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ABSTRACT 

An analytical study of laminar steady, viscous, incompressible Couette fluid flow 

between two infinite parallel plates under the influence of transverse magnetic 

field is studied.  The resulting governing partial differential equation was solved 

analytically by Sumudu Transform for  the linear differential equation with 

constant coefficients. The Couette flow velocity profiles for various Hartmann 

number and various angles of inclinations were presented graphically.  The results 

showed that, increase in magnetic field strength and magnetic inclinations resulted 

in to  decrease in velocity profiles. The motion of two  dimensional  steady  laminar  

Poiseuille  flow of a  viscous MHD incompressible  fluid between  two  parallel  

porous plates  under  the  influence of uniform transverse  magnetic  field was also 

examined.  The resulting coupled differential equations were solved numerically 

using finite difference approach.   The numerical computation of the generated 

linearized system of equations was achieved with the aid of MATLAB application 

software.  The results depicted  graphically  showed that, an  increase  in 

Hartmann number  led to  decrease in Poiseuille  flow velocity distribution  which 

was as a result  of Lorentz  force which offered resistance  opposing the fluid 

motion.   Unsteady MHD Couette laminar flow of viscous incompressible fluid 

between two parallel porous plates in presence of uniform magnetic field was also 

investigated. The upper and lower plates were maintained at two different but 

constant temperatures.  A sudden uniform and a constant pressure gradient, an 

external uniform magnetic field was applied in the positive y - direction. The flow 

was subjected   to a uniform suction from above and uniform injection from 

below at t ≥ 0.  The resulting linear differential equations were solved numerically 

using finite difference approach.  The Crank-Nicolson implicit method was used at 

two successive time levels so as to determine the velocity and temperature 

distributions for different values of the parameters M ,S  and α.  The results 

showed that, when suction was suppressed, increasing the porosity parameter had 

no marked effect on velocity distribution but increasing the suction resulted into a 

decrease in the velocity which reached the steady state monotonically with time 

due to convection of the fluid from regions in the lower half of the centre of 

channel.  It was also reported that, increasing suction decreased the temperature at 

the centre of the channel for all values of t due to influence of convection in the 

pumping of the fluid from the lower cold region of the channel towards the centre. 
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OPERATIONAL DEFINATION OF TERMS 

 

i. Fluid 

This is that state of matter that i s  capable of flowing and changing shape.  Fluid 

can be perfect f luid or real f luid. 

Perfect fluid is a fluid which is incapable of exerting shearing stress whether at 

rest or in motion and the pressure that i t  exerts in any surface is always along 

the normal to the surface at that point .  It is a fluid which is inviscid and whose 

density is a constant. Since there is absence of shear stresses, then the adjacent 

layers of an ideal fluid can move at two different velocities (slip flow) without 

affecting each other by internal frictional forces.  The only influence they exert on 

each other is through their geometry, which must conform to the geometry of the 

solid boundary. 

Real fluid is fluid which has viscosity and unlike perfect fluids, real fluids 

cannot slip with a finite velocity difference over adjacent layers or over solid 

boundaries. Thus, a viscous fluid exerts shearing stress and offer resistance to 

the body moving through it as well as between the particles of the fluid itself. 

The amount of viscosity that governs the stickiness of fluid layers will be 

responsible for making gradual the velocity variation across the layers. Near a 

stationary boundary, the velocity of a real fluid must gradually increase from zero 

at the boundary to a finite stream velocity in a finite fluid layer generally called 

Prandtl’s l ayer . 

 

ii. R a t e  of Shear Strain  

 

This is the rate of change of the mainstream velocity in the transverse direction. 

It is given as 

 

                                                       

where    is strain  rate  and θ is the shear strain. 
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iii. Ohm’s Law 

Ohm’s law states that, “when a steady current is flowing through a conductor, the 

potential di fference  between its ends is directly proportional t o  the current 

provided that the  physical condition of the conductor does not change.” Thus if V  

is the potential di fference , and I is the current, we may write 

V = IR                                             (0.1) 

where R is the constant termed as the resistance of the conductor at a given 

temperature  and this is measured in ohms. 

A conductor  has  a  resistance equal to one Ohm of resistance  if the  potential 

difference (p.d)  between  its  ends  is one e.m.u  of potential   and  when  the  

current through  it is one e.m.u  of the current. 

Thus 

           

                           (0.2) 

iv. Coulomb’s Law 

Coulomb in 1785 used a torsion  balance  to investigate  the  force exerted  by one 

charge upon a second and discovered that  this force varied inversely as the 

square of the  distance  between the  charges and  acted  along the  line joining the  

two  charges. Further investigations d e m o n s t r a t e d  that t h e  force is 

directly proport ional    to the product of the two charges.  These can be written 

as 

      (0.3)  

 where  and Q2  are the  magnitude of the  charges and  r is the  distance  

between them.   In experiment of this  type, force experienced  by the  second 

charge depends on the medium the charges are placed in the surrounding  and,  

in particular, on the nature  of any  material  in which it  may  be immersed. The 

above Coulomb’s law equation refers  solely to the force exerted on Q1, Q2 and 

vice-versa.   If Q1 and Q2 are charges of the same sign, so that F  is positive, it is 

found that F  is a repulsive force. Thus forces exerted by Q1 and Q2 acts along 
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the line joining the two charges and is in the direction from Q1  towards Q2  and 

vice-versa. 

Coulomb’s law is expressed as an equation if a constant of proportionality and the 

equation represents the force between two charges in a vacuum is introduced.  The 

equation is given as 

o
                          (0.4) 

 Where    

o
 and o  is the permittivity of                                     

free space. 

v.  Gauss  law 

 

An extension of the coulomb’s law is the Gauss law.  Consider a charge q within 

a volume having surface a. Gauss law is then written as  

   ˆE
oa

q
nda


              (0.5) 

If q is the electric charge enclosed by the surface a, i.e. 
e

v
q dv   where the 

charge density ρe is the charge per unit volume defined as                

( )e q n n    = 
1 i ii
n q

  where n+ and  n- are respectively the numbers  of 

positive and  negative  charges in a unit volume.  Then it follows that, e 
E=

o




  , 

where 
7

2 2

2

10
sec

4
o m

c



  with 2 8 13 10 secc m   . 
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CHAPTER ONE 

INTRODUCTION 

1.1 General introduction 

 

Magnetohydrodynamics (MHD) is the study of motion of a highly conducting 

fluid such as plasma and salt water through a  magnetic field.  The  fundamental 

concept behind MHD is that,  magnetic field can induce currents  in a moving 

conductive fluid, which in turn  creates  forces on the  fluid and  also changes the  

magnetic  field itself. It involves the solution of Maxwell’s equations coupled 

with the equation of motion and continuity equation of the fluid.  The set of 

equations which describe MHD are a combination of Navier-Stokes equations of 

fluid dynamics and Maxwell’s equations of electromagnetism. 

The Navier-Stokes equations are partial differential equations that determine the 

velocity of the f lu id  at a n y  particular instant of time.   The  Maxwell’s 

equations on the  other  hand  are  four partial  differential  equations  that  

combine together  to form complex equations  either  magnetic  or electric field 

or both.   When Maxwell’s equations are coupled with Navier-Stokes equations, 

they are very useful in studying the working of MHD systems like MHD 

generators.  These differential equations have to be solved simultaneously either 

analytically or numerically. 

The most characteristic feature of MHD is undoubtedly the coupling between the 

electromagnetic a n d  mechanical  forces .   Thus,  the  motion  of the  conducting  

fluid across the  magnetic  field generates  electric currents  which alter  the  

magnetic  fluid. Thus, the interaction of the two forces produces MHD.  

In designing MHD device, the engineer must know properties and the kinematics 

of plasmas. Magnetofluidmechanics comes about when ionized fluid interacts with 

magnetic fo rces . Ionized gases are  often  called plasmas  and  is usually  

considered to be the  fourth  physical  state  of matter in addition  to solid, liquid 

and  gases.  It is that s t a t e  o f  matter where molecules are fully or partially 

c o n t a i n  enough  free, charged particles for its dynamical behavior to be 

determined under the influence of electromagnetic forces. Since there is no definite 
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volume in plasma, gases and plasma are both t r e a t ed  a s  gases. Magnetism i s  a 

complex subject from a mathematical point of view than e l ec t r o s t a t i c s . This 

is because currents r a t he r  t h a n  ch a r g es  are the source of magnetism, thus the 

current density is a vector quantity. 

The interaction of conducting fluids with electric and magnetic fields provides a 

variety of phenomenon associated with the electromagnetic-fluid-mechanical 

energy conversion.  Such interactions can be observed in liquids, gases, two-

phase mixtures or plasmas.  Many scientific and technical applications exist such as 

heating and flow control in metal processing, power generation from two-phase 

mixtures and dynamos that create magnetic fields in planetary bodies. Several 

terms are applied to the broad field of electromagnetic  effects in conducting fluids, 

such as magneto-fluid-mechanics, magneto-gas-dynamics   and  the  more  common  

one used  and  which is used  here is MHD. 

The phenomenal  growth of electromagnetic  brakes, MHD power generators,  flow 

meter  and  electromagnetic  pump  in the  recent  years has been attracting  

considerable attention all over the world.  MHD flow of electrically conducting 

fluid between parallel plates has an important applications i n  MHD pumps, 

generators, flow meters, l iquid  metals MHD, and physiological fluid flow.  

Since the early part o f  the 20th  century,  practical MHD devices have been in 

use. For example, an MHD pump Prototype w a s  built as early as 1907 

(Northrup, 1907). In recent times MHD devices have been used for stirring, 

levitating and controlling flows of liquid metals for metallurgical processing and 

other applications (Kolesnichenko, 1990).  Gas-phase MHD is best known in MHD 

power generation.  From 1959, major efforts have been carried around the world to 

develop this technology to improve electric conversion efficiency, increase 

reliability by eliminating moving parts and reduce emissions from coal and gas 

plants (Sporn & Kantrowitz, 1959; S t e g  and Sutton, 1960). Some novel 

applications are still in development.   For  instance,  research  has  shown the  

possibility  of sea water  propulsion  using MHD (Graneau,1989)  and control  of 

turbulent layers to reduce drag (Tsinober,1990).  A lot of research and extensive 

worldwide on magnetic confinement of plasmas has led to attainment of conditions 

approaching those needed to sustain fusion reactions (Baker et al., 1998).  
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The basic concept describing MHD phenomena is as illustrated in Figure 1.1. 

 

 

Figure 1.1 Conceptual Framework of MHD 

 

                    KEY 

Bapp  Applied magnetic field 

Jcond  Conducting current density due to applied electric field 

Eapp  Applied electric field 

Eind  Induced electric field 

Find  Induced electromotive force 

V  Velocity of the conducting fluid 

F  Lorentz force 

Jind   Induced current density due to electric field induced by                                            

applied magnetic field 

Consider now an electrically conducting fluid having velocity V. At right angle 

to this apply a magnetic field represented b y  the vector Bapp and assume that 

steady flow conditions have been attained. Steady flow is a flow in which the 

velocity, pressure, density and other such characteristics at a point do not 

change with time. Steady flow specifies a limitation on time variation and not 

space variation.  Thus, at various points of the flow field, all such quantities 

associated with the flow field will remain unchanged with time. In steady motion, 
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time drops out of the independent variables and the various field quantities 

simply become functions of the spatial co- ordinates.  For analytic  reasons, the 

term  “steady  state”  is  required to imply that  no macroscopic charge density is 

being built up at any place in the system, as well as all currents  are constant in 

time. Due to the interaction of the two fields, an electric field denoted by Eind   is 

induced at right angles to both V and Bapp.   This electric field is given 

mathematically by  . 

Assuming that t h e  conducting f luid  is and remains isotropic in spite of the 

magnetic field, then we can denote the electrical conductivity by a scalar 

quantity σ. Then by Ohmts law, the density of the current induced in the 

conducting fluid and denoted by Jind    is  Jind   =  σEind.   Simultaneously 

occurr ing  with the induced current is the ponderomotive force Find which is 

given by Find  = Jind  × Bapp.  The ponderomotive f o r c e  is well known as the 

driving force of an electric motor.   This force occurs because, as in an electric 

generator, t he  conducting fluid cuts the lines of the magnetic field. Because the 

vector product of    F = J × B    yield a vector perpendicular t o  both J   and   B, 

the induced force is parallel to V but opposite in direction.   To make the 

configuration slightly more general, let us apply an electric field Eapp  at  right  

angles to  both  Bapp   and  V,  but  opposite  in direction  to  Jind. The current 

density due to applied electric field is denoted by Jcond and it is called conducting 

current.  The net current density J through the conducting fluid and the one we 

would be measuring with suitably placed ammeter is then given by 

   J = σ [Eapp + V × B] = σ [Eapp + Eind ]                              (1.1) 

where σEapp  is the electrostatic force. The ponderomotive or Lorentz force 

associated with this current is then 

F = J × B = δ[Eapp + V × Bapp ] × Bapp              (1.2)  

If Eapp  > V × Bapp, we then  have an accelerator  which may be used as 

thrust-producing device. 

The laminar flow through a channel under uniform transverse magnetic field is 

important because of the use of MHD generator, the MHD pump, crude oil 
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purification and the electromagnetic flow meter.  The general model that  is 

normally considered in these  studies  consist  of an infinitely long channel  of 

constant  cross section with a uniform static  magnetic  field applied  transverse  

to the  axis of the  channel.   The walls of the channel are insulators, conductors 

or a combination of  insulators and conductors depending on the intended 

application.   For example, in the MHD generator and pump, the channel cross 

section is normally rectangular with insulated walls perpendicular t o  the 

magnetic field.  For the electromagnetic flow meter case, the channel cross 

section is normally circular with conducting walls. 

 

1.2 Maxwell’s field equations 

When electric field and magnetic field give rise to one another, an 

electromagnetic field occurs this is described by Maxwell’s field equations. 

Maxwell deduced these equations from empirical equations of Faraday and 

Ampere. Faraday, experiment- ing with induction coil observed that, when  a 

current is passed through a coil, there will be a momentary flow of current in a 

coil located close by.  He further noted that the induced current is proportional to 

the time rate of charge of the induced magnetic field. The Faradayts induction 

law is thus given as 

                   
a B n̂ da              (1.3) 

where dl is an infinitesimal vector length and n̂ is the outwardly directed unit 

normal vector  on the  elemental  area  da.  It follows from equation ( 1.3) that a n  

increasing magnetic flux through a loop gives rise to a negative electromotive force 

about the loop over which the line integral  is written.   This equation defines the 

magnitude o f  the field induced by an electric field and relates a line integral to a 

surface integral.                                                                                                         

Thus by Stokets theorem, equation (1.3) can be transformed i n t o  a surface 

integral as:- 
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 
a

ˆ ˆE dl= E B   da
a

n da n
t


     

                (1.4) 

and for some surface of integration, the  surface integrals  in (1.4) are equal,  

hence, equation (1.4) can be simplified as  

B
E=0

t





                (1.5) 

Equation ( 1.5) is the differential form of one of the four Maxwell’s equations to 

be considered.  

The interaction of electricity and magnetism  is once manifested in equation  (1.5) 

and in pure electrostatic problem,  for time independent EM fields, then  B  

does not change with time, hence equation  (1.5) becomes ∇ × E = 0 .  Since 

curl of a vector is identically zero we deduce that, electrostatic field is 

irrotational. 

Similarly, the divergence of the curl of any vector is zero.  Taking the divergence 

of equation (1.5) gives 

                                                             ∇ · (∇ × E) = 0                                          (1.6) 

or     

      
( B) ( E) 0

t


   


             (1.7) 

but ∇ · (∇ × E) = 0, hence equation  (1.7) reduces to 

  B                (1.8)  

and therefore getting  

                                                        ∇ · B = c                                (1.9) 

and conclude at once that  the divergence of B is time invariant. 

Considering experimental evidence, we determine the value of constant c in 

equation (1.9) above. It is known that, t h e r e  are no magnetic sources in the 

same sense that there  are electric charges.  In fact, by experience we cannot 
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conceive of any situation in which the divergence of B has been other than zero, 

and thus postulate that the constant in equation (1.9) is zero. We then have 

                    ∇ · B = 0                                                                              (1.10) 

Consider the electric displacement vector D and in particular the divergence of D. 

An extension of C oulombts law is the Gausst  law. If we consider a charge q 

within a volume having surface a , Gausst  law is then written  as equation  (5) 

where the unit vector n̂ is directed  outward  and is normal to the surface 

element da , q are charges and   is capacitivity. Accordingly, 

                    ˆD n
a

da q                                      (1.11) 

  where D = E. 

 These two observations s u g g e s t  that, t h e  divergence of D will be non-zero.   It 

is clear that e q u a t i o n  ( 1.11) will become upon integrating and 

t ransforming,   the following differential equation namely:- 

eD=                               (1.12) 

where ρe is the charge density. This is evident that D  is a flow vector which is 

analogous to magnetic vector B. Equation (1.12) makes sense because the electric 

charge density acts as a flow source for the vector D.  If ρe does not vary with 

time, equation (1.12) is sufficient to define D.  But if ρe = 0, then to define D we 

must satisfy in addition to the equation 

                                                                        (1.13) 

and this is the continuity equation  which has been satisfied. 

Combining equation (1.12) with (1.13) one obtains 

 

                                                                        (1.14) 

Equation  (1.14) implies that,     is some kind of current density and this is 

called the displacement current which is the mode of current transport in space, 
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e.g. between capacitor  plates.  Thus equation (1.14) makes clear that any source 

for J is a sink of equal intensity for . 

Comparing equation (1.9) and equation (1.14), it is evident that both the vector B 

and the total current density    have no flow sources because their 

respective divergence is zero.   However, this does  preclude the ex is tence  of 

related v o r t e x  sources. A vector will have a vortex source if the curl is non-zero. 

We therefore define Magnetic field intensity vec to r  H as the quantity which has 

a vortex source sum of equation (1.14).  We now have 

             (1.15)  

In case of magnetostatics, there wil l  be only steady currents  i n  the absence 

of changing electric field and equation (1.15) becomes 

                                                                           (1.16) 

In summary, the M axwellts equations in integral form are -: 

s

B
E dl da

t


  

            (1.17) 

    
s

          (1.18) 

`    D l
s v

d dv            (1.19) 

                          (1.20) 

Equations (1.17) to (1.20) can be transformed into differential equivalent by 

applying divergence and Stokets theorems to obtain time independent M axwellts 

equations in differential form as:-  

               (1.21) 

            (1.22) 
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                                     (1.23) 

                                      (1.24) 

where equation  (1.24) is obtained  from the fact that,  ∇ · D = ρe   but  if                         

ρe = 0   then   ∇ · D=0 . 

 

1.3 Steady incompressible flow 

 

If various points of the flow field all quantities such as velocity, density and 

pressure remain  unchanged  with  time  and  the  motion  is said  to  be steady  

otherwise  it  is called unsteady. Accordingly, various quantities of the flow field 

become functions of space coordinates only because time drops out of the 

independent variables.   If the density is constant throughout the flow field, it is said 

to be incompressible.  Such an assumption is valid for liquid and also for gases 

at low speeds M << 1, where M  is Mach number.  Generally, the viscosity of a 

fluid depends on the temperature. It is known that f o r  most of the 

incompressible fluids the viscosity can be treated a s  a constant. This 

assumption is  of paramount importance because  of such situations the velocity 

field does not depend on the temperature field.  Hence, the equation of 

continuity and equation of motion can be first solved for the three velocity 

components and the pressure p and then, the results so obtained can be used to 

solve the equation of energy to determine the desired temperature field. 

 

1.4 Background material on the p r o b l e m  

 

The phenomenal growth of electromagnetic brakes, MHD power generators, flow 

meter and electromagnetic pump in the recent years has been attracting 

considerable attention all over the world.   It is obvious that i n  order to utilize 

MHD energy to a maximum, one should have a complete and precise knowledge 

of the amount of perturbations needed to generate MHD currents. 

For example, there are two technological applications of MHD, which may both 
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become very important in future.  First, strong magnetic fields may be used to 

confine rings or columns of hot plasma that wi l l  be held in place long enough 

for thermonuclear fusion to occur and for net power to be generated.   In the 

second application, which is directed towards a similar goal, liquid metals are 

driven through a magnetic field in order to generate electricity.   In 

electromagnetic b r ak e , the magnetic fields lines are partially dragged by the 

fluid, bending them (as embodied in tension force ∇ × B= µ0J) so they can exert 

a decelerating tension force J × B=(∇× B) × B/µ0 =B · ∇B/µ0  on the flow, where 

µ0 is the vacuum permeability. This is the electromagnetic brake.  The pressure 

gradient, which is trying to accelerate the fluid, is balanced by the magnetic 

tension.  The rate of work done (per unit volume) by the pressure gradient, v · 

(−∇p), is converted into heat through viscous and Ohmic volume. 

The  MHD power generator,  is similar  to electromagnetic  brake  except  that  an 

external  load is added  to the  circuit.  Useful power can be extracted from the 

flow. This may ultimately be practical in power stations where a flowing 

conducting fluid can generate electricity directly without having to drive a 

turbine. 

Finally fo r  electromagnetic p u m p , c a n  attach a battery to the e lec t rodes  and 

allow the current to flow. This produces Lorentz forces which either accelerates 

or decelerate the flow depending on the direction of the magnetic field. This 

method is used to pump liquid sodium coolant around a nuclear reactor.  In this 

thesis, the case of the electromagnetic pump where there is a constant pressure 

gradient and transverse magnetic field is considered. 

There has been an extensive literature on porous media, parallel infinite plates, 

transverse magnetic field, liquid through semi-infinite plate and infinite plates. 

Little has been done by considering all the fluid property v a r i a b l e s . Attia, 

(2005) considered unsteady flow of a dusty conducting fluid between parallel 

plates with temperature dependent viscosity, while Attia, (2007) studied t h e  

effectiveness of the variable physical properties on the transient hydromagnetic 

Couette-Poiseuille MHD flow. Attia,(2006a)  studied time varying hydromagnetic 

Couette  flow with heat transfer of dusty fluid in the presence of uniform suction 

and injection considering the Hall effect and all these were solved numerically by 
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finite difference method. Singh, (1993) studied h y d r o m a g n e t i c  steady f l o w  

of viscous incompressible fluid between parallel infinite plates under the 

influence of transverse magnetic field. The resultant differential equation 

obtained was solved by method of solution of linear differential equation with 

constant coefficient. The results obtained can be applied to the designs and 

operat ions  o f  MHD generators, M H D  pump, e l e c t r o m a g n e t i c  f l o w  

meter an d  crude oil purification. In this work, steady and unsteady laminar 

viscous incompressible MHD fluid flow under the influence of transverse 

magnetic field is studied.  Both Poiseuille flow and Couette fluid flo and the 

resultant partial di fferential  equations are solved analytically or numerically.  

The resulting governing partial differential  equations are solved analytically by 

Sumudu Transform for the linear differential equation with constant coefficients.  

The motion  of two  dimensional steady  Poiseuille laminar  flow of a viscous 

Magnetohydrodynamic incompressible fluid between two infinite parallel porous 

plates  under  the  influence of uniform  transverse  magnetic  field and  with  

constant pressure gradient is also studied.  Both the lower plate  and the upper  

plates  are assumed  porous where the  fluid entered  the  flow region through  the  

lower plate  and left through  the upper  plate  with constant  velocity.  The 

resulting coupled differential equations were solved numerically by using finite 

difference approach. Finally, unsteady MHD Couette laminar flow of viscous 

incompressible fluid between two in- finite parallel porous plates in presence of 

uniform magnetic field is analyzed.  The upper  and  lower plates  are maintained 

at  two  different  but  constant  temperatures T2  and  T1  respectively,  with  T2  > 

T1.  The upper plate is considered to be moving with constant velocity Uo while 

the lower plate is kept stationary. A sudden uniform and a constant pressure 

gradient and external  uniform magnetic  field with magnetic flux density  vector 

Bo  is applied in the positive y- direction which is assumed to be also the total  

magnetic  field. The flow is subjected to a uniform suction from above and 

uniform injection from below at t = 0. The linear differential equations resulting 

from these are to be solved numerically by using finite difference approach under 

some given initial and boundary conditions so as to determine the velocity and 

temperature distributions for different values of the parameters M , S and α. 
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The  Crank-Nicolson implicit  method  is used here  at  two  successive time  

levels where  the  finite  difference equations  relating  to the variables are obtained  

by writing the equations  at the midpoint  of the  computational cell and  

subsequently  replacing the  different  terms by their  second order central  

difference approximation in the y - direction.   On the other hand, the diffusion 

terms are replaced by the average of the central differences at two successive 

time-levels. The resulting block tri-diagonal sys t em  is solved using Thomas-

algorithm. 

 

1.5 Statement of the p r o b l e m  

 

The problem to be addressed in this research is that, when unsteady  or steady  

laminar flow of incompressible viscous electrically conducting  fluid between two 

infinite parallel  nonconducting  plates  located  apart  under  the  influence of 

transverse  magnetic field, the induced magnetic  field appears  to perturb  the 

original magnetic  field and  also perturbs  the  original motion  and induced  

electric field appears.   These two are the basics of MHD. The plates extends 

from −∞ < x < ∞ and −∞ < z < ∞ 

This  study  intends  to  give an  approximate solutions  to  the  shape  of velocity 

profiles and temperature distributions which is to be obtained  either  analytically  

by Sumudu  transform  and  or numerically  by finite difference approach  for non 

porous and porous channels. 

 

1.6 Objectives of the s t u d y  

 

The major objectives of this study are to analyze the effect of magnetic field on 

viscous incompressible electrically conducting fluid between two infinite parallel 

porous plates for both Couette and Poiseuille fluid flow. Both steady and 

unsteady hydromagnetic incompressible fluid flow is considered. The present 

research will extend the work of (Singh, 2000). 

The specific objectives of the study are-: 

1. To investigate velocity distributions on the Couette MHD flow between    
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infinite parallel plates under the influence of transverse magnetic field by 

using Sumudu Transform. 

2.  To determine the effect of magnetic field on Poiseuille MHD fluid    

between infinite parallel porous plates with constant pressure gradient. 

3. To determine  the effect of porosity on unsteady  MHD Couette  flow 

when both plates are porous and are subjected to a uniform suction from 

above and uniform injection from below. 

4. To obtain fluid velocity and temperature distribution for unsteady MHD 

Couette flow with heat transfer when  both plates are maintained at 

different but constant temperatures. 

 

1.7 Research Methodology 

 

In this thesis, a theoretical framework for a quantitative analysis of Couette and 

Poiseuille MHD flow under the influence of transverse magne t i c  field of 

Newtonian fluids is provided.  The present research will advance the quantitative 

understanding of the aspects of heat transfer associated with the movement of a 

surface under influence of transverse magnetic field. We will then formulate partial  

differential equations and proceed to solve them  by either  analytical  or 

numerical methods  and then  find the  accurate  velocity field of the  Couette  

MHD flow of Newtonian  fluids.  Analytically, Sumudu Transform will  be used 

and numerically, finite difference method will be used to obtain velocity profiles 

and temperature distribution. The inclusion of the Newtonian fluids in the study 

will be intended to provide the data for exact solutions of the problem and the 

analytical method  will be employed for all applicable situations. Later, the 

problem of heat transfer on unsteady i n co m p r es s i b l e  flows of Couette MHD 

flow through parallel porous infinite plates under the influence of transverse 

magnet ic  field is solved.  The energy equation will be solved numerically to 

obtain the temperature distribution. Finally, we will analyze the result, draw 

velocity profiles and temperature distributions and make conclusions. 
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1.8 Significance of the s t u d y  

 

The areas of application of  this research are broad and diverse because the study 

is fundamental.  In considering the applicability o f  the research work, it is 

hoped that the results of the research is not only of fundamental interest, but  

also will advance the qualitative understanding of the aspects of heat transfer in 

MHD and industrial processes and also will provide appropriate design of 

parameters of the systems related to manufacturing process. This application  

where fluids flows under  the influence of magnetic  field may be applied  in 

engineering problems  like the  manufacturing of MHD generators,  MHD pumps, 

electromagnetic  flow meter and to crude oil purification  among others. 

In MHD generators, they require very high temperatures to function than the 

convectional electric generators and thus they have high thermal efficiency for 

power plants.  The MHD power generator is similar to electromagnetic brake 

except that an external load is added to the circuit.  Useful power can be 

extracted from the flow. This may ultimately be practical in power stations 

where a flowing conducting fluid can generate electricity directly without having 

to drive a turbine. 

Similarly, for electromagnetic pump, we can attach a battery to the electrodes and 

allow the current to flow. This produces Lorentz forces which either accelerates 

or decelerate the flow depending on the direction of the magnetic fluid. This 

method is used to pump liquid sodium coolant around a nuclear reactor (liquid-

metal cooling). For example, in 1990’s Mitsubishi built a boat the Yamoto which 

uses a MHD drive, driven by helium, a cooled superconductor which can travel 

at  15 Km/h.  In the present work, we will consider the case of the 

electromagnetic pump where there is a constant pressure gradient   P = dp/dx 

w i th  transverse magnetic field.  

In Meteorology, at times some of the meteorological problems involve differential 

equations that are difficult to be solved directly by applying boundary 

conditions.  In such cases the  processes of evaluating  initial  conditions  and  

application  of Sumudu transform  as will be applied  in this  work will turn  out  

to be an additional  tool for solution of such problems.  For example, the 
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Sumudu Transform could  be applied to the linearized vorticity equation to derive 

the condition necessary for the barotropic instability.   Moreover,  it  is evident  

that  the  behavior  of the  atmosphere  can  be analysed and understood  in terms 

of the basic laws and concepts of physics. The fields of physics which are most 

applicable to the atmosphere are thermodynamics, radiation and hydrodynamics.   

In the atmosphere, t h e  short wave radiation f r o m  the sun and the long wave 

from the earth t ravel  as electromagnetic waves while hydrodynamics refer to 

the atmospheric m o t i o n s  and the associated forces .   The results from the 

present study can be used to study the atmospheric MHD. 

In  Magnetic  Drug  targeting, this  can  find  application  in cancer  patients  as  a 

precise method for delivery of medicine to the affected areas.  The method involves 

the production of  medicine to biologically compatible magnetic particles e.g.  

ferrofluids which are guided to the target  through  a careful placement of 

permanent magnets on the external  body.  MHD equations and finite element 

analysis may be used to study the interaction between the magnetic fluid 

particles in the bloodstream and external magnetic fields. 

Fluid  flow and heat  transfer  with moving boundary  of liquid has an application 

in continuous  casting,  hot  rolling, cooling of an infinite metallic  plate  in a 

cooling bath, polymer processing and the boundary  layer along a liquid film in 

condensation process. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1. Literature Review 

 

The flow field with heat transfer of viscous incompressible electrically conducting 

fluid between two parallel plates is a classical problem that has  important 

applications in MHD power generators and pumps, accelerators, aerodynamics 

heating, electrostatic precipitation, polymer technology, petroleum industry.   

The problem has been considered by many researchers under different physical 

effects (Tani, 1962; Cramer and Pai, 1973 and Attia, 1998).  Most of these studies 

are based on the constant physical properties, although some physical 

properties are varying with temperature and assuming constant properties is a 

good approximation as long as small differences in temperature are involved 

(Herwing & Wicken, 1986). 

More accurate prediction for the flow and heat transfer is achieved by considering 

the variation of these physical properties with temperature. Attia, (2005), 

considered unsteady f l o w  of a dusty conducting fluid between parallel plates 

with temperature dependent viscosity. He studied l amin a r  f low of an electrically 

conducting viscous  incompressible fluid and heat transfer between parallel non-

conducting porous plates. The fluid was flowing between two electrically insulating 

infini te  plates maintained at two constant but different temperatures. An 

external magnetic field was applied perpendicular t o  the plates.  The magnetic 

Reynolds number was assumed small so that t h e  induced magnetic field is 

neglected.  The fluid was acted upon by constant pressure gradient and viscosity 

assumed to vary exponentially with temperature. The governing coupled non-

linear partial differential equations were solved numerically using finite difference 

approximation. The system was solved using the Crank-Nicolson implicit 

method. The solution was also given in terms of  Gr, Re, Pr, Ha  and  Ec 

numbers.  

The  problem  of unsteady  laminar  fully-developed  flow and  heat  transfer  of an 
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electrically conducting and  heat generating or absorbing  fluid with variable  

properties through  porous channels in the presence of uniform magnetic  and 

electric fields was formulated  by Ali, (2001). The general governing equations 

which included such effects as magnetic field, electric field, porous medium 

inertia and heat generation or absorption e f f e c t s  were non-dimensionalized an d  

solved numerically by the implicit finite-difference methodology.  A 

representative set of numerical results for the transient and steady-state velocity 

and temperature profiles, the skin friction coefficients at both the upper and 

lower walls of the channel as well as the heat transfer coefficient at the lower 

wall were presented graphically and discussed.  It was found that, both the 

magnetic field and the porous medium caused lower velocity distributions and 

skin-friction coefficients while the presence of the electric field produced higher 

velocity distributions and skin-friction coefficients. The presence of a heat 

generating source resulted in higher steady state temperatures and lower 

velocities due to variable properties.   The lower wall heat transfer  decreased  

due to heat generation f o r  most of the transient stages while its steady-state 

value increased.  On the other hand, a heat-absorption sink produced, in general, 

lower temperatures, and higher velocities and heat transfer at the lower wall. 

Increases in the variable viscosity exponent caused higher velocities and lower 

skin-friction coefficients. 

The effectiveness of the variable physical properties on the transient 

hydromagnetic Couette-Poiseuille flow was studied by Attia, ( 2007). He 

considered transient hydromagnetic Couette-Poiseuille flow and heat transfer on 

an electrically conducting fluid in presence of a transverse magnetic field with 

variable physical properties.  The fluid was subjected to a constant pressure 

gradient and external magnetic fields perpendicular to the plates were kept at 

different but constant temperatures.  The coupled nonlinear  partial  differential  

equations  of motion  and  the  energy equation including the viscous and joule 

dissipation  terms under the initial and boundary conditions were solved 

numerically using finite difference approximation to obtain the velocity and 

temperature distribution at any instant time and expressed in terms of Gr, Re, 

Pr, Ha and Ec numbers.  Time varying hydromagnetic Couette flow with heat 
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transfer of  dusty fluid in the presence of uniform suction and injection 

considering the Hall effect was extensively analysed by Attia, (2006a). 

Different  pressure  gradients  have  been  applied  in the  MHD  under  steady  and 

laminar flows. For example, Drake, (1965) studied the flow in a channel due to 

periodic pressure gradient.  Singh and Ram (1978) considered unsteady  MHD flow 

in a channel under  variable pressure gradient,  while Singh,(2000) studied  

unsteady  flow of liquid through  a channel with pressure gradient changing 

exponentially  under the influence of transverse  magnetic  field. 

Attia, (2006b) s t u d i e d  i on  effect on unsteady H a r t m a n n  flow with heat 

transfer under exponent ial ly d eca yi n g  pressure gradient. On the other 

hand, Singh, (1993) studied hydromagnetic steady flow of viscous incompressible 

fluid between parallel infinite plates under the influence of inclined magnetic field. 

The differential equation obtained was solved by method of solution of linear 

differential equation with constant coefficient. The results obtained were applied 

to the designs and operations of MHD generators, MHD pump, electromagnetic 

flow meter and crude oil purification. 

Singh and Okwoyo, (2008) studied  steady  laminar  flow of viscous 

incompressible fluid between two parallel infinite plates when the upper plate is 

moving with constant velocity and  lower plate  held stationary under  the  

influence of transverse  magnetic field.  The resulting differential equation was 

solved by the application of Laplace transform and analytical expression 

obtained. 

Umavathi e t  al., (2010) analyzed Poiseuille-Couette flow of two immiscible fluids 

between inclined parallel plates.   One of the fluids was assumed to be 

electrically conducting while the other fluid and channel walls were assumed to be 

electrically insulating.  This was investigated analytically by regular perturbation 

method and numerically by finite difference technique.  The equations for velocity 

and temperature distribution were solved numerically and the results depicted 

graphically. 

Das et al. (2012) studied unsteady free convective flow and heat transfer in a 

viscous incompressible electrically conducting fluid past a vertical porous plate 

through medium with time dependent permeability and the presence of a 
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transverse magnetic field. The solution for velocity and temperature of the flow 

field were obtained. The results obtained were discussed interms of Grashof 

number Gr > 0 corresponding to cooling the plate, and effect of Prandtl number, 

P r on the temperature distribution of the flow studied. 

Manyonge et al., (2012) examined a motion of two dimensional Poiseuille steady 

flow of a viscous MHD incompressible fluid flowing between two infinite parallel 

porous plates under the influence of transverse magnetic field with constant 

pressure gradient. The effect of velocity if the lower plate is porous was also 

accessed.  The resulting differential equation was solved by an analytical method  

and the solution expressed in terms of Hartmann number. 

From  the  literature review, much has not  been done on Couette  and  

Poiseuille MHD flows resultant partial  differential equations  being solved by 

trasform  methods other than  Laplace Transform.  Hence, the need to use Sumudu 

Transform to approximate solutions which can be used to solve such physical 

problems on porous and nonporous channels under the influence of transverse 

magnetic fields. 
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CHAPTER THREE 

MATHEMATICAL FORMULATIONS OF THE PROBLEM 

 

3.1 Description of the g o v e r n i n g  equations 

 

The basic fluid equations needed for the problem under investigation are the 

conservation of mass or Continuity equation and the conservation of momentum 

also called Navier-Stokes equations.   The  Continuity equation  requires  that  the  

mass of fluid entering  a fixed control  volume either  leaves that  volume or 

accumulates  within  it. It is thus a “mass balance” requirement posed in 

mathematical form, and is a scalar equation.   The momentum eq u a t io n  may be 

thought of as a “momentum b a l a n c e ”. These are vector equations, i.e. t here is a 

separate equation for each of the coordinate directions and they are the fluid 

dynamics equivalent of Newton’s second law which is given as F = ma, where F 

is force, m mass while a is acceleration.   In situations where the fluid may be 

treated a s  incompressible and temperature differences are small, the continuity 

and momentum equations are sufficient to specify the velocities and pressure, i.e. 

four equation and four unknown quantities. If the flow is compressible (density is 

not constant), or if heat flux occurs (temperature not constant), at least one 

additional equation and often, the energy equation is used.  These equations may 

be used to analyze the flow of most common fluids in internal ( e.g. pipes) or 

external flow situations. 

 

3.2 Mathematical expression for Navier-Stokes Equation 

 

Shear stresses are present because of fluid viscosity and are caused by the 

transfer of molecular momentum.   The friction force τ is assumed to be 

proportional t o  the coefficient of viscosity µ and the rate of  angular 

de fo rm at ion . The Navier-Stokes equations (sometimes abbreviated as N-S 

equations) are the equations which govern the three dimensional incompressible 

flow and are expressed as follows:-  
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  is the kinematic viscosity. 

Equation (3.1) in the Navier –Stokes equation in vectorial form can be written as 
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where q̃  is the velocity of the fluid particle, F̃ is the external force per unit mass 

acting on the fluid, ρ is the density of the fluid, p is the pressure at a point on 

surface element ds which has an outward unit normal n̂  and Fx, Fy 

and Fz are the components of force in x,y and z directions 

respectively. 

The Navier-Stokes equations are thus second order non-linear partial 

di fferential  equations.   Until the present day there exists  no general  method  

for solving these equations.  This is particularly true when friction and inertial 

forces are of the same order of magnitude in the entire flow, so that neither can be 

neglected.  Analytical (exact) solutions have therefore been attempted only for 

flows with relatively simple geometry. Even  such  solutions  are  based  on  

idealizations  such  as  infinite  plates, infinitely long cylinders, fully developed 

parallel flow in pipe, certain types of unsteady flows such as a plate vibrating  in a 

fluid etc.  In these cases, the equations are made linear by taking a simple 

geometry of flow and assuming the fluid to be incompressible. Hence, these exact 

solutions hold well in a particular region of a real problem.  As restricted as they 

are, these exact solutions are very useful and add greatly to our knowledge of the 

flow of real or Newtonian fluids. 

In this study, buoyancy effects are not considered since the channel is not vertically 

oriented and acted upon by gravity, hence, the effect of body forces are neglected, 

and the terms with gravity (which is the most common source of the body 
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forces) will vanish in the above equations.  In case of MHD fluid flows, the effect 

of magnetic forces in the fluid flows as the only body forces present is 

considered. 

3.3 Dimensionless Parameters 
 

Fluid mechanics equations are typically cast in dimensionless form so that the relative 

strengths of the different terms can be inferred by the size of any multiplying factors. 

The equation of motion  

2u p J×B
(u )u= - u+

t


 

 
   

   

can be written in dimensionless form by making the substitutions: 
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            (3.7) 

where a, uo and Bo  are characteristic values of length, velocity and applied 

magnetic fields respectively.  Using this system, the  equation o f  motion 

(excluding external forces) becomes: 

2
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u u p J B u
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           (3.8) 

The characteristic parameters Ha and N are the Hartmann number and the 

interaction parameter  respectively.  They are defined as -:
 

f
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where Re is Reynolds number. 
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When the Hartmann number and the interaction parameter are both sufficiently 

large, the momentum equation (3.8) throughout the bulk of the fluid can be 

reduced to the simple form 

J × B p                (3.12) 

(a) Reynolds number 

 

This is the ratio of inertial forces to viscous forces. It is a parameter for 

viscosity.  If l is the characteristic length, t time,  then mass of an element is 

proportional t o  3l and acceleration is 
2

1

t
. Then the inertial force, 

Fi  

Fi               (3.13) 

Fi               (3.14) 

and  since , 

2 2

iF pl V                (3.15) 

On the other hand viscous force 

Fv               (3.16) 

  Fv                                                                          (3.17) 

 and since velocity gradient, 

    Vg                 (3.18) 

Then viscous force 

              Fv               (3.19)

 
                             Fv                 (3,20) 

Thus, 

     (3.210    

                                              

      

Re
VL


              (3,22) 

2 2inetia force V L

viscous force VL





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or  

Re
VL


         (3,23) 

where 





  is the kinematic viscosity, 
gV  is the velocity gradient, iF  is the inertia 

force, vF  is the viscous force and Re  is the Reynolds number. 

If the Reynolds number is small, the viscous forces will be predominant and the 

effect of viscosity will be felt in the whole flow field and hence we can ignore 

the inertia force.   If Re  is large,  the  inertial  forces will be predominant  then  

we can neglect the  effect of viscous force and  in such a case the  effect of 

viscosity can be considered  to  be confined within  the  layer,  known as 

boundary  layer,  adjacent  to a solid boundary  and  consequently  the  fluid may  

be treated  as non-viscous  fluid. However, if Re is very large the flow ceases to 

be laminar and becomes turbulent. The Reynolds number at  which the 

transition from laminar to turbulent occurs is known as critical R e y n o l d s  

number. In laminar f l o w , the individual  s t r e a m l i n e s  run in an orderly 

manner side by side, while in turbulent flow, the streamlines are  interwoven 

with each other in an irregular manner. 

 

(b) Hartmann number 

 

Using Lo  and Vo as a scale length, velocity and introducing  a new scale field 

Bo, comparable wi th   the  actual  magnetic  field in a real engineering  system,  it 

can be inferred that 

(i) Magnetic viscous force per unit volume 

                              2( )o oB V                                                     (3.24) 

(ii)  Hydrodynamic viscous force per unit volume 

                                      
2

o

o

V

L
                                                               (3.25) 

The ratio of magnetic viscous and hydrodynamic viscous forces leads to the 

Hartman number,  Ha, viz 
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or 

2 2 2 Bo o

f

Ha L



        (3.26) 

 

(c) Prandtl number 

 

This expresses the ratio of momentum diffusivity (kinetic viscosity) to thermal 

diffusivity.  It is named after German phycist Ludwing Prandtl. It is defined as 

Pr



          (3.27) 

           (3.28)                                                                   

or 

Pr
pC

k


         (3.29) 

where  

  = kinematic viscosity, 

 = thermal diffusivity,  

k  = thermal conductivity,  

pC  = specific heat at constant pressure.  

In heat  transfer  problems the  Prandtl number  controls  the  relative  thickness  of 

the momentum  and thermal  boundary  layers.  When P r is small, it means that 

the heat diffuses very quickly compared to the velocity (momentum).  This means 

that for a liquid metal, the thickness of the thermal boundary layer  is much 

bigger than the velocity boundary layer  

 

(d) Nusselt Number 

 

This is the ratio of convective to conductive heat transfer across the boundary 
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(surface).  It is derived from the Newton’s law of cooling (convective terms) and 

heat conduction terms (at the same condition as the heat convection). Nusselt 

number Nu is therefore defined as 

Nu =       (3.30) 

( )

( )
w

w

h T T
Nu

T T

L










       (3.31) 

hl
Nu


         (3.32) 

Where h = Convective heat transfer coefficient (w/m
2
k) 

  = Thermal conductivity of the fluid (w/m k) 

 l = Characteristic length (m)  

The Characteristic length l is determined b y the direction of the growth 

(thickness) of the boundary layer. 

If Nusselt  number  is Nu  = 1, then  the  convection  and  conduction  term  have 

relatively  similar magnitude  and thus  characterized  by laminar  flow. If Nu  is 

large, this  implies that  the  convective  term  is dominant  which is typically  

characterized by turbulent flows (usually  Nu  number  of range 100-1000). Thus  

by understanding Nu number, we can infer the dominance between convection 

heat transfer  terms and conduction  heat  transfer  terms  thus  enabling us to 

design better  and more efficient thermal  engineering, especially in the 

convective heat transfer  field. 

 

3.4 Steady incompressible flow of fluid with constant properties 

 

3.4.1         Flow between parallel plates (velocity distribution) 

A very simple solution of the equations of motion   (3.2) to (3.4) can be obtained 

for the flow between two parallel plates which are kept at a finite distance apart. 

Equation of  continuity is given as:- 

0
u v w

x y z

  
  

  
      (3.33) 
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The assumption  made here is that,  x - axis is along the direction of the flow, y - 

axis being at  right angle to it, and the width  of the plates,  parallel to z - 

direction be large compared to the distance between the plates.   The motion is in 

the two dimensional and therefore, all the variables will be independent of z - 

coordinates. Hence, 

(.) 0,
z





  ( ),u u y  0, 0v w   and ( )p p x     (3.34) 

Steady flow of a viscous incompressible fluid in absence of body forces between 

two infinite parallel plates situated at  y = 0  and  y = h  and the flow is along 

the  x- axis is taken  parallel  to the  plates  is considered.  Figure 3.1 below 

shows velocity distribution between two parallel plates. 

 

 

Figure 3.1. Velocity Distribution between parallel plates 

 

For an incompressible fluid, equation of conservation of mass (continuity) is given 

as 

.  = 0      (3.35) 

For two dimensional flows, equation (3.35) will be 

0
u v

x y

 
 

 
      (3.36) 

Since the plates are of infinite length, therefore all the terms will be independent 

of x except pressure. 

Thus 

0
u

x





      (3.37) 
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(u is not a function of  x  it is independent of  x) and 

0
v

y





       (3.38) 

( v   is not  a function  of  y  and  v = 0 ) since there  is no flow motion  along  y 

- direction. 

The Navier-Stokes equation in absence of body forces in now given as 

 

2 2 2

2 2 2

1
( )

u u u u p u u u
u v w

t x y z x x y z



 

       
       

       
    (3.39) 

2 2 2

2 2 2

1
( )

v v v v p v v v
u v w

t x y z y x y z



 

       
       

       
    (3.40) 

2 2 2

2 2 2

1
( )

w w w w p w w w
u v w

t x y z z x y z



 

       
       

       
    (3.41) 

For two dimensional motion, w = 0, and   z = 0, therefore equations of motion 

are reduced to the form 

2 2

2 2

1
( )

u u u p u u
u v

t x y x x y



 

     
     

     
      (3.42)

2 2

2 2

1
( )

v v v p v v
u v

t x y y x y



 

     
     

     
      (3.43) 

For steady motion 

0
u

t





   and    0

v

t





      (3.44) 

Since the plates are of infinite lengths, then from equation (3.36), (3.37) and (3.38) 

the momentum equation (3.42) and (3.43) respectively becomes 

2

2
0

p u
v

x y

 
  

 
       (3.45)  

0
p

y


 


        (3.46)  

Thus the continuity equation 0
u

x





 is used in obtaining the equation (3.45) and 

(3.46) and conclude that u is a function of y only and   p is a function of x only. 

From equation (3.46) we find that,  p  does not depend on   y.  Using equation 
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(3.45) and differentiating it with respect to  x  one gets, 

2

2
0

d p

dx
        (3.47) 

where total  differentiation  has been taken as  p  does not depend on  y 

On integrating equation (3.47) gives 

dp

dx
         (3.48) 

where P is a constant. 

Thus (3.45) can be written as 

2

2

1
0 ( )

d u
P v

dy


            (3.49) 

 

or 

 
2

2

1d u
P

dy v
          (3.50) 

where  





 ,  so equation  (3.45) m a y  b e  written  as 

    
2

2

1d p

dy 


          (3.51) 

where 

    
dp

P
dx

          (3.52) 

from equation  (3.48).  On integrating (3.51) one gets 

1du
Py A

dy 


          (3.53) 

where A is a constant. 

Again integrating (3.53) one obtains 

21

2
u Py Ay B




           (3.54) 

or 

21

2

dp
u y Ay B

dx
          (3.55) 

where A and B  are constants  of integration to be determined  from boundary  
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conditions of either plane Couette  flow, plane Poiseuille flow or generalized plane 

Couette flow. Thus the shearing stress τ can we written using equation (3.55) as 

du
A Py

dy
                                      (3.56) 

3.4.2   Plane Couette flow 

 

Couette f l o w  is named in honour of Maurice Marie Alfred Couette, a Professor 

of Physics at the French University of Angers in the late 19th century.  Figure 3.2 

depicts velocity distribution in a Plane Couette flow. 

 

 

 

Figure 3.2 Velocity distribution in Plane Couette flow 

 

This is also called shear flow in which the flow is between two parallel plates 

one which is at rest  and the other  moving with uniform velocity U in its plane 

and the pressure gradient is taken to be zero. Consider a laminar flow of viscous 

incompressible fluid between two infinite parallel plates separated b y a distance  

h.  If we let x be the direction of the fluid flow, y the direction perpendicular to 

the flow, and the width of the plates parallel to the z-direction.   The word 

infinite here means that, the width of the plates is large compared with h and 

hence the flow may be treated as a two dimensional i.e.  . Let also the plates 

be long enough in the x-direction for the flow to be parallel. Here the flow is said to 

be parallel if only one velocity component is non-zero, all fluid particles moving 

in one direction.  Hence, the velocity components v and w will be zero 
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everywhere.  Since the flow is steady the flow variables are independent of time i.e.     . 

Furthermore, the equation of continuity (3.35) reduces to (3.37) and (3.38) and conclude that  u=u(y). For   

the present problem, 

   . .
( ), 0, 0, 0, 0u u y v w

z t

 
    

 
        (3.57) 

For the two dimensional flow in absence of body forces, the Navier-Stokes 

equations for x and y directions (3.39) and (3.40) keeping equation (3.57) in mind 

are: 

2

2
0

p u

x y


 
  

 
             (3.58) 

0
p

y


 


              (3.59) 

Equation ( 3.59) here shows that t h e  pressure does not depend on y.  Hence, p is 

a function of x alone and so equation (3.58) reduces to 

2

2

1d u dp

dy dx
              (3.60) 

Differentiating both sides of equation (3.60) with respect to x gives 

2

2

1
0

d p

dx
              (3.61) 

or 

( ) 0
d dp

dx dx
             (3.62) 

so that  

dp

dx
= constant = P(say)         (3.63) 

Hence, equation (3.60) reduces to 

2

2

d u P

dy 
             (3.64) 

Integrating equation (3.64) gives  

du Py
A

dy 
            (3.65) 

and integrating equation (3.65) again gives 
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2

2

Py
u Ay B


           (3.66) 

where A and B are constants to be determined as earlier mentioned by the 

boundary conditions  of the  problem  under  consideration.  Similarly,  the  plate  y  

= 0 is kept at  rest  and  the  plate  y = h is allowed to move with  velocity U .  

Hence the no slip condition gives rise to the boundary conditions: 

u  = 0     at    y  = o   ;   and        u  = U     at    y  = h                             (3.67) 

Using the boundary conditions in (3.67) and then in equation (3.66) gives B = 0 

and  so that finally gives 

    -         (3.68) 

and equation (3.66) reduces to 

21 1
( )

2 2

U
u Py Ph

h 
          (3.69) 

or 

 
1

2

y
u U Py y h

h 
         (3.70) 

Since the problem is plane Couette f l o w , then this  means that,   P = 0 and 

hence equation (3.70) becomes 

y
u U

h
     or    

u y

U h
       (3.71) 

Thus equation (3.66) in non-dimensional form is given by equation (3.71) and 

the velocity distribution is linear as shown by figure 3.2. 

Finally, the skin friction (or drag per unit area) is determined by   

by using equation (3.71). 

 

3.4.3 Plane Poiseuille flow 

Using equation (3.66) for the plane Poiseuille flow, both plates are kept at rest 

and the fluid is kept in motion by a pressure gradient P is non-zero, Raisinghania, 

(2010). Consider Figure 3.3 showing velocity distribution in a plane Poiseuille 

flow. 
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              Figure 3.3 Velocity distribution in Plane Poiseuille flow 

 

Let the distance between the plates be 2h and the axis for the sake of 

convenience be taken in the middle of the channel.  In such a case, using the no-

slip condition, the boundary conditions for the present problem are:  

                                y  =  ± h   :    u  = 0                               (3.72) 

Therefore equation (3.66) becomes 

2 21

2

dp
u y h

dx
              (3.73) 

or 

2 2

2

P
u y h


               (3.74) 

where A=0 and B=  and this shows that the velocity distribution is 

parabolicas shown in figure 3.3. If  denotes the absolute value of 

maximum velocity, then maximum velocity occurs in the middle of the 

channel which and is obtained by substituting y  = 0. Thus 

2

max
2

h dp
u

dx
    or   

2

max
2

h P
u


       (3.75) 

and hence, the velocity distribution in a plane Poiseuille flow in non-dimensional 

form is given by 

2

2

max

1
u y

u h
            (3.76) 
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On the other hand, the average velocity distribution for the present flow and using 

(3.74) is given by 

2 21 1

2 2 2

h h

a
h h

P
u u dy y h dy

h h  
                 (3.77) 

which on simplification it gives 

2

3
a

Ph
u


               (3.78) 

and using (3.78) we have 

2
3 au

P
h

              (3.79) 

To find the shearing stress distribution in the flow  we use (3.74) to obtain 

yx

du
Py

dy
               (3.80) 

and the skin friction at y  = h and using (3.79) we obtain 

3
( ) a

yx y h

u

h


             (3.81) 

Hence using (3.81), the frictional coefficient for laminar flow between two 

stationary 

plates is given as:- 

2
2

( ) 3 2 6
6

1 Re

2

yx y h a
f

a a
a

u
C

h u hu
u

  

 


     



        (3.82) 

where  

 

3.4.4 Generalized plane Couette flow 

For the generalized plane Couette flow, the plate y = 0 is kept at rest and the 

plate y  = h is allowed to  move with  velocity U .   Figure 3.4 shows velocity 

distribution in generalized Plane couet te  f low which like plane Couette f l o w  

but with  non-zero Pressure gradient. 
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Figure 3.4 Velocity distribution in generalized Plane Couette  flow 

 

With no-slip condition this gives rise to boundary conditions which are the 

same as in plane Couette flow given in equation (3.67). 

Using the boundary conditions given in equation (3.67) into equation (3.66) gives 

2

0 ,
2 2

Ph U Ph
B U Ah B and A

h 
              (3.83) 

Using equation  (3.83) into equation  (3.66), it gives 

2

2 2

y Phy Phy
u U

h  
           (3.84) 

or 

(1 )
u y y y

U h h h
          (3.85) 

where 

                                                               (3.86)           

is the dimensionless pressure gradient. 

Clearly, the velocity fields depend on the nature of the non-dimensionless 

pressure gradient and therefore different cases are possible:- 

Case i  α > 0 

If α  > 0, the pressure is decreasing in the direction of the motion and thus for 

favorable pressure gradient, the velocity distribution is positive over the whole 

width between the plates. 

  Case ii α < 0 
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If α < 0, the pressure is increasing in the direction of the flow. A back flow begins 

to occur near  the  stationary plate  as α  <  −1 which is due to the  influence of 

the adverse  pressure  gradient  which surpasses  the  dragging  action  of the  fast  

layer on fluid particles  in that  region. 

Case iii α = 0  

In this case zero pressure gradient is present and pressure is constant throughout 

the field flow to equation (3.66) reduces to equation (3.71) and in this case the 

velocity distribution is linear. 

The velocity distribution as a function of the distance from the stationary wall for 

various v a l u e s  o f  α as shown in figure 3.4. It also indicates the 

arrangement of plates with coordinates axes  and  plotted along x-axis 

and y-axis respectively. 

To determine the average and maximum velocities we proceed as follows:- 

The average velocity distribution, ua for generalized plane Couette flow is given 

by 

 
2

20 0

1 1
( )

h h

a

y y y
u udy U U dy

h h h h h
         (3.87) 

1
( )
2 6

au U


        (3.88) 

and on simplification it gives 

( 3)
)

6
au U

 
        (3.89) 

If Q is the volumetric flow per unit time per width of the channel, then 

( 3)
)

6
a

h
Qhu U

 
        (3.90) 

From equation (3.85) 

2
(1 )

du U U y

dy h h h


         (3.91) 

Hence, for maximum or minimum velocity, we know that , hence, equation 

(3.91) becomes  

2
(1 ) 0

U U y

h h h


             (3.92) 
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which reduces to 

    = (1 )            (3.93) 

Hence, from (3.93) it follows that,   the maximum ve loc i t y for α = 1 will 

occur at 1
y

h
 , i.e.  y=h and the minimum velocity will occur for 1   at 0

y

h
  i.e.  

y=0.  This shows that, for 1   , the velocity gradient at the stationary will be zero 

and it becomes negative for some value of 1   . Hence the reverse flow will take 

place at 1   . Equation (3.93) breaks down when 1 1    because the maximum 

and minimum values of 
y

h
 have already been reached at α = 1and 1  

respectively. Using equation (3.93) and equation (3.91) the maximum and minimum 

velocities are given by  

2

max

(1 )
1

4
U U when






         (3.94) 

and 

2

min

(1 )
1

4
U U when






         (3.95) 

To determine the shearing stress, skin friction and the coefficient of friction, we 

use equation (3.91), where the shearing stress distribution in the flow is given by 

2
(1 (1 ))yx

du U y

dy h h


            (3.96) 

Using equation (3.60) and equation (3.67), the skin friction at the plates y = 0 

and 

y = h are given by 

0

6 (1 )
(1 )

(3 )
yx ay

U
u

h

  
 




      

      (3.97) 

 

6 (1 )
(1 )

(3 )
yx ay h

U
u

h

  
 




      

       (3.98) 

Using equation (3.96), the coefficient of friction or the drag coefficient 

corresponding 
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to   
0yx y




   is given by  

0

2

12 (1 )

( 3)

yx y

f

a a

C
u h u

  

  


   

 


      (3.99) 

If Reynolds number = Re ahv


  . then  

12(1 )

Re( 3)
fC









       (3.100) 

Similarly, the coefficient corresponding to  yx y h



 is given by 

12(1 )

Re( 3)
fC






 


       (3.101) 

For practical purposes, the mean fC  and 
'

fC  is employed to estimate the energy 

losses in parallel plates. 

 

3.5. Temperature distribution in s t e a d y  laminar incompressible  

     flow with constant fluid properties  

 

One of the main differences between the compressible and incompressible 

fluid flow for temperature distribution in steady,  laminar flows is that,  in 

compressible flow the equation  of motion  and  energy equation  are coupled 

whereas  in an  incompressible flow, with  constant  fluid properties  ρ, µ and  k 

the  equation  of motion  and  energy equation  are uncoupled.  Hence, in 

incompressible fluids, one can easily find temperature distributions since 

viscosity of fluids depends on temperature. 

When dealing with incompressible fluid flow, the fluid properties  such as 

density ρ, coefficient of viscosity µ and  the  coefficient of thermal conductivity 

k are nearly constant  so that, the unknown quantities reduce to five (u, v, w, p, 

T ) which are obtained  with the help of Navier-Stokes  equation  and  the  energy 

equation. When dealing with temperature distribution for incompressible fluid 

flow, the equation of continuity and equations of motion are first solved for (u,  

v,w) and finally the equation of energy is solved for the temperature. These 
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equations are solved subject to a given initial and boundary conditions. The 

boundary conditions are those required by geometrical consideration together 

with the no-slip condition which states that, on a wall, the tangential 

component of relative velocity must be zero. Similarly, to solve the energy 

equation, some conditions must be imposed on the temperature on the 

boundary and these are provided depending on the nature of  the problem. 

 

3.5.1    Temperature distribution in steady, laminar  incompressible  

 fluid   flow b e t w e e n  two infinite parallel plates in Plane  

 Couette flow 

 

The velocity distribution for plane Couette flow has been given by equation 

(3.71). Hence the energy equation, for the steady flow and without heat addition, 

for the present problem is given by 

2 2
2

2 2
( ) ( ) ( )p

T T T u
C u k

x x y y
 

   
  

   
       (3.102) 

where k and µ are constants. 

Since the velocity has been taken along the x-axis and all the variables depend on y, 

then
2

2
0

T T

x x

 
 

 
. Hence, equation (3.102) reduces to 

2
2

2
( ) ( )
d T du

k
dy dy

       (3.103) 

By substituting the value of u from equation (3.71) into equation (3.103), it 

results into 

2 2

2 2
( ) ( )

d T U

dy k h


       (3.104) 

Integrating equation (3.104) twice gives 

2
2

1 22
( ) ( )
2

U
T y C y C

k h


                            (3.105) 

where C1  and C2 are arbitrary constants  of integration. 

Three cases of temperature distribution can now be considered: - 
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Case i:  When the plates  are kept a t  different temperatures 

 

Suppose the lower plate (y = 0) and the upper plate (y = h) are kept at 

constant temperatures To and T1 respectively, where To > T1. Then for plane 

Couette flow the boundary conditions are: 

T = To,  when  y = 0                        (3.106) 

T = T1,   when        y = h       (3.107) 

Substituting the values of equations (3.106) and (3.107) into equation (3.105) 

gives. 

2
2

1 1 2 222
o

U
T h C h C and T C

k h


         (3.108) 

Solving equation (3.108) gives 

2

1
1 2

2

o
o

T T U
C and C T

h kh


          (3.109) 

Substituting the values of C1 and C2 from equation (3.109) in to equation 

(3.105) results into 

2 2 2

1

22 2

o
o

T T U y U y
T T y

h k h k h

 
     

   or  
2

1

1 1

(1 )
2 ( )

o

o o

T T y U y y

T T h k T T h h


  

 
(3.110) 

or 

1

1

1
Pr (1 )

2

o
c

o

T T y y y
E

T T h h h


   


      (3.111) 

where  =Eckert number and  

It follows that from equation (3.111) that the temperature distribution depends 

on the product Ec · Pr.  Figure 3.5 shows how dimensionless temperature    0

1 0

T T

T T




 

varies with dimensionless distance 
y

h
 between the plates for different values of Ec · 

Pr . 
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Figure 3.5 Temperature distribution for plates at different temperatures 

 

To compute heat transfer at the upper plate, the dimensionless coefficient of heat 

transfer, the Nusselt Number, N u,  is described as 

1 o y h

h dT
Nu

T T dy


 
   

  
          (3.112) 

Differentiating equation (3.111) with respect to y gives 

1

1 1 1 1 2
Pr 1

2
c

o

dT
E

T T dy h h h

 
    

  
       (3.113) 

Substitute y = h into equation (3.113) gives 

1

.Pr1
( )

2

c
o

y h

EdT
T T

dy h h


   
     

  
      (3.114) 

Using equation (3.114), equation (3.112) reduces to the form 

1

1

.Pr1
.( )

2

c
o

o

Eh
Nu T T

T T h h

 
      

       (3.115) 

or 

1
.Pr 1

2
cNu E           (3.116) 

From equation (3.141), the following observations are made-: 

(i). I f  Ec · Pr  > 2 then  Nu  will be positive and the heat  will be transferred  

from the fluid to the upper plate. 

(ii). If Ec · Pr  < 2 then  Nu  will be negative and the heat  will be transferred  

from the    upper plate to the fluid. 
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(iii).  If Ec · Pr  = 2 then  Nu  = 0 and there  will be no heat  transfer  between the 

fluid and the upper plate. 

To compute heat transfer at the lower plate, 

1 0o y

h dT
Nu

T T dy


 
  

  
       (3.117) 

it is shown that,  at the lower stationary plate the heat is always transferred from 

the fluid to the plate irrespective of the range of Ec · Pr . 

 

Case i i : When both t h e  p l a t e s  are kept a t  same c o n s t a n t  temperature 

 (Say  To) 

 

The boundary conditions  for this case will be:- 

T = To,  when  y = 0  and  y = h       (3.118) 

Substituting these values of equation (3.118) into equation (3.105) gives 

2
2

2 1 222
o o

U
T C and T h C h C

k h


                      (3.119) 

By solving equation (3.119), we have 

2

1 2
2

o

U
C and C T

kh


            (3.120) 

Substituting the values of C1 and C2 from equation (3.120) into equation (3.105) 

gives 

2

1
2

o

U y y
T T

k h h

  
    

           (3.121) 

This equation clearly shows that, t he  temperature distribution is parabolic as 

shown in the figure 3.6. 
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Figure 3.6 Temperature distribution for both plates kept at same constant 

temperature To 

 

Let mT  denote the temperature distribution in the middle of the channel such that , 

mT T    when 
2

h
y   ,substituting  

2

h
y    in equation (3.121) gives 

2

8
m o

U
T T

k


             (3.122) 

The Nusselt number at the lower plate for the present problem is defined as in 

equation (3.117). 

0 0
( )m y

h dT
Nu

T T dy


 
   

  
          (3.123) 

On differentiating equation (3.121) with respect to y gives 

2

2

1 2

2

dT U y

dy k h h

  
  

 
           (3.124) 

Substituting y = 0 in equation (3.124), we obtain 

2

0
2

y

dT U

dy kh





 
 

 
          (3.125) 

Equation (3.123) gives 

2

2

8
4

2

kh U
Nu

U kh




              

This shows that, t h e  Nusselt number for the lower plate has a constant value 4. 
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Case i i i:  When the low er  s t a t i o n a r y  plate, no heat t r a n s f e r  takes 

place (adiabatic wall) a n d  the upper m o v i n g  plate is kept a t  

temperature T1 

 

The boundary conditions  for the current problem are 

0
dT

dy
   when    0y           (3.126)  

1T T         when        y h       (3.127) 

Integrating equation (3.104) gives 

2

12

dT U
y C

dy k h

   
     

   
     (3.128) 

Putting 0y   and 0
dT

dy
   in equation (3.128) gives 1 0C   . Next putting y h   and

1T T
 
in equation (3.105) gives 

  
2

1 1 222

U
T C h C

k h

  
     

 
   which implies that,  

2

2 1
2

U
C T

k

 
   

 
  as C1=0. 

Substituting the values of C1  and C2  in equation (3.105) gives 

2 2

1 2
1

2

U y
T T

k h

  
   

 
   (3.129) 

The temperature which an insulated surface assumes under the influence of 

internal friction is called recovery temperature Tr.  From equation (3.129) then 

2 2

0 1 1( )
2 2

r y r

U U
T T T T T

k k

 
         (3.130) 

The recovery factor in a plane Couette flow is given by 

 

    (3.131) 

 

Figure 3.7 illustrates t e m p e r a t u r e  distribution between adiabatic w a l l  and 

moving wall whose temperature is maintained at T1. 

 

2

1

2 2

2
Pr

2

2

p pr

p

C CT T U
r

U k U k

C


    
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Figure 3.7 Temperature distribution between adiabatic wal l  and moving wall 

whose temp is kept T1 

 

3.5.2  Temperature distribution in steady, laminar incompressible  

 fluid between two infinite parallel plates: The  generalized 

 plane Couette flow 

 

The velocity distribution for generalized plane Couette flow from equations (3.85) 

to (3.86) is given as 

1
u y y y

U h h h


 
   

 
    (3.132) 

where  

2

2

h P

U



       (3.133) 

is the dimensionless pressure gradient. 

Using the energy equation given in equation (3.102) together with equation 

(3.103), equation (3.132) can be written as 

2

1 2 2
(1 )

du y U y
U

dy h h h h h

  


   
        

   
  (3.134) 

On substituting the value of 
du

dy
  into equation (3.103) gives     

2 2 2
2 2

2 2
(1 ) 4 (1 ) 4 ( )

d T U y y

dy kh h h


   

 
      

 
    (3.135)  

Integrating equation (3.135) twice with respect to y yields 
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2 2 3 2 4
2

1 22 2

2 1
(1 ) (1 )

2 3 3

U y y y
T C y C

kh h h

 
  

 
         

    (3.136) 

where C1  and C2 are arbitrary constants  of integration to be determined. 

Using the boundary c o n d i t i o n s  given in equation ( 3.106) into equation 

(3.136), gives 

0 2T C                   (3.137) 

and  

2
2 2 2 2 2

1 22

1 2 1
(1 ) (1 )

2 3 3
o

U
T h h h C h C

kh


   

 
         

 
  (3.138) 

on solving ,we obtain 

2
2 2

1

1 2 1
(1 ) (1 )

2 3 3

U
C

kh


   

 
      

 
   (3.139) 

Substituting these values of C1and C2 into equation (3.136) gives 

2 2 3
2 2

2 3
3(1 ) (1 ) 4 (1 )(1 ) 2 (1 )

6
o

U y y y y
T T

k h h h h


   

 
         

 
  (3.140) 

Differentiating equation (3.140) with respect to y one obtains   

         


2 2 3 2

2 2 2 2

2 3 2

1 2
3(1 ) (1 ) 4 (1 )(1 ) 2 (1 ) 3(1 ) 4 (1 ) 2

6 6

dT U y y y U y y

dy kh h h h k h h h

 
       

 
                

 

                           (3.141) 

Therefore, the temperature gradient at the lower plate is given by 

2
2

0

2 (1 )
6

( )
y

dT U

dy kh






 
   

 
                (3.142) 

and this shows that,  heat will be always be transferred  from the 

fluid to the lower plate irrespective of the sign of α. 
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3.5.3    Temperature distribution in steady, laminar  incompressible  

 f lu id  between  two infinite parallel plates for Plane 

 Poiseuille flow 

 

With equa t ions  ( 3.72) to (3.76) in mind, the velocity distribution for the 

present  problem is given by 

2 2

2
( ) 1 4

8

h P y
u

h

 
   

 
   (3.143) 

while the maximum  velocity umax  is given by 

2

max ( )
8

h P
u


       (3.144) 

Using equation (3.144), equation (3.143) reduces to 

2

max 2
1 4

y
u u

h

 
  

 
    (3.145) 

Using the energy equation for the steady flow without addition of heat given by 

equation (3.102) and using equation (3.103), d i f f e r e n t i a t i n g  equa t ion  

(3.145) with respect to y, one gets 

max 2

8du y
u

dy h

 
  

 
    (3.146) 

Hence, equation (3.103) becomes 

2 22

max

2 4

(64

( )

u yd T

dy kh


      (3.147) 

Integrating equation (3.147) twice with respect to y gives 

2 4

max
1 24

(16 )

(3 )

u y
T C y C

kh


                                (3.148) 

where C1  and  C2  are arbitrary constants  of integration to be determined.   If 

both the plates are kept at the same constant temperature say T0, then for the 

present problem, the boundary conditions  are given as 

 T = T0          when           y  =  ± h                                (3.149)  

Substituting the boundary equations in equation (3.149) in equation (3.148) gives 
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2

max
1 2

16

3
o

u
T C h C

k


                (3.150) 

and 

 

2

max
1 2

16

3
o

u
T C h C

k


                 (3.151)                                                                                    

Solving these, 1 0C  and
2

2 max

16

3
oC T

k
u


    . Putting this value of 1C and 2C  into 

equation (3.148), one obtains 

 
2 4

max

4

16
1

3
o

u y
T T

k h

  
   

 
            (3.152) 

Maximum temperature Tm  exists in the middle of the channel and  this  is 

obtained by substituting y = 0 and T = Tm  in equation  (3.152) to obtain 

2

max

3
m o

u
T T

k


 

                     
(3.153)

 

Using equations (3.152) and (3.153) the dimensionless temperature distribution  

o

m o

T T

T T




 as a function of dimensionless distance

2

y

h
  from the middle of the channel is 

given as
 

4

0

0

1 16
m

T T y

T T h

  
   

  
                           (3.154) 

whose distribution is shown in figure 3.8. 

 

 

  

 Figure 3.8 Temperature distribution for plane Poiseuille flow 

 



 

 

49 

 

3.6.  Steady flow of viscous incompressible fluid between two parallel  

 porous plates with suction/injection on the b o u n d a r i e s  

 

Problems  which deal  with  the  flow of incompressible  viscous fluid through  

porous channels  and  pipes  are  known as transpiration cooling and  are  known  

to  be very effective process in reducing  the  heat  transfer  between  the  fluid and  

the  boundary layer.  Such problems in fluid dynamics have been found useful in 

cooling rockets and jets.  This involves a flow in the direction, perpendicular to  

the main direction of the flow created by suction or injection of the fluid at the 

boundaries. 

 

3.6.1                        Steady viscous incompressible fluid between two infinite  

       parallel porous plates 

 

Consider the steady, l a m i n a r  viscous incompressible fluid flow between two 

infinite parallel porous plates separated by a distance of 2h.  Porous plates  here 

means that, the  plates  possesses very fine holes which are uniformly  over the  

entire surface of the  plates  through  which the  fluid can continuously  flow freely.  

The plate with injection is the plate from which the fluid enters the flow region, 

while the plate with suction is the plate which the fluid leaves the flow region. 

Let x be the direction of the main flow of the fluid, y be the direction perpendicular 

to the flow and the width of the plates parallel to the z direction.  Taking the 

velocity w to be zero everywhere and u as a function of y alone, the equation of 

continuity then reduces to  0
v

y





such that  v does not vary with y. Figure 3.9 

shows that,  the fluid enters  the flow region through  the plate at  y = −h, at some 

constant  velocity vo, and leaves through  the other  plate at y = h at same 

constant velocity vo. 
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Figure 3.9 Two infinite parallel porous plates 

 

The Navier-Stokes equation for the present problem with absence of body 

forces for two dimensional flow are given by 

 

           (3.155) 

 

and 

           (3.156) 

 

The second equation above shows that, p r e s s u r e  does not depend on y and 

hence p  must be a function of x alone and therefore, equation (3.155) reduces to 

2

2 o

dp d u du
v v

dx dy dy

 

  
 

      (3.157) 

Differentiating equation (3.157) with respect to x, we obtain 
2

2
0

d p

dx
  and on 

integration gives 

 

           (3.158) 

where P  is a constant  and  the  negative  sign has  been  taken  as its  expected  p 

to decrease as x increases.  With this in mind, equation (3.157) reduces to 

 

 

           (3.159) 
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Integrating equation (3.159) gives 

1
ovdu Py

u C
dy v 

        (3.160) 

and this is a linear first order differential equations. The integrating factor of 

equation (3.160) is 

vo dy

e


 
   
 

    and hence, the solution of equation (3.160) is given by  

 

( ) ( )

1 2

o ov y v y

v v
Py

ue C e dy C


  
   

 
   (3.161) 

 

2
( ) ( ) ( )

1 22

o o ov y v y v y

v

o o

Py v P v
ue C e e C

v v
 

 

        
          
      

  (3.162) 

 

Therefore 

1 22

ov y

v

o o

v Py Pv
u C C e

v v v 

 
     

 
  (3.163) 

or 

ov y

o

P
u D y Be

v



      (3.164) 

where 1

o

D C
v


  , D and B  are constants  to be determined.  Let the plate 

situated at y = −h be at rest and the plate at y = h be moving with a constant 

velocity U , then B  and D can be determined  from the following boundary  

conditions: 

           u = 0   at   y = −h  and u = U, at  y = h                                        (3.165)  

Using the boundary conditions in equation (3.165), equation (3.164) reduces to 

( ) ( )

0
o ov y v y

v v

o o

Ph Ph
D Be and U D Be

v v 



          (3.166) 

Solving for B and  D for equation ( 3.166) and substituting the values obtained 

i n  equation (3.164), one obtains 
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0( ) ( )

2
( )

2sinh( )

ov y v h

v v

o o
o

Ph e e P
u U y h

hv v
v

v

 



  
    
 

     (3.167) 

Let Reynolds number be Re ov h


  and 

y

h
  , then equation  (3.167) reduces to the 

form 

2 Re Re 22
(1 )

Re 2sinh Re Re

ph e e Ph
u U




 

  
    
 

      (3.168) 

which gives the velocity distribution in terms  of non-dimensional  quantities Re 

and η where the plates are situated  at η = ±1. 

Two cases of flow either Couette flow or plane Poiseuille flow is hereby 

considered. 

 

Case  1:  Plane Couette flow 

 

For plane Couette flow, there is no pressure gradient and hence equation (3.168) 

reduces to the form:- 

Re Re1
( )

2
u U e e    csch Re  

 (3.169) 

On the other hand, the shearing stress at any point is given by 

 

ReRe

2 sinh Re
yx

du Ue

dy h


       (3.170) 

while the skin friction at the plates η = ±1 are given by 

 

Re

1

Re

2 sinh Re
yx

U e

h





       (3.171) 

and 

Re

1

Re

2 sinh Re
yx

U e

h







       (3.172) 
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Case II: Plane Poiseuille flow 

 

In Plane Poiseuille flow, both the plates are considered to be at stationary and 

the velocity distribution is obtained from equation (3.168) by letting U = 0 to 

obtain 

2 Re Re

1
Re 2sinh Re

Ph e e
u






 
   

 
   (3.173) 

It can be verified that, t h e  maximum velocity for the current problem occurs 

when 

1 Re
log

Re Re

Sinh
      (3.174) 

and the skin friction is given as 

2 ReRe
1

Re Re
yx

Ph e

Sinh




 

   
 

   (3.175) 

 

3.6.2    Steady laminar Couette flow with transpiration cooling 

 

Consider figure 3.10, a two dimensional steady,  laminar  viscous incompressible 

fluid flow between two infinite parallel porous plates, one in uniform motion and 

the other at rest with uniform injection and uniform suction at the fixed plate and 

moving plate respectively.  Let h be the distance between the plates, U the 

velocity of the upper moving plate and vo the uniform injection and suction 

velocity at the upper plate and lower plate respectively. 
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          Figure 3.10 Plane Couette  flow with transpiration cooling 

 

For the present problem, the equation of continuity and equation of motion in 

the absence of body forces are in the form:- 

0
dv

dy
          (3.176) 

2

2
( ) ( )
du d u

dy dy
         (3.177) 

Subject to the boundary conditions 

At  y = 0; u = 0,  v = vo;      at  y = h;    u = U, v = vo  (3.178) 

and integrating equation (3.176) gives 

v = constant = v0                                                                                      (3.179)                                                                                                    

Substituting v = vo to equation (3.177) one obtains 

2 2 2

2

/
( ) ( )

/

o
o

vdu d u d u dy
v or

dy dy du dy v
       (3.180) 

Integrating equation (3.180) twice gives 

1 2

0

voy

v
v

u C e C
v

         (3.181) 

where, C1  and C2  are constants  of integration to be determined. 

Using the boundary conditions (3.178), equation (3.181) reduces to 
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1 20
o

C C
v


   and 1 2

ohv

o

U C e C
v




    and by solving we obtain  

1

1 ( ) ( 1)
ov h

oUv
C e 



         and              1

2 ( 1)
ov h

C U e                

Substituting the values of C1  and C2  in (3.181) gives 

1 1

o

o o

v y

v y v y

Ue U
u

e e



 

 

 

       or         

1

o

o

v y

v y

u e

U
e









             (3.182) 

Equation  (3.182) for the velocity distribution in the dimensionless form is written  

as 

                           (3.183) 

where 
y

h
   and 0

2

h
v  are defined non-dimensional quantities and   is the 

injection parameter.  This shows that, the velocity stops to be linear and it 

decreases with increasing value of  . 

 

3.6.3   Temperature distribution in steady laminar plane Couette  

        flow with transpiration cooling 

 

For the present problem, let the lower fixed and upper moving plate is 

possesses temperatures To and T1 respectively.  Let also the temperatures 

of the plate be constant and hence the temperature distribution in the fluid 

will be a function of y only.  We also assume Cp, p and ρ are constants. 

Then the energy equation of these cases reduces to the form:- 

2
2

2
( ) ( ) ( )p

dT d T du
C u k

dy dy dy
             (3.184) 

The boundary conditions are : 

At  y = 0,  T = To,  and  at  y = h,  T = T1         (3.185) 

Reducing equation (3.184) in non-dimensionless form in turn introduce four  
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dimensionless quantities namely:-  
2

1( )c o

p

U
E T T

C
  , Pr

pC

k


 , .RePe Pr and 

1

o

o

T T
T

T T

  
  

 
. 

Using the above dimensionless quantities, equations (3.182) and (3.183), the 

energy equation (3.184) in dimensionless form reduces to the form 

2

2
.e c e

d T dT
P E P

d d 

 

                        

or 

2( )e c eD P D T E P                             (3.186) 

where D = d/dη.  The corresponding boundary conditions are: 

At  η = 0,  T ∗ = 0,  at  η = 1,  T ∗ = 1  (3.187)  

The corresponding auxiliary equation for (3.186) is (D2  − Pe D) = 0, giving  

D(D −Pe ) = 0, such that,  D = 0  or  D = Pe . 

Hence C.F = A + BePeη , where A and B  are arbitrary constants, while 

1
.

( )e

P I
D D P




c eE P
  = -

c eE P
  x       

. The general solution of equation (3.186) is therefore, 

PeT A Be    
c eE P

                    (3.188) 

Using the boundary conditions (3.187) in (3.188), the constants A and B are 

obtained 

which are in turn  used in equation  (3.188) to have 

T  =
c eE P

                        (3.189)           

Neglecting the dissipation term,  i.e.  taking Ec  = 0 (heat  generated  due to 

internal friction),  then equation  (3.189) reduces to 

T  =          (3.190) 
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Nusselt  Number,N u,  which is the  dimensionless coefficient  of heat  transfer  at  

the  fixed plate, is computed  as 

01( ) so

h dT
Nu

T T ds 

 
   

  
        (3.191) 

Re-writing equation (3.191) in terms of T   and   and substituting 
dT

d



from 

equation (3.190), 
1Pe

Pe
Nu

e



 is obtained, where if 0  , i.e. 0Pe  ,  then one gets 

Nu = 1 and Nusselt number goes on decreasing as the value of Pe increases. This 

indicates cooling of the fixed plate with the injection process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

58 

 

 

CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

 

4.1. Analytical method 

4.1.1 Sumudu Transform 

Most of the available transform theory books, if not all, rarely refer to the 

Sumudu Transform.  Perhaps it could because no transform under this name was 

declared until the late 80’s and early 90’s of the previous century. 

Sumudu Transform is an integral transform similar to the Laplace transform 

which was introduced in  1993 by Gamage K. Watugala t o  solve differential 

equations and control engineering problems, (Watugala, 1993). Sumudu Transform 

is equivalent to Laplace - Carson Transform w i t h  the substitution o f  

.  Hence Sumudu is a Sinhala word meaning smooth. 

Sumudu Transform of a function f (t) is given by the formula 

1 2

0

1
( ) [ ( ); ] ( ) , ( , )

t

uF u S f t u e f t dt u
u

 
 

        (4.1) 

where the set (−τ1, τ2) is the kernel of the Transform. 

Watugala advocated  first the transform as an alternative to the standard 

Laplace Transform and gave it the name Sumudu Transform.  As comparable to 

this, Laplace transform is given as 

0

L ( ) ( ) ( )stf t F s e f t dt



          (4.2) 

where s is a real number  and L is the  Laplace  operator.   We find that 

p r o p e r t i e s  of Sumudu T r a n s f o r m  a r e  obtained f r o m  the corresponding 

p r o p e r t i e s  o f  Laplace Transform. 

The given theorem is useful in study of differential equations with non-constant 

coefficient. 

Theorem 4.1.  If the Sumudu  Transform of the function  f (t) is given by 

S[f (t)] = F (u),  then 
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2 ( ) (0) ( ) (0)
[ ( )]

d f u f f u f
S tf t u u

du u u

    
     

   
 

Proof 

To proof we apply the formula given by (Asiru, 2003) given as 

 2[ ( )] ( ) ( )
d

S t f t u f u uf u
du

   

This gives  

0

( ) (0) 1
( )

u

t
d f u f d

e f t dt
du u du u

 
 

 
 

  

0

( ) (0) 1
[ ] ( )

u

t
d f u f d

e f t dt
du u du u

 
 

 
 

  

3 2

0 0

1 1
( ) ( )

u u

t te f t dt e f t dt
u u

  

   

 
2

1 1
[ ( )] [ ( )]S t f t S f t

u u
    

which on simplification reduces to  

2 ( ) (0) ( ) (0)
[ ( )]

d f u f f u f
S t f t u u

du u u

    
     

   
 

Example 1. 

Find the general solution of the second order equation 

2
2

2

( )
( ) 0

d y t
w y t

dt
         (4.3) 

Solution 

First transform this to Sumudu equivalent:- 

 

2

2

( ) (0) (0)
( ) 0

G u y y
w G u

u u


       (4.4) 

2 2

2

( ) (0) (0) ( )
0

G u y uy u w G u

u

  
     (4.5) 

2 2( )[1 ] (0) (0)G u u w y uy      (4.6) 

which gives the general solution as 
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2 2

(0) (0)
( )

1

y uy
G u

u w





      (4.7) 

and upon inverting  the general time solution is given as 

(0)
( ) (0)cos( ) sin( )

y
y t y wt wt

w


       (4.8) 

Example 2  

Solve a differential equation 

2
2

2

( )
( ) 0

d y t
M y t

dt
       (4.9) 

by the method  of Sumudu Transform. 

Solution 

Transform this into its Sumudu equivalent as-: 

2

2

( ) (0) (0)
( ) 0

G u y y
M G u

u u


       (4.10) 

On rearranging, the general solution is 

2 2

(0) (0)
( )

1

y uy
G u

M u





      (4.11) 

and upon inverting  the general time solution is 

(0)
( ) (0)cosh( ) sinh( )

y
y t y Mt Mt

M


      (4.12) 

 

4.1.2 Sumudu Transform on Steady  Magnetohydrodynamic  

          Couette Flow between Two Infinite Parallel Plates 

 

Consider an electrically conducting, laminar, viscous, steady and incompressible 

fluid moving between two infinite parallel plates both kept at a constant distance h 

between them.  The upper plate is moving with constant velocity Uo while the 

lower plate is kept stationary under the influence of uniform transverse magnetic 

field Bo.  The fluid is acted upon by a constant pressure gradient. 

In describing MHD phenomena on steady Couette flow between two infinite 

parallel plates, consider the conceptual framework of MHD from figure 1.1 and 

equations (1.1) and (1.2). 
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The Lorentz force 

         (4.13) 

is important here in determining the flow profile based on the dimensionless 

Hartmann number  which is given , where  stands for   

non dimensional interaction parameter known as Stuart  number  which is defined 

as the ratio of electromagnetic to inertial forces, and this gives an estimate of the 

relative importance  of a magnetic  field of the flow. It is also relevant for flows of 

conducting fields e.g. in fusion reactors, steel casters or plasmas.  On the other 

hand,   is the non dimensional hydrodynamic Reynolds  number, so the 

Hartmann number can be rewritten as   where  is the dynamic 

viscosity and  is the kinematic viscosity. 

The governing equations for the flow of incompressible Newtonian fluid that w e  

use in this study are the continuity equation and the momentum equations which 

are given as:   

V=0        (4.14) 

2V
(V. )V V+J×Bp

t
 

 
       

    (4.15) 

where ρ is the fluid density,  p is the fluid pressure function  acting  on the fluid, 

µ is the fluid dynamic viscosity and J × B is the Lorentz force. 

We now non-dimensionalize the governing equations.  Consider unidirectional flow, 

in which we choose the axis of the channel formed by the two plates as the x -

ax is  and  assume that  the  f low i s  in  th i s  di rec t ion .  If  

ˆ ˆ ˆV =u (x ,y ,z )i+v (x ,y ,z )j+w (x ,y ,z )k             in  which  u , v   and  w  a re  the  

components  of  the  veloci ty in  x ,  y  and z  d i rec t ions  respect ively and  

pr imes  denote  dimens ionless  quant i t ies .  This  now impl ies  that  

v =w =0   and  that  u 0  .  Then the  cont inui ty equat ion  (4 .14) yie lds    

u v w
0

x y z

    
  
    

.  But  
v w

0
y z

  
 
  

 so  that   
u

0
x





  f rom which we 

infer  tha t  u  i s  independent  of  x  .   
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This makes the non- linear term  (V. )V   in the Navier-Stokes equations equal 

to zero because of the unidirectional f l ow  assumption.   Since we had assumed a 

steady flow, the flow variable does not depend on time.  By assuming that t h e  

flow is two dimensional, i.e.  the flow variables are independent of z- direction,  

then  this means that,  by choosing the  axis of the channel as the  x- axis, the 

governing equations  of motion for two dimensional steady  flow are:- 

2

2

1
0 xFp u

x y


 

  
   

  
         (4.16) 

1
0

p

y


 


           (4.17) 

Fx  is the component of the magnetic force in the x-direction. We note that  p is a 

function of x only and that  pressure does not depend on y from equation (4.17) . 

Also, assuming unidirectional flow v  = w  = 0 and Bx  = Bz  = 0 so that  V = 

ˆu i  and B = B0 ĵ where B0  is the magnetic  field strength component  assumed  

to  be applied  to  a direction  perpendicular  to  fluid motion  (y-direction). 

Therefore, using the cross product of (4.16) we obtain 

ˆ ˆ[( ) ]x o oF u i B j B j          (4.18) 

which reduces  

2

x oF B u



          (4.19) 

Substituting equation (4.19) into equation (4.16) gives 

2
2

2

1
0 o

p u
B u

x y




 

  
   

  
    (4.20) 

or 

2
2

2

1
sin( )o

d u dp
B u

dy dx




 

 
 

 
      (4.21) 

where we have taken ordinary  derivatives  instead  of partial  derivatives  and α is 

the angle between V and B. Equation (4.21) is a general equation in that  the two 

fields can  be assessed at any angle for 0 ≤ α ≤ π and is solved subject  to boundary 

conditions:- 



 

 

63 

 

        u = 0,       y = −1     u = Uo ,     y = +1         (4.22)  

Dropping the primes in equations (4.21) and (4.17) for convenience, 

  
2

2

2

1
sin( )o

d u dp
B u

dy dx




 
              (4.23) 

  
1

0
dp

dy
 

             (4.24) 

Since the flow is Couette then pressure gradient is taken to be zero i.e. 0
dp

dx
  in 

equation (4.23).  If we let l be the characteristic length, the dimensionless 

equation (4.23) reverts back to the non-dimensionless form and define the 

dimensionless quantities as

 

                       
x

x
l


 ,     

y
y

l


 ,   

2

2

p l
p




     , 

u l
u




             (4.25) 

Substituting the quantities of equation  (4.25) into equation  (4.23) gives 

2
2 2

2
sin ( ) 0o

d u
B u

dy





 

           (4.26)

 

or           

 
2

2

2
0

d u
M u

dy
                 (4.27) 

where sinM M   is the Hartmann number. 

Solving the second order differential equation (4.27) by using Sumudu Transform  

method and by first evaluating  initial  conditions  with  the  help of boundary  

conditions  given in equation  (4.22).  Equation (4.27) can be transformed to its 

Sumudu equivalent as 

2

2

( ) (0) (0)
( ) 0

G u y y
M G u

u u


  

                    (4.28) 

Multiplying all through by u2  and on rearranging gives 

2 2( ) (0) (0) ( ) 0G u y uy u M G u                  (4.29) 

or    

2 2( )[1 ] (0) (0)G u M u y uy                            (4.30) 
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Let 1(0)y c  and 2(0)y c   , then equation (4.30) reduces to 

                   

1 2

2
( )

1

c c u
G u

M u




                                                                                   (4.31)
 

Upon inverting, the general solution is given as 

                                             1 2( ) cosh sinhu y c M c M 
                                   

(4.32) 

Using the boundary conditions given in equation (4.22), gives  

1 20 cosh sinhc M c M 
                                     

(4.33) 

                                                  0 1 2cosh sinhU c M c M 
                                

(4.34) 

 On solving equations (4.33) and (4.34),  0
1

2cosh

U
c

M
  and  0

2
sinh

U
c

M
   and 

substituting these into equation (4.32) gives 

                                        0 cosh sinh
( )

2 cosh sinh

U My My
u y

M M

 
  

                                  

(4.35)

                                

 

or 

 
0

( ) sinh[ (1 )]

sinh 2

u y M y

U M




                                                    

(4.36)

                                               

 

 is obtained. 

Equation (4.36) has been solved using Sumudu Transform for the linear differential 

equation with constant coefficients. The constants c1 and c2 obtained shows that, 

the expression for the velocity of fluid particles can be derived in terms of 

hyperbolic functions. Equation (4.36) is then used to draw velocity profiles for 

various Hartmann number and for various angles of inclination. 

Figure 4.1 shows velocity profiles for Hartmann number 0.5M    ,  1.5M    and  

2.5M     for α =  15o as the angle of inclination. 
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Figure 4.1 Couette flow velocity profile for various Hartmann number and α = 15o 

 

Figure 4.2 shows velocity profiles for Hartmann number  0.5M    ,  1.5M    

and  2.5M     for α  = 30o as the angle of inclination. 

 

 

Figure 4.2 Couette flow velocity profile for various Hartmann number and α = 30o 

 

Figure 4.3 shows velocity profiles for Hartmann number  0.5M    ,  1.5M    and  

2.5M     for α  = 45o as the angle of inclination. 
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Figure 4.3 Couette flow velocity profile for various Hartmann number and α = 

45o 

 

Figures 4.1 to 4.3 has been drawn for Hartmann numbers 0.5M    ,  1.5M    

and 2.5M   and angle of inclinations of α = 15o, α = 30o and   α = 45o . The 

three figures show that, increase in magnetic field strength and magnetic 

inclinations results into decreases in the Couette flow velocity profiles. 

 

4.2. Numerical methods 

 

Many real-life problems modeled mathematically do not have analytical 

s o l u t i o n s . Hence, MHD being a scientific research area of study leads to real life 

problems requiring the use of numerical techniques to accomplish non-analytical 

solutions.   Second order partial differential equations govern many of the real-life 

physical phenomena of such nature.  The numerical analysis part which has been 

most changed so far, is the solution of partial differential equations by difference 

methods.  A general and a powerful method of dealing with such kind of second 

order partial differential equations is the finite difference method. 
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4.2.1    Finite difference method 

 

This method uses finite difference codes/solvers that take low computational 

memory and is easy to program and modify. It involves the study of (time-

dependent) partial differential equations, whose solutions vary both in time and in 

space. There are a lot of interesting problems that cannot be solved by analytical 

methods.  It is thus advantageous to use finite difference method in MHD 

problems.  Equations arising in MHD include Maxwell’s field equations, heat and 

momentum equat ions  and the Newton’s law of motion if coupled with Navier-

Stokes equations.   Three important properties of finite difference equations must 

be considered for computational purposes, namely; 

•Consistency: A difference equation is said to be consistent or compatible with 

partial differential equation when its truncation error approaches zero. This is 

equivalent to Truncation error → 0 as mesh size → 0. 

•Stability: A numerical scheme is stable i f  errors from any source (truncation 

errors and round off errors in measurements) are not permitted to grow as the 

calculation proceeds or magnified at each iteration. The problem of stability i s  

very important in numerical analysis.   There are two methods for checking the 

stability of linear difference equations.  The first one is referred to as Fourier 

approach or von Neumann which assumes the boundary conditions are periodic.  

The Fourier method is based on decomposing the numerical solutions into Fourier 

harmonics on the spatial grid.  Although this method does not capture the 

influence of boundary condi t ions , it is easy to formulate and usually accurate 

enough to provide practical stability cri teria.  The second one is called the 

matrix method which takes care of contributions to the error from the boundary. 

•Convergence: A scheme is said to be convergent if the solution to the finite 

difference equation  approaches  the exact solution to the partial  differential 

equation with the same initial and boundary  conditions as the mesh size 

approaches zero. Lax on his equivalence theorem showed that, u n d e r  

appropriate conditions a consistent scheme is convergent if and only if it is 

stable.   It  states  that,  “ given a properly posed linear  initial  value  problem  

and  a finite  difference approximation to  it  that satisfies the consistency 
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condition,  stability  is the necessary and sufficient condition for convergence” 

(Richtmeyer  and Morton,  1967). 

The issue of accuracy of a numerical scheme is not very relevant on its own right. 

A consistent scheme can be made increasingly accurate by decreasing the time 

and spatial steps.  What matters is the cost (coding effort, memory requirements 

and computational requirements) of the accuracy. 

The  use of the  finite difference techniques  for the  solution  of partial  differential 

equations  has three  step process namely:  

1. The partial differential equations are approximated by a set of linear 

equations relating to the values of the functions at each mesh point. 

2. The set of the algebraic equations, generated in the first must be solved. 

3. An iteration p r o c e d u r e  has to be developed which takes into account 

the non- linear characters of  the equation. 

Solutions of the  finite difference equation  (FDE)  requires suitable  techniques  to 

advance  the  transient fluid motion  through  time.  The transient terms  in the  

equations are dropped  and the problem is simplified and reduced to just 

determining  the steady  state  solution  if the  transient solutions  are not  required.   

In this  study,  the partial  differential  equations  governing  the  flow are replaced  

by a set of difference equations and the governing equations together  with initial 

and boundary  conditions imposed (depending  on the problem considered) are 

properly posed, (i.e.  their  solution exists, is unique and depends on the given 

conditions)  thus  any finite difference set of equations  to them  which satisfies 

consistency  conditions  and  is stable  ensure that  the method  is convergent.  In 

order to solve the system of finite difference equations, a computer program will 

be used for the iterative scheme. To approximate the differential equation by a set 

of finite difference equations we first require to define a suitable mesh.  One of the 

first steps in using finite difference methods is to replace the continuous problem 

domain by a difference mesh or a grid. In the finite-difference method, the partial 

derivatives in the governing equations are discretized directly by solving the 

equations on a discrete set of points. 
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4.2.2  Discretization techniques 

 

To solve partial differential equations, one must discretize the partial 

derivatives.  To give an explicit  relation  between  the  partial  derivatives  in 

equations  and  the  function values at the adjacent nodal points,  a uniform mesh 

which involves subdividing the rectangular region of interest into uniform 

rectangular elements is used, centered about  mesh point whose coordinates are 

denoted by integer variables.  For the steady non-linear coupled ordinary 

d i f f e r en t i a l  equations wi th  initial and boundary c o n d i t i o n s , they will be 

solved by employing the centered finite difference scheme. The discretization will 

provide a useful and consistent approximation to the solutions in dimensionless 

governing equations. 

Let the solution in 2-D of the differential equation be designated as u(x, y), where 

the two independent variables are x and  y.  On specifying each of the independent 

variables as grid as 

         

         

     

the partial  derivatives  of u can be approximated by finite difference expressions 

in the x and y directions.  

 
Forward difference        

1, ,

2
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2 2
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x x
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          Central difference  
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u uu
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x x
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 

 


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 
  

 

 

From above, the forward difference equations are accurate only to first order in 

the step size ∆x, whereas the central difference equations are accurate to second 

order in the step size ∆x.
 

For a function of two variables say x and  t the definition  of partial  derivatives 
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with respect to time t and with respect to x respectively are given as 

0

0

( , ) ( , )
( , ) lim |

( , ) ( , )
( , ) lim |

x fixed
t

t fixed
x

u u x t t u x t
x t

t t

u u x x t u x t
x t

x x

 

 

   


 

   


   

and assuming that  there are two independent variables y and t then we simply 

relabel t and y and everything stated  above will remain true. For discretization 

purposes, the standard notation f o r  finite difference by letting ∆x = h and     

∆t = k for a function of two variables x and t is used.  These step sizes will then 

be used to discretize the continuous time and space intervals: 

  ]  

and 

  ] ] 

where  

,    

and 

,  

For a function of two spatial variables and time variable u= u(x, y, t), then 

,
0

,
0

,
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Let ∆x = h,  ∆t = k    or ∆x = h and ∆y = k for the case of 2-dimensional, 

using the forward difference in time step to approximate ut and a centered  

difference in space step and time step to approximate  xxu  ,  ttu  and  yyu  yield 

the expression:-  

Centered difference in time  
, 1 ,

( , ) ( )
n m n m

n m

u uu
x t k

t k
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Centered difference in space  
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2 2
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( , ) ( )

n m n m n m

n m

u u uu
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Forward difference in time  
2

, 1 , , 1 2

2 2
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n m n m n m

n m

u u uu
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t k
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Centered difference in space 
2
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2 2
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( , ) ( )
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u u uu
x y k

y k

  
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4.2.3 Thomas algorithm 

 

The Thomas algori thm, (Douglas & Randall, 1999) is an efficient way of 

solving tri-diagonal m a t r i x  s y s t e m s .   If L  is a lower triangular matrix  and  

U is an  upper triangular matrix,  Thomas  algorithm  is based  on LU  

decomposition  in which the matrix  system Mx = r is rewritten  as LU x = r. The 

system can be efficiently solved by setting Ux = ρ and then solving first Lρ = r 

for ρ and then  Ux = ρ for x. The Thomas algorithm consists of two steps.  

Step one involves decomposing the matrix into M = LU and solving Lρ = r and 

this is accomplished in a single downwards sweep, taking us straight from Mx  = 

r to Ux = ρ.  In the second step, the equation Ux = ρ is solved for x in an 

upwards sweep. 

Thomas algorithm is used because it is fast and because tri-diagonal matrices often 

occur in practice.  The condition for the algorithm to be stable is  i i ib a c   

for all i.  The matrix problems which result from the discretisation of partial 

differential  equations near l y all satisfy this criterion.   If the algorithm i s  

numerically unstable then one must rearrange the equations by pivoting.   

Standard LU decomposition algorithms for full or banded matrices include 

pivoting, though one has to first check to make sure no mistake has been made 

when formulating the problem. 

The Thomas’ algorithm MATLAB code used in this work is given as:-                                
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(i)-d(i-1 /b(i); 

 

 

 

 

 

 

 

4.2.4 Numerical methods on steady MHD Poiseuille fluid flow  

       between  two infinite parallel porous plates 

 

Consider laminar electrically conducting viscous, steady,  incompressible fluid 

moving between  two  infinite  parallel  plates  both  of which are  kept  at  a 

constant  distance 2h between  them.   The upper plate and the lower plate are 

kept stationary.  The fluid is acted upon by a constant pressure gradient which 

makes this flow a plane Poiseuille flow.  Let the  laminar  MHD steady  

incompressible fluid between the  two infinite parallel porous plates  be under  the 

action  of an external  uniform transverse magnetic  field applied transverse  to the 

flow direction.  Both the lower plate and the upper  plates  are  assumed  porous  

and  the  fluid enters  the  flow region through  the lower plate and leaves through  

the upper plate with constant velocity vo. 

For zero displacement and Hall currents, Maxwell’s equations together with Ohms 

law and Law of magnetic conservation are given in equations (1.21) to (1.24). 

The governing equations for the flow of incompressible Newtonian fluid used in 

this study are the continuity equation and the momentum equations which are 

given in equations (4.14) and (4.15). 

For the present problem, the following assumptions are made: 

1. The fluid flow is incompressible, 

2.  the fluid flow is steady hence the flow variables do not depend on time, 

3. the fluid is electrically neutral  i.e. there is no surplus electrical charge                               
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distribution present in the fluid, 

4. the only body forces are Lorentz forces, 

5. the fluid flow is unidirectional  in x - axis, the channel formed by the two 

plates, 

6. the flow is laminar  i.e. the flow paths  of individual particles  of the fluid 

do not cross those  of neighboring  particles,  hence, making  it  possible to 

follow the path/motion of every individual  particle. 

The equation of continuity and the momentum eq u a t i on s  in two dimensions 

together with the above assumptions r e d u c e  equations (4.14) and (4.15) to the 

form:- 

0
v

y




             (4.37)

 

2

2

1
0 xFp u

x y


 

 
   

             (4.38)

 

1
0

p

y


 

             (4.39) 

From  equation  (4.37),  it implies that  v =  constant  or v   =  0 and  hence, flow 

geometry implies that  v cannot be a constant and therefore, we choose v = 0. 

Pressure does not depend on y from equation (4.39), Hence, p is a function of x 

alone. 

Equations (4.38) can be non-dimensionalized using the characteristic velocity U , 

the body length L by denoting the dimensional quantities given as 

x
x

L
 , 

y
y

L
 , 

2

2

pL
p


 , 

uL
u


       (4.40) 

And subsequently solving subject to boundary conditions 0u   when y L  , where 

bars denote dimensionless quantities.  

Using assumptions (3), (4) and (5) Bz  =  Bx = 0 and 0u w   so that,  ˆ
xv u i  and 

0
ˆB B j  where oB  is the magnetic field strength component assumed to be applied to 

a direction perpendicular to the fluid motion in ỹ-direction, î and ĵ are unit vectors 

in the x and y - directions respectively.  Note that, ˆ ˆ ˆ[ ]x o oF ui B j B j   , from 
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which 2x
o

F
B u



 
  . Using the dimensionless quantities given in equation 

(4.30), equation (4.38) reduces to  

2
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1
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p u
B u

x y




 

 
   
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      (4.41) 

or 

2
2

02

1u p
B u

y x



 

 
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 
       (4.42) 

or 

2
2

02

1
(sin )

d u dp
B u

dy dx




 
        (4.43) 

where  ordinary derivatives instead of partial derivatives has been taken and  is the 

angle between V and B which means that, the two fields can be assessed at any angle 

 for .  

Differentiating equation (4.43) with respect to x, 
2

2
0

d p

dx
   is obtained and on 

integration this  
dp

c
dx

    (a constant) is obtained. Dropping the bars (for 

convenience) we get 
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B u

dy dx
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

 
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 or  

2
2

2

1
0

d u dp
M u

dy dx
        (4.44) 

where sinM M   is the Hartmann number. 

Equation (4.44) can be rewritten as  

2
2

2
0

d u
M u C

dy
         (4.45) 

whose solution subject to boundary conditions 0u  ,when 1y    is  

2

1 cosh
1

cos

u My

C M M

 
  

         (4.46) 

by method  of solution of differential equation  with constant coefficients.

 
Now consider the  MHD steady, laminar  flow of viscous incompressible fluid be- 
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tween two  infinite parallel  porous plates  separated  by a distance  2h and  x- axis 

be taken  in the  middle of the  channel  parallel  to the  direction  of flow, the  y 

direction perpendicular  to the  flow, and the  width  of the  plates  parallel  to the  

z – direction. The word infinite here means that t h e  width of the plates is large 

compared with h and hence we treat the flow to be two dimensional.  Take also 

the velocity component w to be zero everywhere and u as function of y alone. 

Since both plates have very fine holes distributed uniformly over the entire surface 

of the  plates  through  which the  fluid can flow freely and  continuously,  the  fluid 

will enter the flow region through  the lower plate and leave through  the upper 

plate with constant characteristic velocity vo along y -direction.  For the present 

steady flow the equation of continuity reduces to 0
du

dy
 , so that v does not vary 

with y.  Similarly, the x and y momentum equations are given by  
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2
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u p u
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y x y
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            (4.47) 
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
               (4.48) 

Equation   (4.48)  shows that   pressure  does  not  depend  on y  and  therefore  the 

equation  collapses as p is a function of x alone and so equation  (4.47) reduces to 

2

2 o

dp d u du
v

dx dy dy
 
 

  
 

         (4.49) 

Differentiating equation (4.49) with respect to x , we obtain 
2

2
0

d p

dx
  or  ( ) 0

d dp

dx dx
 . 

Integrating, 
dp

P
dx

   (a constant-say), where the negative sign has been taken to 

show pressure decreases as x increases. Substituting this, equation (4.49) now 

becomes 

2

2

ovd u du P

dy dy 
             (4.50) 

If the fluid is subjected to uniform transverse magnetic forces, equation (4.50) can 

be modeled by adding the term (−M 2u) to yield 
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2
2

2
0ovd u du P

M u
dy dy 

                (4.51) 

`Let equation (4.51) be of the form 

2
2

2
0

d u du
A M u B

dy dy
               (4.52) 

where ov
A


  and 

P
B


  are arbitrary constants of the fluid to be determined. 

The differential equation (4.52) with initial and boundary conditions  

                           0; 1u y                            (4.53)  

is to b e  solved by using finite difference approach.  In this method, derivatives 

occurring in the generated differential equations are replaced by their finite 

differences. The resultant linear equation has been solved by central difference 

approximation. Central difference approximations are used because they are more 

accurate than forward and backward differences. 

The numerical computation of the generated linearized system of equations based 

on the step size and results of these are achieved with the aid of MATLAB 

application software.  Representing the step size by k, the finite difference equation 

corresponding to equation (4.52) is given as 

, 1 , , 1 , 1 , 1 2

,2

2
0

2

i j i j i j i j i j

i j

U U U U U
A M U B

k k

     
                      (4.54) 

where i and  j are for number  ∆t and  ∆y increments  respectively.   The block 

tri- diagonal system is solved using Thomas algorithm.  All calculations have been 

carried out for A = 1, B = 2 and k = 0.25. Figure 4.4 shows Poiseuille velocity 

profiles for Hartmann number M ∗ = 0.5 , M ∗ = 1.5 and M ∗ = 2.5 for α = 15o as 

the angle of inclination. 
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Figure 4.4. Poiseuille flow velocity profile for various Hartmann number and      

α = 15o 

 

Figure 4.5 shqows Poiseuille velocity profiles for Hartmann number M ∗ = 0.5 ,   

M ∗ = 1.5 and M ∗ =2.5 for α = 30o as the angle of inclination. 
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Figure 4.5 Poiseuille flow velocity profile for various Hartmann number and α = 30o 

 

Figure 4.6 shows Poiseuille velocity profiles for Hartmann number M ∗ = 0.5,   

M ∗ = 1.5 and M ∗ = 2.5 for α = 45o as the angle of 

inclination. 

 

 



 

 

79 

 

 

 

 Figure 4.6 Poiseuille flow velocity profile for various Hartmann number and         

α = 45o  

 

Figures 4.4 to 4.6 show how numerical calculations have been performed for 

velocity profiles in Poiseuille flow.  The results are  presented g r a p h i c a l l y  

for  various Hartmann numbers and different angles of inclinations.  The results 

show how velocity of the fluid changes with varied Hartmann numbers.  An 

increase in the Hartmann number from 0.5M    to 2.5M    leads to a 

decrease in velocity distribution in Poiseuille flow. This is due to Lorentz force 

generated by the application of constant transverse magnetic field which offers 

resistance, h e n c e , opposing the fluid motion and hence decreasing the flow. 

 

4.2.5     Numerical methods on unsteady incompressible MHD Couette  

     flow w i t h  heat transfer between two parallel porous plates 

The present research obtains the results of a better unders tanding  of the basic 

heat transfer associated with continuously moving boundary under the influence 

of applied magnetic field and providing insight into process in the systems 

related to manufacturing applications.  Problems of fluid flow and heat transfer 
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involving boundary o f  fluid in a passage can be found in many manufacturing 

applications. 

In the  present problem, unsteady M H D  Couette l am i n a r  flow of viscous 

incompressible fluid between two infinite parallel porous plates in presence of 

uniform magnetic field is studied.   The upper and lower plates are maintained 

at two different but constant temperatures T2 and T1 respectively, with T2 > T1.  

The upper plate is moving with constant velocity Uo while the lower plate is 

kept stationary. A sudden uniform and  a constant  pressure  gradient,  an 

external  uniform magnetic  field with magnetic flux density vector Bo is applied 

in the positive y- direction which is assumed to be also the total  magnetic  field. 

The flow is subjected to a uniform suction from above and uniform injection 

from below at t = 0.  The two parallel non-conducting plates are at a distance 2h 

apart and the flow is in the x -axis direction through the central line of the 

channel and y axis normal to it.  This means that, the plates of the channels  a r e  

at y = ±h and the relative velocity between the two plates is 2Uo.  The flow is 

through a porous medium where the Darcy model is assumed which accounts for 

the drag exerted by the porous medium (Khaled, 2003). From the nature of 

the problem,
( ) ( )

0
x z

   
 

 
, for all quantities except pressure gradient which is 

assumed constant.  

The equations of motion are the continuity equation given in equation (4.14) and 

the Navier-Stokes equation in presence of Lorentz force and absence of body 

forces per unit mass of the fluid given in equation (4.15). The general velocity 

vector of the fluid is given in general as 

                                                                        0( , ) ( , )v y t u y t i v j                       (4.55)                          

The Hall term will be ignored here in applying Ohm’s law as it has no marked 

effect for small and moderate values of the magnetic field. Similarly, the induced 

magnetic field will be neglected by assuming a very small magnetic Reynolds 

number.  Because of the conservation of mass, i.e. 0V   and the presence of 

uniform suction and velocity component v(y, t) is assumed to have a constant 

value vo. From the equation of continuity, it is observed that,  ,u v   and w   are 
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the velocity components in x, y and z- directions respectively.   Then this 

implies  0v w    and 0u   , then the continuity equation  is satisfied.  With 

this in mind,  u  is independent of  x  and this makes [( ) ]V V in the Navier-

stokes equation to vanish. 

In order to derive the governing equations of the problem, the following 

assumptions are made-: 

1. The fluid is finitely conducting, 

2.  the fluid flow is incompressible, 

3. the fluid flow is unsteady  hence the flow variables depend on time, 

4. the component of the magnetic force in the direction of x-axis, 

5.  the magnetic  field is along y-direction, 

6.  the fluid is electrically neutral  i.e. there is no surplus electrical charge 

distribution present in the fluid, 

7. the only body forces present are Lorentz forces, 

8. the fluid flow is unidirectional  in x - axis ,  

9. the flow is laminar,   

10.  the viscous dissipation  and joule heat  are neglected, 

11.  the Hall effect and polarization effect are negligible. 

Under the above assumptions the fluid motion is governed by momentum equation 

2
2

2 o

u dP u
u B u

t dx y K


  

   
     

             (4.56)

 

while temperature distribution is governed by the energy equation 
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  
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          (4.57) 

where K  is the Darcy permeability  and T   is the dimensionless temperature. 

On introduction of angle of inclination α equation (4.56) reduces to 

2
2 2

2
sin ( )o

u dP u
u B u

t dx y K


   

   
     

   
     (4.58) 

where   is the angle between V and B.  This means that, both  fields can be 

assessed at any angle α for 0    . 

The origin is taken at the centre of the channel while the coordinate  x  and y - 
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axes are parallel and perpendicular to the channel walls respectively.   The fluid 

motion starts a t  rest at t = 0.  With the no-slip condition at the plates means 

that u = 0 at y = −h and u = Uo at y = h.  Also assume that t h e  initial 

temperature of the fluid is T1. Hence, the initial and boundary conditions of 

temperature are 

T = T1   at   t = 0 , T = T1   at   y = −h, t > 0  and T = T2   at  y = h, t > 0(4.59) 

 The momentum equation (4.58) now reduces to the form 

2
2 2

0 2
sin ( )o

u u dP u
v u B u

t y dx y K


   

      
       

      
 (4.60) 

Let l be the characteristic length.   To solve equations (4.60) and (4.57) subject to 

the above named boundary conditions by introducing the following 

dimensionless variables and parameters-: 

2

2 1

, , , , ,o o

o

tl T T
x xl y yl u uU P P U t T

U T T


 
         


                                     (4.61) 

2 2 2

, Pr , Re , ,
po o o

o

CB l U l v l
Ha S M

k U K

 

 
                                        (4.62) 

In terms of these dimensionless quantities, equations (4.60) and (4.57) may be 

written,  after dropping all primes for convenience as 

2
2

2

1 1

Re Re Re

u u dP u M
S u G u

t y dx y

  
     

  
                                  (4.63) 

2

2

1

Pr Re

T T T
S

t y y

  
 

  
                                    (4.64) 

of equations (4.63) and (4.64)  are assumed  to  be of the  form u(y, t) and  T (y, t). 

The initial and boundary conditions for the velocity are respectively: 

             t ≤ 0 : u = 0, t > 0 : u = 0, y = −1, u = 1, y = 1            (4.65) 

and the initial and boundary  conditions for the temperature are given by 

            t ≤ 0 : T = 0, t > 0 : T = 1, y = +1, T = 0, y = −1                             (4.66)                           

The  linear  differential  equations  (4.63) and  (4.64) are  solved numerically  using 

finite difference approach under the initial and boundary  conditions (4.65) and 

(4.66) so as to determine  the velocity and temperature distributions for different 

values of the parameters M , S and α.  In this technique, derivatives occurring in 

the generated differential equations have to be replaced by their finite difference 
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approximations. The Crank-Nicolson implicit method is used at two successive time 

levels.   Here, the  finite difference equations  relating  to the  variables  are 

obtained  by writing  the equations  at  the  midpoint  of the  computational cell 

and  subsequently  replacing the  different  terms  by their  second order  central  

difference approximation in the  y- direction.   On the other hand, the diffusion 

terms are replaced by the average of the central differences at two successive 

time-levels.  The resulting block tri-diagonal system is solved using Thomas-

algorithm. The computational domain is 0 < t < and  −1 <  y  <  1 which is 

divided  into  intervals  with  step  sizes ∆t = 0.0001 and ∆y = 0.005 for time and 

space, respectively.  When smaller step sizes are used, they do not show 

significant change in the results and convergence of the scheme is assumed when 

every one of u,  T , and  their  gradients  for the  last  two  approximations differ 

from unity  by less than  106 for all values of y in −1 < y < 1 at every time step.  

All calculations have been carried out for  5
dP

dx
  , P r = 1 and Re = 1 so that  

we can determine  the velocity and temperature distribution for different values 

of M , S, G∗ and  .  Equations (4.63) and (4.64) in finite difference form are 

expressed respectively as 

11 14 4 4 7 4

1 11
(1.0 10 ) (2.5 10 ) (1.0 10 ( 5.0 10 1.0 10 ))

jj j j

i i ii
Suu u u

     

 
           

4 9 9 2 7 4 8

1
(1.5 10 5.0 10 5.0 10 ) (5.0 10 1.0 10 ) 2.5 10

j j

i i
M G Su u

     


             

                                                         and  

11 14 4 4 7 4

1 11
(1.0 10 ) (2.5 10 ) (1.0 10 ( 5.0 10 1.0 10 ))

j jj j

i i ii
S TT uT T

     

 
           

4 7 4

1
(1.5 10 ) (5.0 10 1.0 10 )

j j

i i
ST T

  


     

 
 

The numerical computation generated linearized system of equations based  on our 

step  sizes and  results  of these  are  achieved  with  the  aid  of MATLAB  

application software.  Eight approximations have been used in this study and 

have satisfied the convergence criteria for all ranges of the parameters used here.  

The velocity distribution for various values of M , S, Hartmann numbers G∗ = 1,  

G∗ = 4 and G∗ = 6 and angles of inclinations  α = 30o and α = 60o are 

presented  on the tables 4.1 to 4.5.
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Table 4.1 Couette  velocity distribution for M = 1 and S = 1 for various Hartmann number 

 

 

Ha α J u(y) × 10−4 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

 

 

1 

 

1 

 

30
o
 

 

30o 

2 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 

6 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 

 

60
o
 

60o 

2 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 1.2400 

6 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 

 

4 

 

 

4 

 

30
o
 

 

30o 

2 1.2396 1.2399 1.2399 1.2399 1.2399 1.2399 1.2399 1.2399 1.2399 

6 1.2496 1.2498 1.2498 1.2498 1.2498 1.2498 1.2498 1.2498 1.2498 

 

60
o
 

60o 

2 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 

6 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 

 

6 

 

 

6 

 

30
o
 

 

30o 

2 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 

6 1.2497 1.2497 1.2497 1.2497 1.2497 1.2497 1.2497 1.2497 1.2497 

 

60
o
 

60o 

2 1.2392 1.2392 1.2392 1.2392 1.2392 1.2392 1.2392 1.2392 1.2392 

6 1.2491 1.2491 1.2491 1.2491 1.2491 1.2491 1.2491 1.2491 1.2491 
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Table 4.2 Couette  velocity distribution for M = 2 and S = 0 for various Hartmann number 

 

 

Ha α J u(y) 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

 

 

1 

 

1 

 

30
o
 

 

30o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 

 

60
o
 

60o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 

 

4 

 

 

4 

 

30
o
 

 

30o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 

 

60
o
 

60o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 

 

6 

 

 

6 

 

30
o
 

 

30o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 

 

60
o
 

60o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 
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Table 4.3. Couette velocity distribution for  M = 0 and S = 0 for various for various Hartmann number 

 

Ha α J u(y) 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

 

 

1 

 

1 

 

30
o
 

 

30o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 

 

60
o
 

60o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 0.4086 

 

4 

 

 

4 

 

30
o
 

 

30o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 

 

60
o
 

60o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 0.4084 

 

6 

 

 

6 

 

30
o
 

 

30o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 0.4085 

 

60
o
 

60o 

2 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 0.0019 

6 0.4083 0.4083 0.4083 0.4083 0.4083 0.4083 0.4083 0.4083 0.4083 
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Table 4.4 Couette  velocity distribution for M = 2 and S = 1 for various Hartmann number 

Ha α J u(y) × 10−4 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

 

 

 

1 

 

 

1 

 

30
o
 

 

 

30o 

2 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 

4 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 

6 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 

 

60
o
 

 

 

60o 

2 1.2399 1.2399 1.2399 1.2399 1.2399 1.2399 1.2399 1.2399 1.2399 

4 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 

6 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 1.2499 

 

 

 

4 

 

 

 

4 

 

30
o
 

 

 

30o 

2 1.2398 1.2398 1.2398 1.2398 1.2398 1.2398 1.2398 1.2398 1.2398 

4 1.2494 1.2494 1.2494 1.2494 1.2494 1.2494 1.2494 1.2494 1.2494 

6 1.2498 1.2498 1.2498 1.2498 1.2498 1.2498 1.2498 1.2498 1.2498 

 

60
o
 

 

 

60o 

2 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 1.2396 

4 1.2492 1.2492 1.2492 1.2492 1.2492 1.2492 1.2492 1.2492 1.2492 

6 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 1.2495 

 

 

6 

 

 

 

 

6 

 

30
o
 

 

 

30o 

2 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 1.2397 

4 1.2493 1.2493 1.2493 1.2493 1.2493 1.2493 1.2493 1.2493 1.2493 

6 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 1.2496 

 

 

 

60o 

2 1.2389 1.2389 1.2389 1.2389 1.2389 1.2389 1.2389 1.2389 1.2389 

4 1.2484 1.2484 1.2484 1.2484 1.2484 1.2484 1.2484 1.2484 1.2484 
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Table 4.5 Couette  velocity distribution for M = 5 and S = 2 for various Hartmann number 

Ha α J u(y) × 10−4 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

 

 

 

1 

 

 

1 

 

30
o
 

 

 

30o 

2 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

4 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

6 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

 

60
o
 

 

 

60o 

2 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

4 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

6 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

 

 

 

4 

 

 

 

4 

 

30
o
 

 

 

30o 

2 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

4 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

6 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 1.2019 

 

60
o
 

 

 

60o 

2 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 

4 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 

6 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 

 

 

6 

 

 

 

 

6 

 

30
o
 

 

 

30o 

2 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 

4 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 

6 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 1.2017 

 

 

2 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 

4 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 1.2014 
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Tables 4.1 to 4.5 shows effect of porosity parameter M and suction/injection 

parameter S on the time development of velocity u with increase in Hartmann 

number G∗. It is evident that, increase in Hartmann number decreases the 

velocity u and its steady state time with increase in the angles of inclination.  

The velocity component u reaches the steady  state  monotonically  with time in 

table  4.1 when are evaluated at  M  = 1 and  S  = 1.  When  S  = 0 (suction  

suppressed),  increasing  the  porosity parameter M  has no marked  effect on 

velocity component  u as shown on table  4.2 and 4.3. 

From  table  4.1 and  table  4.4, increase in porosity  parameter M  results  into de- 

crease in velocity  u  with  higher  values  of Hartmann number  though  this  

velocity reaches the steady state monotonically with time.  In table 4.5, increasing 

the suction decreases the  velocity u and  this  reaches the  steady  state  

monotonically  with time and  this  is due to the  convection of the  fluid from 

regions in the  lower half to the centre of the channel which has high fluid 

speed. 

The temperature distribution for S = 1 and S = 2 for various time t are presented 

on the tables 4.6 and 4.7. 
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                                         Table 4.6. Couette  temperature distribution for S = 1 at different values of y for various time t 

 

 

 T (y) 

j -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

0 8.1654e-167 1.2898e-148 2.0375e-130 3.2184e-112 5.0839e-940 8.0307e-76 1.2687e-57 2.0038e-39 3.1653e-21 

2 1.1256e-161 1.4034e-143 1.6949e-125 1.9635e-107 2.1485e-89 2.1639e-71 1.9106e-53 1.3245e-35 5.0345e-18 

4 2.5780e-157 2.5361e-139 2.3408e-121 1.9875e-103 1.5051e-85 9.6518e-68 4.7532e-50 1.4399 e-32 1.3015e-15 

6 2.3548e-153 1.8270e-135 1.2881e-117 8.01106e-100 4.1947e-82 1.7107e-64 4.6892e-47 6.1841e-30 1.3173e-13 
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                                  Table 4.7. Couette  temperature distribution for S = 2 at different values of y for various time t 

 

 

 T (y) 

j -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 

0 -2.1290e-

111 

-2.3408e-99 -2.5738e-87 -2.8299e-75 -3.1115e-63 -3.4211e-51 -3.7616e-39 -4.1359e-27 -4.5475e-15 

2 -5.9277e-

107 

-5.1474e-95 -4.3307e-83 -3.4957e-71 -2.6663e-59 -1.8733e-47 -1.1556e-35 -5.6185e-24 -1.5223e-12 

4 -2.7108e-

103 

-1.8557e-91 -1.1919e-79 -7.0416e-68 -3.7100e-56 -1.6550e-44 -5.6683e-33 -1.1941e-21 -7.5451e-11 

6 -4.8870e-

100 

-2.6327e-88 -1.2880e-76 -5.5519e-65 -2.0120e-53 -5.6636e-42 -1.0661e-30 -9.5493e-20 1.3486e-9 
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Tables 4.6 and 4.7 shows the effect of suction/injection parameter S on the time t 

development of temperature T. Increasing S decreases the temperature at the 

centre of the channel for all values of t.  This fact is true and its due to the 

influence of convection in the pumping of the fluid from the cold lower half 

towards the centre of the channel.  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 
 

5.1  Conclusions 

In this thesis steady  and unsteady  laminar  viscous MHD fluid flow under  the  

influence of transverse  magnetic  field is studied  for both  Poisseuille flow and 

Couette  flow and the resultant partial  differential equations  solved analytically 

or numerically. Laminar steady Couette  viscous incompressible fluid between two 

infinite parallel plates  when the  upper  plate  is moving with  constant  velocity 

and  the  lower plate is held stationary under  the influence of transverse  magnetic  

field is discussed.  The resulting governing partial differential equations were 

solved analytically by Sumudu Transform for the linear differential equation with 

constant coefficients. The analysis of this showed that, the velocity profile 

decreases as the Hartmann number and magnetic inclination increases.  This 

approach can be used to obtain solutions of ordinary differential equations in 

Astronomy, Physics and in controlling engineering problems. 

The motion of two dimensional steady Poiseuille laminar flow of a viscous MHD 

incompressible fluid between two infinite parallel porous plates under the 

influence of uniform transverse magnetic field and with constant pressure gradient 

was examined. Both the lower plate and the upper plates were assumed porous 

where the f l u i d  e n t e r e d  the flow region through the lower plate and left 

through the upper plate with constant velocity.  The resulting coupled differential 

equations were solved numerically by using finite difference approach.  The 

resulting block tri-diagonal system was solved using Thomas-algorithm and the 

velocity profiles obtained expressed in terms of Hartmann number.   The results 

showed that, velocity of the fluid changes with varied Hartmann numbers.  An 

increase in the Hartmann number leads to a decrease in velocity distribution. 

This is due to Lorentz force generated by the application of  constant transverse 

magnetic field which offers resistance opposing the fluid motion and hence 

decreasing the flow. 
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Unsteady MHD Couette laminar flow of viscous incompressible fluid between two 

infinite parallel porous plates in presence of uniform magnetic field was studied.  

The upper and lower plates were maintained at two different but constant 

which has high fluid velocity. It was also shown that, increasing the suction 

parameter S decreased the temperature distribution of the channel at the centre 

for all values of t and this was due to convection influence in the pumping action 

of the fluid from the lower half of the channel to the centre. 

The solution of the resulting partial d i f fe ren t ia l  equations can act as a good 

approximation of some practical situations l ike flow meters, heat exchangers and 

pipes that c o n n e c t  such system components.   The cooling of such devices are 

achieved by having the porous surface through w h i c h  a coolant is forced.   The 

coolant can either be a liquid or a gas.  The solutions obtained in this study can 

therefore be of paramount importance f o r  the design of the wall and cooling 

arrangements of such devices. 
 

5.2.     Recommendations 

Effects of various parameters on steady and  unsteady Magnetohydrodynamic 

fluid flow for both Poiseuille and Couette fluid flow under the influence of uniform 

magnetic field has been studied.  The study of variable magnetic field on porous 

and non-porous infinite parallel plates  or channels in which Hartmann number  

in combination  with other parameters may be important for further development 

and analysis.  These may be experimental or theoretical in  approach.  Such 

specific areas of study are:- 

1. Flow involving variable transverse m a g n e t i c  field applied at various 

angles of inclinations for Poiseuille fluid flow on porous channels. 

2. Flow involving variable inclined magnetic f ield  applied to Couette 

f l u i d  flow when both plates are porous with variable suction or 

injection. 

3.  Steady and unsteady MHD flow with variable viscosity and thermal          

conductivity and taking into account viscous dissipation,  Hall effect and 

polarization  effects on the fluid when variable magnetic  field are involved. 

4. Steady MHD incompressible fluid flow in three dimensions with variable 

magnetic field problems. 
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