table 5.1 below shows the results of calculations of quasi-particle energy kE got by 

taking different combinations of isotopes. 

Table 5.1: Results of quasi-particle energy for the mixture of Bosons-Fermions 

Table 5.1 shows that the value of  kE  increases as the scattering length BFa increases for 

the mixture ,40

19

87

37 KRb  and it goes to negative when 
BFa  negative or smaller. Large 

BFa

means that the interaction is spread over a longer distance and hence the energy is 

comparatively large. This means it can sustain larger velocity of flow to sustain the 

superfluid state. 

BOSON -FERMIONS  

MIXTU RE 

SCATTERING LENGTH 

 
8( 10 )BFa cm   

QUASI-PARTICLE ENERGY in  

ergs 

 

KRb 40

19

87

37   

    150 13102375.1   

    162 13103365.1   

    300 1310475.2   

    209 1710103.1   

LiLi 7

3

6

3   0.2158 1710227.5   

LiNa 6

3

23

11     -1.45 141022.1   

 

For Li7

3 (boson) - Li6

3 (fermion) mixture, the following Parameters may be used (Cornell 

and Wieman, 2002a): 
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nmaBO 46.1  , nmaBFO 16.2 , 
410  particles, m67.2  given that 

mnm 9101   and mm 6101   

Reduced mass is calculated using this formula  kg
mm

mm
m

FB

FB
BF

271066.1 



 . 

The unit of energy 3910
64.12

1



 . 

Thus energy J3510877.1  is 
























39

35

10
64.12

1

10877.1
 units of energy. 

410877.164.12  units of energy. 

15656.6  units of energy. 

Another set of values are 

nmaBO 27.0  and nmaBFO 01.2 a  

The value of energy is found to be JE 3510859.1  , when 1.859 units of energy 

involved . 

Similarly for a mixture of )(87 bosonRb  and )(40 fermionK the parameters are  

nmaBO 25.5  and nmaBFO 8.13 . 

The value of energy is found to be JE 3510433.1   (Deh et al., 2002). 
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For 
nmaBO 71.523  , 9.405BFOa and nm9.405 , the value of energy is found to be 

JE 3510984.3  and JE 3510235.7   respectively. 

Number of particles 2000n  for both Rb87 (Boson) and K40 (fermion) , the mass is  

kgmB

231045.1   and 463.0
B

F

m

m
 the value of energy is found to be JE 35103.7  . 

In most of the theoretical or experimental investigation done in the recent past, the inter 

play between boson-fermion and boson-boson interaction (Anderson et al., 1995; Batroni 

et al., 1990; Bloch et al., 2008). Studies have shown that the boson -fermion attraction

)0( BFa and boson -fermion repulsion  0BFa  can lead to spatial separation of bosons 

and fermions 

In such a case, either boson occupy the central region of the trap (boson core) and the 

fermions constitute the shell around it, or fermions occupy the central region of the trap 

and bosons constitute the shell round it. It is the Bose-Fermi S-wave scattering lengths, 

with minus or plus sign, that determines the demixing and the stability of the boson-

fermion mixture. 

In the quasi-particle energy expression derived in this thesis, there are no terms that show 

demixing or segregation of bosons and fermions. There are the terms that show that there 

always exist a core made of interacting bosons and fermions, and under certain conditions 

this core may be surrounded by bosons when FB nn  , and it may be surrounded by 

fermions when BF nn  . It is therefore, reasonable to emphasize that this kind of result is 

a consequence of canonical transformation developed in this thesis.  
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In most of the studies in the recent past, the stability properties of trapped Bose-Fermi 

gases mixture have been studied by trapping gases in an isotropic potential at ultra-cold 

temperatures. The stability properties are strongly influenced by interactions between the 

bosons and fermions, and between bosons. Fermion -fermion interaction is ineffective at 

very low temperature due to suppression of the S-wave scattering between identical 

fermions. Studies have shown that the spatial distribution of a Bose -Fermi gas mixture at 

0T  depends strongly on the relative sign and magnitude of the bose-fermion and 

bose-bose scattering length BFa  and BBa  (Molmer, 1998, and Plenio, et. al.,1999). They 

found the region of temperature range at which the phase separation of the mixture 

happens. Also the span of the region depends on the ratio of coupling constant, BFG  and 

BBG or BFa and BBa . Fermion constitutes a core within the core condensate; 

),/(
2

2

BB

FF
BBBF

m

m
GG




 and for ),/(

2

2

BB

FF
BBBF

m

m
GG




 fermions are repelled from the center 

of the trap and localize near the edge of the Bose condensate, i.e. phase separation occurs 

in the system. Hence phase separation depends mainly on the ratio of the two coupling 

constants, whose values are, 

BB

B

BB a
m

G .
4 2



         

 1.4  

BF

BF

BF a
m

G .
4 2

          2.4  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

Theoretical studies on the properties of boson-fermion gas mixtures were undertaken by 

developing canonical transformation in terms of canonical operators for bosons and 

fermions. The canonical transformation equations were derived and presented in 

equations (3.30) to (3.33) in chapter three of this thesis. These transformation equations 

were used in the model Hamiltonian and further diagonalized for the mixture of Boson 

and Fermions. 

The derived canonical transformation was applied in the model Hamiltonian to calculate 

the quasi-particle excitation spectrum energy, 𝐸𝑘, for selected boson-fermion mixtures.  

For 𝑅37
87 𝑏 + 𝐾19

40  mixture with 𝛼𝐵𝐹  of 150 × 10−8 𝑐𝑚, 162 × 10−8 𝑐𝑚, 300 × 10−8 𝑐𝑚, 

and −209 × 10−8 𝑐𝑚 , the corresponding calculated values of 𝐸𝑘  were 1.237 ×

10−12 𝑒𝑟𝑔𝑠 , 1.337 × 10−12 𝑒𝑟𝑔𝑠 , 2.475 × 10−12 𝑒𝑟𝑔𝑠 , and −1.103 × 10−12 𝑒𝑟𝑔𝑠 . 

Similarly, for 𝐿𝑖 + 𝐿𝑖3
7

3
6  mixture with 𝛼𝐵𝐹  of 0.2158 × 10−8 𝑐𝑚  had 𝐸𝑘  of 5.227 ×

10−17 𝑒𝑟𝑔𝑠,  while for 𝑁𝑎 + 𝐿𝑖3
6

11
23  mixture with 𝛼𝐵𝐹  of −1.45 × 10−8 𝑐𝑚  had 𝐸𝑘  of 

−1.22 × 10−21 𝑒𝑟𝑔𝑠. The negative values of 𝐸𝑘 mean that the interaction is attractive, 

where interacting species overlap, whereas positive values of 𝐸𝑘 mean that the interaction 

is repulsive, where the overlap of interacting species reduces.   
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6.2 Recommendations 

i. Using the numerical values of quasi-particle energy E  (Eq.3.72), calculations can 

also be done to calculate the Landau's critical velocity, C, that determines the upper 

limit on the velocity of flow of the superfluid such that if the velocity of flow CV  , 

the superfluid state is destroyed and experiments can be designed to measure this 

velocity. 

ii. It will also be appropriate to study the conditions that may lead to demixing of the 

components of the mixture, and destruction of Superfluidity 

iii. Stability of Boson - fermion mixture has been studied on the basis of the number of 

bosons and fermions and in terms of the sign of inter particle interaction whether the 

BFa is attractive and or repulsive (Karpiuk and Brewczyk, 2005). Consequently,  

iv. More studies need to be done as to how the density of species, inter-particle 

interaction, and the size and depth of trap can determine stability of the mixture. 

v. In the limit of very low temperatures ( KT 0 ), the mixture will be in the superfluid 

state. The Landau criteria on the velocity of flow can be used to study the conditions 

that may be satisfied for the mixture to be in the super-fluid state. It is necessary to 

study both experimentally and theoretically whether the positive scattering length 

)0( BFa that corresponds to repulsive interaction will lead to a more stable 

superfluid state, or )0( BFa  that refers to negative scattering length and hence 

attractive interaction. 
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vi. Another possible physical state could be when FB NN  and when  BF NN  . At 

very low temperatures, and FB NN  ,bosons in the mixture can be assumed to be in 

a pure Bose-Einstein Condensate surrounded by fermions . The fermions may 

interact harmonically with the boson - boson pair, and the interaction may be a 

perturbation. Similarly for BF NN  , the bosons may surround the fermion-fermion 

system, and act as a harmonic perturbation. Using Feshbach resonance method The 

stability of such systems could be studied experimentally and theoretically. 
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