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ABSTRACT

Nickel Oxide (NiO) has many applications in solar energy utilization, due to variations
in electronic, optical and magnetic properties. However, a satisfactory description of its
properties is still not available. There is therefore need to understand its properties using
theoretical predictions, so as to facilitate a deeper knowledge of the characteristics of this
important material. In this work, the NiO ground state properties have been studied us-
ing Quantum-ESPRESSO code, while the optical properties are investigated using Yambo
code. The ground state properties of NiO are determined using the Local Spin Density
Approximation with Hubbard interaction energy (LSDA+U) method. The Hubbard values
of 5.4 eV, 6.2 eV, 7.3 eV, 8 eV, 8.5 eV, 9 eV, 9.5 eV, 10 eV and 12 eV have been used,
whereby a Hubbard term of 9.5 eV has given the results that are closer to other theoretical
and experimental findings. The calculated lattice parameters are found to increase with
increasing U term, and for a Hubbard term of 9.5 eV, the value of 9.652 a.u is obtained for
rhombohedral (RHL) NiO with a rhombohedral angle αrh = 33.5570. The bulk modulus is
found to decrease with increasing U value, giving values of 224.5 GPa, for RHL NiO with
αrh = 33.5570, when a U term of 9.5 eV was used. LSDA and LSDA+U predicted RHL
NiO with αrh = 60.080 to be a metal, while it is expected to be an insulator. For RHL NiO
with αrh = 33.5570, the LSDA calculations have revealed very narrow indirect and direct
energy band gaps of 0.61 eV and 0.85 eV, respectively, whereas they are increased up to
3.05 eV and 3.65 eV, respectively, upon the addition of a U term of 9.5 eV. The projected
density of states shows that RHL NiO with αrh = 33.5570 is a charge transfer insulator. The
LSDA and LSDA+U calculations further have predicted both structures of RHL NiO with
αrh = 60.080 and αrh = 33.5570 to be antiferromagnetic materials. The Green function and
the dynamically screened interaction (GW), as well as the Bethe Salpeter Equation (BSE)
have been used to study the absorption energy and the electron energy loss spectra. GW
is found to overestimate the value of the fundamental energy band gap of NiO, while BSE
gives a better prediction of the optical energy band gap. For RHL NiO with αrh = 33.5570,
both the optical indirect and direct band gaps are found to be 3.34 eV and 3.74 eV, respec-
tively. The absorption spectra obtained from BSE calculations show that there is minimal
absorption in the range of the infrared to the visible region and stronger absorption towards
the ultraviolet region. The maximum light absorbed by NiO with αrh = 33.5570 was found
to be in the ultraviolet wavelength region near 330 nm (3.74 eV) and this makes NiO a
good absorber in the ultraviolet region of the electromagnetic spectrum.
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CHAPTER ONE

INTRODUCTION

1.1 Nickel oxide

Nickel oxide (NiO) is a semitransparent semiconducting material with a wide band gap

in the range of 3.5-4.0 eV [1–8]. It is a well known antiferromagnetic (AF) material with

strong electronic correlations and high spin structure at low temperatures. It has a Néel

Temperature (TN) of 523 K and has a cubic rock salt structure with a lattice constant of

0.4168 nm above its TN [1, 5, 9]. Below 523 K, the NiO transforms to a rhombohedral

distorted rock salt structure by a compression along the body diagonal direction with the

rhombohedral angle αrh of 60.080 or 33.5570 [2, 10–12].

The NiO conduction band is made up of mainly the nickel atom 3d orbitals while the

valence band consists of Ni d states with O 2p states. In NiO the d band is expected to be

partly full, since Ni2+ has 8d electrons and the band can hold 10 electrons [13], but instead

the d band is split into a completely filled part and an empty part and this makes NiO a

strongly-correlated material.

1.2 Ab initio studies

In the last few decades, great advances [14–16] have been seen in both theoretical method-

ology and computer technology that have allowed researchers to investigate materials prop-

erties from first principles (i.e., without any input parameters other than the constituent

atoms making up the material). Today, the ground-state and excited states properties for a

wide range of materials, particularly for reduced dimensional systems characterized by en-

hanced many-electron interaction effects, can be predicted using first principles techniques

[14]. In principle, determining the properties of a material from first principles involves

solving the Schrodinger equation for a quantum many-body interacting system. However,

its exact numerical solution is impractical, due to the size of the system. Therefore, the

evaluation of physical quantities of interacting systems requires some approximations.
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In the solid state, the majority of electronic structure calculations are done by the Kohn-

Sham equations within the density functional theory (DFT) using either the local density

approximation (LDA), the local spin density approximation (LSDA) or generalized gra-

dient approximation (GGA), where the many-body problem is solved considering a non-

interacting system with a one-electron exchange correlation potential [17]. DFT is used

in many circumstances, since it gives results which are accurate enough to help interpret

experimental data or to have some predictive power, and leads to calculations which are

computationally cheap in comparison to more sophisticated methods [15].

LSDA and GGA have proved to be very efficient for extended systems, but as an ap-

proximation, they cannot be successful for all systems although the exact DFT should be

capable of obtaining ground-state properties. The strongly correlated materials are exam-

ples where deficiency of the LDA and GGA are seen most clearly. Such systems usually

contain transition metals (TM) or rare-earth metal ions with partially filled d (or f) shells

[18]. Therefore, depending on the solid being studied and its properties, the application of

DFT can lead to results which are in very bad agreement with experiments. An example, is

the band gap of semiconductors and insulators which is normally underestimated or even

absent. Better band gap calculations can be obtained using other methods such as Hybrid

functionals and LSDA+U, where the parameter U is the Hubbard interaction or Coulomb

energy, which is one among the methods used for strongly correlated materials [18–21].

1.3 Problem statement

NiO is one of the most commonly used TM oxides for a wide range of applications. NiO

thin films and nanoparticles are functional materials that have attracted extensive interests

due to their novel optical, electronic, magnetic, thermal, and mechanical properties and

associated potential applications [3, 22]. It has been the subject of extensive experimen-

tal and theoretical investigations for the past decade and understanding of its electronic

structure has been a topic of great interest to many researchers. However, a satisfactory

description of its energy spectrum is still not available, and this is due to the fact that NiO

is a strongly correlated electron system. Therefore, there is still need to understand the
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theoretical predictions to facilitate a deeper knowledge of the characteristics and proper-

ties for this important material. This study therefore seeks to establish the properties that

make NiO an important material in solar energy applications.

1.4 Objectives

1.4.1 General objective

The main objective of this research is to study the ground-state properties and optical

properties of NiO.

1.4.2 Specific Objectives

a) To determine the structural properties of bulk rhombohedral (RHL) NiO, using LSDA

and LSDA+U methods;

b) To determine the electronic and magnetic properties of bulk RHL NiO, using LSDA

and LSDA+U methods;

c) To determine the optical properties of face centered cubic (fcc) NiO and RHL NiO,

using the Green function and the dynamically screened interaction (GW) and the

Bethe Salpeter Equation (BSE).

1.5 Significance and justification of the study

NiO is an attractive material due to its wide variations in physical properties related to

electronic structure, optical and magnetic behaviours. It is a p-type semiconductor with

wide band-gap energy [1–8], making NiO thin films have many applications in optics,

electronics and solar energy depending on their absorption, reflectance and transmittance

properties [3, 22].

The problem of understanding the properties of strongly correlated systems and espe-

cially TM, is one of the main challenges in condensed matter physics. In this case one

has to go beyond DFT and employ more sophisticated treatment of electron-electron in-

teractions. As such, one has to restrict the study to the most important orbitals so that the
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many-electron interactions can be explicitly treated. For instance, the valence d electrons

are the most relevant ones responsible for the properties of TM compounds, and a model

Hamiltonian can be formulated involving only these electrons.

The treatment of correlation in these metal oxides remains also a major challenge and

the O 2p - Ni 3d hybridization in the valence band has proved especially difficult to be

predicted accurately. Therefore, it is still highly desirable to have more first-principles

investigations of the electronic structure of NiO within different approaches to provide

a better understanding of its properties. Such approaches include the LSDA+U, which

works better for TM, and as a result gives a better prediction of the mechanical, electronic

and magnetic properties. Since NiO has many applications in solar energy use, studying

its excited states by analyzing the NiO optical properties, using GW and BSE methods

becomes very critical.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

As stated in the chapter one, NiO is a TM oxide exhibiting wide variations in physical

properties related to its electronic structure. Its optical and magnetic behaviours, in partic-

ular, form the basis of the enormous range of applications, and therefore, it has been the

subject of extensive experimental and theoretical investigations for the past several years.

In this chapter, some reviews on NiO which form an essential background in studying this

material are given.

2.2 Experimental and theoretical studies

2.2.1 Structural studies

NiO crystallizes in the rock-salt (NaCl) structure with a lattice constant of 0.4168 nm [1,

5, 9] above TN. Below TN, NiO transforms to a rhombohedral distorted rock salt structure

by a compression along the body diagonal direction with the rhombohedral angle αrh of

60.080 or 33.5570 [2, 10–12]. The various values of the lattice constant that have been

obtained experimentally and theoretically include 4.176 Å [1], 4.1678 Å [9], 4.172 Å [5],

4.180 Å [23], 4.16 Å [24], for fcc NiO; 2.948 Å [10] and 8.47 Å [11] for fcc NiO. The bulk

modulus has been determined by different workers and found to have the value of 202.2

GPa [23], 196 GPa [2], 184 GPa [25], 166.4 GPa [26], and 230.72 GPa calculated recently

by Gillen and Robertson [11].

2.2.2 Electronic studies

The electronic properties of the NiO have been studied from both the experimental and

theoretical points of view, where the material has long been studied as an insulating mate-

rial. In a purely ionic picture of NiO, the Ni2+ ions have a partially filled d shell in a 3d8

ground-state configuration [6]. According to conventional band theory, this should result
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in metallic behavior, yet NiO is a semiconductor with a wide band gap. DFT studies have

been successfully applied to describe many details of electronic structure, magnetic cou-

pling, and character of the band gap since a long time. However, it fails to describe the

band structure of TM oxides as insulators and predicts them to be metals. LSDA studies

predicted NiO to have a band gap of around 0.5 eV [7, 11, 17, 20, 27], which is narrower

compared to the experimental results. Therefore, various computational methods have

been applied to predict NiO energy band gap, and different results have been obtained as

shown in Table 2.1. Various researchers have investigated the band structure of the bulk

and surface of NiO using different methods, such as DFT [7, 11, 17, 20, 27], DFT+U

[2, 19, 20, 23, 27–29] and GW [7, 30–32] methods.

Table 2.1: Calculated NiO energy band gap with different methods.

Method Ref. Band gap (eV) Structure

LDA+U; U=4.6 [19] 2.7 Bulk; Cubic
LSDA+U; U=6.2 [20] 3 Cubic
LDA+U; U=5

[28]
2.6 Bulk; Cubic

LDA+U; U=5 2.1 Surface 001
LDA+U; U=5 0.8 Surface 111 p(2×2)
DFT+U ; U=7 [2] 3.8 Bulk; Rhombohedral
LSDA+U ; U=6.1 [29] 3.7 Bulk
LSDA+U; U=5.4 [27] 4.1 Bulk
MBJLDA [17] 4.16 Bulk
LSDA+U ; U=6.2

[23]
4.04

Cubic; Surface 001GGA(96)+U ; U=6.2 4.31
GG(06)+U ; U=6.2 3.4
GW [7] 4.8 Bulk
Hybrid B3LYP [33] 3.9 Bulk
sX-LDA [11] 3.85; 4.1 Cubic
GW@LDA [30] 5.5 Rhombohedral
GoWo@LDA+U; U=5.2 [31] 3.76 Rhombohedral
U+GW; U=4 [32] 3.99 Rhombohedral

From the projected density of states, some studies have predicted the conduction band

of NiO and the upper edge of the valence band to be of the same character, i.e Ni 3d,

making NiO to become a Mott-Hubbard insulator [6, 7, 17, 34]. However, the upper edge

of the valence band was correctly predicted by some other authors [19, 20, 29, 30, 35, 36]
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to be of the O 2p character and that NiO should therefore be classified as a charge-transfer

insulator, as opposed to a Mott-Hubbard insulator.

2.2.3 Optical studies

Various methods have been used to prepare nickel oxide films in different experiments,

including Sol gel spin coating [5, 9], Automated liquid flow deposition [37], Magnetron

sputtering [4, 38], Electron beam evaporation [39], Thermal oxidation [13] and Chemical

bath deposition [40], as shown in Table 2.2. Different methods like X-ray diffraction

(XRD) [1, 3–5, 9, 24, 37–40], Scanning electron microscopy (SEM) [1, 3, 4, 9, 37, 38],

Atomic force microscope (AFM) [39], Transmission electron microscope (TEM) [1, 3, 5],

Photoluminescence (PL) and Energy dispersive X-ray (EDX) [3], Standard Critical Point

model (SCP) [6], the Automated Liquid Flow Deposition Technique (ALFDT) [37] and

Ultraviolet (UV) - visible (Vis) - near infrared (NIR) spectroscopies (UV-Vis [1, 3, 13, 39],

UV-Vis-IR [9, 38] and UV-Vis-NIR [4, 5, 24, 40]) were used to analyze NiO properties.

In many experiments, the energy band gap was determined using UV-Vis-NIR spec-

trophotometers, and the gap was found to depend on the techniques of thin film prepara-

tion, thin film size and the temperature. Table 2.2 gives a review of some published data

on the NiO optical energy band gap, the preparation techniques and the methods used to

analyse the NiO thin-films microstructure and optical properties.

The NiO thin films properties were found to depend on the reflectance and transmit-

tance properties of the films during their preparation [22]. The properties of NiO thin films

depend also on substrate temperature as well as on the amount of oxygen during their fab-

rication, and a good transmittance was observed for the NiO films deposited at elevated

temperature [38].

The spectral transmittance and reflectance of the NiO thin film samples showed that

they are transparent with transmittance exceeding 80% within the spectral ranges between

300-2400 nm [24, 38, 40–42]. It was also found that a lower transmittance depends on the

increase in the film thickness, with subsequent increase in absorption. The maximum ab-

sorbance for the thin films occurred within the UV region and from where, the absorbance



8
Table 2.2: Experimental NiO energy band gap.

Band gap (eV) Ref. NiO preparation techniques Method used

3.8 [1] Thermal decomposition TEM, UV-Vis
3.32 [39] Electron beam evaporation UV-Vis
3.89 - 3.92 [3] Cationic surfactant (CTAB) PL, UV-Vis
3.65 - 3.82 [4] DC reactive magnetron sputtering SEM, UV-Vis-NIR
3.4 - 3.71 [38] RF magnetron sputtering SEM; UV-VIS-IR
3.47 - 3.86 [9] Sol gel spin coating SEM, UV-VIS-IR
3.35 - 3.73 [37] Automated Liquid Flow Deposition SEM, ALFDT
3.744 - 3.867 [5] Sol-gel dip coating TEM, UV-Vis-NIR
3.6 [13] Thermal oxidation UV-Vis
2.10 - 3.9 [40] Chemical bath deposition Absorption spectroscopy,

UV-VIS-NIR
3.87 [6] Verneuil (flame fusion) SCP
3.17 - 3.83 [24] Spray pyrolysis UV-Vis-NIR

decreased with the wavelength towards the NIR region. The absorption coefficient tends

to decrease exponentially as the wavelength increases whereas the reflectivity of thin films

increases with increasing wavelength [5, 40].

2.2.4 Magnetic studies

Several theoretical and experimental studies have been carried out to understand the mag-

netic properties of NiO. Different magnetic ordering including antiferromagnetic type one

(AF1) [11, 25], ferromagnetic (FM) [11, 43–46], non magnetic (NM) [25] and antiferro-

magnetic type two (AF2) [11, 25, 36] have been observed on NiO. In the AF2 case, Ni

atoms have finite magnetic moments but the total magnetization is zero as the magnetic

moments of Ni ion align ferromagnetically on every (111) plane and antiferromagnetically

for adjacent planes [47, 48]. In the FM state all spin moments are aligned in one direc-

tion. The NiO AF2 ordering was predicted to be the most stable magnetic configuration

followed by the FM state and then the AF1 one, which is consistent with experiments and

other calculations [25].

The hybridization [23, 27] of the O 2p and Ni 3d states, i.e the covalent bonding be-

tween the Ni and O atoms, was observed to be stronger than the coupling of the d - d states
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between nearest neighbouring Ni ions, and the opposite spin next nearest neighbours of

Ni ions are energetically favoured and this makes the AF spin structure the ground state

of NiO. Some theoretical calculations predicted NiO to have the magnetic moment values

of 1.75 µB [2, 17], 2.00 µB [23] and 1.91 µB [27]. The experiments showed that the NiO

magnetic moment value ranged between 1.7 µB and 1.9 µB [47].
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CHAPTER THREE

THEORETICAL BACKGROUND

3.1 Introduction

One of the fundamental problems in condensed matter physics is the theoretical study of

electronic properties. This is necessary to understand the behaviour of materials ranging

from atoms, molecules, and nanostructures to complex materials. However, it is a very

difficult problem in many-body theory to solve the Schrödinger equation for a system of

N interacting electrons in the external coulombic field created by a collection of atomic

nuclei (and may be some other external field). The exact solution can be known only in

the case of the uniform electron gas, for atoms with a small number of electrons and for

a few small molecules. Since electrons are governed by the laws of quantum mechanics,

the many-electrons problem is, in principle, fully described by a Schrödinger equation

[14, 49, 50].

3.2 Many body Schrödinger equation

The determination of the properties of a material from first principles, involves the solution

of a quantum many-body interacting problem, over both the atomic nuclei and electron

coordinates,

ĤΨ({RI},{ri, σi}) = EΨ({RI},{ri, σi}). (3.1)

whereby for a system containing M nuclei and N electrons the many-body wavefunction

(Ψ) is a function of all the spatial coordinates of nuclei ({RI}, I = 1, ...,M) and spatial

and spin coordinates of electrons ({ri, σi}), i = 1, ...,N . The Hamiltonian (Ĥ) is the sum

of all possible interactions between electrons and nuclei. In atomic units (energy in Hartree

and length in Bohr, e2 = mi = h̵ = 1, where e and mi are electric charge and mass of an

electron, respectively, and h̵ is the Plank constant) [49], Ĥ can be expanded as

Ĥ = −
N

∑
i=1

∇2
i

2
−

M

∑
I=1

∇2
I

2MI

+
N

∑
i=1

N

∑
j>i

1

∣ri − rj ∣
+

M

∑
I=1

M

∑
J>J

ZIZJ
∣RJ −RJ ∣

−
N

∑
i=1

M

∑
I=1

ZI
∣ri −RI ∣

. (3.2)
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In Eq.(3.2), MI is the mass of nucleus I and ZI is the atomic number of nucleus I . The

symbols ∇2
i and ∇2

I are the Laplacian operators. The first two terms in Eq. (3.2) represents

the kinetic energies of all the electrons and nuclei, respectively, while the third and fourth

terms, respectively, correspond to the Coulomb repulsion between electrons and between

nuclei. The fifth term is the Coulomb attraction between electrons and nuclei.

The many-electrons Schrödinger equation, is generally believed capable of predicting

and describing almost every phenomena experienced in everyday life. It is deceptively

simple by its form but enormously complex to solve. The evaluation of physical quantities

of interest with appropriate approximations is then required and desirable in order to reduce

the complexity. The first important approximation is obtained by decoupling the dynamics

of the electrons and the nuclei, which is known as Born-Oppenheimer approximation.

3.3 Born Oppenheimer approximation

The majority of the properties of a condensed matter system can be determined by in-

vestigating just the interactions of the valence (outer) electrons with the relatively slower-

moving atomic ionic cores (nuclei plus core electrons) and the interactions of the valence

electrons among themselves. In the Born–Oppenheimer, or adiabatic approximation for

electronic properties, nuclei can be treated as classical particles and can be considered as

static with respect to quantum particle electrons. Then for any given nuclear configura-

tions, the electrons are assumed to remain in their instantaneous ground state. As a result,

the second term in Eq. (3.2) can be neglected and the fourth term, the repulsion between

nuclei, can be treated as a constant for a fixed configuration of the nuclei. The remaining

terms in Eq. (3.2) are called the electronic Hamiltonian (He) [49, 50],

Ĥe = −
N

∑
i=1

∇2
i

2
+

N

∑
i=1

N

∑
j>i

1

∣ri − rj ∣
−

N

∑
i=1

M

∑
I=1

ZI
∣ri −RI ∣

. (3.3)

The Schrödinger equation involving the electronic Hamiltonian Ĥe becomes

ĤeΨe({RI},{ri, σi}) = EeΨe({RI},{ri, σi}). (3.4)
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Furthermore, for simplicity, the electronic spatial and spin coordinates ({ri, σi}) are put

together into one variable and Eq. (3.3) is rewritten as

ĤeΨe({RI},{Xi}) = EeΨe({RI},{Xi}). (3.5)

3.4 Wave function based method

The eigenfunction of a quantum mechanical operator depends on the coordinates upon

which the operator acts. The particular operator that corresponds to the total energy of the

system is called the Hamiltonian operator. The eigenfunctions of this particular operator

are then called wave functions.

3.4.1 Hartree approximation

The Hartree method is useful as an introduction to the solution of the many-particle sys-

tem and to the concepts of self-consistency and of the self-consistent-field. In Eq. (3.3) the

kinetic energy term and the nucleus-electron interaction term are sums of single-particle

operators, each of which act on a single electronic coordinate. The electron-electron in-

teraction term on the other hand is a pair interaction and acts on pairs of electrons. To

facilitate the upcoming mathematics, let’s make the following definition

Ĥe = ∑
i

ĥ1(x⃗i) +
1

2
∑
i≠j
ĥ2(x⃗i, x⃗j), (3.6)

where x⃗i is now a generalized coordinate that includes spatial as well as spin degrees of

freedom. The Schrodinger equation can now be written as

(∑
i

ĥ1(x⃗i) +
1

2
∑
i≠j
ĥ2(x⃗i, x⃗j))Ψ(r1, r2, ..., rN) = EΨ(r1, r2, ..., rN). (3.7)

The Hartree method is a variational, wavefunction-based approach. Although it is a many-

body technique, the approach followed is that of a single-particle picture, i.e the elec-

trons are considered as occupying single-particle orbitals making up the wavefunction.

To apply the variational principle, we assume that the trial wavefunction is built from
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these single particle orbitals. Let us suppose that we have n arbitrary one-particle states

ψ(r1), ψ(r2), ..., ψ(rN). We should choose them as an orthonormal set, since this will

make the calculation of expectation values easier. The simplest wavefunction that can be

formed is their direct product

Ψ(r1, r2, ..., rN) = ψ(r1)ψ(r2)...ψ(rN). (3.8)

This is the Hartree approximation and it is a straightforward task to calculate the variational

lowest energy. Each of the functions in Eq. (3.8) is normalized to unity. If we calculate

the expectation value of H in this state, we obtain [14]

<H >=
N

∑
i=1
∫ dr3i ψ

∗(ri) (
−∇2

i

2
−
Z

ri
) ψ(ri) +∑

i>j
∑
j

∣ψi(ri)∣2 ∣ψj(rj)∣2

∣ri − rj ∣
. (3.9)

The procedure of the variational principle is to pick the ψi(ri) such that < H > is a mini-

mum and then Eq. (3.9) leads to the condition that

[−
∇2
i

2
−
Z

ri
+ VH]ψi(ri) = Ejψi(ri), (3.10)

where VH is the Hartree potential

VH(ri) = ∑
i≠j
∫ dr3j

∣ψj(rj)∣2

∣ri − rj ∣
. (3.11)

3.4.2 Hartree-Fock Approximation

The Hartree-Fock (HF) method treats electron-electron interactions at a mean field level,

with the Hartree and exchange interactions. The simple product of the wavefunctions in

Eq. (3.8) does not satisfy the principle of indistinguishability, and fails to satisfy anti-

symmetry, which states that a fermion wavefunction changes sign under odd permutations

of the electronic variables. It is however possible to build an antisymmetric solution by

introducing the following determinant, called Slater determinant [14, 49]:
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Ψ(r1, r2, ..., rN) =
1

√
N !

ψ1(r1) ψ1(r2) ... ψ1(rN)

ψ2(r1) ψ2(r2) ... ψ2(rN)

⋮ ⋮ ⋱ ⋮

ψN(r1) ψN(r2) ... ψN(rN)

. (3.12)

The exchange of two particles is equivalent to the exchange of two columns, which in-

duces, due to the known properties of determinants, a change of sign. Note that if two

rows are equal, the determinant is zero. Therefore, all ψi must be different. This demon-

strates Pauli’s exclusion principle where two (or more) identical fermions cannot occupy

the same state. The HF potentials can be derived from minimizing the total ground-state

energy, and Eq.(3.12) leads directly to the HF mean-field, self-consistent field equation :

[−
∇2
i

2
−
Z

ri
+ VH + V x

i ] ψi(ri) = Ejψi(ri), (3.13)

where V x
i is a non-local potential, called exchange potential due to the anti-symmetric

nature of the wavefunction,(Eq. 3.14):

V x
i (xi) ψi(ri) = [

N

∑
j=1
∫ ψ∗i (rj)

−1

∣ri − rj ∣
ψj(ri) drj] ψi(ri). (3.14)

The HF equation, (3.13), represents the one-electron approximation for interacting fermions

which includes the anti-symmetry of the wavefunction or exchange interaction. This HF

method has been implemented on periodic systems, including bulk and surface crystalline

materials [51]. In the HF equation, the non local potential causes the problems. One of the

problems is that it provides an inaccurate description of the spatial separation of the elec-

trons as it would be in a complete many-electron interaction. This missing part is widely

designated as electron correlation. The difference between the ground state HF energy and

the exact ground state energy is used as a standard definition of the correlation energy in

quantum chemistry [49]. Going beyond the HF formalism, the HF method is improved by

taking account of the electron correlation.
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3.5 Density Functional Theory (DFT)

Density functional theory (DFT) is one of the most frequently used computational tools

for studying and predicting the properties of materials. It is a ground-state theory in which

the emphasis is on the charge density as the relevant physical quantity. DFT has proved

to be highly successful in describing structural and electronic properties in a vast class of

materials. For these reasons DFT has become a common tool in first-principle calcula-

tions aimed at describing and predicting the properties of molecular and condensed matter

systems [14, 15, 19, 52].

3.5.1 The Hohenberg-Kohn Theorem

Suppose a system of N interacting (spinless) electrons is under an external potential V (r),

usually the Coulomb potential of the nuclei. If the system has a nondegenerate ground

state, it is obvious that there is only one ground-state charge density n(r) that corresponds

to a given V (r). Hohenberg and Kohn demonstrated that there is only one external poten-

tial V (r) that yields a given ground-state charge density n(r):

n(r) = N ∫ ∣Ψ(r1, r2, ..., rN)∣2dr1dr2...drN , (3.15)

where Ψ is the ground state wavefunction. The consequence of the Hohenberg and Kohn

theorem is that the ground state energy E is also uniquely determined by the ground-state

charge density, (Eq. 3.16):

E[n(r)] = F [n(r)] + ∫ n(r) V (r)dr, (3.16)

where the internal energy F [n(r)] is a universal functional of the charge density n(r) (and

not of V (r)). In this way, DFT exactly reduces the N -body problem to the determination

of a 3-dimensional function n(r) which minimizes a functional E[n(r)].
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3.5.2 Kohn-Sham Equations

In 1965, Kohn and Sham (KS) [53] reformulated the problem in a more familiar form and

opened the way to practical applications of DFT. The system of interacting electrons is

mapped on to an auxiliary system of non-interacting electrons having the same ground

state charge density n(r). For a system of non-interacting electrons, the charge density is

represented as a sum over one-electron orbitals (the KS orbitals) ψi(ri):

n(r) =
N

∑
i

∣ψi(r)∣
2, (3.17)

where N is the number of electrons. The KS orbitals are the solutions of the Schrödinger

equation [53, 54]:

[−
∇2

2
+ VH(r) + Vxc(r) + V (r)]ψi(r) = (−

∇2

2
+ VKS(r)) ψi(r) = Ei ψi(r), (3.18)

where the energy functional E, defined as (Eq. 3.19):

Etot[n(r)] = T0[n(r)] +ECoul[n(r)] +Exc[n(r)] +Eext[n(r)], (3.19)

is assumed to hold for an arbitrary density n(r). T0(n) is the kinetic energy for the

antisymmetrized product wave function (independent electrons), ECoul is the classical

Coulomb energy term, Eext(n)is potential energy between electrons and ions, and Exc(n)

is the exchange correlation energy and includes all corrections in these quantities due to

electron correlation.

3.5.3 Exchange-correlation energy

The exchange-correlation energy Exc(n) accounts for the difference between the exact

ground-state energy and the energy calculated in a HF approximation and using the non-

interacting kinetic energy;

Exc(n) = T (n) − T0(n) +Uxc. (3.20)
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T (n) and T0(n) are exact and non-interacting kinetic energy functionals, respectively,

whereas Uxc is the interaction of the electrons with their own exchange-correlation hole.

The exchange-correlation energy can also be expressed in the form of a classical electro-

static interaction between the electron density n(r), and the hole density nxc(r, r′),

Exc[n(r)] =
1

2 ∫ ∫
dr dr′

n(r) nxc (r, r′)
∣r − r′∣

. (3.21)

Approximations are sought for E′
xc[n], which though it contains also contributions from

the kinetic energy, it is usually just called Exchange-correlation functional and written

as Exc[n].

The following subsections explain some typical approximations for the exchange- cor-

relation functional that are commonly employed in practical DFT codes.

3.5.4 Local density approximation (LDA)

The local density approximation (LDA) is the basis of all approximate exchange-correlation

functionals. At the centre of this model is the idea of uniform electron gas. This is a system

in which electrons move on a positive background charge distribution such that the total

ensemble is neutral. The effects of exchange and correlation are local in character, and in

LDA, the exchange-correlation energy is assumed to be simply an integral over all space

with the exchange-correlation energy density at each point, and assumed to be the same as

in a homogeneous electron gas with that density [15, 47, 49, 50, 55],

ELDA
xc [n(r)] = ∫ dr εxc[n(r)] n(r), (3.22)

In this case εxc[n(r)] is the the exchange-correlation energy per electron in a homogeneous

electron gas of the density, n(r). This energy per particle is weighted with the probability

that there is an electron at this position, and usually, represents the number of electrons

per unit volume. The exchange-correlation energy εxc[n(r)] consists of two components:

the exchange energy per electron εx[n(r)] which represents the exchange energy of an
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electron in a uniform gas of a density n(r), and the correlation energy εc[n(r)],

εxc[n(r)] = εx[n(r)] + εc[n(r)]. (3.23)

The exchange-correlation potential is obtained from the exchange-correlation energy func-

tional and is normally expressed as [49, 50],

V LDA
xc (r) =

δELDA
xc [n(r)]

δn(r)
. (3.24)

3.5.5 Local spin density approximation (LSDA)

The extension of density functionals to spin-polarized systems is straightforward for ex-

change, where the exact spin-scaling is known, but for correlation further approximations

must be employed. A spin polarized system in DFT employs two spin-densities, n↑ and

n↓, the densities of spin up and spin down electrons, respectively, with

n(r) = n↑(r) + n↓(r), (3.25)

and the form of the local-spin-density approximation (LSDA) is written as [56]:

ELSDA
xc [n↑, n↓] = ∫ dr εxc[n

↑(r), n↓(r)] n(r)

= ∫ dr n(r) {εx[n↑(r), n↓(r)] + εc[n↑(r), n↓(r)]}

= ∫ dr n(r) {εx[n, ξ] + εc[n, ξ]}.

(3.26)

The fractional spin polarization ξ(r) is defined by [56, 57]

ξ(r) =
n↑(r) − n↓(r)

n(r)
, (3.27)

In LSDA, ELSDA
xc [n] is the usual local spin-density functional of the total electron spin

densities nσ(r) with spin σ =↑, ↓.
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The δELSDA
xc [n] can be written as [49, 50],

δELSDA
xc [n] = ∑

σ
∫ dr[εxc + n

∂εxc
∂nσ

] δn(r, σ), (3.28)

The exchange-correlation potential becomes

V σ
xc =

δExc
δnσ(r)

= [εxc + n
∂εxc
∂nσ

]r,σ. (3.29)

The range of the effects of exchange and correlation is short in solids. The success of the

LSDA is partly caused by the fact that the exchange-correlation hole is reproduced by the

LDA.

3.5.6 Generalized Gradient Approximation (GGA)

An improvement in the accuracy provided by the LDA can be obtained by using the Gener-

alized Gradient Approximation (GGA) functionals. In GGA a functional form is adopted

to ensure the normalisation condition and the exchange hole is negative definite. These

depend both on the value of the charge density and also on its gradient, but retains the

analytic properties of the exchange-correlation hole inherent in the LDA [58].

EGGA
xc = ∫ dr n(r)εxc[n(r),∇n(r)]. (3.30)

GGA functionals are often called “semi-local” functionals due to their dependence on

∇n(r). Those functionals are known to satisfy some known conditions that the exact

functional should satisfy as well. For many properties, for example geometries and ground

state energies of molecules and solids, GGA can yield better results. Especially for co-

valent bonds and weakly bonded systems, GGA is far superior to LDA. It yields much

better atomic energies and binding energies, at a modest additional computational cost.

LDA, LSDA and GGA approximations, predict correctly for a lot of systems’ ground states

properties such as ground state energy, forces acting on atoms, charge density, band struc-

ture and density of states, as well as vibrational properties. However, they are not valid
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for excited states and fail to predict the properties of some other materials especially for

transition metal oxides or strongly correlated systems, where the band gaps are always

underestimated [57, 59, 60].

3.5.7 DFT+U Approximation

DFT+U also known as LDA+U, or sometimes GGA+U, is a method used to describe

strongly correlated electron systems especially in transition metals and transition metal ox-

ides. The first expression of the LDA+U approach was formulated in 1997 by Anisimov,

et al., [18]. Most of the currently available exchange-correlation functionals which include

the LSDA and GGA functionals are not successful in describing the exchange-correlation

energy of a system with a strong tendency of electron localization and interaction. The

origin of the failure of the LSDA in strongly correlated oxides (transition metal oxides,

rare-earth compounds) is known to be associated with an inadequate description of the

strong Coulomb repulsion between 3d and or 4f electrons localized on metal ions.

The LDA and its extensions underestimate local magnetic moments and the tendency

to favour high-spin ground-states in such materials, and the insulating gap in cases where

it is related to electron localization. Underestimation of the gap in the LSDA and GGA

due to the absence of the derivative discontinuity with respect to orbital occupancy in the

exact exchange-correlation functional, may be confounded by an underestimation of the

exchange splitting induced by local magnetic moments. Thus, it is desirable to incorporate

the on-site Coulomb interaction term into the exchange-correlation functional.

The DFT+U correction term is usually thought to be an explicit mean-field treatment

of the exchange-correlation energy contributed by the correlated sites, within the Hubbard

model. DFT+U includes also the double-counting correction, to take into account that con-

tribution which is already included in the LDA term. The Hubbard U term is the effective

interaction parameter characterizing the on-site Coulomb repulsion between 3d electrons.

The LSDA+U functional can be expressed in terms of the density matrix as [20, 59]:

ELSDA+U
xc = ELSDA

xc +
U − J

2
∑
σ

[∑
m

nσmm − ∑
mm′

nσmm′ n
σ
m′m], (3.31)
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where J is the spin-spin exchange interaction parameter, nσmm′ is the (mm′) component

of the density matrix of d electrons with the spin configuration σ and the orbital magnetic

quantum numbers of m and m′. Therefore, the mm′ matrix element of the (one-electron)

LSDA+U exchange-correlation potential [20, 49, 50] can be obtained from Eq. (3.31);

V σ
mm′ =

δELSDA+U

δnσm′m
=
δELSDA

δnσm′m
+ (U − J)[

1

2
δmm′ − n

σ
mm′]. (3.32)

In 1998, an important contribution was given by Pickett, et al., [21] who, while slightly

refining the functionals, introduced a linear response technique for calculating the Hubbard

parameters. U and J are determined from the relations,

U = ε↑3d (
n̄

2
+

1

2
,
n̄

2
) − ε↑3d (

n̄

2
+

1

2
,
n̄

2
− 1), (3.33)

in which the d occupation differs by unity around a mean polarization of unity, and

J = ε↑3d (
n̄

2
+

1

2
,
n̄

2
−

1

2
) − ε↓3d (

n̄

2
+

1

2
,
n̄

2
−

1

2
), (3.34)

which is a difference between up and down eigenvalues for unit spin polarization. The term

n̄ is the LDA charge density value and ε↑3d (n↑, n↓), ε↓3d (n↑, n↓) are spin-up and spin-down

3d eigenvalues, respectively, for occupancies n↑ and n↓. In practice, the U and J terms are

often combined by redefining U as an effective value, Ueff = U − J and setting J = 0 [20].

Consequently, all values for U used in this study are considered to be effective values.
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3.6 Many-body perturbation theory (MBPT)

The closed set of five integrodifferential of Hedin’s equations [61], for the self-energy

(Σ), the Dyson equation (G), the vertex function (Γ), the screened (W ) and the bare

(v) Coulomb interaction, and the polarizability (P ), are used in Many body perturbation

theory (MBPT).

Σ(1,2) = i∫ d(3,4) G(1,3)W (1,4) Γ(3,2,4), (3.35)

G(1,2) = G0(1,2) + ∫ d(3,4) G0(1,3) Σ(3,4) G(4,2), (3.36)

Γ(1,2,3) = δ(1,2)δ(2,3) + ∫ d(4,5,6,7)
δΣ(1,2)

δG(4,5)
G(4,6) G(7,5) Γ(6,7,3), (3.37)

P (1,2) = −i∫ d(3,4) G(1,3) Γ(3,4,2) G(4,1), (3.38)

W (1,2) = v(1,2) + ∫ d(3,4) v(1,3) P (3,4)W (4,2). (3.39)

In Eqs. (3.35-3.39), we adopted the short-hand form 1 ≡ (r1, σ1, t) to denote a triple of

space, spin, and time variables. Accordingly, ∫ d(1) is a shorthand notation for the inte-

gration in all three variables of the triple. To simplify the notations, the Hedin’s equations

(3.35-3.39), are represented by Hedin’s wheel or Hedin’s pentagon shown in Figure 3.1,

and can be rewritten as,

Σ = iGWΓ, (3.40)

G = G0 +G0ΣG, (3.41)

Γ(1,2,3) = 1 +
δΣ

δG
G G Γ, (3.42)

P = −i G Γ G, (3.43)

W = v + v P W. (3.44)

The Dyson equation links the noninteracting system with Green’s function (Go) to the

fully interacting one (G), via the self-energy Σ. It can be rewritten in the form of a ge-

ometric series by subsequently replacing G on the right-hand side by G0 +G0ΣG which
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Figure 3.1: Hedin’s wheel [61].

may be written symbolically as [62]:

G = G0 +G0ΣG0 +G0ΣG0ΣG0 +G0ΣG0ΣG0G0ΣG0 + ... (3.45)

This equation (3.45) is a typical equation of scattering theory, where the different terms

of the geometric series describe single, double, triple, etc., scattering processes; these are

the exchange interaction, the creation of an electron-hole pair, and finally the creation of

a pair that itself creates another pair. The scattering potential (Σ) is given by the sum of

all single scattering processes. In order to obtain the complete Green function, we have to

sum over all multiple scattering processes.

3.6.1 Green function and dynamically screened coulomb interaction (GW) approx-

imation

The GW approximation, is based on the many-body perturbation theory at the ab initio

level. In order to solve the Hedin’s equations, one of the possible strategies could be to

start from the top of the pentagon, Figure 3.1, with Σ = 0, and the 1 particle Green function

reduces to G0. The vertex function, [Eq. (3.42)], is approximated to unity (Γ = 1) and the

polarizability and the Self-energy are then rewritten:
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P = iGG, (3.46)

Σ = iGW. (3.47)

Equation (3.47) gives the name of the GW approximation. In integrodifferential form

[30, 31], the self energy and the dynamically screened interaction are given by:

Σ(r, r′, ω) =
i

2π ∫
G(r, r′, ω + ω′)dω, (3.48)

W (r, r′, ω) = ∫ ε−1 (r, r′′, ω + ω′) v(r′′ − r′) d3r′′, (3.49)

where G is the full interacting Green’s function, W is the dynamically screened Coulomb

interaction, within the random phase approximation (RPA) and is described by the inverse

dielectric matrix ε−1 and the bare Coulomb potential v. In short notation, Eq. (3.49), can

be rewritten as :

W = ε−1v. (3.50)

The dynamically screened interaction W (r, r′, ω) is the effective potential at r′ induced by

a quasiparticle at r, as shown in Figure 3.2. The Coulomb potential of the electron repels

other electrons in its neighbourhood and thus gives rise to the formation of an exchange

and correlation hole, whose effective positive charge density nind(r, r′′, ω) screens the bare

Coulomb potential v(r, r′). The formation of the Coulomb hole around an electron at r,

Figure 3.2: Formation of quasiparticle [62].

screens its Coulomb potential v. The screened interaction W takes into account the com-

bined potentials of the bare electron and its screening cloud charge density nind(r, r′′, ω),

and the ensemble of the electron and its polarization cloud is called quasiparticle.
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The total perturbation Vtot acting on the electronic system is given by the sum of the

external perturbation applied on the sample and the induced perturbation.

Vtot = Vext + Vind. (3.51)

The induced charge is given by

nind = P Vtot = χ Vext, (3.52)

where P is the irreducible polarizability and χ is the reducible polarizability, also called

the response function. The response function measures the change in the electronic density

induced by the external applied potential. The microscopic (symmetric) dielectric function

links the longitudinal component of an external field (i.e. the part polarized along the

propagation wave vector q) to the longitudinal component of the total electric field by:

ε(q, ω) =
δVext
δVtot

= 1 − vP, (3.53)

ε−1(q, ω) =
δVtot
δVext

= 1 + vχ. (3.54)

Substituting Eq. (3.50) in Eq. (3.44), also yields the dielectric function given by Eq.

(3.53). The evaluation of the response function and the irreducible polarizability makes it

possible to get the microscopic dielectric function and its macroscopic dynamical dielectric

function, which gives the optical spectra [16, 63].

εM(ω) = lim
q→0

1

ε(q, ω)−1
. (3.55)

The spectral function of the absorption energy (Abs(ω)) and electron energy loss

(Eel(ω)) are obtained from the imaginary part of the macroscopic dynamical dielectric

function [30].

Abs(ω) = lim
q→0

Im εM(ω), (3.56)
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Eel(ω) = lim
q→0

Im
1

εM(ω)
. (3.57)

3.6.2 Bethe Salpeter Equation - BSE

The BSE is used to treat excitonic effects introduced by using the electron–hole (e–h)

Green’s function L. It can be obtained from Hedin’s equations, (Eqs. 3.40-3.42), and this

can be written as,

L = L0 +L0 (v + i
δΣ

δG
) L. (3.58)

Substituting the self energy by the Eq. (3.47) in Eq. (3.58) gives,

L = L0 +L0 (v −
δGW

δG
) L = L0 +L0 [v − (W +G

δW

δG
)] L. (3.59)

The variation of the screened Coulomb interaction (W ) with respect to the Dyson equation

(G) tends to zero, thus Eq. (3.59) is written as,

L = L0 +L0 (v −W ) L. (3.60)

Equation (3.60) is known as the Bethe Salpeter Equation and describes the (coupled) prop-

agation of two particles, namely the electron and the hole.
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CHAPTER FOUR

METHODOLOGY

4.1 Introduction

In this study, the calculations on the NiO ground state properties were done using Quantum-

ESPRESSO package [15], which is an integrated suite of computer codes for electronic-

structure calculations and materials modeling, based on density functional theory (DFT),

plane waves and pseudopotentials (norm-conserving, ultrasoft, and projector augmented

wave). Quantum-ESPRESSO stands for Quantum opEn Source Package for Research in

Electronic Structure, Simulation, and Optimization. In this work, it was used for the struc-

tural optimizations and for description of the NiO ground state. The optical properties

were studied with Yambo code [16] which is an ab initio code for calculating quasiparticle

energies and optical properties of electronic systems within the framework of many-body

perturbation theory and time-dependent density functional theory.

4.2 DFT and DFT+U formalism

The major problem in solving the quantum many body problem described by the Hamil-

tonian given in Section 3.2, is the interaction between the electrons, which are identical

Fermionic particles. For the purpose of calculating ground-state properties of the system,

this complex many-body problem is reduced to solving the simpler problem of a single

non-interacting electron moving in an effective field. In DFT [15], the ground state en-

ergy of a system is obtained from the ground state electron density, as it reformulates

the total energy in terms of a functional of the charge density of the system, as shown in

Eq. (3.16). A number of successful approximations, discussed in Section 3.5 including

the LDA, GGA, LSDA and LSDA+U, have allowed practical and quantitatively accurate

calculations for ground-state properties to be made using the DFT approach.
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4.2.1 Solving self-consistency Kohn-Sham equation

In the Kohn-Sham (KS) approach, the electron charge density, and hence the total energy,

may be obtained by solving an associated system of noninteracting electrons with the same

charge density as the interacting system [53]. Within the KS scheme, the charge density

n(r), can be expressed exactly in terms of sums over single-particle orbitals, as shown by

Eq. (3.17). Therefore, KS equation has to be solved iteratively until a self- consistent

solution is reached, and in practical calculations, the basic approximation lies in the con-

struction of the energy functional itself [15, 53]. The schematic diagram of the procedure

is shown in Figure 4.1.

Figure 4.1: Schematic representation of the self-consistent loop for the solution of KS
equation.

The wave functions are constructed from atomic positions and the pseudopotentials,

and from these wave functions, an initial effective potential is constructed. Then the KS

Hamiltonian is diagonalized to yield a new set of wave functions and eigenvalues. The

process is repeated until the wave functions are below a specified convergence criteria. If

the convergence is reached, then the total energy and the forces are calculated [14, 15].
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4.2.2 Structure optimization

The NiO ground states properties were calculated using LSDA and LSDA+U. The Hub-

bard values of 5.4 eV [27], 6.2 eV [23], 7.3 eV [64] and 8 eV [18] determined previously

by other workers with Linear combination of atomic orbitals (LCAO), Full potential lin-

earized augmented plane wave (FLAPW), Linearized augmented plane wave (LAPW) and

Linear muffin-tin orbital (LMTO) methods, respectively, were used. To investigate what is

happening beyond U term of 8 eV, the Hubbard values of 8.5 eV, 9 eV, 9.5 eV, 10 eV and 12

eV, taken randomly, were used in order to investigate the NiO properties. The optimization

results shown in Appendix A, of the k-points, the plane wave energy cutoff of the wave

function (ecutwfc) and the lattice parameter were carried out using a RHL primitive unit

cell. The TN of NiO is 523 K and it has a cubic rock salt structure with a lattice constant

of a0 = 4.168 Å= 7.877 a.u above TN as seen previously in Section 2.2.1. Below TN, NiO

transforms to a RHL distorted rock salt structure by a compression along the body diagonal

direction with the RHL angle αrh of 60.080 or 33.5570 as shown in Figures 4.2 - 4.4.

Figure 4.2: Face centered cubic structure of NiO.

The lattice parameters of 5.5699 a.u and 9.6475 a.u, of RHL NiO with αrh = 60.080

and RHL NiO with αrh = 33.5570, respectively, were used to optimize the k-points and

the plane wave cut off energies (ecutwfc). In this study, the ground-state properties were

investigated for the bulk RHL NiO structure in its AF state, because it was found to have

the lowest energy [11, 25, 36]. The NiO was modeled by a RHL unit cell containing two Ni

and two O atoms. The calculations were done by assuming the two Ni atoms had opposite

starting magnetization, in order to consider its AF state. The NiO atoms were allowed to
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Figure 4.3: Transformation of fcc NiO into RHL NiO with αrh = 60.080.

Figure 4.4: Transformation of fcc NiO into RHL NiO with αrh = 33.5570.

relax in x, y and z directions until the systems achieved the minimum energy according to

some set convergence criteria and the corresponding relaxed atomic positions were then

used in all subsequent calculations.

K-points were varied from a 2 × 2 × 2 grid to higher values of 20 × 20 × 20. The plane

wave cut off energy was fixed at 30 Ry to make the calculations less computationally

expensive during the test runs. The values of minimum energies obtained with respect to

the corresponding k-points grids were then plotted for both NiO structures. The converged

k-points mesh which had a consistent energy for the structure, was then used to optimize

the plane wave cut off energy.

The trial density was picked by specifying the kinetic energy cutoff for charge den-

sity and potential (ecutrho) which also depends on the type of pseudopotential to be used.
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During the optimization process, the Nickel and Oxygen ultrasoft pseudopotentials (see

Appendix C) were used. The ultrasoft pseudopotentials offer a faster convergence than

norm-conserving pseudopotentials, because they reduce the number of plane waves, there-

fore convergence is achieved faster. As the optimization involved the use of ultrasoft pseu-

dopotential, a larger value than the default value of ecutrho, was desirable, therefore the

value of the charge density cut off (ecutrho) was 10 times ecutwfc value, during the op-

timization process. The values of minimum energies obtained with respect to the corre-

sponding ecutwfc were then plotted, and the ecutwfc which had the lowest and consistent

energy for the structure, and its corresponding ecutrho, were used for optimization of the

lattice parameter. The lattice parameter found to have the lowest energy was used in all

subsequent calculations.

4.2.3 Brillouin zone (BZ)

A Brillouin zone [65] is a Wigner-Seitz primitive cell in the reciprocal lattice. A Wigner-

Seitz cell around a point is the set of points in space that are closer to that lattice point than

to any of the other lattice points. A set of those points is referred to as the k-path. The

BZ gives the vivid geometrical interpretation of the diffraction condition, which means

the descriptions of electron energy band theory and of the elementary excitations of other

kinds. To plot the band structure for RHL NiO, the high symmetry points and the path

[66] in the primitive Brillouin zone of Γ → L → B → Z → Γ → Q → F → P1 → Z → P ,

generated using a crystalline and molecular structure visualisation programme (XCrysDen)

[15, 67], were used, as shown in Figure 4.5.

Figure 4.5 shows the k-points and the k-path used for the band structure calculations

of RHL NiO. The k-points coordinates for RHL structure are given in Table 4.1. For RHL

NiO with αrh = 33.5570, the values of η and ν were calculated and found to be 0.8125

and 0.34375 respectively, while for RHL NiO with αrh = 60.080, they were 0.7497 and

0.37515, respectively.
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Figure 4.5: Brillouin zone of rhombohedral NiO.

Table 4.1: Symmetry k-points of RHL [66].

×b1 ×b2 ×b3 ×b1 ×b2 ×b3

0 0 0 Γ η ν ν P
η 1

2 1 − η B 1-ν 1-ν 1-η P1

1
2 1-η 1-η B1 ν ν η -1 P2

1
2

1
2 0 F 1-ν ν 0 Q

1
2 0 0 L ν 0 - ν X
0 0 -12 L1

1
2

1
2

1
2 Z

η = (1 + 4cosα)/(2 + 4cosα)

ν = 3/4 − η/2

4.2.4 Determination of Energy band gap

Owing to the extensive use of NiO in optical applications [3, 22, 68–70], determination of

its energy band gap is key to these applications. In this study, the energy band gap was

calculated with and without the U term in order to establish the manner in which it varies.

From the basic definition, the fundamental energy band gap [65] is normally considered

as the energy difference between the lowest point of the conduction band (the conduction

band edge) and the highest point of the valence band (the valence band edge). For an

indirect semiconductor, the electron transitions from the valence band to the conduction

band can either be direct or indirect. Although the indirect transition requires less energy

than direct transition, it has smaller probability of occurring than the direct transition, and
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the absorption of a photon is proportional to the transition probability [71]. This means

that in this study, the optical band gap was calculated as the minimum direct band gap,

measured from the valence band edge to the conduction band at the same high symmetry

k-point.

4.2.5 Determination of magnetic properties

Since Ni is a transition metal with some unpaired electrons, it is likely to influence the NiO

matrix or crystal in a way that makes it magnetic. The bulk NiO possesses a RHL structure

and exhibits AF behavior below its TN of 523 K. Bulk RHL NiO calculations were done by

assuming the two Ni atoms possess opposite but equal starting magnetizations, in order to

consider its AF state. As such, during the calculations on RHL NiO, both structures with

αrh = 33.5570 and αrh = 60.080 were taken into account.
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4.3 The GW formalism

The GW approximation was applied as a perturbation theory beginning from a DFT mean

field Hamiltonian. The Nickel and Oxygen norm-conserving pseupotentials (see Appendix

C) were used for DFT-GGA calculations. The GW calculations were performed by taking

the wave functions and eigenvalues of a DFT-GGA calculations as an input for Yambo

[16], in order to generate the core databases that contain the ground state data necessary

for starting the code and to get a starting point of GW’s non interacting method (GoWo).

The Green function G was then updated to GWo, called GW-RPA, and thereafter both

Green function G and screened Coulomb interaction W, (GW), were updated until self-

consistency was obtained.

Figure 4.6: The schematic implementation of the GW method [14].

Figure 4.6 shows the schematic diagram of implementation of the GW method. In

GW, the screened Coulomb potential W is calculated with the dielectric matrix (ε) at the

RPA level. The self-energy Σ can be obtained from a self-consistent set of Dyson-like

equations (i.e., diagonalized within the basis) known as Hedin’s equations seen in Section

3.6.1, and is just the direct product of G and W [52]. For the GW calculations, the GW

Newton solver was used and the dynamical screened interaction is studied with Plasmon

Pole Approximation and RPA.
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Since the electromagnetic spectrum of interest to this study ranges from near infrared

(750 nm, i.e 1.65 eV) up to ultraviolet (200 nm, i.e 6.18 eV), the energy calculations were

limited from 0 eV to 10 eV, i.e from +∞ to 123.7 nm (see Figures 5.13 - 5.16).

4.4 The BSE formalism

The Bethe Salpeter Equation (BSE) is normally solved to treat Excitonic effects introduced

by using the electron-hole (e-h) Green’s function [61]. The BSE calculations take as input

the quasiparticle energies and wave functions from GW, therefore the calculations start

from the GGA or LDA within the DFT, then the GW and its correction. Often only a

scissor shift is applied, and the eigenstates are updated. Figure 4.7, shows the procedure

for a GW-BSE calculations.

Figure 4.7: Procedure for BSE calculations [14] .

The full dielectric matrix calculated in the GW step is used to screen the attractive direct

electron-hole interaction. With the excitation energies and amplitudes of the electron-hole

pairs, the macroscopic dielectric function for various light polarizations can be calculated,

and quantities like electron-hole correlation functions in real space and higher-order op-

tical effects such as multi-photon absorption and phonon-assisted absorption spectra are

obtained [14, 52]. The full BSE with screened interaction (Static screened interaction) was

used for the Approximations for the Kernel, with the Haydock as the BSE solver.
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CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Study of structural properties of bulk NiO using LSDA+U

5.1.1 Structural properties of rhombohedral NiO with αrh = 60.080

Below its Néel temperature of 523 K, NiO transforms from fcc structure to a rhom-

bohedral (RHL) structure by a compression along the body diagonal direction with the

rhombohedral angle αrh being 60.080 [10, 12, 25] as shown in Figures 4.3 and 5.1. The

lattice parameter a of RHL NiO with αrh = 60.080 shown, was calculated as follows:

a = b = c = 1
2

√
a20 + a

2
0 =

√
2
2 a0 = 5.5699 a.u. In this study, the LSDA+U optimization of

RHL NiO involved the use of a dense k-point mesh of 15 × 15 × 15 and an energy cutoff

(ecutwfc) of 50 Ry, (see Appendix A, Figures A.1 - A.2).

Figure 5.1: Optimized structure of RHL NiO with αrh = 60.080.

Table 5.1 shows that the optimized lattice constant (see also Appendix A, Figures A.3

- A.7) for LSDA and LSDA+U calculations, is greater than the experimental one of 5.571

a.u [10] owing to the different conditions under which the experiment was done.

The bulk modulus and its pressure derivative of RHL NiO were calculated using Mur-

naghan’s Equation of State [26] and were found to be 170.3 GPa and 5.19, respectively.
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Table 5.1: Calculated DFT - LSDA and LSDA+U lattice constant a, bulk modulusB0,
first pressure derivative of the bulk modulus B′

0 and the bond lengths Ni − Ni and
Ni −O of RHL NiO with αrh = 60.080.

LSDA LSDA+U Experiment
U (eV) - 5.4 6.2 7.3 8 -

a (a.u) 6.716 6.785 6.786 6.789 6.793 5.571 [10]
B0 (GPa) 170.3 156.3 155.8 155.2 155.2 184 [12]
B′

0 5.19 4.52 4.55 4.57 4.56 4.93 [12]
Ni −Ni (a.u) 4.7518 4.8006 4.8013 4.8035 4.8063 -

Ni −O (a.u)
4.1102 4.1524 4.1530 4.1549 4.1573 -
4.1168 4.1591 4.1597 4.1616 4.1640 -

The calculated bulk modulus without U term, was however small by 13.7 GPa compared

to the experimental bulk modulus of 184 GPa, while the calculated pressure derivative was

higher than the experimental of 4.93 [12] by 0.26 for RHL NiO with αrh = 60.080.

The calculated Ni-Ni bond length was 4.7518 a.u and the Ni-O bond lengths were

4.1168 a.u and 4.1102 a.u for LSDA calculations without U term. The lattice parameter

and the bond length were found to increase slightly with U term, while the bulk modulus

was decreasing with U term, as shown in Table 5.1. The bond angles Ni-Ni-Ni were found

to be 90.0690 and 89.9310, while the Ni-Ni-O bond angles were found to be 54.7850 and

54.6540. The bond angles Ni-O-Ni were found to be 109.5040, 109.4390 and 70.5610,

demonstrating a significant variation due to the distortion in the structure.

5.1.2 Structural properties of rhombohedral NiO with αrh = 33.5570

The RHL distorted NiO rock salt structure is also achieved by a compression along the

body diagonal direction with the rhombohedral angle αrh being 33.5570. This is shown

in Figures 4.4 and 5.2. The lattice parameter of RHL NiO with αrh = 33.5570 shown in

Figure 4.4, was calculated as follows: a = b = c =
√

a20 +
a20
2 =

√
3
2 a0 = 9.6475 a.u.

A k-point mesh of 12 × 12 × 12 and a Plane wave energy cut off (ecutwfc) value of 50

Ry, were used for the calculations involving both LSDA and LSDA+U for RHL NiO with

an angle of 33.5570 (see Appendix A, Figures A.8 - A.27). A lattice parameter of 9.408

a.u was obtained for the calculation without the U term, and it was found to increase with
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Figure 5.2: Optimized structure of RHL NiO with αrh = 33.5570.

increasing U term. For a U term of 9.5 eV, a lattice parameter of 5.107 Å= 9.652 a.u was

obtained, which was only slightly longer than the experimental value of 9.648 a.u by 0.041

%.

Figure 5.3: Optimized lattice constant of RHL NiO for LSDA and LSDA+U.
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Therefore, a U term of 9.5 eV is used for calculating other properties of RHL NiO

with 33.5570. A plot of the total energy with lattice parameters for LSDA and LSDA+U is

shown in Figure 5.3, whereby a clear shift in the value of the lattice parameter is seen after

including the Hubbard term, and this suggests that the U term shifts the charge density in a

manner that increases the size of the unit cell. This also effectively alters the energy band

gap. The increase of lattice parameter with U term is also shown by Table 5.2.

Table 5.2: Calculated DFT - LSDA and LSDA+U lattice constant a, bulk modulusB0,
first pressure derivative of the bulk modulus B′

0, the bond length Ni − O and bond
angles Ni −O −Ni and O −Ni −O of RHL NiO with αrh = 33.5570.

LSDA LSDA+U
U (eV) - 5.4 6.2 7.3 8 8.5 9 9.5 10 12

a (a.u) 9.408 9.536 9.556 9.586 9.605 9.620 9.635 9.652 9.668 9.738
B0 (GPa) 276.3 247.5 243.4 237.6 233.7 230.2 227.6 224.5 222.2 211.0
B′

0 4.82 4.60 4.54 4.47 4.42 4.44 4.42 4.32 4.34 4.19
Ni−O (a.u) 3.841 3.893 3.901 3.913 3.921 3.927 3.936 3.940 3.948 3.980
Ni−O−Ni 900 900 900 900 900 900 900 900 900 900

O −Ni −O 900 900 900 900 900 900 900 900 900 900

The bulk modulus for RHL NiO with αrh = 33.5570 was found to be B0 = 224.5 GPa

when a U term of 9.5 eV was used. This value was closer to the bulk modulus value of

230.72 GPa calculated recently by Gillen and Robertson [11]. Table 5.2 further shows

that the bulk modulus for RHL NiO with αrh = 33.5570 decreased with increasing U term.

This observation is consistent with the observed increase in the lattice parameter with

increasing U term. The calculated first pressure derivative of the bulk modulus, B′
0, was

found to decrease with increase of the U term, from 4.82 for LSDA calculations, up to 4.32

for LSDA+U with Hubbard term of 9.5 eV. The calculated values of B′
0 were in the range

of other reported theoretical values, which lie between 3.6 and 5.7 [25]. The calculated

bond angle between Ni-O-Ni and O-Ni-O was found to be 90 degrees, while the value of

the Ni-O bond length increased from 3.841 a.u for LSDA without U term, to 3.940 a.u with

inclusion of U term of 9.5 eV, an increase that was consistent with the observed increase

in the lattice parameter with increasing U term.
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5.2 Study of electronic properties of bulk NiO with LSDA+U

5.2.1 Electronic properties of rhombohedral NiO with αrh = 60.080

The band structure of bulk RHL NiO with αrh = 60.080 studied with LSDA, is shown in

Figure 5.4. The zero of the energy was set at the Fermi energy (EF ) value. Figure 5.4

Figure 5.4: Band structure of bulk RHL NiO of αrh = 60.080, calculated using LSDA.

further shows that the valence and the conduction bands overlap; therefore the material

seems to be a metal instead of being a semiconductor with a wide energy band gap. The

same results were found with inclusion of U term as shown in Appendix B, Figures B.1 -

B.2. This means that, both LSDA and LSDA+U approaches did not describe correctly the

electronic properties of RHL NiO with αrh = 60.080, and this might be due to the reduction

of the lattice parameter, as it was smaller by 1.161 a.u when compared to the experimental

lattice parameter of 7.877 a.u for fcc NiO. Due to this incorrect prediction of the electronic

properties of rhombohedral NiO with αrh = 60.080, and owing to the fact that NiO exists

in either fcc structure, RHL structure with αrh = 60.080 and also rhombohedral structure

with αrh = 33.5570, it was necessary to also study the electronic properties of RHL NiO

with αrh = 33.5570 as outlined in the following subsections.
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5.2.2 Electronic properties of rhombohedral NiO with αrh = 33.5570

For the LSDA calculations on RHL NiO with αrh = 33.5570 in the antiferromagnetic (AF)

state, both narrow indirect and direct band gaps of 0.61 eV and 0.85 eV, respectively, were

obtained as shown in Figure 5.5. The valence band edge for the RHL NiO was located at

the Z point, whereas the conduction band edge was located almost midway between Γ and

L points. Correspondingly, the minimum direct band gap was found at Z point.

Figure 5.5: Band structure of RHL (αrh = 33.5570) NiO calculated using LSDA.

The value of the band gap energy was found to increase with the value of U term as

shown in Figures 5.6, 5.7 and 5.8 and Table 5.3. For purposes of referencing the band gap,

the Fermi energy was set at 0 eV as mentioned earlier.

Figure 5.6 shows the calculated density of states (DOS) for RHL NiO with αrh =

33.5570, whereby the Fermi energy was set at 0 eV. Both the conduction band and valence

band edges were shifted from the EF in opposite directions by around 1.3 eV and 1.5 eV,

respectively, when a U term of 9.5 eV was used.



42

Figure 5.6: DOS of RHL (αrh = 33.5570) NiO for LSDA and LSDA+U.

The features of the DOS have also been found to change with varying U terms, due to

the charge redistribution. The highest intensity peak which was located at the top of the

valence band, for the calculations without U term, was found to be located almost at the

bottom of the valence band for LSDA+U calculations, especially for values of U greater

than 6.2 eV (see Figure 5.6). The features of the DOS in the conduction band have also

been found to change with U term, where the peak intensities were found to decrease with

increasing value of the U term.

For the LSDA+U calculations, the valence band edge for RHL (αrh = 33.5570) NiO

was also located at the Z point (see Figure 5.7), but the conduction band edge was located

between B and Z points, for U term varying between 5.4 eV and 8.5 eV (see Appendix B,

Figures B.3 - B.7), while it was located at Γ point for U term greater than 9 eV (see Figure

5.7 and Appendix B, Figures B.8 - B.10), unlike in the case of plain LSDA where this was
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found between Γ and L. Likewise to LSDA calculations, the minimum direct band gap was

found at Z point.

Figure 5.7: Band structure and DOS of RHL (αrh = 33.5570) NiO with LSDA+U, U =
9.5 eV.

Figure 5.8: Variation of energy band gap with U term.
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From Figures 5.5 - 5.8, it is found that the addition of the U term in LSDA opens both

the indirect and the direct band gaps from 0.61 eV and 0.85 eV, respectively, (see Figures

5.5 and 5.6 (U=0 eV)) to 3.05 eV and 3.65 eV (see Figures 5.6 (U=9.5 eV) and 5.7 - 5.8),

respectively, for U=9.5 eV. Generally, the calculated direct band gap was found to increase

with increasing value of the Hubbard term U, while the indirect band gap was found to

increase from 0.61 eV to 3.09 eV, and then start decreasing as summarized in Figure 5.8

and Table 5.3. The calculated values of the indirect and direct band gap of 3.05 eV and

3.65 eV, respectively, for a U term of 9.5 eV are within the range of some other calculated

band gap values as shown in Table 5.3.

Table 5.3: Calculated band gap values for RHL (αrh = 33.5570) NiO.

U (eV)
Band gap (eV)

Indirect band gap Direct band gap

LSDA - 0.61 0.85

LSDA+U

5.4 2.30 2.58
6.2 2.50 2.78
7.3 2.78 3.07

8 2.95 3.25
8.5 3.09 3.38

9 3.06 3.51
9.5 3.05 3.65
10 3.01 3.81
12 2.80 4.46

Other theoretical work
LDA+U 5 [28] ; 7 [2] 2.6 [28]; 3.8 [2]
LSDA+U 6.1 [29] ; 5.4 [27];

6.2 [20, 23]
3.7 [29] ; 3 [20] ;
4.04 [23]; 4.1 [27]

GGA+U 4.6 [19] ; 6.2 [23] 4.31 ; 3.4 [23] 2.7 [19]

Figures 5.9 - 5.10 show the calculated projected density of states (PDOS) for RHL

(αrh = 33.5570) NiO for LSDA and LSDA+U approaches.

Figure 5.9 shows that the Ni 3d up states and O 2p states are situated in the valence

band while Ni 3d down states are located at the top of the valence and at the bottom of the

conduction band. Therefore Ni 3d states dominate the upper edge of the valence band and

the conduction band too, whereas the higher energies in the valence band between - 9 eV
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Figure 5.9: PDOS of RHL (αrh = 33.5570) NiO with LSDA.

and - 4 eV are occupied predominantly by O 2p states. The conduction band and the upper

edge of the valence band was of the same character (d-d type), suggesting that NiO is a

Mott-Hubbard insulator.

However, other studies [19, 20, 29, 30, 35, 36], have predicted NiO to be a “Charge

transfer insulator” with a big band gap instead of being a “Mott-Hubbard insulator”. To in-

vestigate the findings of these studies, the LSDA+U method was employed and the results

are shown in Figure 5.10.

In Figure 5.10, a mixed character of Ni 3d and O 2p states was observed in the valence

band, but it was mainly dominated by an appreciable amount of Ni 3d up and down states.

The upper edge of the highest occupied molecular orbitals (Valence band) is dominated

by O 2p orbitals whereas the bottom of the conduction band is occupied by Ni 3d down

states. It is also important to notice that the inclusion of U term shifts the Ni 3d up states

to the higher energies within the valence band, with a strong peak located at around - 9 eV,

while the O 2p states are shifted to the top of the valence band with a strong peak located

at around - 2 eV. As such, the band gap character is a p-d type and NiO, therefore be-
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Figure 5.10: PDOS of RHL (αrh = 33.5570) NiO with LSDA+U, U=9.5 eV.

comes a “Charge transfer insulator” which is in good agreement with some other previous

theoretical [19, 20, 29, 30] and experimental [35, 36] works.
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5.3 Study of magnetic properties of bulk NiO using LSDA+U

The bulk NiO possesses a RHL structure and exhibits AF behavior below its NN 523 K.

Both RHL NiO structures with αrh = 33.5570 and αrh = 60.080 were taken into account,

and Figures 5.11 and 5.12 show plots of magnetic density of states for the spin up and

spin down states for RHL NiO. Both Figures 5.11 and 5.12 show that RHL NiO, with

αrh = 60.080 and αrh = 33.5570, is indeed an antiferromagnetic material of type two

(AF2), as the total magnetization was found to be 0.00 Bohr mag/cell.

Figure 5.11: Calculated up and down spins of RHL NiO of αrh = 60.080 studied by
LSDA+U, U=8 eV.

Figure 5.12: Calculated up and down spins of RHL NiO of αrh = 33.5570 studied by
LSDA+U, U=9.5 eV.
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5.4 Study of optical properties of bulk NiO using GW and BSE

In this section, the optical properties of fcc NiO and RHL NiO with αrh = 33.5570 were

investigated using Yambo code. The optical properties of NiO with αrh = 60.080 were not

investigated because it was predicted earlier to be a metal.

5.4.1 Optical properties of fcc NiO

Figure 5.13 shows the absorption energy spectrum of fcc NiO. It shows a plot of the imag-

inary part of the energy absorption spectrum, which was plotted because the absorption is

linked to the imaginary part of the macroscopic dielectric function [72], as shown earlier

in Eq. (3.56).

Figure 5.13: Absorption energy spectrum for fcc NiO.

The first bound exciton peaks were established at 3.13 eV and 4.24 eV for the BSE

and GW-RPA methods, respectively, and their positions indicate the size of the indirect

band gap. The highest intensity peak of the absorbed energy is observed for BSE at ap-

proximately 4.24 eV whereas this is observed at 5.36 eV for GW-RPA. Thus, the GW-RPA

graph is shifted by 1.12 eV to the right of the BSE plot. The other major peaks are ob-
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served at 4.55 eV and 8.18 eV for GW-RPA and at 3.64 eV; 7.07 eV and 7.78 eV for the

case of BSE.

Contrary to absorption linked to the imaginary part of the macroscopic dielectric func-

tion, the electron energy loss (EEL) is linked to the imaginary part of the inverse of the

macroscopic dielectric function [72], as seen in Eq. 3.57. In this case, the EEL peaks ob-

served between 3 eV and 10 eV in Figure 5.14 are due to mobile concentration of energy

in a crystal formed by excited electrons and associated holes (exciton states) [16, 73].

Figure 5.14: Electron energy loss spectrum for fcc NiO.

The spectral intensity is related to the electronic transitions between conduction and

valence bands just like in the case of density of states. Ideally the inelastic intensity should

remain zero up to an energy loss equal to the band gap energy of the material. However,

exciton peaks can also occur due to transitions to exciton states below the conduction band

[73]. The first peak for EEL spectrum of fcc NiO located at 3.13 eV for BSE, corresponds

to the size of the optical indirect band gap, whereas for GW-RPA aproach the first peak

is located at 4.54 eV represents fundamental indirect band gap. In general the GW-RPA

method appears to overestimate the indirect band gap of fcc NiO.
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5.4.2 Optical properties of Rhombohedral NiO with αrh = 33.5570

As mentioned earlier, the NiO absorption spectrum is obtained from the imaginary part of

the macroscopic dielectric function. Figure 5.15 shows that RHL NiO with αrh = 33.5570

has major absorption peaks at around 3.23 eV, 3.74 eV, 5.35 eV and 9.90 eV for BSE, and

at around 3.74 eV, 4.24 eV and 5.86 eV for GW-RPA. The highest and most intense peaks

are situated near 4.24 eV and 3.74 eV for GW-RPA and BSE, respectively. The first peak

positions for both BSE and GW-RPA correspond to optical and fundamental, respectively,

indirect band gap of RHL NiO with αrh = 33.5570 and they are both within acceptable

errors of experimental band gap which is in range of 3.5 eV - 4 eV [1–8].

Figure 5.15: Absorption energy spectrum for RHL NiO with αrh = 33.5570.

Figure 5.15 shows that the absorption energy spectrum for RHL NiO with αrh =

33.5570 is characterized by a weak intensity in the low energy range (0 – 2.5 eV) and, rel-

atively stronger peaks at around 3.23 eV (282.8 nm) and 3.74 eV (330.9 nm). Therefore,

there is minimal absorption in the range of the infrared to the visible region and stronger

absorption towards the ultraviolet region, and this is in agreement with other experimental

works [1, 3, 9, 13, 74].
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Figure 5.16: Electron energy loss spectrum for RHL NiO with αrh = 33.5570.

Figure 5.16 shows EEL spectra observed for BSE and RPA calculations in the case

of RHL NiO with αrh = 33.5570. It shows that the onset of optical absorption in RHL

NiO starts at a photon energy of around 3.03 eV. Peaks between 3 eV and 10 eV are due

to exciton states [16, 73], as seen for the EEL in fcc NiO. For GW-RPA, the first peak is

observed at 3.84 eV and indicates the size of NiO fundamental direct band gap, while from

the BSE calculations the optical band gap is found to be 3.34 eV.

By updating both Green function G and screened Coulomb interaction W, the GW ap-

proach was used and the band structures obtained with this method are shown in Figures

5.17 - 5.18, for fcc and RHL ( αrh = 33.5570) NiO structures, respectively. From Figure

5.17, a direct band gap of 2.51 eV was obtained at Γ point with the GW approximation,

a value that is small compared to the other calculated values by about 1.5 eV on average.

Unlike the fcc structure where the fundamental band gap was a direct band gap, the funda-

mental band gap for RHL NiO with αrh = 33.5570, was found to be an indirect one of 3.46

eV and it was from B to Γ points as shown in Figure 5.18.
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Figure 5.17: Band structure of fcc NiO with GW.

Figure 5.18: Band structure of RHL NiO of αrh = 33.5570 with GW.

The energy band gap values obtained for the non-interacting system with Green’s func-

tion and the dynamically screened Coulomb interaction based on GGA calculations GoWo-

GGA, the interacting system with updated Green’s function GW-RPA based on GGA cal-

culations GWo-GGA, as well as updated G and W (GW) functions, and BSE methods are

summarized in Table 5.4.
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These are presented together, so as to compare with the other theoretical and experi-

mental values.

Table 5.4: Theoretical and experimental values of energy band gap of NiO.

Methods U (eV)
fcc NiO band gap (eV) RHL NiO (αrh = 33.5570)

band gap (eV)
Indirect Direct Indirect Direct

GoWo-GGA - 4.01 4.12 3.46 3.70
GWo-GGA - 4.25 5.36 3.74 4.24
GW - - 2.51 3.46 3.70
BSE - 3.13 4.24 3.34 3.74

Other theoretical works
sX-LDA [11] - 3.85 4.1
GW@LDA - 4.8 [7] 5.5 [30]
U+GW [32] 4a ; 7.5b 3.99a; 4.7b 4.16a ; 5.4b

GoWo@LDA+U [31] 5.2 3.75
GWo@LDA+U [31] 5.2 3.76

Experimental band gap of fcc NiO obtained using UV-Vis spectroscopy
3.8 [1] ; 3.89-3.92 [3] ; 3.6 [13] ; 3.32 [39] ; 3.65-3.82 [4] ; 3.47-3.86 [9] ;

3.4-3.71 [38] ; 2.10-3.9 [40] ; 3.744-3.867 [5] ; 3.17-3.83 [22] ; 3.35-3.73 [37]

The results of the RHL NiO with αrh = 33.5570 structure are found to be much closer

to other theoretical and experimental results than those of fcc NiO, as shown in Table

5.4. This difference is attributed to the fact that NiO crystallizes in the NaCl structure in

the paramagnetic phase above TN, while below its TN, it has a RHL structure, with the

type-two AF phase, which is the most stable structure. Table 5.4 further shows that the

direct band gap values of 5.36 eV and 4.24 eV obtained from GWo calculations for fcc

NiO and RHL NiO, respectively, are greater than those obtained with BSE of 4.24 eV and

3.74 eV, respectively. This study established that the larger the energy band gap, the less

adequate is the GWo method. The reason for this poor performance of the GWo method

for determining the energy band gap, is that the response function measures the change in

the electronic density induced by the external applied potential [16].
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The BSE method gave a good description of the size of the energy band gap than

GWo and GW, therefore the direct and the indirect band gap values obtained with BSE are

taken as more accurate, and are also in good agreement with the available theoretical and

experimental results. In general, the band gap values for RHL NiO with αrh = 33.5570

obtained with different methods were found to be in the same range between 3 eV and 3.8

eV as shown in Figure 5.19.

Figure 5.19: Band gap values obtained with DFT, DFT+U, GoWo, GWo, GW and
BSE methods for RHL NiO of αrh = 33.5570.

However, most of the experimental results of the measurement of NiO energy band

gap, depend on the preparation techniques, the analysis methods used as seen in Table 2.2,

and also the nature of NiO thin films, i.e whether polycrystalline or noncrystalline, etc. As

such, some of the variations observed between the calculated values of the energy band

gaps and the experimental values could be attributed to these reasons.
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CHAPTER SIX

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

In this study, the structural, electronic, magnetic and optical properties of bulk NiO have

been investigated and compared to the available theoretical and experimental findings.

The ground-state properties of rhombohedral (RHL) NiO with αrh = 60.080 and RHL NiO

with angle αrh = 33.5570 have been studied with LSDA and LSDA+U approaches, using

different values of Hubbard interaction of 5.4 eV, 6.2 eV, 7.3 eV, 8 eV, 8.5 eV, 9 eV, 9.5 eV,

10 eV and 12 eV. The first four U term values have been determined previously by other

workers with LCAO, FLAPW, LAPW and LMTO methods, respectively, while the other

values have been taken randomly, in order to analyze the properties of NiO. This study

found a U value of 9.5 eV predicting the properties of NiO well.

Using those values, the LSDA+U approach has been found to give a better description

of the ground-state properties than LSDA. The lattice parameter of NiO was found to

increase with increasing U term, whereas the bulk modulus value decreased instead. The

lattice parameters and bulk modulus of RHL NiO with αrh = 60.080 were found to be

6.716 a.u and 170.3 GPa, respectively, for a calculation without a U term, whereas they

were found to be 9.652 a.u and 224.5 GPa, respectively, for RHL NiO with αrh = 33.5570,

for the U term of 9.5 eV. The bond angle Ni-O-Ni and O-Ni-O within LSDA and LSDA+U

calculations was a constant value of 90 degrees for RHL NiO with αrh = 33.5570, while

the Ni-O bond length value was increasing with U term, from 3.841 a.u for LSDA, to 3.940

a.u with inclusion of U term of 9.5 eV.

LSDA+U did not describe correctly the electronic properties of RHL NiO with αrh =

60.080, as it predicted the material to be metallic. This was attributed to its short lattice

constant of 6.758 a.u. However, LSDA+U had a better description of the band gap than

LSDA for RHL NiO with αrh = 33.5570. For the LSDA calculations, narrow indirect and

direct band gaps of 0.61 eV and 0.85 eV, were obtained respectively. When a U term

was added in the calculations, it opened both the indirect and the direct band gaps up to
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3.05 eV and 3.65 eV, respectively, for U term of 9.5 eV. The PDOS for RHL NiO with

αrh = 33.5570 showed a mixed character of Ni 3d and O 2p states within the valence band,

but was mainly dominated by an appreciable amount of Ni 3d states. The upper edge of the

valence band was dominated by O 2p orbitals whereas the bottom of the conduction band

was occupied by Ni 3d down states. Thus, LSDA+U predicted NiO to be a charge transfer

insulator which is in good agreement with other previous theoretical and experimental

works.

The magnetic properties of bulk RHL NiO with αrh = 33.5570 and bulk RHL αrh =

60.080, were studied by assuming the two Ni atoms to have opposite starting magnetiza-

tions, in order to consider its AF state. This study established that RHL NiO is indeed a

type two AF material.

The optical properties of fcc NiO and RHL NiO with αrh = 33.5570 were investigated

with GW and BSE methods. From the absorption spectra and electron energy loss (EEL)

spectra for fcc NiO, both the fundamental direct and indirect band gaps were found to be

4.25 eV and 5.36 eV, respectively, using GWo calculations, while with BSE, the optical

direct and indirect band gaps were found to shift to 3.13 eV and 4.24 eV, respectively.

For RHL NiO with αrh = 33.5570, the absorption spectra and EEL spectra obtained using

GWo, have shown the fundamental direct and indirect band gaps to be 3.74 eV and 4.24 eV,

respectively. The BSE approach was found to give better prediction of the optical energy

band gap of RHL NiO with αrh = 33.5570. Both the optical direct and indirect band gap

values of 3.34 eV and 3.74 eV, respectively, obtained using BSE were found to be closer

to the available theoretical and experimental band gap values of NiO. Using the absorption

spectrum obtained with BSE, it was found that there is minimal absorption in the range

of the infrared to the visible region and stronger absorption towards the ultraviolet region,

since the maximum light absorbed by NiO was in the ultraviolet wavelength region near

330 nm. This makes NiO (fcc and RHL with αrh = 33.5570) a good absorber in the

ultraviolet region of the electromagnetic spectrum.



57

6.2 Recommendations for future studies

This study dealt with bulk NiO ground-state properties using LSDA and LSDA+U ap-

proaches, while the optical properties of fcc NiO and RHL NiO were investigated using

GW and BSE methods.

There is need for further studies of the properties of this material using other methods

used for Many Body Perturbation Theory (MBPT) applied to strongly-correlated materi-

als such as Quantum Monte Carlo (QMC) and Dynamical Mean Field Theory (DMFT)

methods.

It would be also interesting to investigate the ground-state properties and optical prop-

erties of the surfaces of NiO, and determine the transmittance and reflectivity of NiO as

the NiO thin-films are intensively used in solar energy applications.



58

REFERENCES

[1] Kalam A., Al-Sehemi A. G., Al-Shihri A. S., Du G., and Ahmad T., “Synthesis and

characterization of NiO nanoparticles by thermal decomposition of nickel linoleate

and their optical properties,” Materials Characterization, vol. 68, pp. 77–81, (2012).

[2] Forti M., Alonso P., Gargano P., and Rubiolo G., “Transition metals monoxides.

An LDA+U study,” Procedia Materials Science, vol. 1, pp. 230–234, (2012).

[3] Anandan K. and Rajendran V., “Structural, optical and magnetic properties of well-

dispersed NiO nanoparticles synthesized by CTAB assisted solvothermal process,”

Nanoscience and Nanotechnology: An International Journal, vol. 2, no. 4, pp. 24–

29, (2012).

[4] Reddy A. M., Reddy A. S., Lee K.-S., and Reddy P. S., “Effect of oxygen partial

pressure on the structural, optical and electrical properties of sputtered NiO films,”

Ceramics International, vol. 37, no. 7, pp. 2837–2843, (2011).

[5] Sawaby A., Selim M., Marzouk S., Mostafa M., and Hosny A., “Structure, optical and

electrochromic properties of NiO thin films,” Physica B: Condensed Matter, vol. 405,

no. 16, pp. 3412–3420, (2010).

[6] Kang T. D., Lee H. S., and Lee H., “Optical properties of black NiO and CoO single

crystals studied with spectroscopic ellipsometry,” Journal-Korean Physical Society,

vol. 50, no. 3, p. 632, (2007).

[7] Faleev S. V., van Schilfgaarde M., and Kotani T., “All-electron self-consistent

GW Approximation: Application to Si, MnO, and NiO,” Physical review letters,

vol. 93, no. 12, p. 126406, (2004).

[8] Chen H.-L., Lu Y.-M., and Hwang W.-S., “Characterization of sputtered NiO thin

films,” Surface and Coatings Technology, vol. 198, no. 1, pp. 138–142, (2005).

[9] Patil V., Pawar S., Chougule M., Godse P., Sakhare R., Sen S., and Joshi P., “Effect

of annealing on structural, morphological, electrical and optical studies of nickel ox-



59

ide thin films,” Journal of Surface Engineered Materials and Advanced Technology,

vol. 1, pp. 35–41, (2011).

[10] Mironova-Ulmane N., Kuzmin A., Sildos I., and Pärs M., “Polarisation dependent
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APPENDIX A

STRUCTURAL OPTIMIZATIONS

Figure A.1: Optimized k-points for RHL NiO with αrh = 60.080.

A converged k-points mesh of 15 × 15 × 15 was considered for RHL NiO with αrh =

60.080 since it had a consistent energy for the structure.

Figure A.2: Optimized plane wave energy cut off for RHL NiO with αrh = 60.080.

The plane wave energy cut off of 50 Ry was used for RHL NiO with αrh = 60.080 since

it had the lowest and consistent energy for the structure.
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Figure A.3: Optimized lattice constant of RHL NiO with αrh = 60.080 using LSDA.

The lattice constant of 6.716 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 60.080, for LSDA calculations without U term.

Figure A.4: Optimized lattice constant of RHL NiO with αrh = 60.080 using U=5.4 eV.

The lattice constant of 6.785 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 60.080, for LSDA+U calculations with U term of 5.4 eV.
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Figure A.5: Optimized lattice constant of RHL NiO with αrh = 60.080 using U=6.2 eV.

The lattice constant of 6.786 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 60.080, for LSDA+U calculations with U term of 6.2 eV.

Figure A.6: Optimized lattice constant of RHL NiO with αrh = 60.080 using U=7.3 eV.

The lattice constant of 6.789 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 60.080, for LSDA+U calculations with U term of 7.3 eV.
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Figure A.7: Optimized lattice constant of RHL NiO with αrh = 60.080 using U=8 eV.

The lattice constant of 6.795 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 60.080, for LSDA+U calculations with U term of 8 eV.

Figure A.8: Optimized k-points for RHL NiO with αrh = 33.5570 using LSDA.

A converged k-points mesh of 12 × 12 × 12 was considered for RHL NiO with αrh =

33.5570, using LSDA without U term.
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Figure A.9: Optimized plane wave energy cut off for RHL NiO with αrh = 33.5570

using LSDA.

The plane wave energy cut off of 50 Ry was used for RHL NiO with αrh = 33.5570

using LSDA without U term, since it had the lowest and consistent energy for the structure.

Figure A.10: Optimized lattice constant of RHL NiO with αrh = 33.5570 using LSDA.

The lattice constant of 9.408 a.u was used since it was found to have the lowest energy

for RHL NiO with αrh = 33.5570 using LSDA without U term.
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Figure A.11: Optimized k-points for RHL NiO with αrh = 33.5570 using U=5.4 eV.

A converged k-points mesh of 12 × 12 × 12 was considered for RHL NiO with αrh =

33.5570, for LSDA+U calculations with U term of 5.4 eV.

Figure A.12: Optimized plane wave energy cut off for RHL NiO with αrh = 33.5570

using U=5.4 eV.

The plane wave energy cut off of 50 Ry was used for RHL NiO with αrh = 33.5570 for

LSDA+U calculations with U term of 5.4 eV.
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Figure A.13: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=5.4
eV.

The lattice constant of 9.536 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 5.4 eV.

Figure A.14: Optimized k-points for RHL NiO with αrh = 33.5570 using U=6.2 eV.

A converged k-points mesh of 12 × 12 × 12 was considered for RHL NiO with αrh =

33.5570, for LSDA+U calculations with U term of 6.2 eV.
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Figure A.15: Optimized plane wave energy cut off for RHL NiO with αrh = 33.5570

using U=6.2 eV.

The plane wave energy cut off of 50 Ry was used for RHL NiO with αrh = 33.5570 for

LSDA+U calculations with U term of 6.2 eV.

Figure A.16: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=6.2
eV.

The lattice constant of 9.556 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 6.2 eV.
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Figure A.17: Optimized k-points for RHL NiO with αrh = 33.5570 using U=7.3 eV.

A converged k-points mesh of 12 × 12 × 12 was considered for RHL NiO with αrh =

33.5570, for LSDA+U calculations with U term of 7.3 eV.

Figure A.18: Optimized plane wave energy cut off for RHL NiO with αrh = 33.5570

using U=7.3 eV.

The plane wave energy cut off of 50 Ry was used for RHL NiO with αrh = 33.5570 for

LSDA+U calculations with U term of 7.3 eV.
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Figure A.19: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=7.3
eV.

The lattice constant of 9.586 a.u was used since it was found to have the lowest energy

for RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 7.3 eV.

Figure A.20: Optimized k-points for RHL NiO with αrh = 33.5570 using U=8 eV.

A converged k-points mesh of 12 × 12 × 12 was considered for RHL NiO with αrh =

33.5570, for LSDA+U calculations with U term of 8 eV.
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Figure A.21: Optimized plane wave energy cut off for RHL NiO with αrh = 33.5570

using U=8 eV.

The plane wave energy cut off of 50 Ry was used for RHL NiO with αrh = 33.5570 for

LSDA+U calculations with U term of 8 eV.

Figure A.22: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=8
eV.

The lattice constant of 9.605 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 8 eV.
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Figure A.23: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=8.5
eV.

The lattice constant of 9.620 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 8.5 eV.

Figure A.24: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=9
eV.

The lattice constant of 9.635 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 9 eV.
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Figure A.25: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=9.5
eV.

The lattice constant of 9.652 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 9.5 eV.

Figure A.26: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=10
eV.

The lattice constant of 9.668 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 10 eV.
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Figure A.27: Optimized lattice constant of RHL NiO with αrh = 33.5570 using U=12
eV.

The lattice constant of 9.738 a.u was used as it was found to have the lowest energy for

RHL NiO with αrh = 33.5570 for LSDA+U calculations with U term of 12 eV.
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APPENDIX B

ELECTRONIC PROPERTIES

Figure B.1: Band structure of RHL NiO of αrh = 60.080 with LSDA+U, U=6.2 eV.

Figure B2 shows the band structure of RHL NiO with αrh = 60.080 for LSDA calcula-

tions with U term of 6.2 eV. The conduction band and the valence band overlap.

Figure B.2: Band structure of RHL NiO of αrh = 60.080 with LSDA+U, U=8 eV.

Figure B1 shows the band structure of RHL NiO with αrh = 60.080 for LSDA calcula-

tions with U term of 8 eV. The conduction band and the valence band overlap.
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Figure B.3: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=5.4 eV.

From Figure B3, the minimum indirect and direct band gap values of 2.30 eV and 2.58

eV, respectively, were found for LSDA+U calculations, using Hubbard energy of 5.4 eV.

Figure B.4: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=6.2 eV.

From Figure B4, the minimum indirect and direct band gap values of 2.50 eV and 2.78

eV, respectively, were found for LSDA calculations, using Hubbard energy of 6.2 eV.
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Figure B.5: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=7.3 eV.

From Figure B5, the minimum indirect and direct band gap values of 2.78 eV and 3.07

eV, respectively, were found using U term of 7.3 eV.

Figure B.6: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=8 eV.

The minimum indirect and direct band gap values of 2.95 eV and 3.25 eV, respectively,

were found using U term of 8 eV.
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Figure B.7: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=8.5 eV.

The minimum indirect and direct band gap values of 3.09 eV and 3.38 eV, respectively,

were found using U term of 8.5 eV.

Figure B.8: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=9 eV.

The minimum indirect and direct band gap values of 3.06 eV and 3.51 eV, respectively,

were found using U term of 9 eV.
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Figure B.9: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=10 eV.

The minimum indirect and direct band gap values of 3.01 eV and 3.81 eV, respectively,

were found using U term of 10 eV.

Figure B.10: Band structure of RHL NiO of αrh = 33.5570 with LSDA+U, U=12 eV.

The minimum indirect and direct band gap values of 2.80 eV and 4.46 eV, respectively,

were found using U term of 12 eV.
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APPENDIX C

PSEUDOPOTENTIALS USED

Table C.1: Pseudopotentials used for both O and Ni atoms.

Approximation Type of Atom Pseudopotential name

LSDA and LSDA+U Ni Ni.pz-n-rrkjus psl.0.1.UPF
O O.pz-n-rrkjus psl.0.1.UPF

GW and BSE Ni Ni.pbe-mt fhi.UPF
O O.pbe-mt fhi.UPF

C.1 Ni.pz-n-rrkjus psl.0.1.UPF

This pseudopotential was generated using ”atomic” code by A. Dal Corso v.5.0.2 svn rev.

9415

Author: ADC

Generation date: 11 Sep 2012

Pseudopotential type: USPP

Element: Ni

Functional: LDA

Suggested minimum cutoff for wavefunctions: 42 Ry

Suggested minimum cutoff for charge density: 236 Ry

The Pseudo was generated with a Scalar-Relativistic Calculation

Local Potential by smoothing all electron potential with Bessel functions, cutoff radius:

2.1000

Valence configuration:

nl l Occupations

4s 0 2.00

4p 1 0.00

3d 2 8.00
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C.2 O.pz-n-rrkjus psl.0.1.UPF

Generated using ”atomic” code by A. Dal Corso v.5.0.2 svn rev. 9415

Author: Lorenzo Paulatto, modified by ADC

Generation date: 11 Sep 2012

Pseudopotential type: USPP

Element: O

Functional: LDA

Suggested minimum cutoff for wavefunctions: 47. Ry

Suggested minimum cutoff for charge density: 323. Ry

The Pseudo was generated with a Scalar-Relativistic Calculation

L component: 2

Cutoff radius for Local Potential: 1.3000

Valence configuration:

nl l Occupations

2s 0 2.00

2p 1 4.00

C.3 Ni.pbe-mt fhi.UPF

Generated using FHI98PP, converted with fhi2upf.x v.5.0.2

Origin: Abinit web site

Date: 23-Jun-2013 (PG)

Pseudopotential type: SL

Element: Ni

Functional: PBE

Suggested minimum cutoff for wavefunctions: 0. Ry

Suggested minimum cutoff for charge density: 0. Ry

The Pseudo was generated with a Non-Relativistic Calculation

L component: 0

Cutoff radius for Local Potential: 0.0000
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Valence configuration:

nl l Occupations

1s 0 2.00

2p 1 6.00

3d 2 10.00

4d 3 0.00

C.4 O.pbe-mt fhi.UPF

Generated using FHI98PP, converted with fhi2upf.x v.5.0.2

Origin: Abinit web site

Date: 08-Sep-2012 (PG)

Pseudopotential type: SL

Element: O

Functional: PBE

Suggested minimum cutoff for wavefunctions: 0. Ry

Suggested minimum cutoff for charge density: 0. Ry The Pseudo was generated with a

Scalar-Relativistic Calculation

L component: 2

Cutoff radius for Local Potential: 0.0000

Valence configuration:

nl l Occupations

1s 0 2.00

2p 1 4.00

3d 2 0.00

4d 3 0.00
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