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ABSTRACT
Many products are formed by mixing together two or more ingredients. For example, in
building construction, concrete is formed by mixing sand, water and cement. Many
practical problems are associated with investigation of mixtures of m ingredients,
assumed to influence the response through the proportions in which they are blended
together. Second degree Kronecker model put forward by Draper and Pukelsheim
isapplied in the study.This study investigate E-optimal designs in the second degree
Kronecker model for maximal and non-maximal parameter subsystem for m>2
ingredients, where Kiefer’s function serves as optimality criteria. The consideration is
restricted to weighted centroid design for completeness of results. By employing the
Kronecker model approach, coefficient matrices and a set of feasible weighted centroid
designs for maximal and non-maximal subsystem of parameters is obtained. Once the
coefficient matrix is developed, information matrices associated to the parameter
subsystem of interest for two, three, four and generalization to m ingredients is obtained.
E-optimal weighted centroid designs based on maximal and non-maximal parameter
subsystem for the corresponding two, three, four and m ingredients is derived. A general
formula also for the computation of smallest eigenvalues is obtained. In addition optimal,
weights and values for the weighted centroid designs are numerically obtained using
Matlab software. Results based on non-maximal and maximal parameter subsystem,
second degree mixture model with m>2 ingredient for E-optimal weighted centroid

design for K0 hence exist.
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CHAPTER ONE

INTRODUCTION
1.1 Background information
A mixture experiment involves mixing of different proportions of two or more
components to make different compositions of an end product. Consequently, many
practical problems are associated with the investigation of mixture ingredients which are
assumed to influence the response through the proportions in which they are blended
together. The definitive text, Cornell (1990) lists numerous examples and provides a
thorough discussion of both theories and practices. Early seminal work was done by
Scheffe’ (1958, 1963) in which he suggested and analyzed canonical models when the
regression function for the expected response is a polynomial of degree one, two, or
three, Cherutich (2012).
The m component proportions, ti,...,tn form the column vector of experimental

conditions, ti=(t1,...,tmy With t;=0 and further subject to the simplex restriction,
Dt =1 (1.1)

Let 1, = (L...,1)" € R" be the unity vector, whence, 1.t is the sum of the components of t.

Therefore, the experimental conditions are points in the probability simplex, which
constitute the independent and controlled variables with the experimental domain being

the simplex,
T={te[0" 1 t=1} (1.2)
Under experimental conditions t € T, the experimental response Y is taken to be a scalar

random variable. Replications under identical experimental conditions or response from



distinct experimental conditions are assumed to be of equal (unknown) variance, o* and
uncorrelated.
An experimental design T is a probability measure on the experimental domain T, with
finite support points. If T assigns weights w1, Wo,... to its points of support in T, , then
the experimenter is directed to draw proportions wi, Wa,... of all observations under the
respective experimental conditions. Furthermore, the observed response Y, is expressed
as Y, =n(t,®) +&(t) , where »(t,®) is the expected response and g(t) is the error term.
The expected response 7(t,®) can be expressed as a function of t. For the second-degree
model, Draper and Pukelsheim (1998) proposed a representation involving the Kronecker
square t&t. Its regression functions

f:T, SR™ t= (t,...1,) > t®t=tt,i, ] =1,..mwith the lexicographical order of the

subscripts. This representation yields the model equation;

E[Yt] = f(t)'@ = zm:eiitiz + Z(eu + eji )titj (1.3)

i,j=1 i,j=1
Where Y,, the observed response under the experimental conditions t T, is taken to be
a scalar random variable and © = (6,,6,,.....6,,,) € R™ is unknown parameter.

The Kronecker representation has several advantages which include more compact
notations, more convenient invariance properties and the homogeneity of the regression

terms. Draper and Pukelsheim (1998) and Prescott, et al., (2002). The moment matrix

M(r):Lf(t)f(t)’drfor the second-degree Kronecker-model has all moments

homogeneous in degree four and reflects the statistical properties of a designt. Graffke

and Heilingers (1996) and Pukelsheim (2006) gave a review of the general design



environment. Klein (2004) showed that the class of weighted centroid designs is

essentially complete for m=2 ingredients, for Kiefer ordering. As a consequence, the

search for optimal designs may be restricted to weighted centroid designs for most
criteria.

Kinyanjui (2007) and Ngigi (2009) showed that unique D-and A-optimal weighted
centroid designs, second degree mixture experiments for maximal parameter subsystem
with m>2 ingredients exist for K’6 .Cherutich (2012), proved that D-and A-optimal
weighted centroid design, second degree mixture experiments for non-maximal parameter
subsystem with m>2 ingredients also do exist for K’6 . The study extends the work done
by Kinyanjui (2007) and Ngigi (2009) by deriving E-optimal weighted centroid designs
for second degree Kronecker model mixture experiments for maximal and non-maximal

parameter subsystem respectively with m>2 ingredients.

1.2 Statement of problem

The general problem here is to obtain a design with maximum information for the
maximal and non-maximal parameter subsystem K’'@ . This is accomplished through the
application of the E-optimality criterion to a weighted centroid design which follows

from the Kiefer-Wolfowitz equivalence theorem.

1.3 Objectives

The specific objectives of the study are:
1. To derive E-optimal weighted centroid designs for a maximal and non-maximal
parameter subsystem corresponding to two, three and four and generalize to m

ingredients.



2. To obtain the smallest eigenvalues for two, three and four and generalize to m
ingredient for non-maximal and maximal parameter subsystem.

3. To obtain numerical V  -optimal values for weighted centroid design for K’ @

1.4 Significance of the study

Many practical problems in mixture experiments are associated with the investigation of
mixture of ingredients which are assumed to influence the response only through the
proportions in which they are blended together. As a consequence, competing designs
will arise, hence, this study will be desirable since it will help in identifying the optimal

design.



CHAPTER TWO

LITERATURE REVIEW

2.1Introduction

Experiments based on mixtures were first discussed by Quenouille (1953). Later on,
Scheffe’ (1958, 1963) made a systematic study and laid a strong foundation. Draper and
Pukelsheim (1998) proposed a set of mixture models referred to as k-models. They are
alternative representation of mixture models based on the Kronecker algebra of vectors
and matrices. They offer alternative symmetries, compact notations and homogeneity in
ingredients.

The first-degree model is given by the equation;
E[Y,]=Yt6 =t'6 (2.2)
i=1

For the second-degree model, Draper and Pukelsheim (1998) proposed a representation
involving the Kronecker squaret ®t , the m?x1 vector consisting of the squares and cross
products of the components of t in the lexicographic order of the subscripts. This is
referred to as Kronecker-model with a Kronecker-polynomial and expressed by the

regression function

EY]=3 3416, -t ®1)0 (22)

i=1 j=1

2.2Kronecker products

The Kronecker product approach is based on second-degree polynomial regression in m

variables t = (t,,...,t,)" on the matrix of all cross products:



ot ..t
4 £ ot oty
o bt B iy | (2.3)
2
lt,t, tot, - t3

rather  than  reducing them to the Box-Hunter minimal set of
polynomials (tf,---,t;,tltz,---,tm,ltm) .The benefits enjoyed are; the distinct terms are repeated
appropriately according to the number of times they can arise, the transformational rules
with a conformable matrix R become simple, (Rt)(Rt)’ = R(tt’)R’ and that the approach
extends to third degree polynomial regression.

For a kxm matrix A and a | x nmatrix B, their Kronecker product A® B is defined to
be the klxmn block matrix

a,B - a,B
A®B=| + .. i | (2.4)
a,B - a,B

m
The Kronecker product of a vector s e R™ and another vector t e R" then is simply a
special case,
s,t

s@t=|: :(Sitj)izl ..... m,j=l..neR™ 29)
S, t

in  lexicographic order
m

A key property is their product rule (A® B)(s ®t) = (As) ® (Bt).
This has nice implications for transposition, (A® B)’ = (A") ® (B’), for Moore-Penrose

inversion, (A®B)" =(A")®(B*) and if possible for regular inversion(A®B)™ =(A")®(B™)



It is of specific importance that the Kronecker product preserves orthogonality. That is, if

A, and B are individual orthogonal matrices, then their Kronecker product (A® B) is also
an orthogonal matrix. Thus, while the matrix tt" assembles the cross products t;t; in an

mxm array, the Kronecker square t ®t arranges the same numbers as a long m? x1
vector. The transformation with a conformable matrix R simply amounts

to (Rt) ® (Rt) = (R®R)(t ®t). This greatly facilitates our calculations when we now

apply Kronecker product to response surface models.

2.3 Kiefer design ordering

Kiefer design ordering has two steps. The first step is the majorization ordering. The
second step is an improvement relative to the usual Loewner matrix ordering within the
class of exchangeable moment matrices. For the second-degree Kronecker-moment
matrix homogeneous in degree four, the moment matrix for four factors exhausts all the
moments. Given two moment matrices M(n7) and M(t) in two factors, M(n7)=M(z) if and
only if Ma(17)ZMy(z) and My(11)=My(t), (Draper and Pukelsheim,1998).

The vertex design points n,and the overall centroid design 7, play a special role; they
are used to generate weighted centroid designs in the following sense; for weights
a,a, 20 withea, +a, =1, the design 7 =an, +a,n,will be called a weighted centroid
design. In the second-degree mixture model for m=4 ingredients, the set of weighted
centroid designs n={an +..+a,n,:(a,.., a,) €T}is convex and constitutes a

minimal complete class for the Kiefer ordering.



2.4 Kiefer Optimality

The set of weighted centroid designs constitute a minimal complete class of designs for
the Kiefer ordering. Completeness of C (set of weighted centroid designs) means that for
every design T not in C, there is a member £in C that is Kiefer better than z. That is it
must be shown that ¢ is more informative than =, M (£)>M (), and that the two are not

Kiefer equivalent. The weighted centroid design must be shown to satisfy

M(E)>M (;) <M(7), that is, M (&) > M () hence satisfying the Kiefer optimality

of M (&).

Let H be a subgroup of nonsingular sxs matrices. No assumption will be placed on the
set M < NN(k) of competing moment matrices. A moment matrix MeM is called
Kiefer optimal for k'@ in M relative to the group HEGL(s) when the information matrix
Ck(M) is H-invariant and satisfies

C,(M)>>C, (A)for all AEM, (2.6)
where>> is the Kiefer ordering on sym(s) relative to H.

Draper and Pukelsheim (1998) proved that the assumption M (&) > M (z) cannot hold

true, rendering the class C minimal complete. Thus any design that is not a weighted
centroid can be improved upon in terms of symmetry and Loewner ordering. Within the
class of weighted centroid designs, however, other criteria will be needed to attain further

improvement for example, the determinant criteria.

2.5 The Quadratic subspace sym(s, H)

In the theory of statistical experiments, quadratic subspaces of symmetric matrices arise

when certain invariance properties of information matrices involved in the design are



considered. We analyze a specific example of such a quadratic subspace and demonstrate
how to apply the results of this analysis to designs in a second-degree polynomial

regression model for mixture experiments, for m>2, we denote the canonical unit

m
2

vectors in R™ by e,,e,,---,e,. The canonical unit vectors in SR( ) are denoted by Ej

with lexicographically ordered index pairs (i,J), 1<i<j<m. Let 9 denote the

symmetric group of degree m, and let perm(m)be the group of mxm permutation

matrices.

We define
R 0
H=<H,=| ~ red, (2.7)
0 s,
with
R = Ze”(i)ei’ e perm(m)
i=1l

and
m ’ m
S, = i;_lE(ﬂ(i),ﬁ(j))T E; € perm ) forall ze9,.
i<j

Where (z(i), 7(j)) T denotes the pair of indices z(i), 7(j) in ascending order. The set

. m+1 .. .
H is a subgroup of perm& 5 D and is isomorphic to ,, . It acts on the space

m+1
sym(( 2+ JJ through the congruence transformation (H,C)+ HCH' and induces

subspace
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m+1 m+1
sym[( 5 J,HJ:{Cesym(( 5 j]:HCH for all HeH} (2.8)

of H-invariant symmetric matrices. Since H is a subgroup of the permutation matrix
group, H-invariance of a matrix C e sym(s) means that certain entries of C coincide. The
following lemma from Draper and Pukelsheim (1998) describing the linear structure of
sym(s,H), shows that an H-invariant symmetric matrix has at most seven distinct

elements.

Lemma 2.5

We define the identity matrices U, =1 and W, = I( , and write 1, =(@,1,---,1)' e R".

m
y
Furthermore, we define

U,=11 -1, esym(m)

v=FE ey ens”
ij=1
i<j

m m [r;jxm
’
V=2 D2 Ee e )
i j=1k=L
i<] ki, }

m m m

W, => > EEye Sym([zD
kI
i<j k<

{i, i}n{k, 1} =1

m m , m
W,=> >EE, e sym(( 2)]
itk -1 .
i<j k<

{, i3n{k1}=¢
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Then any matrix C e sym(s, H) can be uniquely represented in the form

al, +bU, cV,+dVv,
C=|cv,+dv, el ) e+ oW (2.9)
With coefficientsa,---, g € R. The terms containing V,, W, and Wsonly occur for m>3
and m >4 respectively.
In particular,

4 for m=2
dimsym(s,H)=16 for m=3.
7 for m>4

Proof
Given a symmetric matrix C e sym(s, H ), we partition this matrix according to the block

structure of matrices in H, that is

C, C,
C= [ 1 21) (2.10)
Cu Cyp

, (5 m m
with C,, e sym(m), C,, e R and C,, € sym[[zjj.

Then, H-invariance of C can be expressed by the block wise conditions;

R,.C,R. =Cy, S,C,R. =C,,. $,C,,S. =Cyforall zed, (2.11)

Straightforward multiplication shows that the blocks given in (2.9) satisfy these
conditions. For the reverse direction, we compare the entries of the matrices on both sides

of the equations in (2.11) and obtain

C,, espan{U,,U,}, C,, e span{V,,V, }and C,,  span{W,,W,, W}
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Uniqueness of this representation in (2.9) follows from the linear independence of the
sets {U,,U,}, {V,,V,} and {W, W, W,}-

We now turn to the quadratic structure of sym(s, H), that is, the additional property that
sym(s, H) is closed under formation of matrix powers. The block representation given in

(2.9) implies that, powers of H-invariant symmetric matrices involve products of U; V;

and Wy. The following lemma presents a multiplication table for these matrices.

Lemma 2.6

The results of multiplication of the matrices U; V; and W are as follows:

Q) Products in spar{U,,U,}

m-1 m-2
VV,=(m-DU, +U,, V)V, = 5 U, + 5 U,,

VV, =V, =(m-2)U,, UZ=(m-DU,+(m-2)U,.
(i) Products in spar{V,,V,}

VU, =V, +2V,,  V,U,=(m-2V, +(m-3)V,,
WV, = (M=2)V, +2V,, W,V, = (m—2)V, +2(m—3)V,,

m-—2 m-3
W,V, =(m-3)V,, W.V, = L+ .
2 2
(iii)  Products in spar{W, ,W, ,W,}
VV/=2W, +W,, V.V, =(m-2)W, + (m—-3)W, + (m—-4)W,,

VV,) =V,V,) =W, +2W,, W,” =2(m—2)W, + (m—2)W, + 4W,,

(T e (M e

W, W, =W,W, = (m—3)W, +2(m - 4)W,
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Proof
The equations are verified by elementary calculations and by occasionally using the

1 .=

2 (3)(3)

With lemma (2.6), products of matrices in sym(s, H) can be calculated by mere symbolic

identities; U, +U, =1.1",V, +V, =1

m—m?

1 and W, +W, +W, =1

manipulation and by multiplication of scalars. It is this result that allows us to perform
the calculations involved in the design problem in an effective way. Furthermore, the
multiplication table can be implemented in a computer-algebra system like maple.

As a side result of lemma (2.6) and the fact that traceU, =traceW, =traceW, =0, the

basis matrices;

u, o u, 0 0V, 0V,
81: ’BZZ !B3: :B4: )
0 0 0 0 V, 0 Vv, 0

0 0 0
and B, =
W, 0w,

implicitly given in (lemma 2.5) form an orthogonal basis of sym(s, H) with respect to

0
W

B—O B—o
5710 B

[y

Euclidean matrix scalar product (A, B) > traceAB.(Lemma 2.6), also implies the
following results on Moore-Penrose inverses, denoted by a superscript + sign and on
schur compliments:

Corollary 2.5

For any m>2, suppose the matrix Cesym(s,H) is partitioned as in (2.10) with
diagonal blocks C;;, Cyoand off diagonal block C,;. Then we have

C,, espa{u,,U,} , C,-C;C,C, espan{U,,U,}

C2, € span{W,,W,,W.}, C,, —C,,C/,C;, € spar{W,,W,,W,}.
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Proof

C 0
The assertions on C;; and C;, follow from [ 51 c je sym(s,H) and the fact that
22

quadratic subspaces are closed under Moore-Penrose inversion, Rao and Rao (1998),
corollary 13.2.2.3). Together with lemma (2.6), these results imply the claims on the

schur complements of C ;3 and Cp,.
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CHAPTER THREE
PROBLEM DESIGN
3.1Parameter Subsystem
We adopt the regression model for mixture experiments in which the experimental

conditions are nonnegative quantities summing to one. The experimental conditions are
points in the probability simplexT, ={teR":1 t=1}, withl, =(..1) €R". In a
polynomial regression function, a real-valued quantity Y: observed under the
experimental conditions tET, is assumed to be random with expected value E[Y+] which
is a polynomial in t. The polynomial coefficients are unknown and have to be estimated

from the observations. One instance of such a model introduced by Draper and

Pukelsheim (1998), is the second-degree Kronecker model,

EV]= (0= OY0=3 6+ (6 + Ot (31)

ij=1
i<

with the regression function f(t)=t®t and unknown parameter vector
©=(6,,60,,....0,,) € R™ . All observations taken in an experiment are assumed to be
uncorrelated and to have common unknown variance. Since the Kronecker model’s with

2. . . .
parameter vector @ e R™ is estimable, we consider a maximal parameter subsystem
where all the parameters can be estimated and a non-maximal parameter subsystem

where not all the parameters can be estimated.
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3.1.1Maximal parameter subsystem
Definition

The parameter subsystem K'@ is called a maximal parameter subsystem for M if and
only if;

() MNAK)=¢ (3.2)
(Where A(K) represent feasibility cone)

(i) rankK =r,, . (3.3)
) m+1 . . .. .
In this case, we have r,, =[ 5 j and K is called a maximal coefficient matrix for M .

If the set, M contains regular moment matrices, that is, K =r,,, the full parameter vector
0 or any regular transform of it, is a maximal parameter subsystem for M.

We henceforth assume the set M to be convex. Then there is a matrix M, e M with
maximal range, that is, R(M) e R(M,) for all M, € M, Pukelsheim (2006). While there
may be many matrices M, with this property, the maximal range R, =%R(M,) is
unique, and we havedimR_ =r,, . This construction is analogous to that of a minimal

nullspace in LaMotte, (1977).

m+1

In this study we define the matrix K =(K,,K,) e R [ ? ] under maximal parameter

subsystem. The coefficient matrix ,

mzx[m;rlj
KeR (3.4)
is assumed to have full column rank.

Where
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ij !

K, = Zl:eiiei' and K, = Z(eu +e;)Ej ,Kinyanjui (2007)
i= i,j=1
i<j

A parameter subsystem, K'@ with full column rank coefficient matrix, K is called
estimable under a given design, 7, if and only if there is at least one linear unbiased
estimator for K’@ under 7z . A necessary and sufficient condition for estimability of K'@
under z is the condition that the range of K is included in the range of M(z),
R(K) < KM ()

As such, any moment matrix Ae NND(k) with R(K) <= R(A) is called feasible for
K'0. The set A(K)={Ae NND(k): R(K) = R(A)} is called the feasibility cone for
K'g.

If M be a set of moment matrices. We say that a parameter subsystem K'@ is estimable

within M if and only if the set M and the feasibility cone have a non-empty

intersection. That is, M N A(K) = ¢ .

Let r,, = max{rankM : M e M}, be the maximal rank within M . The coefficient matrices

m+1

kx
KeR (zj of parameter subsystems K'@ that are estimable within M
satisfyrank K <r,,, necessarily. We now consider the extreme case rankK =r,,,

capturing the idea of estimating as many parameters as possible, within given set M of

moment matrices.

3.1.2 Non-Maximal Parameter Subsystem
Definition
The parameter subsystem K'@is called a non maximal parameter subsystem for M if and

only if
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(M) MNAK) =g

and

(i) rankK <r,, . (3.5)
In this case an experimenter may wish to study s out of k components rather than being
interested with all of them or a single one. The possibility is allowed by studying linear
parameters subsystems that have the form for some kxs matrix K;K is called the
coefficient matrix of the parameter subsystem  K'@. The coefficient matrices
K e R™D of parameter subsystem K'@that is estimable within M since it

satisfies rank K <r,, . This study focuses on estimating a system of linear function, K'@,

m+1)

of the parameter vector @ € R*, where the coefficient matrix K € R s assumed to

have a full column rank.

In our case when fitting second degree Kronecker model to a set of observations, a

parameter subsystem K'@ of interest is chosen, where K RS

We define the K matrix as

K = (Kl’ Kz) c mmzxmu (3.6)

K, = ieii e’
i=L

An experimental design for a mixture experiment is a probability measure T on Ty, with

finite support. Each support point tEsupt directs an experimenter to take a proportion
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T({t}) of all observations under the experimental condition t. The statistical properties of

a design t are reflected by the moment matrix

M (7) =ij f (t) f (t)'dz € NND(m?), (3.7)

Where NND(m?) denotes the cone nonnegative definite m? xm? matrices. The amount of
information which the design T contains on the parameter system K'@ is captured by the

information matrix for K'@

3.2 E-Optimal Weighted Centroid Design
We now derive optimal weighted centroid designs for the smallest eigenvalue criterion,
¢_., that is, E-optimality criteria. To forge our way forward, we need to adopt three

theorems in Pukelsheim (2006), which specifically focuses on E-optimality.

Theorem 3.2.1
Assume the set Mof competing moment matrices and convex, and intersects the

feasibility cone A(K). Then a competing moment matrix M €M is optimal for K'@ in

M if and only if M lies in the feasibility cone A(k) and there exists a generalized

inverse G of M such that K'GAGK <K'M K for all AeM.

Theorem 3.2.2

Let « €T,,, be the weight vector for a weighted centroid design, 7(«) which is feasible
for K'@ and let o(«) be the set of active indices, (0(a) ={j=1..,m:a; >0}).

Furthermore, let C =C, (M (n7(«))) and p e (—,1] . Then the following assertions hold
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Q) The weighted centroid design 7(«) is E-optimal for K’@ in T if and only if
there is a matrix E e sym(s, H) m NND(s) satisfying

=1.,.,(C) for all jed(a)

traceE =1and traceC;E ]
< Apin(C) otherwise

where A_. (C), denotes the smallest eigenvalue of C.

(i)  Suppose n(«)is E-optimal for K'€@ in T and E is a matrix satisfying the
optimality condition for #7(«) given in (i). Furthermore, let 7(B) be a

weighted design which is E-optimal for K’@ in T, then the information matrix
C =C (M((p))), satisfies

CK =4_. (C)E.

The following theorem dictates on the choice of the matrix E of theorem (3.2.2) above.

Theorem 3.2.3
Let M € M be a competing moment matrix that is feasible for K'@ and let +z € R°be

an eigenvector corresponding to the smallest eigenvalue of the information matrix,

C,(M). Then, M is ¢, —optimal for K'@ in M and the matrix E =ﬁ satisfies the
z

normality inequality of theorem (3.2.2) if and only if M is optimal for z’K'@ inM . If the
smallest eigenvalue of C, (M) has multiplicity 1, then Mis ¢, —optimal for K'@ in
M if and only if M is optimal for z’K'@in M.

Proof

We show that the normality inequality of theorem (3.2.2) for ¢_, —optimality coincides

with that of theorem (3.2.1) for scalar optimality.
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!

WIithE = ﬁ the normality inequality of theorem (3.2.1) reads;
z

2
z
z’K’G'AGKzsL ,forall Ae M.
ﬂ’min (Ck (M))
The normality inequality of theorem (3.2.1) is
k'G'AGk<k'M kforall Ac M

With ¢ = Kz, the two left hand sides are the same. So are the right hand sides, because of

2
k'Mk=2zKM Kz=zC'z= L .
ﬂ”min(ck (M ))

If the smallest eigenvalue of C, (M) has multiplicity 1, then the only choice for E is

!

_zz
|2

Therefore in obtaining optimal designs for E-criterion, we need to obtain smallest
eigenvalue and its corresponding eigenvector, of the information matrix for the weighted

centroid design. We proceed as follows:

From the information matrices involved in our designs it can be uniquely partitioned as

For 2 eR, let

C_al = (Cll - /Iul C;l

e sym(s,H).
C21 sz _/I\Nl]

Then the characteristic polynomial can be written as
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%o () = det(C — A1) = det(C,, — Al ) det[(C,, — AW,) - C,; (C,, — AU;) " C,]
Where the matrix (C,, — AW,) —C,,(C,, — AU,)*C}, is the schur complement of
C,, — AU, and lies in the span{W, W, W,}.

The roots of this polynomial are the eigenvalues of the information matrix C and are

computed as follows:

Lemma 3.2.1

Let a,---,g € R be the coefficients of the matrix C e sym(s, H), with d, fand g occurring

only when m > 3or m> 4 respectively.

Furthermore, define

D, =|a+(m-1b-e-2m-2)f _(mz—zjg} +2(m-D2c+ (m-2)d]

(3.8)
D,=[la-b—e—(m-4)f +(m-1)g]’ +4(m-2)(c—d)? (3.9)
Then, in the case m > 4, the matrix C has eigenvalues:
A =e-2f+g,

m-—2

22]3:% a+(m—1)b+e+2(m—3)f+( 5 Jgi\/ﬁl}

(3.10)
and
Ais :%[a—b+e+(m—4)f —(m-3)g+,/D,] (3.11)

m(m - 3)
2

With multiplicities; , Land (m—1) respectively.
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In the case m=2, only the eigenvalues 4,,1,,4,0ccur, whereas for m=3 there are four
eigenvalues A,, 4;, 4, and A;.

The proof of this lemma is provided by Klein (2004).
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CHAPTER FOUR

E-OPTIMAL DESIGNS FOR NON-MAXIMAL AND MAXIMAL PARAMETER
SUBSYSTEMS

4.1 Introduction

In this chapter derivation of E-optimal weighted centroid designs for two, three, four and
a generalization to m ingredients were obtained. Smallest eigenvalues for the
corresponding ingredients and E-optimal values are obtained in the process. Information
matrixes from Cherutich (2012) and Kinyanjui (2007) for non-maximal and maximal

parameter subsystem respectively were used.

4.1.0 E-Optimal Designs For Non-Maximal Parameter Subsystem
Lemma 4.1.0
In the second-degree Kronecker model with m=2 ingredients, the Weighted Centroid
Design
n(a®)=an, +a,n, =0.45457, +0.54557, (4.1)
is E-optimal for K'@ inT.
The maximum of the E-criterion for m=2 ingredients is v(¢_,) =0.09090909 .
Proof

Information matrix C, (M (n(«))) is,

8a, +a, a, a,
16 g 16 8
a a,+a, o
C=C,(M(n(a)))= ﬁ # f (4.2)
% 4 %
8 8 4

From equation (2.9) any matrix C e sym(s, H) can be uniquely represented in the form
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al_ +bU, oV, +dV,
C=|cv, +av, el(m)+fW2+gW3 :
2

For the case m=2, the information matrix C, (M (r77(«r))) can then be written as

o al , +bU, cV,
I A=A

With coefficients; a,b,c,e e R, since the terms containing V,, Wzand W3 only occur for
m>2.

From lemma (2.4), we get

10 , 11) (1 0) (01
Ui=lo=ly (] Ye=t=l=l 17y 1]7(1 o)

2
V=D E;(e +e;) e R =Ep(e +e,)' =1 land W, = |[2] =1,

i,j=1 2
i<j

Thus the information matrix C, (M (77(«))) in equation (4.2) can be written as

a
e, ) [ %)l ) ]
|l evh er_Ol 10 1_c

cd 1) e(1)

(4.3)

o 9 T
D O O

8a, +a a a a
-1 72 p=Z c=?2 and e:TZ

Where; a =
16 16

From lemma (3.2.1), we compute the eigenvalues of the above matrix as follows;

 33a - 26a;,+9

D, =[a+b-ef +2[2c]
,=[a+b—ef +2[2c] =

2
D,=[a-b-e] = {30[14_1}

using equation (3.10) in lemma (3.2.1), we obtain



26

Ay :%[a+b+ei\/ﬁl]:%[al+3i\/33af 260, +9

again, using equation (3.10) in lemma (3.2.1), we obtain

Ay =%[a—b+e+\/D—2]=%

Thus for the case m=2, the eigenvalues that occur are

A :%[al +3+,/33a7 — 26, +9]

ya =%[al +3— /330 - 260, +9]

From theorem (3.2.3), if the smallest eigenvalue of C, (M) has multiplicity 1, then the

!

. R 2z : : .
only choice for the matrix E is E = W where z e R®is an eigenvector corresponding
z

to the smallest eigenvalue of the information matrix C,(M). In our case, the smallest

eigenvalue is

A=A, =%[a1+3—\/330{12 — 260, +9 (4.4)

min

We therefore need to get an eigenvector, z corresponding to the smallest eigenvalue of

the matrix, C, (M).

By definition, A € R, is an eigenvalue of matrix C, (M) if

(C—A)z2=0«Cz=Azwithz %0
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X
where z = y |, 1s an eigenvector of C, (M) correspondingto A.
z

Thus, from equation (4.2) and equation (4.4), we have

C-4,l )z =0, implies that

6ar, —2++/33a} — 26, +9 a, a,
16 16 8 N
a, 6ar, —2++/33a) — 26a, +9 a, yl=| 0 (4.5)
16 16 8
o, o, 1-5a, +33a% ~ 260, +9 |2/ \0
8 8 16

If we let

p=6c, —2++/3302 — 260, +9, =, =1-a,and r =1-5¢, ++/33a7 — 26a, +9 , We
obtain the equations

px+qy+29z=0

gxXx+ py+2gqz=0

20x+2qy+rz=0

Solving the above system of linear equations, we obtain the eigenvector corresponding to

/Imin as,
X 1

z=|y|=| 1 (4.6)
) |24

r

Then the matrix
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1 1 -4q
v 2 2
2= 1 1 ‘_fq and|z]> = 27109 (4.7)
r
—-4q -4q 169°
r r r’
Thus the matrix E is given as;
r r? —4qr
2r? +169° 2r? +169> 2r°+16q°
77’ r r —4qr
E=—= 2 2 2 2 2 ] 2 (4.8)
||z|| 2r° +16q° 2r°+16q° 2r° +16q
—4qr —4qr 16q°
2r> +169> 2r?+169°> 2r?+16q>
Multiplying
1 0 0
2
C,=|0 % 0| , Cherutich (2012)
0 0O
and matrix E, equation (4.8), we have
r? r? —4qr
2(2r* +169*) 2(2r* +16q°) 2(2r® +16q?%)
2 2 _
C,E= zr 2 zr 2 24qr 2 (4.9)
2(2r° +16q°) 2(2r°+16g9°) 2(2r°+16q9°)
0 0 0
rZ
Thus traceC,E = (4.10)

2r? +16q°

Now traceC.E = 4,,(C), implies that
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r? 1
PN +3—,/33a? — 260, +9 (4.11)

This simplifies to

—33792 o +161792 ¢’ — 314368 ¢} + 315392 o} —171008 o1} + 47104 o, —5120 =0 (4.12)
upon substituting the values of gandr .

The roots of polynomial (4.12) are

o, =1.0003,0.9999,0.4545,0.3333
Since, a, €(01), then it implies that ; =0.9999 or o, = 0.4545 or ¢; = 0.3333

When, o, =0.9999 , o, =1-«, =0.0001 and

PR [al +3-4/3307 — 260, + 9]: 0.00000025
16

When, @, =0.4545 @, =1— ¢, =0.5455 and 4, = %[a1+3—\/33a12 — 260, +9 |=0.0909

When, a, =0.3333, a, =1-a, =0.6667 and

Ao = %[al +3—/3307 — 260, +9|=0.0833

We observe that 4, is maximum when ¢, =0.4545 and o, =0.5455 .
Thus for m=2, ingredients we have, «; =0.4545 and «, =0.5455 .

From Pukelsheim (2006), the smallest-eigenvalue criterion v(¢_,) = 4.,,,(C) .

From equation (4.4), the smallest eigenvalue is

A = % [al +3-/33a; ~26a, +9 |=0.0909 (4.13)

Hence the optimal value for the E-criterion for m=2 factors becomes

V(g_,) = A, (C)=0.09090909 = (4.14)
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Lemma4.1.1

In the second-degree Kronecker model with m=3 ingredients, the weighted centroid
design

n(a®) =an, +oa,n, =05753n, +0.4247 1, (4.15)
is E-optimal for K'@ inT.

The maximum of the E-criterion for m=3 ingredientsis v(¢_, ) =0.073556541 .

Proof

In the second-degree Kronecker model with m=3 ingredients, the information matrix
C, (M (7(«))) can be written as

al_+bU, cV/+dV,
C=|cv, +av, el(m) + fW,
2

Bata, % % g % gt g

where; a = = \
24 48 4 12

with the matrices; Ui, Uy, V1, V2, Wi, Woand Widefined as in lemma (2.5).

The information matrix C, (M (rn7(«x))) for a mixture experiment design 7n(«) with m=3

ingredients, we have;

8a, +a, a, a, a,
24 48 48 12
a, 8a, +a, a, a,
C=CM@r@)=| 9 2 s o (4.16)
48 48 24 12
% %2 % %
12 12 12 4
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From equation (2.9), any marix C < sym(s, H) can be represented in the form

al_ +bU, oV, +dV,
C=|cv, +av, el(m) + fW, + gW,
2

with coefficients a,...,g € R. The terms containing V,, W,and Wsoccurring for m>3 or
m > 4 respectively.

For the present case m=3 and so the information matrix C, (M (r7(«))) can be written as

_(al;+bU, cV/+dV,
“lev,+av, el + fW,

From lemma (2.5), we get

100 111)(100) (011
U=1,=[0 1 0|,U,=11-1,=(1 1 1(-{0 1 0|=|1 0 1|,
001 111001 (110

3
V, =D E;(e +e;) e R*
ij=1
i<j

Vl = ElZ(el +ez)’+ ElS(el +es)'+ Ezs(ez +es),

Now,
1 1 0
(e,+e,)=|1]|,(e,+e;)=|0] and (e, +&;)=|1
0 1 1

The vectors, E; eR®, i,je(1,23) i< j, with index pairs (ij), considered in their
lexicographic order are E,,, E;; and E,,. These vectors form the standard basis for %*

andare E, =(1 0 0), E,=(0 1 O),and E,=(0 0 1)'.

We then obtain



Vl = Elz (el +ez)’ + E13(e1 + 63)'+ Eza(ez + 83)' =

3 3
W, = Z ZEU Eq € sym(3)

i,j=1k,1=1
I<L k<I

i, i}k, =1

0
W2 = E12 EZ[S + E12E£3 + ElS E£2 + E13E£3 + E23E1,2 + E23E1'3 = 1
1

0
1].
1

o K

o B

32

From the definition of W3, we get that W5=0, since the side condition|{i, 34k, I}| =g,

cannot be satisfied for m=3.

Thus the information matrix for m=3 factors can be written as

C, (M (n7())) =

o T 9 O

P O P o+ o

0
0(+b

1|+d

o o T T
O QO o o

O O kO

O Ok O

o O O - -

o O Fr O B -

O Fr Ok O -

R O O k- - O

+d

+ f

P B O kL O O

- O = O F» O

O R B O O

(4.17)
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=% c=%, d:& , f =0 and ez%

8a, +a, b
’ 12

Where, a = = ,
24 48

From lemma (3.2.1), we compute the eigenvalues of the above matrix as follows

2 2 2
D, =[a+2b—ef’ +4[2c+d] = Sy ray 200 | )20, | 130 ~14a; 5 (4.18)
24 48 4 12 36
2 2 2 2
D, :[a—b—C]2 +4(3—2)[d]2 :{80612%_%_%} +4ﬁ-{_§:| =(730£1 72§a1+185J
48 (4.19)
Using equation (3.10) in lemma (31), we obtain for m=3
1 1| 8a, +a a a 13a) —14a, +5
A,==la+2b+cx D, [==| —2—"T2-2 L |+| 2 J_r\/ 1 L
23 2[ \/_1] 2[ 24 [48} {4} 36 ]
:%[2@/130;12 ~14a, +5] with multiplicity 1 (4.20)
Similarly, using equation (3.11) in lemma (3.2.1) we get
1 118a,+a, a, « 7930 — 7220, +185
A =—la=-b+ct,D, == #——Zﬁ-—zi\/ L 1 4.21
0 2[ ‘/_2] 2{ 24 48 4 48’ ] (4.21)

From lemma (3.2.1) the eigenvalues that A4,, 4, 4, and A, occur for the case m=3. These

are

A, = % [2 + /1302 —14a, + 5], with multiplicity 1,

Ay = 5[2 — J13a? —14a, + 5], with multiplicity 1,

Ay = 9_16 [3051 +13+ \/793af ~ 722, +185], with multiplicity 2 and

A = 9—16[3051 +13- \/793af -722a, +185], with multiplicity 2.
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From theorem (3.2.3), if the smallest eigenvector of C, (M) has multiplicity 1, then the

. R 7z’ . i .
only choice for the matrix Eis, E = W where z € R°® is an eigenvector corresponding
z

to the smallest eigenvalue of the information matrix C,(M). In our case, the smallest

eigenvalue is

A=Ay = é [2 —J13a? —14q, +5 (4.22)

We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of
the matrix, C, (M).

By definition, A € R, is an eigenvalue of matrix C if

(C—/ll)E =0« Cz=Azwithz #0

Where, z = (w x vy z),isan eigenvector of C corresponding to A.

Thus, from equation (4.17) and equation (4.22)

(C—A,,l )E =0, implies that

2p g q 4q\w) O
2 4 0
q p qQ q| X _ (4.23)
q q 2p 4q9|y| O
49 49 49 4r)\z 0

where, p=7a, —3++13a —14a, +5, q=a, =1—¢, and
1 1 1 2 1

r = -3a, +1+/13a? —14c, +5
2pw+gx+qy+49z=0
gqw+2px+qy+49z=0

gqw+gx+2py+49z=0
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4qw+4qgx+4qy+12rz =0

Solving the above system of linear equations, we obtain the eigenvector corresponding to

j’min as,
W 1
Sk |t
y
_3q
7 1

r

Then the matrix

1 1 1 _—3q
3
—9q
, 1 1 1 r 2 3r’+9q°
7' = 3 and||z|” =———
R R W— | r
.
-3¢ -3q -39 9¢°
r r r r
Thus the matrix E is given as;
r r r’ - 3qr?
3r’+99° 3r®+99® 3r*+9g° 3r*+9q°
r r? r’ —3qr?
zz" | 3r*+99° 3r°+99® 3r?+9g°® 3r?+9q°
=== 5 . . A (4.25)
||z|| r r r —3qr
3r’+99° 3r®+99®> 3r*+9g° 3r*+9q°
—3qr? —3qr? —3qr? 99>
3r’+99° 3r®+99®> 3r*+9g° 3r*+9q°
Multiplying
l 0 0O
> 1
_|0 < 0 O} Cherutich (2012)and matrix E, equation (4.25), we have
C, 3
0 O l
3
0 O
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r’ r? r’ —3qr?
3Br2+9q%) 3(3r2+99%) 3(3r2+9q?) 3(3r?+9q?)
r? r r? —3qr?
C.E=|3(3r?+99%) 3(3r?+99?) 3(3r>+99?) 3(3r>+9q?) (4.26)
r’ r? r’ ~3qr?
3Br2+9q%) 3(3r2+99%) 3(3r2+9q?) 3(3r?+9q?)
0 0 0 0
I,.2
Thus traceC,E s (4.27)
Now
traceC,E = 4,,,,(C), implies that
re i[z—\/13af —1de, +5] (4.28)

3r2 +9q2 12
This simplifies to

— 32656 of +165792 ar° — 346082 o) + 379328 o — 229872 a2 + 72864 o, — 9424 =0 (4.29)
upon substituting the values of gandr .

The roots of polynomial (4.29) are

o, = 0.5753,0.5016
Since, ¢, €(0,1), then it implies that ; =0.5753 or «, = 0.5016

When, &, =0.5753 , a, =1— o, = 0.4247 and

Ay = é [2 — J13a? —14a, + 5]: 0.073556541

When, o, =0.5016 ,a, =1—a, =0.4984 and

A

min

_ é [2 —J13a? —14a, + 5]: 0.073556528

We observe that 4, is maximum when «, =0.5/53 and o, =0.4247 .
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Thus for m=3, ingredients we have, o, =0.5753 and «, =0.4247 .

From Pukelsheim (2006), the smallest-eigenvalue criterion v(¢_,) = 4.,,,(C) .

From equation (4.22), the smallest eigenvalue is

Aemin = é [2 ~\13a2 ~14a, +5|= 0.073556541 (4.30)

Hence the optimal value for the E-criterion for m=3 factors becomes

V(4. )=A_.(C)=0.073556541 = (4.31)

Lemma 4.1.2

In the second-degree Kronecker model with m=4 ingredients, the weighted centroid
design

n(a®) =a,n, +a,n, =0.9998 5, +0.0002 7, (4.32)
is E-optimal for K'@ inT.
The maximum of the E-criterion for m=4 ingredients is v(¢__ ) = 0.0018823 .

Proof

In the second-degree Kronecker model any matrixC esym(s,H) can be uniquely
represented in the form

au, +bU, dV,
C= dv, cﬂ

m
And for the case m=4 ingredients the information matrix C, (M (77(«))) can then be

written as

aU,+bu, dv,
C= dV‘l C\ﬂ
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With coefficients a,b,c,de R,

8a, +a a a a
#’ b:_z, C:_z,and d =22

where; a =
32 96 4 16

with the matrices; Ui, Uy, V1, Vo, W1, Woand Wsdefined as in lemma (4.2).

The information matrix C, (M (r7(«))) for a mixture experiment design, r(a) with m=4

ingredients is,

8a, +a, a, a, a, a,

32 96 96 9% 96

a, 8a, +a, a, a, a,

* E e EoE

_ _ 2 2 1 2 2 2

C =C,(M(n(a)))= % % 32 % E (4.33)

a, a, a, 8a, +a, «a,

96 96 96 32 16

a, a, a, a, a,

16 16 16 16 4

From equation (2.9), any marix C e sym(s, H) can be represented in the form

cV, +dv, el( )+ fW, + gW,
2

m

{alm +bU, eV, +dV, J
C =

with coefficients a,...,g € R. The terms containing V,, W,and Wsoccurring for m>3 or

m > 4 respectively.

For the present case m=4 the information matrix C, (M (77(«x))) can be written as

_(al;+bU, cV/+dV,
“lev,+av, el + fW,

From lemma (2.4), we get
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1 0 0O
01 0O
U1:|4: ]
0 01 O
0 001
1111 1 000 01 11
, 1111 01 00 1 011
U, =11, -1, = - _ |
1111 0 010 110 1
1111 0 0 0 1 1 110
1
4 1
V =) (g)eR™ =(e, +e, +e, +e,) = .
1t )

Thus the information matrix C, (M (77(«))) can be written as

1000 0111 (1
aU, +bU, dV, 0100 1011 N
C,(M(n(a)))= v JVI=lao 010 1101 |1
0001 1110/ (1] “39
Cder 11y (1)
8a, +a,

o a o
,b==2c="2 andd=-2%

Where, where; a = ,
32 96 4 16

From lemma (3.2.1), we compute the eigenvalues of the above matrix as follows

2 2
D, =[a+3b—cf + 6[2d] = 8oy +a, 3, a,| ]2 _ 730," ~90a, +33 (4.35)
! 24 96 24 16 162 '
8. +a, a, a, o, (601a? — 650, +193)°
D, =[a-b-cf+4¢4-2[d[ =| =2 -2 22| +4(2) 2| = L L 4.36
, =la-b—c[ +4(4-2)d] {32 % 4} ()M [ e j( )

Using equation (3.10) in lemma (3.2.1), we obtain for m=4
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[a+3b+c+\/—] 1[8a1+a2 3[%}[%} \/73041 1%(2)a1+33}

:3—12[— a, +5+/73a% — 900, +33l with multiplicity 1 (4.37)

Similarly, using equation (3.11) in lemma (3.2.1) we get

2
[a b+c+ D, )= 1{8a1+a2 _ﬁ+&i\/601a1 65Oa1+193}

9% 4 48°
= % - 20, + 26+ /6010 — 6500, +193] with multiplicity 2 (4.38)
The smallest eigenvalue is = 3—12 [— a, +5+/73a? —90a, + 33] (4.39)

From lemma (3.2.1) the eigenvalues that 4,, 4,, 4, and A, occur for the case m=4. These

are

A, = 3—12 :—al +5++/73a2 — 90, +33], with multiplicity 1,

Ay = é :—al +5— /732 —90c, +33], with multiplicity 1,

Ay = 9—16 :—20:1 +26+ /6010 — 6500, +193],Withmultiplicity2 and
g = % — 20, + 26— /6010 — 6500, +193], with multiplicity 2.

From theorem (3.2.3), if the smallest eigenvector of C, (M) has multiplicity 1, then the

!

only choice for the matrix E is, E = ”Ziz )
z

is an eigenvector corresponding

to the smallest eigenvalue of the information matrix C, (M). In our case, the smallest

eigenvalue is
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. =é -, +5—+/73a% —90a, +33|, (4.40)

A
We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of
the matrix, C, (M).

By definition, A € R, is an eigenvalue of matrix C if

(C—A)z2=0«Cz=Azwithz %0

!

Where, E:(v W X y z),isaneigenvector of C corresponding to A.

Thus, from equation (4.33) and equation (4.40)
(C—A_.1)2=0, implies that

3p 9 g9 g 6q
a 3p g g 6q
g q 3p g 6q
g 9 g 3p 6q
6g 6g 6q 69 3r

(4.41)

N < x = <
Il
o 0o o o o

where, p=80:l—4+\/730:l2 —-90a, +33, g=a, =1-¢, and

r=-7a, +3+/73a% —90q, +33

3pv+qw+0gx+qy+6qz=0

gqv+3pw+gx+qy+69z =0

gqv+aqw+3px+qy+69gz =0

gQv+aqw+gx+3py+69gz =0

6qv+6qw+60x+6qy +3rz =0

Solving the above system of linear equations, we obtain the eigenvector corresponding to

A as;

min
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V l
W 1
2= x|=| 1 (4.42)
1
'8
z r
Then the matrix
1 1 1 1 _—8q
r
1 1 1 1 _—8q
r
_ 2
2= 1 1 1 1 %9 |angfgf =" :264‘1
r
1 1 1 1 _—8q
r
-89 -8y -8y -8q 64q°
r r r r r’
Thus the matrix E is given as;
r’ r r r —8qr
4r* +649° 4r’+649° 4r>+649° 4r’+649° 4r® +64q9°
r’ r r’ r —8qr
4r? + 640> Ar’+64q° 4r°+64q° 4r®+649° 4r? +64q°
22 r’ r r’ r - 8qr
E=—7= 2 2 2 2 2 2 2 2 2 : 2 (4.43)
||z|| 4r°+64q° 4r°+64q° 4r°+64q° 4r°+64q° 4r°+64q
r’ r r’ r - 8qr
A4r® +649% 4Ar’+649° 4r’+649> 4r’ +649° 4r® +64q°
—8qr -8qr —8qr -8qr 64q°r°
4r® + 640> 4Ar’+64q° 4r°+64q° 4r®+649° 4r? +64q°
1 0 0 0O
4
0 % 0 0 O
C, = 0 0 1 0 0 , Cherutich (2012) and matrix E, equation (4.43), we have
4
0 0 O 1 0
4
0 0 0 O
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r’ r’ r’ r’ —8qr
dar’ +64q7) aldr®+640°) dlar’+64q’) 4dar®+64q°) alar’ +64q’)
r’ r’ r r’ —8qr
dar’ +64q7) aldr®+640°) dlar’+64q’) 4dr®+64q°) alar’ +64q’)
CE= r r r’ r ~8qr (4.44)
far® +64q°) alar’+640°) 4ldr®+64q°) dar®+64q°) 4alar’+64q°)
r’ r’ r re -8qr
alar® +64q7) 4lar® +64q2) 44r? +64q?) 4lar> +649°) 4{dr® +64q°)
0 0 0 0 0
Th C,E r’
us traceC, —m
Now
traceC,E = 4_..(C), implies that
r2 1 2
— o, +5-/73a? —-90q, +33 (4.45)

4r? +64q7 32
This simplifies to

— 3409920 +1786880c:” — 3868672, + 4425728

. (4.46)
— 2819072¢:2 +947200c, —131072=0

Upon substituting the values of qandr .
The roots of polynomial (4.46) are

o, =1.0002,0.9998
Since, ¢, €(0,1), then it implies that ;; =0.9998

When ¢; =0.9998, o, =1- ¢, =0.0002 and

A :3—12[— a, +5—+/73a” —90a, +33|=0.0018823

We observe that 4, is maximum when ¢, =0.9998,a, =1-¢, =0.0002 .

Thus for m=4 ingredients we have, a;=0.99976469 and «, = 0.00023531
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From Pukelsheim (2006), the smallest-eigenvalue criterion v(¢_,) = 4.,,,(C) .

From equation (4.40), the smallest eigenvalue is

Ay = 3—12 —a, +5—+/73a? —90a, + 33]: 0.0018823

Hence the optimal value for the E-criterion for m=4 factors becomes

v($_,) =4, (C)=0.0018823 .

4.1.1 Generalization of E-optimal design for non-maximal parameter subsystem
Theorem 4.1.1

In the second degree Kronecker model with m-ingredients the weighted centroid design
7(a®) = a,n, + a,n,is E-optimal for K'6 inT. (4.47)

The maximum value of the E-criterion for K’6with m ingredients is

v(¢w):zmm(c:):%[(—m+3)al+m+1i\/5] i

Where D = (m? +14m + 1), — (2m? + 20m—22)a, +(m? +6m—7)
Proof

From equation (2.9) any matrix C e sym(s, H) can be uniquely represented in the form

au,+bU, dvV,
€= dVll Cﬂ

m

For the case of m ingredients the information matrix C, (M (77(«))) can then be written as

au,+bU, dV
C= av’ cﬂ

m



With coefficientsa, b,c,d e R,

From lemma(2.5) we get

10 . . .0
0
U, =1, =
0 1
1 .. 0) (1
1 1
0 0
U,=I lw=1_=l. . |- ' =
1 1
0 1) |1
1

V =>(e)eR™ =(e, +e, +..4¢e,) =| .
L=t
i<j

Hence the information matrix C, (M (r7(«))) can be written as

0
au,+buU, av 3
CM@m@=| 4 VYV I=|g. .
m
o . 1 1
d@ . 1)

45

(4.49)

, and
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8o, + «, N o, U o,
_ 8m o 8m(m—=-1 “? 4m
- , (4.50)
SZRVE o, V'V
4m 4 m
Where a=8a1+a2,b= % =% andd=22
8m 8m(m-1) 4 4m

From (lemma 3.2.1) for m ingredients we have

D, =[a+(m-1)b—c]* +2(m-1)[2d [

2 2
_ 8a1+0¢2+(m—1)a2 _a, +2(m—1) a,
8m 8m(m-1) 4 4m

_(4m® +56m +4)a,” — (8m* +80m —88)a, + (4m” + 24m — 28)
- 64m?

The eigenvalues are;

Ao :%[a+(m—1)b+ci\/ﬁl]

1|8y ta, (M-Da, a,
N 2{ gm  8m(m-1) 4 i‘/a} -
:%[(—m+3)al+(m+l)—\/5] (4.52)

Where D = (m2 +14m Jrl)ozl2 —(2m2 +20m—22)a1 +(m2 +6m—7) with multiplicity 1.
Hence the smallest eigenvalue is A, ZSL[(—m+3)051 +(m +1)—\/B] where D is as
m

defined above.
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Now let A, zsi[(—m+3)al+(m +1)—\/B] then 4, is an eigenvalue for C if for
m

corresponding eigenvector, say z,we have (C — A1)z =0 or (Cz = Az) with Z =0
Now let

Z

N|
Il

, be the eigenvector of C corresponding to 4.

z

m-+1

We therefore have (C — Al), as

(m+4)al—m+\/BU Y a,
8m ' 8m(m-1) ° 4m
(4.53)
Gy, (-m—=3)a, +(M-1)+~/D V'V
4m 8m m

Let p, :[(m+4)al—m+\/BJ, 9, =a, .r :[(—m—s)a1+(m—1)+\/BJ
Where D = (m? +14m +1)e,® —(2m? + 20m—22)a, +(m? +6m—7)

Weget (C-A1)z2=0

—_— V'V
8m

1 ((M=DpU,+aqU, 2(m-1)qV
2(m-1)q,V’ (m—l)'&?

Solving these equations for z, we get,

z, 1

NI
Il
Il

—cmq
m+1 r
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Where c=2 for even number of ingredients and c=1 for odd number of ingredients as the
eigenvector corresponding to A,
Thus

U, +U, —-cmaV
ZZ =|cmq,,, c*m?g®V'V |, and
o 127

r r m

||Z||2 _ M

r (4.54)
Therefore
77" 2 U, +U, —-cmqgV
Ll cmg,,, c¢’m?q? V'V (4.55)
L
And from equation (4.50) and equation (4.55),
1 1
r’ U, +=U, -cqV
CE=—F——>— 1 2 4.56
1 mr2+c2m2q2[m Om 0 } ( )

From (Theorem 3.2.2) a weighted centroid design 7(«) is E-optimal for K'@in T if and
only if traceC,E = 4,;,(C).

For j=1

2 2 2

r r r
ot =
m(mr? +c¢’*m?q?) m(mr® +c*m?g®) (mr? +c’m?q?)

traceC i E=

2

r L (—m+3)al+(m+1)—\/5] (4.57)

Hence traceC,E =4 5 5=
(mr<+c°m<q°) 8m

(R=

min
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Puttingq=a,, I, = [(— m—3)a, +(m—-1) + \/BJ and
D= (m2 +14m Jrl)ozl2 —(2m2 +20m— 22)&1 + (m2 +6m— 7) reduces equation (4.57) to

—ia," + ja,” —ka' +la’ —ma,” +na —0=0 (4.58)
Where
i =—320m* —4672m°® + 2880m* —1664m" + 512

j =1920 m* + 25728 m® — 25984 m” +17664 m*' — 6144

k = —4800m* —58560m° +83648m” —63360m + 23040

| =6400m* +70400m*® —132352m? +110080m — 40960

m = —4800m* — 47040m® +111808m? —101760m + 38400

n=1920m* +16512m* — 48512m? + 48384m —18432

0 =-320m* —2368m° +8512m* —9344m + 3584

Solving the above polynomial yields the values of ¢, from which we choose ¢, ,such that

a, € (0,1); we substitute this values to 4,,,,and take the values that minimizes the 4.,

hence the optimal E-criterion is

v(g)=A_.(C) =$[(—m+3)a1 +m+1—JB]

Where D = (m? +14m +1)e, — (2m? + 20m—22)a, +(m? +6m—7)
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4.1.2 E-optimal design for maximal parameter subsystem
Lemma 4.2.0

In the second-degree Kronecker model with m=2 ingredients, the weighted centroid
design

n(a®) =oa,n, +a,n, =0.0662 7, +0.9338 77, (4.59)
is E-optimal for K'@ inT.
The maximum of the E-criterion for m=2 ingredients is v(¢_, ) = 0.026314645 .

Proof

We obtained the information matrix, C, (M (r7(«))) , Kinyanjui (2007) as;

8a, +a, a, a,
16 o 16 16
a a,+a, o
C, (M(n(a)))= ﬁ # ﬁ (4.60)
% 4 %
16 16 16

From equation (2.9), any matrix C e sym(s, H) can be uniquely represented in the form

al_+bU, oV, +dV,
C=|cv, +av, el(m)+fW2+gW3 :
2

For the case m=2, the information matrix C, (M (r77(«r))) can then be written as

co al +bU, cV,
I YA
With coefficients; a,b,c,e e R, since the terms containing V,, W»and W3 only occur for

m>2.

From lemma (2.4), we get



o1

10 , 11) (1 0) (01
Ui=lo=ly (] Ye=th=l=l 17y 1]7(1 o)

2
V=D E;(e +e;) e R =Ep,(e +e,)' =(1 land W, = |[2] =1,

ij=1 2
i<j

Thus the information matrix C, (M (77(«))) can be written as

a b c
a|m+bU2 eV, a Lo +b 01 Cl
C= oV oW =10 1 1 0 1/1=1b a c¢ (4.61)
' L clt 1) e(l c c e
Where;azm’b:ﬁ,cz&aﬂde:ﬁ
16 16 16 16

From lemma (3.2.1), we compute the eigenvalues of the above matrix as follows;

57 — 20, +9

D, =[a+b—el +2[2c] =
,=la+b—ef +2f2cf =252

9a, —17°
D2=[a—b—e]2:{ 0;16 }

using equation (3.10) in lemma (3.2.1), we obtain

2 =%[a+b+eiﬁ]=3—12[(5a1+3)i\/57af 20, +9

(4.62)
again, using equation (3.11) in lemma (3.2.1), we obtain
A4 =l[a—b+e+,/D2]=ﬁ
2 2 (4.63)
Thus for the case m=2, the eigenvalues that occur are
1 2
k=g [(50!1 +3)+/57a? - 2a, + 9] (4.64)

Ay = i[(sal +3)—/57a? - 20, +9]
32 (4.65)
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From theorem (3.2.3), if the smallest eigenvalue of C, (M) has multiplicity 1, then the

. . ) 77’ . i .
only choice for the matrix E is E = W where z e R®is an eigenvector corresponding
z

to the smallest eigenvalue of the information matrix C, (M). In our case, the smallest

eigenvalue is

min

A=Ay =3—12[(5a1 +3)—/57a? - 20, +9 (4.66)
We therefore need to get an eigenvector, z corresponding to the smallest eigenvalue of
the matrix, C, (M).

By definition, A € R, is an eigenvalue of matrix C if

(C—A)z=0«Cz=Azwithz %0

X

where Z = y |, is an eigenvector of C corresponding to A .
z

Thus, from equation (4.60) and equation (4.66), we have

(C—A,,l )E =0, implies that

(90!l —1) + 1[570112 - 20{1 +9 a, a,
32 16 16 N
a, e, -1) ++/57a} - 20, +9 a, y|=|o (4.67)
16 32 16
a, a, (-7a, ~1)+ 570 —2a, +9 \2) \0
16 16 32

If we let
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p=a, —1)++/57a’ =20, +9, q=a, =1-a,and r=(-Ta, —1) +/57a? —2c, + 9,

we obtain the equations

px+2qy+29z=0
20X+ py+2qz=0

20x+2qy+rz=0

Solving the above system of linear equations, we obtain the eigenvector corresponding to

Amin 8S;
X 1
z=|y|=| 1 (4.68)
) |4
»
Then the matrix
1 1 -4q
v 2
2= 11 = fandfgf = 20
.
—-4q -4q 16q°
r r r
Thus the matrix E is given as;
r r? —4qr
2r’ +16q° 2r?+16q° 2r®+16q°
’ 2 2 _
E= Zzz = 2 ' 2 2 ' 2 2 aar 2 (4.69)
||z|| 2r° +16q° 2r°+16q9° 2r° +16q
—4qr —4qr 16q°
2r> +169%> 2r?+169°> 2r? +16q>

Multiplying
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, Kinyanjui (2007)

oN |, O
o

and equation (4.69), we have

2 2

r r —4qr
2(2r* +169°) 2(2r* +16qg®*) 2(2r*+16q9°%)
2 2 _

CE=|—— " r Aar (4.70)
2(2r° +16q°) 2(2r°+16g9°) 2(2r°+16q9°)
0 0 0

rZ

Thus traceCE = ————
2r° +16q

Now

traceC.E = 4,,,(C), implies that

min

2

r 1
m = ﬁ[(5al +3) —\/576112 - 2a1 +9 (471)
This simplifies to

— 30914624 o — 373568 a® — 283059600 o' +121760 o —11152 or? — 26048 ¢, + 7168 =0
(4.72)

upon substituting the values of gandr .
The root of polynomial (4.72) is

a, = 0.0662

Since, o, €(0,1), then it implies that «, = 0.0662
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When, ¢, =0.0662 , ¢, =1-«, =0.9338 and

Aenin = 3—12 [(Sal +3)—/57a —2a, +9 |=0.02631464 (4.73)

We observe that 4, is maximum when ¢, =0.0662 and o, =0.9338 .

Thus for m=2, ingredients we have, «; =0.0662 and «, =0.9338 .
From Pukelsheim (2006), the smallest-eigenvalue criterion v(¢_ ) = 4,..,,(C).

From equation (4.66), the smallest eigenvalue is

A = 3—12 [(50:1 +3)—/57a —2a, +9 |=0.026314645

Hence the optimal value for the E-criterion for m=2 factors becomes

v(g.) = A, (C)=0.026314645 =

Lemma4.2.1

In the second-degree Kronecker model with m=3 ingredients, the weighted centroid
design

n(a®)=an, +oa,n, =0.10127, +0.89887, (4.74)
is E-optimal for K'@ inT.

The maximum of the E-criterion for m=3 ingredients is

V(¢ ) =0.01455548 | (4.75)
Proof

From the information matrix C, (M (7(«))) Kinyanjui (2007), we compute the

eigenvalues of the above matrix as follows;
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by o, 2 G % %
24 48 48 48 48
% Bamta, 4 a4 5 &
48 24 48 48 48
% 4 Bamta, 4 X% &
C=CM@@N)=| 48 24 48 48 (4.76)
—£ —£ 0 -£ 0 O
48 48 48
%2 0 L2 9 2 g
48 48 48
0 % %5 g %
48 48 48

From equation (2.9) any matrix C e sym(s,H) can be uniquely represented in the form

al_+bU, oV, +dV,
C=|cv, +av, elm+fw2+gw3 :
2

For the case m=3, the information matrix C, (M (r77(«x))) can then be written as

al +bU, cV,
C= .
cVi1 eW,

With coefficients; a,b,c,e e R, since the terms containing V,, W,and W3 only occur for

m>2.

From lemma (2.4), we get

10 , 1 1) (1 0) (01
Vimla=lg g ) YTl = )0 1)l o)

2
V=) E;(e+e;) eR* =E,(e, +e,)' =1 Dand W, = I(Zj =1.

ij=1 2

i<j

Thus the information matrix C, (M (r7(«))) can be written as



S7

100 011 110 001
a0 1 0f+h/1 0 1 ¢l 0 1{+d{0 1 0
al_+bU, cV. 001 110 011 100
C M m . 2 1 _
k(('7(“)))((:v1 evvlj 110) (001) (100) (011 (000
¢l 0 1(+d/0 1 0| ¢0 1 O|+f[2 0 1{+g/0 0 0
011 100 001 110 000
a b b c c d
b a b c d c
b b ad c c
= (4.77)
c cd e f f
c dc f e f
d c c f f e
where;azm,bzﬁ,c=&,d=ﬁ,e=& and f =0
24 48 48 48 48
with the matrices; Uy, Uy, V1, V2, Wi, Woand Widefined as in lemma (2.4).
2 2 2
Dlz[a+2b—c]2+4[2d]2:{Saﬁraz+%—&} +4{2a2} _ 18507 +46a, +25 (4.79)
24 48 48 48 2304

2 2 2_
D, =[a-b—cf +4@3-2)d =| 30T % %2 % | g0 | | 2000 B td) o
24 48 48 48 2304

Using equation (3.10) in lemma (3.2.1), we obtain for m=3

1 1|8, +a a a 13a) —14a, +5
As==la+2b+ct D, |==| ——2-2 % |+| 2 J_r\/ 1 1
23 2[ \/_l] 2[ 24 [48} [4} 36 ]

:9_16 [(110!1 +5)+ \/185a12 + 460, + 25] with multiplicity 1

Similarly, using equation (3.11) in lemma (3.2.1) we get

1 1|8, +a, a, « 2600’ —8a, + 4
A .="la=b+c+.D. |== #__Z_F_Zi\/ 1 1
e 2[ 2] 2{ 24 48 48 48° ]
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_ %[(ml 1)+ /650, 20, +1}

From lemma (3.2.1) the eigenvalues that A4,, 4,, 4, and A, occur for the case m=3. These

are

A, = 9—16 :(110!1 +5) + /18522 — 460, + 25], with multiplicity 1,
Ay = 9—16 :(110!1 +5) — /18507 — 46at, + 25], with multiplicity 1,
A, = 9—16 :(7051 +1) + /6507 — 2a, +1], with multiplicity 2 and
A = % :(7051 +1) — /650 — 2ax, +1], with multiplicity 2.

From theorem (3.2.3), if the smallest eigenvector of C, (M) has multiplicity 1, then the

!

. R 2z : : .
only choice for the matrix E is, E = W where z € R® is an eigenvector corresponding
z

to the smallest eigenvalue of the information matrix C, (M). In our case, the smallest

eigenvalue is

Ay = 9—16 [(110!1 +5) — /1850, — 460, + 25 (4.80)

We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of
the matrix, C, (M).

By definition, A € R, is an eigenvalue of matrix C if

(C—A)z2=0«Cz=Azwithz %0

Where, (z =Uu VvV W X Yy z), is an eigenvector of C corresponding to 4.

Thus, from equation (4.76) and equation (4.80)
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C-4,.l )z =0, implies that

P 29 29 29 29 O
20 p 29 29 0 2q
20 29 p 0 29 2¢q
20 29 0 r 0 O
2g 0 29 0 r O

0 29 2 0 O r

(4.81)

O O O O o o

N <« X = < <

where, p="7¢, —3+\/130512 —14a, +5, g=a, =1-¢, and

r=-13a, +3++/13a7 —14a, +5
pu+2qv+2qw+29x+2qy+29z =0
2Qu+ pv+2qw+20x+ 29z =0
20u+2qv+ pw+2qy +2qz=0
2qu+2gw+ry =0
2qv+2gw+rz=0

Solving the above system of linear equations, we obtain the eigenvector corresponding to

Amin 8S;
1
u 1
v 1
- —4q
W
7 = e (4.82)
X _4q
y r
z —-4q
r

Then the matrix
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1 1 1 —49 Z4d 4
r r r
11 1 —49 44 49
r r r
11 1 %9 4 4 ar? + 4807
7' = e o and|gf =0
-4q9 -4q9 -4q 1l69° 16q° 16q r2
r r r r’ r? r?
-4q -4q -4gq 169° 169° 16q°
r r r r? r? r?
-4q -49 -4q 16g° 169> 169°
r r r r’ r’ r’
Thus the matrix E is given as;
r2 r? r? —4qr —4qr —4qr
3r° +48q% 3r®+48q9° 3r°+48q> 3r?+48q9° 3r°+48q> 3r’+48g°
r? r? r? —4qr —4qr —4qr
3r’ +48q% 3r®+48q9° 3r°+48q> 3r’+48q9° 3r°+48q> 3r’+48q°
r? r? r? —4qr —4qr —4qr
' | 3r®+489° 3r®+48q> 3r®+489° 3r®+48q> 3r®+489° 3r®+48q°
E T 2 2 2 (4-83)
||z|| —4qr —4qr —4qr 169 16q 16q
2 2 2 2 2 2 2 2 2 2 2 2
3r'+489° 3r°+48q° 3r°+48g° 3r°+48q° 3r°+48q° 3r° +48q
—4qr —4qr —4qr 160° 160° 16q°
3r’ +48q° 3r®+48q> 3r°+48q> 3r’+48q> 3r°+48q> 3r®+48q°
—4qr —4qr —4qr 169° 169° 169°
3r’ +489° 3r®+48q° 3r’+48q> 3r’+48q° 3r’+489° 3r® +48q°

Multiplying
1 0 00O00O
3
0 1 0 00O
3
C.=lo 0 1 0 0 ol Kinyanjui(2007) and equation (4.83), we have
3
000O0O00O
000O0O00O
0000O00O




2 2 2
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r r r —4qr —4qr —4qr
3(3r? +489°) 3(3r®+48q%) 3(3r’+489°) 3(3r®+48q%) 3(3r’+489°) 3(3r+48q%)
r? r? r? —4qr ~4qr ~4qr
33r? +129°) 3(3r>+12q9%) 3(3r>+48q%) 3(3r’+489°) 3(3r>+48q%) 3(3r®+48q%)
CE= r? r? r? —4qr —4qr —4qr
3(3r? +489%) 3(3r>+48q%) 3(3r’+489°) 3(3r®+48q%) 3(3r’+489°) 3(3r+48q%)
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
(4.84)
r.2
Thus traceCE=———
3r- +48q
Now
traceC,E = 4,,,,(C), implies that
o —i[(lm +5)— /18507 — 46cz, + 25 (4.85)
3r’+489> 96" ' ' '
This simplifies to
—13600356160, —51930360;, — 9570137970, + 3476180 +149643% (4.86)
—792600¢, +164864=0 '
upon substituting the values of gandr .
The root of polynomial (4.80) is
o, =0.1012
Since, a, €(0,), then it implies that «, =0.1012
When, o, =0.1012 , @, =1— ¢, =0.8988 and
A = 9—16 [(11051 +5) — /18507 — 46q, + 25]: 0.01455548 (4.87)

We observe that 4, is maximum when ¢, =0.1012
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Thus for m=3, ingredients we have, ¢, =0.1012 and «, =0.8988 .

From Pukelsheim (2006), the smallest-eigenvalue criterion v(¢_,) = 4.,,,(C) .

From equation (103), the smallest eigenvalue is

(11, +5) - \/1850:12 —46¢, +25|=0.01455548

2'min = il:
96

Hence the optimal value for the E-criterion for m=3 factors becomes
V(g.,)=A,,(C)=0.01455548 .

Lemma 4.2.2

In the second-degree Kronecker model with m=4 ingredients, the weighted centroid
design

n(a®) =a,n, +a,n, =0.12317, +0.8769 1, (4.88)
is E-optimal for K'@ inT.

The maximum of the E-criterion for m=4 ingredients is

v(¢4_,) =0.015525588 . (4.89)
Proof

In the second-degree Kronecker model any matrix C esym(s,H)can be uniquely
represented in the form

au, +bU, dv’
C= dv, cﬂ
m

and for the case m=4 ingredients the information matrix C, (M (77(«))) can then be

written as



dav;' c—

au,+bu, dv,
C= V'V
m

With coefficients a,b,c,d e R,

8o, +a, | _% c=%,anddzoe=% f=0g=0

where; a =
32 96

with the matrices; Ui, Uy, V1, V2, W1, Woand Wsdefined as in lemma (2.4).
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Information matrix C, (M (n7(«))), Kinyanjui (2007), for a mixture experiment design

n(a) for m=4 ingredients is given as;

b ta, @ G G B &G G
32 96 96 96 48 48 48
& Bate, 444, g &
96 32 96 9% 48 48
@ % Bmram 4 oam
96 96 3 96 48 48
A
9 96 96 32 48
Z—; Z—é 0 0 % 0 0 0

C=CMu@)=| * . .
& 0 %2 o o0 % g o
48 48 96
%2 0 0 %9 o % g
48 48 96
0 %2 % o o0 0 o0 &
48 48 96
0 % 0 L9 0 0 o0
48 48
0 0 Lo %9 9 0 o0
48 48

From equation (2.9), any marix C e sym(s, H) can be represented in the form




al_ +bU, oV, +dV,
C=|cv, +av, el(m) + fW, + gW,
2
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with coefficients a,...,g € R. The terms containing V,, W,and Wsoccurring for m>3 or

m > 4 respectively.

For case when m=4, the information matrix C, (M (7(«))) can be written as;

_(al;+bU, cV/+dV,
“lev,+av, el + fW,

From lemma (2.4), we get

1 0 0O
01 00
U1:|4: y
0 010
0 0 01
1111 1 00O 0111
, 1111 01 00 1 011
U,=11,-1, = - - ,
1111 0 01O 11 01
1111 0 0 01 1 110
1
4 1
V =>(e)eR™=(e, +e, +e, +e,) = .
e .

Thus the information matrix C, (M (r7(«))) can be written as

+b

o o -, o
o - o o
_ o o o
=)
N =
=
(= N
[ N N

dt 1 1) c

—
—_—
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Where; a= 20t % %2 ¢ % anqq_ Oe—g—éf:09=0

32 96’ 48

From lemma (3.2.1), we compute the eigenvalues of the above matrix as follows

2 2 2
D, =[a+3b—e] +62c] {8a1+a2+3%i_&} +6[2a2} _ 3850 +142a, +49 (4.91)

32 9% 96 48 9216

8a.+a, a, a, ] a1 (561a? -156a, +36
=la—b-ef +4(4-2)clf =| 222 2 T2 | LA 22| = 1 L 4.92
a-b-of +44-20f <| [ e o] -[Bi s o

Using equation (3.10) in lemma (3.2.1), we obtain for m=4

2
[a+3b+e+\/—] 1[8051-1-(12 B{ﬁ}+[&}i\/385al +142a1+49} (4.93)

96 96 96°

- % [(17“1 +7) +/38507 +142at, + 49] with multiplicity 1

Similarly, using equation (3.11) in lemma (3.2.1) we get

2
[a e 5] 1{8a1+a2_&+ﬁ+\/561a1 156a1+36}

96 96 96°

:9—16 [21a1 +3+ /5610 —1560, + 36] with multiplicity 2 (4.94)

The smallest eigenvalue is = ﬁ b?al +7+ \/385a12 -142¢, + 49] (120)

From lemma (3.2.1) the eigenvalues that 4,, 4,, 4, and A, occur for the case m=4. These

are

Ay = é L?al +7+ \/3850512 +142a, + 49 |, with multiplicity 1,
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Ay = é hml +7—/385a +142a1, + 49], with multiplicity 1,

A, = 9—16[210:1 +3=+ \/5610512 —156¢, +36] ,withmultiplicity2 and

Ay = 9_16[21“1 +3+ /5610 —1560, +36] , with multiplicity 2.

From theorem (3.2.3), if the smallest eigenvector of C, (M) has multiplicity 1, then the

!

. . 2z : : .
only choice for the matrix E is, E = —, where z e R® is an eigenvector corresponding

|l
to the smallest eigenvalue of the information matrix C,(M). In our case, the smallest

eigenvalue is

Ao = ﬁ b70‘1 +7- \/3850512 +142a, +49], (4.95)

min

We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of
the matrix, C, (M).
By definition, A € R, is an eigenvalue of matrix C if

(C—A)z=0«Cz=2zwithz %0

!

Where, Ez(g h st uv w x y z),isaneigenvector of C corresponding to
A.

Thus, from equation (4.90) and equation (4.95)

(C—A,,l )E =0, implies that



2q
2q
2q
4q
4q
4q

where, p = 25a, +13+./385¢7 +142a, +49, q=a, =1-a, and

r =19¢, —5++/3850, +142¢, + 49

pg +2gh+2gs+2qt+4qu+4qv+4qw=0
209 + ph+2qgs+2gt+4qu+4gx+4qy =0
299 +2gh+ ps+2qt+4qv+4gx+4qz=0

209 +2gh+2qgs+ pt+4qw+4qy +49z=0

499 +4gh+ru=0

2q

2q
2q
4q

4q
4q

29
2

2q

4q

4q

4q

2q
2q
2q

4q

4q
4q

49 49 49 0 0 O

49 0 O 49 49 O
0 49 O 49 O 4q
0 0 49 0 49 4q
r 0 0 O 0 O
O r 0 O O O
0O 0 r O O O
0O 0 0 r O O
0O 0 0 O r O
0O 0 0o 0O O r

4q9+49s+rv=0

4qg9 +4qt+rw=0

4gh+4gs+rx =0

4gh+4qt+ry =0

4g9s+4qt+rz=0

N < X = < € —~ un I Q

O O O O O O O oo o o
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Solving the above system of linear equations, we obtain the eigenvector corresponding to

A

min

as,;



N
Il

N < X = < ©€ —~ »n T @

| | | | | |
S|l | T [T [T [ Bk e
o |9 | |8 |a |a

Then the matrix

r r r r r r
1 1 1 1 —8q —8qg —8q —8q —8q —8qg
r r r r r r
1 1 1 1 —8q —8q —8q —8q —8q —8qg
r r r r r r
r r r r r r
-8q -89 -89 -8gq 6492 6492 649° 649° 6492 6492
r r - - 2 2 2 2 2 2
zz2=| -89 -89 -89 —8q 64q2 64q2 64q2 64q2 64q2 64q2
r r r r 2 2 2 2 2 2
-89 -89 -8q -8gq 64g° 649° 6492 6492 6492 6492
r r r r 2 2 2 2 2 2
-8q -89 -89 -8gq 6492 6492 649° 649° 649% 6492
r r - - 2 2 2 2 2 2
-89 -8 -89 -—8¢g 64q2 64q2 64q2 64q2 64q2 64q2
r r r r 2 2 2 2 2 2
-89 -89 -8q -8gq 64g° 649° 6492 6492 6492 6492
r r r r 2 2 2 2 2 2
2 2
2 4r° +384q¢
andoff = 47+ 0

Thus the matrix E is given as;

68



CE=

2

2

2

2
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r r r r —-8qr -8qr -8qr -8qr -8qr —-8qr
4r®+384g° 4r?+384q° 4r°+384q° 4r?+3849° 4r®+384q° 4r’+384g° 4r*+384q° 4r’+384g° 4r?+3849° 4r®+384g°
r? r? r? r? —8qr -8qr —8qr —8qr -8qr —8qr
4r? +3840° 4r®+3849° 4r?+384q° 4r?+384q7 4r?+384q° 4r’+384g° 4r?+3849° 4r®+384q° 4r?+384q7 4r?+384q?
r? r’ r? r? —8qr —8qr —8qr —8qr —8qr —8qr
4r’ +3840° 4r°+3849° 4r’+384q° 4r?+384q° 4r?+384q° 4r’+384q° 4r’+3849° 4r’+384q° 4r’+384q° 4r”+384q°
r? r? r? r? —8qr -8qr —8qr —8qr -8qr —8qr
4r? +384q° 4r®+3849° 4r?+384q° 4r?+384q7 4r?+384q° 4r’+384q° 4r?+3849° 4r®+384q° 4r?+384q7 4r?+384q?
—8qr -8qr —8qr —8qr 64q° 64q° 649° 64q° 649° 64q°
4r’ +3840° 4r°+3849° 4r’+384q° 4r?+384q° 4r?+384q° 4r’+384q° 4r’+3849° 4r’+384q° 4r?+384q° 4r?+384q°
—8qr —8qr —8qr -8qr 64q° 649° 649° 64q° 649° 64q°
4r? +3849° 4r®+3849° 4r?+384q° 4r?+384q7 4r?+384q° 4r+384g° 4r?+3849° 4r®+384q° 4r?+384q7 4r?+384q?
-8qr —8qr -8qr -8qr 64q° 64q° 649> 649> 649> 649>
4r’ +3849° 4r°+3849° 4r’+384q° 4r?+384q° 4r?+384q° 4r’+384q° 4r’+3849° 4r’+3849° 4r?+384q° 4r?+384q°
-8qr -8qr -8qr -8qr 64q° 64q° 64q° 64q° 64q° 64q°
4r? +3840° 4r®+3849° 4r?+384q° 4r?+384q7 4r?+384q° 4r+384g° 4r?+3849° 4r®+384q° 4r?+384q7 4r?+384q?
-8qr —8qr -8qr -8qr 64q° 64q° 649° 6492 649> 64q°
4r’ +3840° 4r°+3849° 4r’+384q9° 4r?+384q° 4r?+384q° 4r’+384q° 4r’+3849° 4r’+3849° 4r?+384q° 4r?+384q°
—8qr —8qr —8qr -8qr 64q° 649° 649° 64q° 649° 64q°
4r? +3849° 4r®+3849° 4r?+384q° 4r?+384q° 4r?+384q° 4r+384g° 4r?+3849° 4r?+384q° 4r?+384q7 4r?+384q?
(4.96)
Multiplying matrix
1
— 0 O 0O 0O 0 OO OO0
4
1
O =~ 0 0O 00 0 o0 o00O0
4
1 . - .
0 0 7 0000 0 0 0fKinyanjui(2007) and equation (4.96),we have
1
0O 0 O r 0O 0 0 0 0O oo
0O 0O 0O 0 OO0 0O 0O o0
O 0O 0O 0 OO 0O 0O 0O
O 0O 0O 0 OO0 0O O0oO0
0O 0O 0O 0O OO0 0O O0UDO0
0O 0 0O 0o O0OO0O O OO0
O 0O 0O 0 OO0 0O o0 oo
r? r? r? r? -8qr —8qr —8qr -8qr -8qr —8qr
4(4r° +3840%) 4(4r*+38497) A(4r?+384g7) 4(4r°+384q7) 4(4r7+38497) A(4rP+38407) 4(4r®+384q7) 4(4r®+384q°) 4(4r’+3849%) A4(4r’+3849°)
r? r? r? r? -8gr -8qr —8qr -8qr -8gr -8qr
4(4r® +3840%) 4(4r*+3849°) A(4r2+384g°) 4(4r’+384q%) 4(4r’+38497) 4(4r?+384g°) 4(4r’+384q%) 4(4r?+384q°) 4(4r?+384g%) 4(4r’+384q°)
r? r? r? r? -8qr -8qr -8qr -8qr -8qr ~8qr
4(4r® +3840%) 4(4r*+38407) A(4r?+384q%) 4(4r’+384q%) 4(4r’+38497) 4(4rP+3840%) 4(4r’+384q7) 4(4r?+3840°) 4(4r’+384q°) 4(4r+384q°)
r? r? r? r -8qr -8qr -8qr -8qr -8qr -8qr
4(4r® +384q%) 4(4r7+38407) A(4r?+38407) 4(4r°+384q7) 4(4r7+38497) 4(4rP+38407) 4(4r’+384q7) 4(4r?+3840°) 4(4r’+38497) A4(4r’+384q°)
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

(4.97)
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r2

Thus traceGE =

4r2 138492
Now
traceC,E = 4,,,,(C), implies that
r? 1

Ar’1384q° 192 b7a1+7—\/385a12 —142a1+49]

(4.98)
This simplifies to
— 5512679936 o — 30324736 a; — 2271901952 «;' + 2900480 o) +10876672 7 — 4265984 «, + 897024 =0

(4.99)

upon substituting the values of gandr .

The root of polynomial (4.99) is

o, =0.1312,

Since, o, €(01), then it implies that o, =0.1312

Whena, =0.1312 , @, =1-a, =0.8688 and

A= mizbml +7—+/38507 +142¢, + 49 |= 0.015525588
We observe that 4, is maximum when «; =0.1312 ,a, =1-¢, = 0.8688

Thus for m=4 ingredients we have, a; =0.1312 and «, =0.8688

From Pukelsheim (2006), the smallest-eigenvalue criterion v(¢_,) = 4,,,,(C) .

From equation (4.95), the smallest eigenvalue is

min
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Hence the optimal value for the E-criterion for m=4 factors becomes

v(g_,) =, (C)=0.015525588 .

4.1.3 Generalization of E-optimal design for maximal parameter subsystem

Theorem 4.2.1

In the second degree Kronecker model with m-ingredients the weighted centroid design
n(a®) = ayn, + a,n,is E-optimal for K'@ inT. (4.100)

The maximum value of the E-criterion for K’6with m ingredients is

1
V($ ) = 2 (O) = g [(6m ~7)a, +2m -1~ VD] (4.101)
Where D = (36m2 —52m +17)a12 —(24m2 —72m +46)a1 + (4m2 —4m +1) (4.102)

Proof
From equation (2.9) any matrix C e sym(s, H) can be uniquely represented in the form

aU,+bU, dV,
= dv, vV

m
For the case m ingredients the information matrix C, (M (77(x))) can then be written as

au, +bU, dV,
C= dv, cﬂ

m
With coefficientsa,b,c,d e R,

For lemma(2.5) we get
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0
U, =1, =
0 1
0 1 1
1 . 1
1
Uy =1 U=t =[. . |- ' =l |, and
1 . 1
0 1 1 0
1
V =>(e)eR™ =(e, +e, +..4€,) =| .
e .
1

Hence the information matrix C, (M (r7(«))) can be written as

0 1 1
au,+bU, av : . . : .
N | +b d
m .
0 1 1 0 1
| dl ) ct) |
8o, + «, L+ o, u, o, v
_ 8m 8m(m —1) 8m(m —1) (4.103)

o, v o, V'V
8m(m —1) 8m(m—-1) m
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From lemma (3.2.1) for m ingredients we have

D, =[a+(Mm-1)b—c]* +2(m-1)[2d [’

:{8051 +a, N (m-De, 2z T +2(m—1){2 a, T
8m 8m(m-1) 8m(m-1) 8m(m-1)

(36M? —52m +17 Jo,” — (24m? — 72m + 46 ), + (4m? — 4m +1)
64m?

The eigenvalues are;

As s =%[a+(m—1)b+ci\/51]

:1 8al+a2 + (m—l)a2 + a, i\/ﬁl
2|  8m 8m(m-1) 8m(m-1)

1

:m[((im—7)al +2m-1-+D]

Where D =(36m? —52m +17),” —(24m? —72m+ 46 oz, + (4m? —4m+1) with

multiplicity 1.

1

m[(6m_7)0‘1 +2m-1-/D | where D is

Hence the smallest eigenvalue is A, =

as above.
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Now let 4, = ;[(6m —7)a, +2m —1—\/5] then A, is an eigenvalue for C if
16m(m-1)

for corresponding eigenvector, say z,we have (C— A1)z =0 or (CZ = Az) with 7= 0
Now let

Z

N|
Il

, be the eigenvector of C corresponding to 4.

yA

m+1

We therefore have (C — Al), as

8ma1—5m+\/5|m+ a, u, LZERY
16m(m-1) 8m(m-1) 8m(m-1)
a, V' (5—6m)a1—2m+3+\/5|
8m(m —1) 16m(m—1) [Z‘J
1 8mea, —5m++/DI_ +2a,U, 2a.V
~ 16m(m-1) 20,V (5-6m)ey —2m+3+\/5|[mj
2

Let p, =8ma, -5m++/D, q,=a,” ,1, =(5-6m)a, —2m+3+~/D
Weget (C-A1)z2=0
1 {(p1U1+2q1U2 20,V

- - , V'V
16m(m—1) 20, L) (4.104)

Solving these equations for z, we get,
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Z 1
7 = =
1
—cmq
Zm+1 r

Where c=2 for even number of ingredients and varying fraction for odd number of

ingredients as the eigenvector corresponding to A4,,;,

Thus
. U, +U, 2_gm2qvl A 1P mr2+czm2q2
7 =) oma,,, cmiqtvV | and [7f° = TR
r r? m

Therefore

77" 2 U, +U, —-cmqgV

= = cmg.,, c¢’m?gq?V'V 4.105

||Z||2 mr2+C2m2q2 Tq\/ r—qu ( )

And from equation (4.103) and equation (4.105)

C.E o r’ %Uﬁ%uz —cqV
T mr?+c¢?m?q? 0 0

From theorem 3.2.2 a weighted centroid design 7(«) is E-optimal for K'@in T if and
only if traceC,E = 4.,;,(C).

For j=1

2 2 2

r r r
ot =
m(mr? +c¢’*m?q?) m(mr® +c*m?g®) (mr? +c’m*q?)

traceC i E =
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Hence

re 1
(mr? +c?m?g?)  16m(m-1)

traceC E = 4,,,(C) < [(6m ~ 7)oy, +(2m-1)-/D ] (4.106)

Putting g = @, T, = |(5—6m)e, —2m+3++/D | and

D = (36m® —52m+17 ), —(24m* —72m+ 46 ), + (4m? —4m +1) reduces equation
(4.106) to

—ia,)’ - jo,” +ka' +la’ +ma,” —ne +0=0

Where

i =-5225472m° —18432m* + 44544m* —9996832m” + 4608m + 2048

j =—10368 m® + 33124 m®> —149760 m* + 328952 m*® — 313056 m?* + 135680 m — 24576

k =14260m° —172049m* —34987744m* —178688m?* —119296m + 92160

| =6888m°® —30840m° —58926m* +528976m° —946368m° + 664064m —163840

m =3068m°® —14972m° +157695m* —618592m* + 952576m? — 633344m + 153600

n =384m°® —1440m°® —65792m* + 289400m?® — 447840m? + 299008m — 73728
0=12288m"* —52224m? +81408m? —55808m +14336

Solving the above polynomial yields the values of «,from which we choose ¢, ,such that

a, €(0,1); we substitute this values to A ,Cand take the values that maximizes

the 4,,,,C , hence the optimal E-criterion is

1

m[(ﬁm—?)al +2m—1—\/5:|

V(¢..) = 20in(C) =

Where D = (36m? —52m+17)a,* — (24m? —72m + 46 )z, + (4m® —4m +1)
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CHAPTER FIVE
NUMERICAL RESULTS AND DISCUSSION

5.1 Numerical Results

In this chapter, numerically computed values for the two corresponding parameters of

interest for E —optimal weighted centroid designs for K'@ are presented. These include
the two valuesa,and «,. The optimality value, v, for the corresponding number of

ingredients are also presented. Smallest eigenvalues for two, three, four and generalized
for m ingredient for non-maximal and maximal parameter subsystem is presented.

Table 5.1: E-optimal weights and values for K'9, m=2_3,...7

m Parameter Non-maximal Maximal
subsystem
p=—c
2 0.4545 0.0662
al( p)
0.5455 0.9338
az( p)
v 0.0909 0.0263
p
3 0.5753 0.1012
al( p)
0.4247 0.8988
052( p)
v . 0.0735 0.0145
4 0.9998 0.1312
0‘1( p)
0.0002 0.8688
052( p)
v 0.0018 0.0155
p
5 (p) 0.0001 0.1424
o,
0.0009 0.8760
052( p)
v 0.10002 0.0020
p
6 0.9780 0.1619
0‘1( p)
0.0006 0.8381
az( p)
v 0.0001 0.0320
p
7 0.9995 0.1827
0‘1( p)
0.0005 0.8173
az( p)
v 0.0001 0.0011
p
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5.2 Discussion

Table 5.1 shows the computed weights and optimal values for two, three, four and a
continuation of optimal values for five, six and seven obtained from the generalized

formula derived. The values o, and «, are weights used to develop E-optimal
weighted centroid design for m>2 ingredients in the study. The value v, represents

optimal values for the weighted centroid design for every m-ingredient.
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CHAPTER SIX
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

In this thesis, some E-optimal designs in the second-degree Kronecker model for mixture
experiments were investigated for the non-maximal and maximal parameter subsystem.
All considerations were restricted to weighted centroid designs due to the completeness
result.

It was found that for second-degree Kronecker model with m> 2 ingredients the unique
E-optimal weighted centroid designs for K'@, exist for Non-maximal and maximal
parameter subsystem. In addition, a general formula for the computation of the smallest
eigenvalues for m ingredient exists for the two parameters of interest hence this will help

in obtaining the smallest eigenvalues for m number of ingredients.

6.2 Recommendations

Earlier work done for third-degree Kronecker model for non maximal parameter
subsystem showed that there exists E-optimal weighted centroid design for K'6 . It
would therefore be very interesting to see whether there exists E-optimal weighted
centroid design for maximal parameter subsystem for K’@.In line with the study it could
be interesting to see practical results for the implementation of the designs suggested in

this study is recommended.
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