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ABSTRACT 

Products in many disciplines frequently involve blending two or more ingredients 

together. The design factors in a mixture experiment are the proportions of the 

components of a blend, and the response variables vary as a function of these proportions 

making the total and not the actual quantity of each component. This study investigated 

optimal design for maximal parameter subsystem for second-degree Kronecker model 

mixture experiments put forward by Draper and Pukelsheim. Based on the completeness 

result, the investigations was restricted to weighted centroid designs. In mixture model on 

the simplex an improvement is obtained for a given design in terms of increasing 

symmetry as well as obtaining a larger moment matrix under the Loewner ordering. 

These two criteria constitute the Kiefer design ordering. The parameter subsystem of 

interest K  in the study was maximal parameter subsystem which is a subspace of the 

full parameter space . In this model the full parameter subsystem was not estimable. By 

a proper definition of parameter matrix, a maximal parameter subsystem in the model 

was selected. Canonical unit vectors and the concept of Kronecker products were 

employed to identify the parameter matrices as well as the information matrices. For the 

second degree mixture model with two, three, four and m ingredients, a set of weighted 

centroid designs were obtained for a characterization of the feasible weighted centroid 

designs for the maximal parameter subsystem. After obtaining the feasible weighted 

centroid designs the information matrix of the design was computed. Derivations of A-, 

D- and E-optimal weighted centroid designs were then obtained from the information 

matrix. The optimality criteria A, D and E were used to compute optimal centroid 

designs. The results based on maximal parameter subsystem, second degree mixture 

model with m≥2 ingredient for A-, D- and E-optimal weighted centroid design for K

exist for the choice of the coefficient matrix specifically in this study. Optimal weights 

and values for the weighted centroid designs were numerically computed using Matlab 

software.  
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CHAPTER ONE 

 INTRODUCTION 

1.1   Background Information  

A mixture problem is one where two or more ingredients are mixed together to form a 

product. This product has desirable properties that are of interest to the manufacturers.  

Many practical problems are associated with investigation of a mixture of m  factors, 

assumed to influence the response only through the proportions in which they are blended 

together. The response is a measurable quantity or property of interest on the product. It 

is assumed that, the experimenter can measure quantities of the ingredients in the mixture 

without error. It is further assumed that, the responses are functionally related to the 

product composition and that, by varying the composition through the changing of 

ingredients proportions, the responses will also vary. The experimenter’s motives to 

studying the functional relationship between the response and the controllable variables 

are; 

(i) To determine whether some combination of the factors can be considered best in 

some sense 

(ii) To gain a better understanding of the overall system by studying the roles played 

by the different ingredients. 

The aim of studying the functional relationship between the measured property 

(response) and the controllable variables is to determine the best combination of 

ingredients that yield the desired product.  

Some examples are:  
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(i) Cake formulations using baking powder, shortening, flour, sugar and 

water. 

(ii) Fruit punch consisting of juices from watermelon, pineapple and orange. 

(iii)  Building construction concrete formed by mixing sand, water and 

cement.  

In each of the cases, one or more properties that are desirable are, fluffiness of the cake, 

such that fluffiness is related to the ingredient proportion, the fruitiness flavor of the 

punch, which depends on the percentages of water melon, pineapple and orange that are 

present in the punch, and the hardness or compression strength of the concrete, where the 

hardness is a function of the percentages of cement, sand and water in the mix (Cornell, 

1990).  

1.2    Mixture Experiment 

A mixture experiment is an experiment which involves mixing of proportions of two or 

more components to make different compositions of an end product. Consequently, many 

practical problems are associated with the investigation of mixture ingredients of m 

factors, assumed to influence the response through the proportions in which they are 

blended together. The definitive text by Cornell (1990) lists numerous examples of 

applications of mixture experiments and provides a thorough discussion of both theory 

and practical. Early work was done by Scheffe’ (1958, 1963) who suggested and 

analyzed canonical model forms when the regression function for the expected response 

is a polynomial of degree one, two or three.  
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For mi ...,,1 , let ]1,0[it  be the proportion of ingredient i  in the mixture. We 

assemble the individual components to form the vector of experimental conditions, 

)...,,( 1
 mttt , subject to the simplex restriction  





m

i

it
1

1. …………………………………………………………………………  (1.1) 

Let m

m  )1...,,1(1 , be the unit vector. Thus, the experimental domain is then the 

standard probability simplex mT , represented as; 

}11;]1,0[)...,,({ 1  ttttT m

m

mm  

Under experimental conditions mTt , the experimental response tY , is taken to be a 

scalar random variable. Replications under identical experimental conditions as well as 

responses from distinct experimental conditions are assumed to have equal (unknown) 

variance, 2 and to be uncorrelated. 

An experimental design,   on the experimental domain mT , is a probability measure 

having a finite number of support points. If   assigns weights w1, w2, … to its points of 

support in mT , then the experimenter is directed to draw proportions w1, w2, … of all 

observations under the respective experimental conditions. Let the observed response tY  

be expressed as  )(),( ttYt    , where ),( t  is the expected response and )(t , is 

the error term at t. we assume that for independent observations, the errors, )(t  are 

statistically independent and have mean zero and the same variance. Further we assume 

that, ),( t  can be expressed as a polynomial function in t. 
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A particular polynomial regression model for mixture experiments suggested by Draper 

and Pukelsheim (1998) is the second-degree Kronecker model. Its regression function  

,)...,,(;: 1

2

jim

m

m tttttttTf   mji ...,,1,   with the index pairs (i,j), 

mji 1  ordered lexicographically yields the model equation; 






m

ji
ji

jijiij

m

i

iiit ttttfYE
1,1

2 )()()(  , ……………………………………… (1.2) 

where tY , the response under experimental condition mTt , is taken to be a real valued 

random variable and 
2

)...,,,( 1211

m

mm   an unknown parameter. All observations 

taken in an experiment are assumed to be uncorrelated and to have common unknown 

variance ),0(2  . 

1.3   Statement of the problem  

The study investigates optimal designs in the second-degree Kronecker model for 

mixture experiments and obtained a design with maximum information on the parameter 

subsystem. Since the full parameter subsystem is not estimable, coefficient matrix K   

of interest is chosen to make it estimable subject to the side condition. The full system   

is made estimable by dividing the interacting factors by the total number of interacting 

parameters in the model. This maximum is accomplished through the application of the 

-optimality criteria of a weighted centroid design following the Kiefer Wolfowitz 

equivalence theorem. 
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1.4   Study objectives 

The objectives of the study are; 

1.4.1 General objective  

To obtain optimal weighted centroid designs for secord degree Kronecker model mixture 

experiments. 

1.4.2 Specific objectives  

1. To obtain optimal moment and information matrices for second degree Kronecker 

model for mixture experiments. 

2. To derive D-, A- and E-criteria for optimal weighted centroid design for second-

degree K-model. 

3. To obtain a design with maximum information on the parameter subsystem K     

1.5   Justification  

Since the Kronecker model’s full parameter subsystem 
2m  is not estimable, we 

consider a maximum parameter subsystem K   where the range )(K coincides with the 

span of the regression range }:)({ m ttfX . This formalizes the idea of estimating as 

many parameters as possible. This study is desirable since it helps in identifying the 

optimal design for second-degree Kronecker model mixture experiments. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Introduction    

Mixture experiments were first discussed in Quenouille (1953). Later on, Scheffe’ (1958, 

1963) made a systematic study and laid a strong foundation. Pukelsheim (1993) and 

Gaffke and Heiligers (1996) gave a review of the general design environment on mixture 

experiments. Klein (2004) and Cheng (1995) showed that the class of weighted centroid 

designs is essentially complete for 2m  for the Kiefer ordering. As a consequence, the 

search for optimal designs may be restricted to weighted centroid designs for most 

criteria particularly applied to mixture experiments, Kiefer (1959, 1975, 1978, 1985) and 

Galil and Kiefer (1977). Klein (2004) and Kinyanjui (2007) showed how invariance 

results can be applied to analytical derivations of optimal designs.  

Draper and Pukelsheim (1998) proposed a set of mixture models referred to as K-models. 

They are alternative representation of mixture models based on the Kronecker algebra of 

vectors and matrices. They offer alternative symmetries, compact notations and 

homogeneous in ingredients. 

The first-degree model is; 





m

i

iit ttYE
1

][   ………………………………………………………………… (2.1) 

where tY , the response under experimental condition mTt , is taken to be a real valued 

random variable and 
2

)...,,,( 1211

m

mm   an unknown parameter. All observations 

taken in an experiment are assumed to be uncorrelated and to have common unknown 

variance ),0(2  . 
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For the second-degree model, Draper and Pukelsheim (1998) proposed a representation 

involving the Kronecker square tt  , the m
2
x1 vector consisting of the squares and cross 

products of the components in the lexicographic order of the subscripts. This is referred 

to as Kronecker-model with a Kronecker-polynomial as the regression function given as:  

            
 


m

i

m

j

ijijt ttttYE
1 1

)(][    ……………………………………………… (2.2)    

2.2 Kronecker products 

The Kronecker product approach bases second-degree polynomial regression in m 

variables ),...,( 1
 mttt  on the matrix of all cross products: 























2

21

2

2

212

121

2

1

mmm

m

m

ttttt

ttttt

ttttt

tt









, ……………………………… (2.3) 

rather than reducing them to the Box-hunter minimal set of polynomials 

 ),,,,,( 121

22

1 mmm tttttt  . The benefits enjoyed are;  

(i) That distinct term are repeated appropriately according to the number of times 

they can arise.  

(ii) That transformational rules with a conformable matrix R become simple,  

RttRRtRt  )())((  

(iii)That the approach extends to third degree polynomial regression. 

For a mk   matrix A and a nl  matrix B, their Kronecker product BA  is defined to 

be the mnkl  block matrix  
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BaBa

BaBa

BA

kmk

m







1

111

. ………………………………… (2.4) 

The Kronecker product of a vector ms   and another vector nt   then is simply a 

special case, 

orderhiclexicograpin
njmiji

m

mnts

ts

ts

ts




















,...,1,,...,1

1

)(   . ……………………… (2.5) 

A key property is their product rule  

)()())(( BtAstsBA    .  …………………………… (2.6) 

This has nice implications for transposition, )()()( BABA  , for Moore-Penrose 

inversion, )()()(   BABA  and if possible for regular inversion 

)()()( 111   BABA .  

It is of specific importance that the Kronecker product preserves orthogonality. That is, if 

A and B are individual orthogonal matrices, then their Kronecker product )( BA is also 

an orthogonal matrix. Thus while the matrix tt   assembles the cross products jitt  in an 

mm  array, the Kronecker square tt   arranges the same numbers as a long 12 m  

vector. The transformation with a conformable matrix R simply amounts to

))(()()( ttRRRtRt  . This greatly facilitates our calculations when we now apply 

Kronecker product to response surface models. 

2.3 Kiefer design ordering 

Kiefer design ordering has two steps. The first step is the majorization ordering. The 

second step is an improvement relative to the usual Loewner matrix ordering within the 
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class of exchangeable moment matrices Draper and Pukelsheim (1998).For the second-

degree Kronecker-moment matrix homogeneous in degree four, the moment matrix for 

four factors exhausts all the moments. Given two moment matrices M( ) and M( ) in two 

factors, M( ) M( ) if and only if )()( )2()2(    and )()( 44   . The vertex 

design points 
1 and the overall centroid design 

2  play a special role; they are used to 

generate weighted centroid designs in the following sense; for weights 0, 21   with

121  , the design 
2211   will be called a weighted centroid design. In the 

second-degree mixture model for m 4 ingredients, the set of weighted centroid designs 

}),...,(;...{ 111  mmm  is convex and constitutes a minimal complete class 

for the kiefer ordering. Draper and Pukelsheim (1998) suggested that within the class of 

weighted centroid designs, however, other criteria would be needed to attain further 

improvement, for example, the determinant criteria. 

2.4 Model and notation 

The linear model, 

                                    )(tfy    ……………………………………………… (2.7) 

with a real valued response, y , experimental conditions, t  chosen from the experimental 

domain, mT  , a regression function k

mTf : , an unknown parameter vector, k  

and centered error term,  . In an experiment with sample size n, errors are assumed to be 

uncorrelated with unknown variance 2 . 

The statistical properties of a design   within model (2.7), are reflected by its moment 

matrix 
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)()()()( kNNDdtftfM  


 , where NND(k) denotes the cone of non-negative 

definite kk   matrices. We shall focus our attention to estimating a system of linear 

function, K   of the parameter subsystem k , where the coefficient matrix 








 



2

1m
k

K  is assumed to have full column rank. 

A parameter subsystem, K   with full column rank coefficient matrix, K  is called 

estimable under a given design, , if and only if there is at least one linear unbiased 

estimator for K   under  . A necessary and sufficient condition for estimability of K   

under   is that the range of K  is included in the range of )(M , 

           ))(()( MK  …………………………………………………………… (2.8) 

Thus, any moment matrix )(kNNDA  with )()( AK   is called feasible for K  . 

The set  )()(:)()( AKkNNDAkA   is called the feasibility cone for K  . 

Let M  be a set of moment matrices in model (2.7). We say that a parameter subsystem 

K   is estimable within M  if and only if the set M  and the feasibility cone have a non-

empty intersection. That is,  )(KAM  . 

Let   MrankMrM :max , be the maximal rank within  . The coefficient 

matrices  







 



2

1m
k

K  of parameter subsystems K   that are estimable within M  satisfy  

MrKrank  , necessarily. We now consider the extreme case
MrKrank  , capturing the 

idea of estimating as many parameters as possible, within given set    of moment 

matrices. 
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Definition  

The parameter subsystem K   is called a maximal parameter subsystem for M  if and 

only if; 

 (i)  )(KAM  and  

 (ii) 
MrKrank  . 

In this case, we have 






 


2

1m
rM  and K is called a maximal coefficient matrix for M . 

If the set, M  contains regular moment matrices, that is,
Mrk  , the full parameter vector 

  or any regular transform of it, is a maximal parameter subsystem for  M . 

We henceforth assume the set  M  to be convex. Then there is a matrix  0M  with 

maximal range, that is, )()( 0MM   for all 0M , Pukelsheim (1993). While there 

may be many matrices 0M  with this property, the maximal range )( 0MRm   is 

unique, and we have Mm rR dim . This construction is analogous to that of a minimal 

null space given by LaMotte (1977) 

2.5 Information matrices 

For a design   with moment matrix M, the information matrix for k , with sk

coefficient matrix k of column rank s, is defined to be Ck(M) where the mapping Ck from 

the cone NND(k) into the space sym(s)is given by; 

LLAAC
s

ks ILkL
k


  :

min)( for all A NND (k) with minimum taken relative to the Loewner 

ordering over all left inverses L of K Pukelsheim (1993) 

2.6 Moment and Information matrices 

The information matrix mapping  
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            )(,:min)( sNNDILKLLLAAC s

ks

k    ………………………… (2.9) 

in Gaffke (1987 formula 2). This minimum is taken relative to the Loewner ordering  on 

the space sym(s) of  ss  symmetric matrices, defined by BA   if and only if 

)(sNNDAB  , for )(, ssymBA  . Pukelsheim (1993), showed that this minimum 

exists and that it is unique. The information matrix ))(( MCk  of a design   with 

moment matrix captures the amount of information that   contains on K   (Pukelsheim, 

1993). 

Define  

        
krMKKKL

  1

0 )( ,  …………………………………………………… (2.10) 

with Mrk
K


  being maximal coefficient matrix for the convex set M . Then the 

information matrix mapping )()(: Mk rsymkNNDC   satisfies, 00 LALCk
  for all 

)(kNNDA  with mRA  )( . Hence Ck is a linear mapping on M  and enjoys the 

inversion property KAKCA k
 )(  for all )(kNNDA  with mRA  )( , (Kinyanjui 

2007)  

If K   is an arbitrary parameter subsystem and )(kNNDA  a given matrix, then there is 

always a left inverse )(
~~

ALL   independent of A with mRA  )(  such that

LALACk


~~
)( , Pukelsheim (1993). The linearity of ))(( MCk  as a function of )(M  

entails linearity of ))(( MCk  as a function of . Furthermore, the linearity of Ck is a 

generalization of the obvious identity AAC
kI )(  for all )(kNNDA , which states that 

moment matrices are information matrices for the full parameter vector. Whence, 

information matrices should be understood as modified moment matrices. 
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With the matrix  krML


0  defined in equation (2.10), we now consider the model: 

                              


 )(0 tfLy , ……………………………………………   (2.11) 

with the same experimental domain mT  as model (2.7), the regression function 

Mr

mTfL :0 , parameter vector Mr and moment matrix )(
~
M  of a design  . 

Then, for every design   on mT  with mRM  ))((  , we have  ))(()(
~

 MCM k  and 

the set   )();(
~

Mk rNNDMMCM   is a convex set of moment matrices in model 

(2.11). Thus the full parameter vector   is estimable within M
~

, (Kinyanjui, 2007). 

In order to study design problems for a parameter subsystem K   in model (2.7) we 

introduce an information function ],0[)(: sNND . That is,   is non-constant, 

positively homogeneous, superadditive with respect to the Loewner ordering and is upper 

semi continuous. It suffices to consider optimal moment matrices rather than optimal 

designs. 

Let M be a subset of moment matrices in model (2.7). A moment matrix, MM 1
is 

called optimal  for K   in M if and only if it solves the design problem 

 Maximize ))(( MCk with M  

 Subject to )(kAM  ………………………………………………… (2.12) 

Lemma 2.1 

Let M  be a convex set of moment matrices in model (2.7) and let Mrk
K


 be 

maximal coefficient matrix for M . Define the set   MMCM k );(
~

 of moment 

matrices in model (2.11). Finally, let ),0[)(: MrNND  be an information function. 

Then a moment matrix, MM 1
 in model (2.7) is optimal  for K   if and only if the 
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moment matrix,  )(
~

1MCM k  in model (2.11) is optimal  for the full parameter 

vector   in M
~

, ( Kinyanjui, 2007). 

2.7 Nonnegative definite matrices 

Let A be a symmetric kk  matrix with smallest eigenvalue )(min A . Then we have; 

   0)()( min  AkNNDA   

  0 traceAB  For all A,B NND(k) 

0)()( min  AkPDA   

       trace AB>0 for all 0 B NND(k) 

2.8 Feasibility cone 

The most important case occurs if the full parameter vector   is of interest, i.e. if k=Ik. 

Since the unique left inverse L of k is then the identity matrix Ik, the information matrix 

for   reproduces the moment matrix M, 

   MMC
kI )(  . 

In other words, for a design  , the matrix M( ) has two meanings; it is the moment 

matrix of   and it is the information matrix for  . 

But if the matrix M lies in the feasibility A(C), Gauss-Markov Theorem provides the 

representation 

   
11 )()(  cMcMCc  

Here the information for c is the scalar
11 )(  cMc , in contrast to the moment matrix M. 

The task of minimizing information sounds reasonable. For a parameter subsystem k  , 

the feasibility cone )(kA is defined by; });({)( rangeArangekkNNDAkA     
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A matrix A sym(k) is called feasible for k when )(kAA ; a design   is called feasible 

for k when )()( kAM  . If k is of full rank s, the Gauss-Markov theorem provides the 

representation; 
11 )()(  kAkACk .         

It is in this form that information matrices appear in statistical inference. 

Gauss-Markov theorem state that, Let yq' be a linear estimator of the scalar function 

'p  of the regression parameters in the model ),;( 2IXy  . Then yq' is an unbiased 

estimator, such that  '')(')'( pXqyEqyqE   for all  , if and only if '' pXq  . 

Moreover, yq'  has the minimum variance in the class of all unbiased linear estimators if 

and only if  

  yXXXpyXXXXqyq ')'('')'('' 11   . 

Therefore since p is arbitrary, it can be said that yXXX ')'( 1


 is the minimum 

variance unbiased linear estimator of  .  

2.9 Estimability 

The subsystem k is estimable if and only if there exist at least one sn  matrix U such 

that; 




kYUE  ][2,
for all  , 02   

This entails UXk  , or equivalently, XXrangeXrangerangek   

2.10 Kiefer optimality 

The set of weighted centroid designs constitute a minimal complete class of designs for 

the kiefer ordering. Completeness of C (set of weighted centroid designs) means that for 

every design   not in C, there is a member  in C that is kiefer better than  . That is it 
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must be shown that   is more informative than    , M ( )>M ( ), and that the two are not 

kiefer equivalent. The weighted centroid design must be shown to satisfy

)()()(  MMM 


 , that is, )()(  MM  hence satisfying the kiefer optimality of

)(M . 

Let H be a subgroup of nonsingular ss  matrices. No assumption will be placed on the 

set )(kNNM  of competing moment matrices. A moment matrix M is called 

kiefer optimal for k  in M relative to the group H GL(s) when the information matrix 

Ck (M) is H-invariant and satisfies 

  
)()( ACMC kk  for all A M, 

where >> is the kiefer ordering on sym(s) relative to H. 

Draper and Pukelsheim (1998) proved that the assumption  )()(  MM   cannot hold 

true, rendering the class C minimal complete. 

Thus any design that is not a weighted centroid can be improved upon in terms of 

symmetry and Loewner ordering.  

2.11 Polynomial regression 

Response surface models apply to scalar responses tY , assuming that observations under 

identical or distinct experimental conditions t  are of equal (unknown) variance, 2  and 

uncorrelated. Moreover, these models assume that the expected response ),()(  tYE t   

permits a fit with a low-degree polynomial in t . Making use of the Kronecker product, the 

second-degree model then is }{}{0 )(),( iji tttt   , with the mean parameter 

vector, 
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}{

}{

0

ij

i







. 

The individual components have the usual interpretation with 0  being the grand mean. 

The 1m  vector )...,,( 1}{
 mi   consists of the main effects i . The 12 m  vector 

)...,,,( 1211}{
 mmij   consists of the pure quadratic effects ii  and the two-way 

interactions ij  with the evident second-degree restrictions jiij    for all i,j. 

This model is of the form  )(),(  tft . The regression function )(tft   conforms 

to the parameter vector   and is, in turn 

   




















tt

ttf

1

)(  

As t  varies over the experimental domain mT , the vector )(tf  spans a space of dimension 

2

)2)(1(  mm
. This number coincide with the components of the parameter vector  . 

Thus the Kronecker model of degree two is seen to be over parameterized. 

An experimental design, , on the domain  mT  is a probability measure that has finite 

support. Suppose the support points are; lttt ,,, 21   and they have corresponding weights; 

lwww ,,, 21  , then the experimenter is directed to draw a proportion, jw  of all 

observations under experimental condition jt . For a linear model with regression function

)(tf , the statistical properties of a design,  are captured by its moment matrix 

 
 

 dtftftftfwM j

lj

jj )()()()()( . 
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Because of overparametrization, any such moment matrix is rank deficient, and so is the 

dispersion matrix of the least squares estimator for . Unfortunately then, regular matrix 

inverses do not exist. This compels the invoking of generalized inverses which performs 

equally well. 

The dependence of the expected response on the experimental conditions, t  is described 

by the model response surface, ),( tt  . The parameter vector   is generally not 

known. When we replace the true parameter by its least squares estimate, ̂ , we shift our 

interest to the estimated response surface,  ˆ)()ˆ,( tftt  . When ̂  is calculated 

from observations drawn according to the experimental design , the statistical properties 

of the estimated response surface are determined by the variance surface 

)()()()( 1 tfMtftvt   , or equivalently by the information surface, 

)(

1
)(

tv
tit



  . These quantities do not depend on the choice of the generalized 

inverse, provided the vector, )(tf  lies in the range of the matrix )(M ; otherwise a 

continuity argument suggests setting )(tv  and 0)( ti , which also makes good 

sense statistically. The information surface )(ti  ranges from zero to some finite 

maximum, whence it is easier graphically depicted than the variance surface (Draper and 

Pukelsheim, 1998). 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction  

This chapter presents the space of the moment and information matrices that were 

involved in our design problem under study. 

3.2 Space of Design Matrices 

3.2.1 Invariant symmetric block matrices for design of mixture experiments 

A quadratic subspace of symmetric nn  matrices is a linear subspace   of )(nsym  with 

additional feature that C , implies 2C . Rao, et al. (1998), gave an introduction to 

the subset and some of its statistical applications. In the theory of statistical experiments, 

quadratic subspaces of symmetric matrices arise when certain invariance properties of 

information matrices involved in the design are considered. We analyze a specific 

example of such a quadratic subspace and demonstrate how to apply the results of this 

analysis to designs in a second-degree polynomial regression model for mixture 

experiments, for 2m  , we denote the canonical unit vectors in m  by meee ,,, 21  . 

The canonical unit vectors in 










2
m

 are denoted by Eij with lexicographically ordered 

index pairs (i,j), mji 1 . Let m denote the symmetric group of degree m, and let 

)(mperm be the group of mm  permutation matrices. 

We define  

 
















 m

S

R
HH 





 :
0

0
………………………………………….…  (3.1) 
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with  

 )(
1

)( mpermeeR
m

i

ii 


   

and 

 





















 




 21,
))(),((

m
permEES

m

ji
ji

ijji   for all m  . 

Where ))(),(( ji  denotes the pair of indices )(),( ji   in ascending order. The set 

H is a subgroup of 



















 

2

1m
perm  and is isomorphic to m . It acts on the space 





















 

2

1m
sym  through the congruence transformation HHCCH ),(  and induces 

subspace 

































 





















 
HHallforHCH

m
symCH

m
sym :

2

1
,

2

1
………………(3.2) 

of H-invariant symmetric matrices. Since H is a subgroup of the orthogonal group, the 

space 



















 
H

m
sym ,

2

1
 is a quadratic subspace, Pukelsheim (1993). This quadratic 

subspace is the object of our study.  

Draper et al (1991) characterize rotatable symmetric matrices in first and second-degree 

models, where rotatability means invariance under congruence transformation with 

matrices from a certain group isomorphic to the orthogonal group. Gafke and Heiligers 

(1996) considered moment matrices which are invariant under a finite subgroup of the 
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orthogonal group including permutations and sign changes. Eigenvalues of invariant 

moment matrices are then used in numerical algorithm for finding optimal designs in 

certain cubic models. 

In a similar fashion, Draper et al. (1996), compute numerically optimal designs in a 

rotatable cubic model. A particular example of H-invariance already occurs in Galil and 

Kiefer (1977) while Galils and Kiefers treatment of H-invariance is less formal and does 

not mention quadratic subspace, their numerical approach to optimal designs for mixture 

experiments is well aware of the structure and exploits eigenvalues of H-invariant 

symmetric matrices. Klein (2004) and Kinyanjui (2007), showed how invariance results 

can be applied to analytical derivations of optimal designs. The spectral analysis of 

invariant symmetric matrices yields both eigenvalues and eigenvectors. 

3.2.2 The Quadratic subspace  Hssym ,  

Since H is a subgroup of the permutation matrix group, H-invariance of a matrix 

 ssymC  means that certain entries of C coincide. The following lemma describing the 

linear structure of ),( Hssym , ( 






 


2

1m
s ), shows that an H-invariant symmetric matrix 

has at most seven distint elements. 

Lemma 3.1 

We define the identity matrices mIU 1  and 










2

1 m
IW , and write 

m

m  )1,,1,1(1  . 

Furthermore, we define 

)(112 msymIU mmm   



22 

 

m
m

ji

m

ji
ji

ji eeEV












 
2

1,

1 )( , 

m
m

m

ji
ji

m

jik
k

kijeEV















  
2

1,
},{

1

2 , 

1},{},{

21, 1,

2
























 







lkji

m
symEEW

m

ji
ji

m

lk
lk

klij

, 
























 







},{},{

21, 1,
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m
symEEW
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m

lk
lk
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. 

Then any matrix  HssymC ,  can be uniquely represented in the form 

                


























 32
2

21

212

gWfWeIdVcV

VdVcbUaI

C
m

m

…………………………………….(3.3) 

With coefficients ga ,, . The terms containing V2, W2 and W3 only occur for 3m  

and 4m  respectively. 

In particular, 

 
















47

36

24

,dim

mfor

mfor

mfor

Hssym . 

Proof 

Given a symmetric matrix  HssymC , , we partition this matrix according to the block 

structure of matrices in H, that is  
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2221

2111

CC

CC
C …………………………………………………………  (3.4) 

with  msymC 11
, 

m
m

C










2

21  and 






















2
22

m
symC . 

Then, H-invariance of C can be expressed by the blockwise conditions; 

1111 CRCR  , 2121 CRCS  .  SCS 
22  for all m  ………………………...……(3.5) 

Straightforward multiplication shows that the blocks given in equation (3.3) satisfy these 

conditions. For the reverse direction, we compare the entries of the matrices on both sides 

of the equations in (3.5) and obtain },{ 2111 UUspanC  , },{ 2121 VVspanC   and  

},,{ 32122 WWWspanC  . 

Uniqueness of this representation in equation (3.3) follows from the linear independence 

of the sets },,{},{},,{ 3212121 WWWandVVUU ▪ 

We now turn to the quadratic structure of  Hssym , , that is, the additional property that 

 Hssym ,  is closed under formation of matrix powers. The block representation given in 

equation (3.3) implies that, powers of H-invariant symmetric matrices involve products 

of Ui, Vj and Wk. The following lemma presents a multiplication table for these matrices. 

Lemma 3.2 

The results of multiplication of the matrices Ui, Vj and Wk  are as follows: 

(i) Products in },{ 21 UUspan  

.)2()1(,)2(

,
2

2

2

1
,)1(

21

2

221221

21222111

UmUmUUmVVVV

U
m

U
m

VVUUmVV










 








 


 

(ii) Products in },{ 21 VVspan  
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2
,)3(

,)3(2)2(,2)2(

,)3()2(,2

2123213

21222112

21222121

V
m

V
m

VWVmVW

VmVmVWVVmVW

VmVmUVVVUV








 








 






 

 

(iii) Products in },,{ 321 WWWspan  

2111 2 WWVV  , 32122 )4()3()2( WmWmWmVV  , 

321221 2WWVVVV  ,  321

2

2 4)2()2(2 WWmWmW  , 

321

2

3
2

4

2

3

2

2
W

m
W

m
W

m
W 







 








 








 
 , 

322332 )4(2)3( WmWmWWWW   

Proof 

The equations are verified by elementary calculations and by occasionally using the 

identities; mmUU 1121
 , mm

VV 11
2

21










 and 



















22
321 11

mm
WWW ▪ 

With lemma (3.2), products of matrices in  Hssym ,  can be calculated by mere symbolic 

manipulation and by multiplication of scalars. It is this result that allows us to perform 

the calculations involved in the design problem (2.12) in an effective way. Furthermore, 

the multiplication table can be implemented in a computer-algebra system like maple. 

As a side result of lemma (3.2) and the fact that 0322  traceWtraceWtraceU , the 

basis matrices; 
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1

5
0

00

W
B , 










2

6
0

00

W
B  and 










3

7
0

00

W
B ,..………….………………  (3.6) 

implicitly given in lemma (3.2) form an orthogonal basis of  Hssym ,  with respect to 

Euclidean matrix scalar product .),( traceABBA   Lemma (3.2), also implies the 

following results on Moore-Penrose inverses, denoted by a superscript   sign and on 

schur compliments: 

Corollary 3.1 

For any 2m , suppose the matrix  HssymC ,  is partitioned as in equation (3.4) with 

diagonal blocks C11, C22 and off diagonal block C21. Then we have 

},{ 2111 UUspanC 
 , },{ 2121222111 UUspanCCCC  

 

},,{ 32122 WWWspanC 
, },,{ 32121112122 WWWspanCCCC  

. 

Proof 

The assertions on 


11C  and 


22C  follow from ),(
0

0

22

11
Hssym

C

C








 and the fact that 

quadratic subspaces are closed under Moore-Penrose inversion, (Rao, et al.1998, 

corollary 13.2.3). Together with lemma (3.2), these results imply the claims on the schur 

complements of C 11 and C22. 

3.3 Optimality Criteria 

 

The most prominent optimality criteria in the design of experiments are the Determinant 

criterion, (D-criterion), the Average-variance criterion, (A-criterion), the smallest 

eigenvalue criterion (E-criterion) and the trace criterion, (T-criterion). These are 

particular cases of the matrix means, p , with parameter ]1,[p . 
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The optimality properties of designs are determined by their moment matrices, 

Pukelsheim (1993). The computation of optimal design for the second order Kronecker 

model involves searching for the optimum in a set of competing moment matrices. The 

matrix mean p which is an information function, serves as a basic tool in this study. 

The amount of information inherent to ))(( MCk  is provided by Kiefers  criteriap   

with 
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1
))((

m
PDMCk  , the set of 
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1

2

1 mm
 positive definite matrices. 

These are defined as follows 
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1

piftraceC

pifC

pifC

C
p

p

m

p
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 , 

for all C in 



















 

2

1m
PD , where )(min C  refers to the smallest eigenvalue of C. 

By definition, )(Cp  is a scalar measure which is a function of the eigenvalues of C for 

all ]1,[p , (Pukelsheim,1993). The class of criteriap   includes the prominently 

used T-, D-, A- and E-criteria corresponding to parameter values 1,0,-1 and   

respectively. These are thus defined as: 

The trace criterion, T-, traceC
s

C
1

)(1  , 

The determinant criterion, D-, sCC

1

0 )(det)(   , 
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The average variance criterion, A-, 

1

1

1

1
)(





 







 traceC

s
C  and, 

The smallest eigenvalue criterion, E-, )()( 1

min



  CC  , where 






 


2

1m
s .        

The problem of finding a design with maximum information on the parameter 

subsystem 'K  can now be formulated as; 

 Maximize )))(((  MCkp  with T  

 Subject to  sPDMCk ))((  ……………………………………………..(3.7) 

where T denotes the set of all designs on Tm. 

The side condition  sPDMCk ))((   is equivalent to the existence of an unbiased 

estimator for K   under  , (Pukelsheim,1993). In this case, the design,  is called 

feasible for K  . Any design that solve problem (3.7) for fixed ]1,[p , is called 

optimalp   for K   in T. For all )1,[p , the existence of optimalp   designs for 

K   is guaranteed in Pukelsheim (1993). 

Definition 

The j
th

 elementary centroid design 2},...,,1{,  mmjj  is the uniform distribution 

on all points taking the form, 





j

i

mk Te
j 1

1
 with mkkk j  211 . 

A convex combination, 



m

j

jj

1

)(   with mm T )...,,( 1   is called a weighted 

centroid design with weight vector   restricted by 1
1




m

i

i .  
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These designs were introduced by Scheffe` (1963). Weighted centroid designs are 

exchangeable, that is, they are invariant under permutations. 

Klein (2004) summarized the work by Draper and Pukelsheim (1999) and Draper, et al 

(2000) by putting forward an idea that affirms the importance of weighted centroid 

design for the Kronecker model. He showed that, in the second degree Kronecker model 

for mixture experiments with m2 ingredients, the set of weighted centroid designs is an 

essentially complete class. That is, for every p[- ;1] and for every design   there 

exists a weighted centroid design  with  

                                     ).)(())((  MCMC kpkp    

Thus for every design,   there is a weighted centroid design   whose moment 

matrix )(M  improves upon )(M  in the kiefer ordering. (Draper, et al. 1998) and 

(Pukelsheim, 1999). 

Under the Kiefer ordering, we say a moment matrix M is more informative than a 

moment matrix N if M is greater than or equal to some intermediate matrix F under the 

Loewner ordering, and F is majorized by N under the group that leaves the problem 

invariant: 

                      M>>N   M>>FN for some matrix F. 

Two moment matrices M and N are said to be Kiefer equivalent when M>>N and N>>M. 

We call M Kiefer better than N when M>>N without M and N being equivalent. A design 

  is kiefer better than a design   when M( ) is Kiefer better than M( ). 
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As a consequence, we may restrict the set of competing designs in problem (3.7) to 

)( mT , thus obtaining a mere allocation problem for the weight vector mT . Hence the 

problem of finding a design with maximum information simplifies to;   

 Maximize  )(  MCkp  with mT  

        subject to )())(( KAM  …………………………………………………..… (3.8) 

Weighted centroid designs are exchangeable. This property points to H-invariance of 

information matrices, 

        ))(())((  MCHMHC kk   for all HH  , )( mT  ……………………… (3.9) 

where H is the matrix group defined in equation (3.1). Equivalently, we may say that the 

information matrix, ))(( MCk , lies in the quadratic space  

 HHallforCHHCssymCHssym  :)(),(  of H-invariant symmetric 

matrices, that is, a subspace of matrices closed under formation of matrix powers C
n
, 

Nn . 

Definition  

A weighted centroid design )( , satisfying the side condition )())(( KAM   in 

problem (3.8), is called a feasible weighted centroid design for K   in T. 

An equivalent but more tractable condition is the regularity of )))((( MCk , 

(Pukelsheim, 1993). From the linearity of the information mapping Ck in equation (3.14), 

we get, for every mT , 

        



)(

))(()))(((



j

jkjk MCMC , …………………...………………..…… (3.10) 

with }0:,...,2,1{)(  jmj  . 
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Since the information matrices )( jkj MCC   are non-negative definite, this implies; 





)(

)())))((((



j

jk CMC . 

The above equation suggests studying the ranges of the information matrices;  

C1, C2, …, Cm of the elementary centroid designs. These matrices can be calculated by 

invoking the linear transformation to moment matrices )( jM   given by (Draper et al, 

2000). 

For j=1,2, …, m,  we obtain 
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, 

where the matrices; 32212 ,,,, WWVVU are defined in lemma (3.1). The terms 

containing 322 , WandWV only occur for 3m  and 4m  respectively. 

3.4    Motivating design problem 

Mixture experiments are experiments in which the experimental conditions are 

nonnegative quantities summing to one. Formerly, the experimental conditions are points 

in the probability simplex }11:{  ttT m

m

m , with
m

m  )1,...,1(1 . In a polynomial 
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regression function, a real-valued quantity Yt observed under the experimental conditions 

t Tm will be assumed to be random with expected value E[Yt] which is a polynomial in t. 

The polynomial coefficients are unknown and have to be estimated from the 

observations. One instance of such a model introduced by Draper and Pukelsheim (1998), 

is the second-degree Kronecker model (2) with the regression function tttf )(  and 

unknown parameter vector 
2

),...,,( 1211

m

mm   . All observations taken in an 

experiment are assumed to be uncorrelated and to have common unknown variance. 

When fitting this model to a set of observations, a parameter subsystem, say K , of 

interest will be chosen with
smk 

2

. 

We define the K matrix as 

  1

21

2

,  mmKKK    …………………………………………………………… (3.12) 

where,      
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The parameter subsystem considered in this study can be written as  
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…………………………………………… (3.13) 

The amount of information a design   contains on K   is captured by the information 

matrix; 



32 

 

             






















 








 

2

1

2

1

;:)(min))((

2

m

m
m

k ILKLLLMMC  , ………………  (3.14) 

where 
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1m
I  denotes the 
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1

2

1 mm
 identity matrix and L is the left inverse of K. 

The above minimum is understood relative to Loewner ordering on the space 
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1m
sym  of symmetric 







 







 

2

1

2

1 mm
 matrices, defined by BA   if and only if 

AB   is non-negative definite. 

An experimental design for a mixture experiment is a probability measure   on Tm with 

finite support. Each support point t sup  directs an experimenter to take a proportion 

T({t}) of all observations under the experimental condition t. The statistical properties of 

a design   are reflected by the moment matrix  

 
mT

mNNDdtftfM )()()()( 2 ,  ………………………………………. (3.15)  

where NND(m
2
) denotes the cone nonnegative definite 22 mm   matrices. The amount of 

information which the design T contains on the parameter subsystem k  is captured by 

the information matrix for k  

)()()()())(( 11 sNNDkkkMkkkMCk    . ……………………………  (3.16) 

The information matrix Ck (M ( )) is the precision matrix of the best linear unbiased 

estimator for k  under the design   Pukelsheim (1993). The equation (3.16) is a linear 

function of M ( ) and is due to the fact that k is a maximal parameter system for 

Kronecker model (Klein 2001).  
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A family of scalar measurements for the amount of information inherent to Ck (M ( )) is 

provided by Kiefer’s criteriap   , with p [- ,1] . These are defined by; 
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1
min
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for all C in PD(s), the set of positive definite ss  matrices. Here )(min C stands for the 

smallest eigenvalue of C. By definition, )(Cp   is a function of the eigenvalues of C for 

all p [- ,1] Pukelsheim(1993). The family of criteriap   includes the often used A-, 

D-, T-, and E-criteria, corresponding to parameter values 1, 0, -1, and -  respectively. 

The problem of finding a design with maximum information on the parameter subsystem 

k  can now be formulated as 

Maximize )))(((  MCkp with t T 

Subject to )())(( sPDMCk   

where T denotes the set of all designs Tm. The side condition )())(( sPDMCk  is equal 

to the existence of an unbiased linear estimator for k   under . In which case, the design 

  will be called feasible for k . Any design having the above problem for a fixed p [-

,1] is called optimalp   for k will be guaranteed by theorem 7.13 in (Pukelsheim, 

1993). 

The set of competitors in the design problem above can be substantially reduced. In a 

mixture experiment with m ingredients, the j
th

 elementary centroid design j  with j
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{1,…,m} in the uniform distribution on all points of the form m

m

j

ki Te
j


1

1
 with 

mkk j  ...0 1 . 

A convex combination 



m

j

jj

1

)(   with weight vector mm T ),...,( 1  is called a 

weighted centroid design. The set )( m  of weighted centroid designs constitute an 

essentially complete class of designs with respect to the target function of the design 

problem. That is, for every design   T there is a weighted centroid design )( mT  

with 

))(())((  MCMC kpkp   . Therefore, the design problem reduces to 

Maximize )(   MCkp with mT  

Subject to )()))((( sPDMCk 
.
 

A necessary and sufficient condition for optimalityp   of a weighted centroid design 

)( with weight vector mm T ),...,( 1  follows from the Kiefer-Wolfowitz 

equivalence theorem in (Pukelsheim, 1993) and given by (Klein, 2001). Suppose )(

satisfies the side condition )()))((( sPDMCk   and jC written as ))(( jkj MCC  for 

j=1,…,m. Then, )( solves above problem with p (- ,1] if and only if  
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MtraceC

MtraceC
MCtraceC
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)))(((
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otherwise

for all )(j
   

with }0\{)(  jj  . The case p=- , that is, E-optimality, has a similar optimality 

condition Klein (2001). Without further knowledge of the information matrices involved, 
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the optimality condition above will be hard to solve. However, invariance arguments will 

help to considerably simplify the problem. (Pukelsheim, 1993) gave a general discussion 

of invariance methods in experimental design. Weighted centroid designs are 

exchangeable, that is, they are invariant under permutations of the ingredients. Formally, 

the group perm(m) of m m permutation matrices acts on the set T of designs through 

1),(  RTTR R  . Exchangeability of a design   T then means R  through 

congruence transformation. The group H defined acts on the space sym(s) through 

congruence transformation. This action is linked to that of perm(m) on T by equivalence 

property 

)))(()(())((  
 RRMRRCTMC k

R

k       


 HMCH k ))(( 

        

for all    and   T, with matrices R  and H . As a consequence, information 

matrices of exchangeable designs and in particular, all information matrices involved in 

the design problem, lie in the quadratic subspace sym(s, H) defined in (Klein, 2004).  

Hence analysis of quadratic subspace may help in solving the design problem, and the 

optimality criteria serves as a guide for the analysis. 

(Klein, 2004) and (Kinyanjui, 2007) showed how invariance results can be applied to 

analytical derivation of optimal designs. The spectral analysis of invariant symmetric 

matrices yielded both eigenvalues and eigenvectors. (Kinyanjui, 2007) investigated 

optimalp   weighted centroid designs for k by adopting the General equivalence 

theorem as given in Pukelsheim (1993) and derive the general forms for the unique A-

optimal, D-optimal, T-optimal, and E-optimal designs for k . Later on, (Ngigi, 2009) 
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gave the optimality criteria for optimalp   weighted centroid designs for k and found 

that for second-degree model with m 2 ingredients, a unique A-optimal, D-optimal, and 

T-optimal weighted centroid designs for k  exist. E-optimal designs could only be 

derived for experiments with two ingredients. Cherutich M. (2012) also showed that 

second degree mixture experiments for non-maximal parameter subsystem unique D-and 

A-optimal weighted centroid designs for K’θ alsodo exist. 

This study investigated mixture models on the simplex an improvement is obtained for a 

given design in terms of increasing symmetry as well as obtaining a larger moment 

matrix under the Loewner ordering. The study adopted the second-degree mixture model 

put forward by Draper and Pukelsheim (1998). The parameter subsystem of interest in the 

study was maximal parameter subsystem which is a subspace of the full parameter space. 

For this model the full parameter subsystem was not estimable. By a proper definition of 

parameter matrix, a maximal parameter subsystem in the model was selected. Canonical 

unit vectors and the concept of Kronecker products were employed to identify the 

parameter matrices as well as the information matrices. For the second degree mixture 

model with two, three, four and m ingredients, a set of weighted centroid designs was 

obtained for a characterization of the feasible weighted centroid designs for the maximal 

parameter subsystem. After computing the feasible weighted centroid designs the 

information matrix of the design was obtained. Derivations of A-, D- and E-optimal 

weighted centroid designs were then computed from the information matrix. The 

optimality criteria A, D and E were used to obtain optimal centroid designs. The results 

based on maximal parameter subsystem, second degree mixture model with m≥2 

ingredient for A-, D- and E-optimal weighted centroid design for K  is obtained based 
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on the choice of the coefficient matrix specifically in this study. Optimal weights and 

values for the weighted centroid designs are numerically computed using Matlab 

software.  
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CHAPTER FOUR 

RESULTS 

4.1 Introduction  

This chapter contain information matrixes, A-, D- and E-optimal weighted centroid 

design of the designs under study for 2m , 3m , 4m and 2m  ingredients.   

4.2   Information matrices 

For a design   with moment matrix M, the information matrix for k , with sk

coefficient matrix k of column rank s, is defined to be Ck(M) where the mapping Ck from 

the cone NND(k) into the space sym(s)is given by; 

LLAAC
s

ks ILkL
k


  :

min)( For all A NND (k) with minimum taken relative to the Loewner 

ordering over all left inverses L of K Pukelsheim (1993) 

4.2.1    Information matrix for 2m  ingredients  

Table 4.1. Weighted centroid design for m=2 ingredients 

Design points     t1 t2 

1 1 0 

2 0 1 

3 ½ ½ 

The elementary centroid designs are; 



























1

0
,

0

1
1  and 







































2

1

2

1

2 . 
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Lemma 4.1 

The K matrix for m=2 ingredients is given by; 

   























010
2

1
00

2

1
00

001

K  

Proof 

From equation (3.12), we have 
smKKK 

2

),( 21  where; 

 



m

i

iiieeK
1

1 '     












 




ij

m

ji
ji

jiij Eee
m

K
1,

2 )(

2
2

1
      

  

 

For m=2 ingredients, then; 

''' 222111

2

1

1 eeeeeeK
i

iii 


   and  122112

2

1,

2 )()(
2

1
EeeEeeK ij

ji
ji

jiij
 




 with 











2
2

12E ……………………………………………………………………………. (4.1) 

Define, jiij eee  , i,j=1,2 , 









0

1
1e  and 










1

0
2e . 

Thus  








































0

0

0

1

0

1

0

1
11e , 








































1

0

0

0

1

0

1

0
22e , 








































0

0

1

0

1

0

0

1
12e  and  
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0

1

0

0

0

1

1

0
21e       

Substituting these in equation (4.1), we obtain 





















1

0

0

0

0

0

0

1

1K  ,































0

2

1

2

1

0

2K  giving 
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1
00

2

1
00

001

K  

Theorem 4.1 

The information matrix )))((( MCk  for a mixture design )( with m=2 ingredients is 

given by 





























488

816

8

16

81616

8

)))(((

222

2212

2221







MCC Kk  

Proof  

The moment matrix for the weighted centroid design with two ingredients is given as 





















4313122

31222231

31222231

2231314

))((









M , 

where the fourth moments are defined as 

  dt
4

14 )( ,   dtt 2

3

131 )( ,  dtt 2

2

2

122 )(   
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For m-ingredients there are m elementary centroid designs placing equal weights 










j

m

1
on 

the points having j out of their m components equal to 
j

1
 and zeros elsewhere. A convex 

combination 



m

j

jj

1

)(   with mm T )...,,,( 21   is called a weighed centroid 

design with weight vector   such that 1
1




m

j

j . 

For the case, m=2, 2211

2

1

)(  
j

jj  with 
221 )0,0,,( T   and 

121  .  

The fourth order moments are for j=(1,2, …, m) 

mj
j 34

1
)(   and 

)1(

1
)()(

32231





mmj

j
jj  . When m=2 these moments are; 

2

1
)( 14  , 0)()( 122131   , 

16

1
)( 24   and 

16

1
)()( 222231   . 

Thus the moment matrices for designs 
1  and are: 
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000
2

1

)( 1M , 
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1
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1
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1
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1

16

1

16

1

16

1
16

1

16

1
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1
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1
16

1
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1
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1

16

1

)( 2M . 
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From equation (3.16), we obtain the information matrix as follows; 

















 

0

1

0

1

0

0

1

0

0

0

0

1

)(
~ 1 KKKL  

For the design 
1 , the information matrix is given as; 



















000

02/10

002/1
~

)(
~

))(( 111 LMLMCC k  ………………………………….... (4.2) 

And for the design 
2 , the information matrix is given as 



















4/18/18/1

8/116/116/1

8/116/116/1
~

)(
~

))(( 222 LMLMCC k  ……………………………….. (4.3) 

From equations (4.2) and (4.3) we can obtain the information matrix for the design )(  

as; 

   ))(())(()))((( 2211  MCMCMC kkk  . 

This on simplification yields; 
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8

16
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8
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MCk ………………………………………. (4.4) 
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4.2.2    Information matrix for 3m  ingredients  

Table 4.2.  Weighted centroid design for m=3 ingredients 

Design points t1 t2 t3 

                    1 1 0 0 

                    2 0 1 0 

                    3 0 0 1 

                    4 ½ ½ 0 

                    5 ½ 0 ½ 

                    6 0 ½ ½ 

                    7 ⅓ ⅓ ⅓ 

 

 From definition above (under theorem 4.1), there are m-elementary centroid designs, ηj, 

placing equal weights 










j

m

1
 on the points having j out of their m components equal to 

j

1
 

and zeros elsewhere. These are for, m=3 
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A convex combination 



m

j

jj

1

)(   with mm T ),...,,( 21   is called a weighed 

centroid design with weight vector   such that 1
1




m

j

j . 

For the case, m=3, 332211
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)(  
j

jj  with 
221 )0,0,,( T   and 

121   
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Theorem 4.2 

The K-matrix for m=3 ingredients is given by 
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Proof 

From equation (3.12), we have 
smKKK 

2

),( 21  where; 
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For m=3 ingredients, then; 

'

333222111
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1

1 ''' eeeeeeeeK
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1
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1
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 …………………………...  (4.5) 

with 










2
3

ijE                                              
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Define, jiij eee  , i,j=1,2,3 


















0

0

1

1e , 


















0

1

0

2e and 


















1

0

0

3e . 

Thus  

  0000000011111 eee , 

  0000100002222 eee , 

  1000000003333 eee , 

  0000000102112 eee , 

  0000010001221 eee , 

  0000001003113 eee , 

  0010000001331 eee , 

  0001000003223 eee ,  

  0100000002332 eee . 

The vectors sEij '  are obtained by considering the index pairs {i,j}with }3,2,1{, ji and 

i<j. They represent the standard basis of 3  and the index pairs should be in a 

lexicographic order. They are; 

  00112E   

     01013E  and 

     10023E  
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 Therefore we obtain; 
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Theorem 4.3 

The information matrix )))((( MCk  for a mixture design )(  with m=3 ingredients is 

given by 
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MCC kk  

Proof  

For m=3, the moment matrix for the weighted centroid design )( is given by; 
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M  

The moments of order four are, for j=1, 2, …, m: 

mj
j 34

1
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)1(

1
)()(

32231





mmj

j
jj  , 



48 

 

)2)(1(

)2)(1(
)(

3211





mmmj

jj
j .  

When m=3, these moments are; 

3

1
)( 14  , 0)()( 122131   , 0)( 1211  , 

24

1
)( 24   , 

48

1
)()( 222231    

and 0)( 2211  . 

Thus the moment matrices for the design  
1  and 

2  are: 
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000000000
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000000003/1

)( 1M  
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48/148/1048/148/10000
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48/1048/100048/1048/1
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48/1048/1048/148/148/148/124/1

)( 2M . 

The fourth moments of the weighted centroid design )( are obtained as 

24

8
))(( 21
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48
))(())(( 2

2231


   

0))((211   

The matrix KKKL  1)(
~

 with K from equation (3.12) is  



























 

030300000

003000300

000003030

100000000

000010000

000000001

)(
~ 1 KKKL  

The information matrices for the designs 
1  and 

2  are obtained as follows: 
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000003/1

~
))((

~
))(( 111 LMLMCC k  …………...… (4.6) 

and 





























4/3008/18/10
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004/308/18/1

8/18/1024/148/148/1

8/108/148/124/148/1

08/18/148/148/124/1

~
))((

~
))(( 222 LMLMCC k  …...  (4.7) 

From equation (4.6) and equation (4.7) we obtain the information matrix for the design 

)(  as follows 

))(())(()))((( 2211  MCMCMCk   
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This on simplification becomes 
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MCC kk ▪………. (4.8) 

4.2.3    Information matrix for 4m  ingredients  

Table 4.3. Weighted centroid design for m=4 ingredients 

Design points t1 t2  t3  t4 

           1 1 0 0 0 

           2 0 1 0 0 

           3 0  0 1 0 

           4 0 0 0 1 

          5 ½ ½ 0 0 

          6 ½ 0 ½ 0 

          7 ½ 0 0 ½ 

          8 0 ½ ½ 0 

          9 0 ½ 0 ½ 

        10 0 0 ½ ½ 

        11 ⅓ ⅓ ⅓ 0 

        12 ⅓ ⅓ 0 ⅓ 

        13 ⅓ 0 ⅓ ⅓ 

        14 0 ⅓ ⅓ ⅓ 

        15 ¼ ¼ ¼ ¼ 
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From definition (under theorem 4.1), we showed that there are m-elementary centroid 

design j , placing equal weights 










j

m

1
 on the points having j  out of their m  

components equal to 
j

1
 and zeros elsewhere. These are for, 4m  
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Theorem 4.4 

The K-matrix for m=4 ingredients is given by 
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Proof 

From equation (3.12), we have 
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For m=4 ingredients, then; 
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 with 
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Define, jiij eee  , i, j=1,2,3  
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  00000000000000011111 eee ,

  00000000001000002222 eee , 

  00000100000000003333 eee , 

  10000000000000004444 eee , 

  00000000000000102112 eee , 

  00000000000100001221 eee , 

  00000000000001003113 eee , 

  00000001000000001331 eee , 

  00000000000010004114 eee , 

  00010000000000001441 eee , 

  00000000010000003223 eee ,  

  00000010000000002332 eee , 

  00000000100000004224 eee , 
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  00100000000000002442 eee , 

  00001000000000004334 eee  and 

  01000000000000003443 eee . 

The vectors sEij '  are obtained by considering the index pairs {i,j}with  

}4,3,2,1{, ji and i<j. They represent the standard basis of 6  and the index pairs should 

be in a lexicographic order. They are; 

    00000112E ,  

     00001013E , 

      00010014E , 

      00100023E , 

      01000024E  and 

       10000034E  
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Therefore we obtain; 
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Theorem 4.5 

The information matrix )))((( MCk for a mixture design )( with m=4 ingredients is 

given by 
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Proof  

For m=4, the moment matrix for the weighted centroid design )( is given by; 
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The fourth order moments are: 

mj
j 34

1
)(   , 

)1(

1
)()(

32231





mmj

j
jj  , 

)2)(1(

)2)(1(
)(

3211





mmmj

jj
j .  

)3)(2)(1(

)3)(2)(1(
)(

31111





mmmmj

jjj
j  

for j=1, 2, …, m. 

When m=4 these moments are; 

4

1
)( 14  , 0)()( 122131   , and 0)()( 111111211   , 
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and 0)( 2211  . 

Thus the moment matrices for the design  
1  and 

2  are: 
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The fourth moments of the weighted centroid design )( are obtained as 
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The matrix KKKL  1)(
~

 with K from equation (3.12) is  
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The information matrices for the designs 
1  and 

2  are obtained as follows: 
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From equation (4.10) and equation (4.11) we obtain the information matrix for the design 

)(  as follows 

))(())(()))((( 2211  MCMCMCk   
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This on simplification becomes 
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4.2.4   Information matrix for 2m  ingredients  

For a given value of 2m  ingredients, the matrices 
1C  and 

2C  can be expressed in 

terms of m . Also, the matrix kC , which is a linear combination of the matrices 
1C  and 

2C , can be expressed in 
21,  andm . Thus we find it a noble task to establish a general 

expression for the weight vectors and corresponding optimal values for a given number 

of ingredients, m . 

From equation (3.3), any matrix ),( HssymC  can be uniquely represented in the form 
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……….…………………………… (4.13) 
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With coefficients ga ...,, . The terms containing V2 , W2 and W3 only occur for 3m  

or 4m , respectively. 

In the proof of equation (3.4), any given symmetric matrix )(ssymC , can be 

partitioned according to the block structure of matrices in H , that is  
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With )(11 msymC  ,
m
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C
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21
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2
22

m
symC . From equation (3.11), we obtain 

for j=1; 

mI
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C
1

1,11  , C21,1=0 and C22,1=0 . 

and, for j=2; 
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I
mm

C , 

where U1, U2 and V1 are as defined in lemma (3.1). 

Thus we have 
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1
mI

mC  …………………………………………………………………... (4.15) 
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From which we obtain 

2211)( CCC    
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……………………………… (4.17) 

4.3 A-Optimal Weighted Centroid Design  

We now derive optimal weighted centroid designs for the average variance criterion, 
1 . 

We begin by adapting the general equivalence theorem as is given in Pukelsheim (1993). 

This theorem provides a necessary and sufficient condition applicable to our specific 

problem. 

Theorem 4.6 

Let mT  be the weight vector of a weighted centroid design )(  which is feasible for 

'K and let  )0:,,2,1()(  jmj   , be a set of active indices. Furthermore, let 

)))((( MCC k  and ]1,(p . Then )(  is optimalp   for K   in T if and only 

if; 

    











otherwisetraceC

jallfortraceC
CCtrace

p

p

p

j

)(
1


 

Proof 

The two major arguments of the proof are the linearity of the information matrix mapping 

depicted by equation (2.8) and the fact that )( mT  is the convex hull of the elementary 

centroid designs m ,,, 21  . From Pukelsheim (1993), )(  is optimalp   for K   

in T if and only if there exists a generalized inverse G of ))(( MM   satisfying 

        
pp traceCGKGKCtraceM 1))((   for all mT ………………………… (4.18) 

With 
11 )()(   KKMKKKKC , MKKKKM  1)(  and  
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KMKCM k
 )))((())((  , the left-hand side may be written as 

 GKGKCtraceM p 1))((    

  
111 ))()))(((())((   p

k CKKGMKKMCKKGMKKtrace  ….. (4.19) 

Due to the feasibility of )( , we have )()( MK  . Hence MZK  for some Z and 

so 









 

2

111 )()()(
m

IKKMKZKKMGMKZKKGMKK . 

Now the right-hand side of equation (4.19) simplifies to 
1)))((( p

k CMtraceC   and 

equation (4.18) turns into  
pp

k traceCCMtraceC 1)))(((   for all mT . 

According to equation (3.10), we can write the left-hand side as  





m

j

p

jj CtraceC
1

1 . Giving 
pp

j traceCCCtrace 1
 for all mj 1 . 

Finally, equality must hold for any )(j ▪ 

In addition, the following theorem guarantees that, the weighted centroid designs with 

first and second weight positive are unique. 

Theorem 4.7 

Let )1,(p and )(  with mT be a weighted centroid design that is optimalp   

for K   in T. Then the following assertions hold: 

i. If }2,1{)(   , then there is no further design T  that is optimalp   for 

K   in T, that is, )(  is the unique solution of problem (3.7). 

ii. If }3,2,1{)(   , then there is no further exchangeable design T that is 

optimalp   for K   in T.   
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If there is a non-exchangeable design which is optimalp   for K  , then all its   

support points are centroids of depths 1, 2 or 3. (Klein 2004)▪ 

We begin investigating A-optimal designs for a mixture experiment with two ingredients. 

4.3.1 A-Optimal design for m=2 ingredients 

Theorem 4.8 

In the second-degree Kronecker model for mixture experiments with two ingredients, the 

unique A-optimal design for K  is 

212211 )524()525()(  A
. 

The maximum of the A-criterion for m=2 ingredients is 

 16718427.0
5

)5920(3
)( 1 













 
v . 

Proof  

From theorem (4.6), putting p=-1, it implies that )(  is optimal1  for K   in T if 

and only if 
12 )()(    traceCCtracC j  for all }2,1{j ………………………… (4.20) 

The inverse of the information matrix provided in theorem (4.1) is as follows; 
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Now  

2212 )]([])))((([)))]((([    CmCMC , gives 
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For j=1, 
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1 )))((()))(((    MtraceCMCtraceC . 

From equations (4.2) and (4.22), we have  
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 CtraceC  

From equation (4.21),  
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)]([
















Ctrace …………………………  (4.23) 

Thus, 
12

1 )))((()))(((    MtraceCMCtraceC , implies that  

21
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 , from which we obtain 

0510 1

2

1   , after utilizing the fact that 121  . Which upon solving gives 

5251   or  5251  . 

But since )1,0(1 , then it implies that, 5251  . 

Similarly, for j=2, equation (4.3) and (4.22) gives, 
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Thus, 
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2 )))((()))(((    MtraceCMCtraceC , implies that  
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 , from which we obtain, 

0445 121

2

2   . Substituting 21 1   , yields 

048 2

2

2   , which upon solving gives 

5242   or 5242  . 

But since )1,0(2  , then it implies that 5242  . 

Thus for m=2 ingredients, we have 5251   and 5242  .  

From Pukelsheim (1993), the average-variance criterion, is given by; 
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For m=2, we have
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From equation (4.23), we have, 
5920
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Ctrace ,  

Thus the optimal value becomes,  
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4.3.2 A-Optimal design for m=3 ingredients 

Theorem 4.9 

In the second-degree Kronecker model for mixture experiments with three ingredients, 

the unique A-optimal design for K   is 

212211
22

38416

22

38438
)( 













 














 
A

. 

The maximum of the A-criterion for m=3 ingredients is 

 23229856.0
6

82882991.25
)(

1

1 











v . 

Proof  

From theorem (4.6), putting p=-1, it implies that )(  is optimal1  for K   in T if 

and only if 

12 )()(    traceCCCtrace j  for all }2,1{j ……………………………………(4.24) 

The inverse of the information matrix provided in theorem (4.3) is as follows 
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Now  

2212 )]([])))((([)))]((([    CmCMC , gives 
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Where; 
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For j=1, 
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From equation (4.6) and (4.26) we have  
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From equation (4.25) ,  
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Thus, 
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 , from which we obtain 
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which upon solving gives 
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But since )1,0(1 , we have, 
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Similarly, for j=2, we have, from equation (4.7) and equation (4.26), 
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Thus, 
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2 )))((()))(((    MtraceCMCtraceC , implies that  
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 , from which we obtain, 
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2    after substituting 21 1   . 

 

Which upon solving gives 
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2


 . 

But since )1,0(2  , we have, 
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38416
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 . 

Thus for m=3 ingredients, we have 6064701081.0
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38438
1 


   

and 393529818.0
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38416
2 


  

From Pukelsheim (1993), the average-variance criterion, is given by; 
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Substituting the values of 1  and 2  obtained above in equation (4.27), we have,  
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Thus the optimal value becomes,  

23229856.0
6

82882991.25
)(

6

1
)(

11

1

1 






















  traceCv ▪ 

 

4.3.3 A-Optimal design for m=4 ingredients 

Theorem 4.10 

In the second-degree Kronecker model for mixture experiments with four ingredients, the 

unique A-optimal design for K  is 

212211 331046251.0668953748.0)(  A
. 

The maximum of the A-criterion for m=4 ingredients is 

 273979051.0
49914091.36

10
)( 1 v . 

Proof  

From theorem (4.6), putting p=-1, then )(  is optimal1  for K   in T if and only if 

        
12 )()(    traceCCtracC j  for all }2,1{j ……………………………….…(4.28) 
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The inverse of the information matrix provided in theorem (4.5) is as follows 





















































































21

21

111111

121

21

11111
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21

1111

1121

21

1111

11121

21
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111121

21

11

1111

1111

1111
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1

36

1

36

1
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1
0

3

1

3

1
00

36

1

18
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1
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1
0

36

1

3

1
0

3

1
0
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1
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1
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0
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1
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1
0

3

1

3

1
0
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1
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1
0

18
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1
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1

3

1
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3

1
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1
0
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1

36

1

18

12

36

1
0

3

1
0

3

1

0
36

1

36

1

36

1

36

1

18

12
00

3

1

3

1

3

1

3

1
0

3

1
00

4
000

3

1
0

3

1
0

3

1
00

4
00

0
3

1

3

1
00

3

1
00

4
0

000
3

1

3

1

3

1
000

4

)))]((([













































MC

 

……………………………………………………………………………..………  (4.29) 

Now  

2212 )]([])))((([)))]((([    CmCMC , gives 









































effffgccdd

feffgfcdcd

ffegffdccd

ffgeffcddc

fgffefdcdc

gffffeddcc

ccdcddabbb

cdcdcdbabb

dccddcbbab

dddcccbbba

C 2)]([  …………………………….  (4.30) 
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Where; 

2

13

49


a , 

2

19

1


b , 

2

2

1

12

54

)1274(



 
c , 

2

154

1




d , 

2

2

2

1

21

2

1

2

2

162

127237



 
e , 

2

2

1

12

648

1475



 
f  and 

2

1324

1


g  

For j=1, 
12

1 )))((()))(((    MtraceCMCtraceC . 

From equation (4.10 ) and (4.30) we have  















































0000000000

0000000000

0000000000

0000000000

0000000000

0000000000
4444444444

4444444444

4444444444

4444444444

)]([ 2

1

ccdcddabbb

cdcdcdbabb

dccddcbbab

dddcccbbba

CC   

Hence, 
2

1

2

1
3

49
0000

4444
)]([


  a

aaaa
CtraceC  

From equation (4.29),  

21

21

21

21

1

1

3

4912

18

)12
6

4
4)]([





















 









Ctrace …………………………...  (4.31) 

Thus, 
12

1 )))((()))(((    MtraceCMCtraceC , implies that  

21

21

2

1 3

4912

3

49








 , from which we obtain 

0499837 1

2

1   , after utilizing the fact that 121  . 
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Which upon solving gives 

9796949.11   or  668953748.01  . 

But since )1,0(1 , we have, 668953748.01  . 

Similarly, for j=2, from equation (4.11) and (4.30) we have, 









































effffgkkll

feffgfklkl

ffegfflkkl

ffgeffkllk

fgffeflklk

gffffellkk

ccdcddabbb

cdcdcdbabb

dccddcbbab

dddcccbbba

CC 2

2 )]([  , 

Where; 
2112

1




a  , 

2136

1




b , 

2

21

21

108

6



 
c , 

21216

1


d , 

2

21

21

18

12



 
e , 

2136

1


f , 0g , 

213

1




k  and 0l . 

2

2

2

21

21

21

2

2

4

18

12
6

12

1
4)]([






 







 








 
CtraceC , using 21 1   . 

Thus, 12

2 )))((()))(((    MtraceCMCtraceC , implies that  

21

21

2

2 3

49124








 , from which we obtain, 

0122437 2

2

2    after substituting 21 1   . 

Solving this equation we obtain  

9796949.02   or 331046251.02  . 

But since )1,0(2  , we have, 331046251.02  . 
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Thus for m=4 ingredients, we have 668953748.01   and 331046251.02   

From Pukelsheim (1993), the average-variance criterion, is given by; 

1

1

1 )(
1

)(





 







  traceC

s
v  , where 







 


2

1m
s  

For m=4, we have

1

1

1 )(
10

1
)(





 







  traceCv , 

From equation (4.27), we have 49914091.36
3

4912
)]([

21

211 







CtraceC ,  

Thus the optimal value becomes,  

273979051.0
49914091.36

10
)(

10

1
)(

1

1

1 













  traceCv ▪ 

 4.3.4 A-Optimal design for 2m  ingredients 

Theorem 4.11 

In the second-degree Kronecker model for mixture experiments with 2m ingredients, 

the unique A-optimal design for K   is 

223

234

123

23423

2211

54

122)1(4

)54(

122)1(

)(

















mmm

mmmmm

mmm

mmmmmm

A

. 

The maximum of the A-criterion for m ingredients is 

 

1

234234

223

1

12)1(4)3752()1(

)54(2
)(





















mmmmmmmmmmm

mmm
v   . 
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Proof 

Let mT )0,...,0,,( 21   be a weight vector with }2,1{)(   and suppose )( is  

A-optimal for K   in T.  Let )))((()(  MCC k . 

Theorem (4.6) implies that 

           













otherwiseCtrace

jforCtrace
CCtrace j

))((

},2,1{))((
)(

1

1

2




............................................ (4.32) 

We now compute for the optimality candidates, 
1  and 

2  in (0,1) as follows. 

An inverse of a matrix in ),( Hssym  can be computed by solving a system of linear 

equations. By the same approach we obtain the blocks of 
1)( C as obtained in equation 

(4.16) in the partitioning suggested by lemma (3.1), namely 
















































2

1

2

221

2

21
1

1

1

111

)1(

1

)1(

])1(4[2

)1(

1

)1(

1

)(
W

mm
I

mm

m
V

m

V
m

I
m

C

m

m








 ………………  (4.33) 

We can now obtain 
2)( C  as  

  212 ])([)(  CC  





































































































32

1

422

2

2

1

42

2

22

1

2

2

2

2

1

42

2

2

22

21

2

1

2

22

1

3

1

2

2

1

3

2

22

1

22

1

31

2

2

1

3

2

22

1

22

1

22

1

2

)1(

4

)1(

]2)1([)1(16

)1(

])2)1(()1(16)1(32[2

)1(

2

)1(

])1([)1(8

)1(

2

)1(

])1([)1(8

)1(

1

)1(

1)1(

W
mm

W
mm

mmmm

I
mm

mmmmm

V
mm

V
mm

mmmm

V
mm

V
mm

mmmm
U

m
I

m

mm

m

m





















………………………………………………………………………………………  (4.34) 

We now compute for the optimality candidates, 1  and 2  in (0,1) as follows. 

For 1j , we have 
12

1 )()(    traceCCtraceC  
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Now from equations (4.15) and (4.34) we have 

























































00

)1(

2

)1(

])1([)1(8

)1(

1

)1(

1)1(

)(

22

1
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1

2

2

1
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2
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1
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1

22

1

2

2

1

V
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V
mm

mmmm

U
mm

I
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mm

CC m







  

Hence  

)(
)1(

1
)(

)1(

1)1(

)1(

1

)1(

1)1(
)(
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1

22

1

2
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1

22

1

2
2

1

Utrace
mm
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mm

mm

U
mm

I
mm

mm
traceCtraceC

m

m




































                          

2

1

2

)1(

1)1(






m

mm
 , since mItrace m )(  and 0)( 2 Utrace . 

From equation (4.33) we have 
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1

2
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2
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1

1

)1(

1

)1(

])1(4[2
))(( W

mm
I

mm

m
traceI

m
traceCtrace

mm





  

                    
21

2

2

1

)1(

]1)1([)1(4










m

mmm
, since

2

)1(

2



























mm
Itrace

m
 and 

 trace (W2)=0 

Thus, 

 
22

1 )()(    traceCCtraceC , implies that 

21

2

2

1

2

1

2

)1(

]1)1([)1(4

)1(

1)1(





 








m

mmm

m

mm
, from which we obtain 

0]1)1([]1)1([)1(4 2

2

2

21

22

1   mmmmm    

or 0)1()1(2)54( 23

1

232

1

23  mmmmmmm  , since 12 1   .  
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this upon solving gives 

)54(

122)1(
23

23423

1





mmm

mmmmmm
 . 

Similarly, from equations (4.16) and (4.34) we have 

2

2 )(CC  












































































 2

2

2

1

2

2

2

21

2

21

21

2

21

3212

21

32

21

1

21

2

21

3212

21

32

21

2

21

2

21

)1(

1

)1(

])1(4[2

)1(

1

)1(

2

)1(

)1(8

)1(

1

)1(

2

)1(

)1(8

)1(

1

)1(

1

w
mm

I
mm

m

V
m

V
mm

V
mm

mm

V
m

V
mm

V
mm

mm

U
mm

I
mm

m

m


















 

Hence  
























































2

2

2

1

2

2

2

21

2

21

2

21

2

21

2

2

)1(

1

)1(

])1(4[2

)1(

1

)1(

1
)(

W
mm

I
mm

m

traceU
mm

I
mm

traceCtraceC

m

m










but mItrace m )( , 0)( 2 Utrace , 
2

)1(
)(

2













mm
Itrace

m
 and 0)( 2 Wtrace . Giving  

2

2

2

2

4
)(


 CtraceC . 

Thus 

 
22

2 )()(    traceCCtraceC , implies that 

21

2

2

1

2

2 )1(

]1)1([)1(44





 




m

mmm
, from which we obtain 

0)1(4)1(4]1)1([ 121

2

2

2   mmmm    
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or 0)1(4)1(8)54( 2

2

2

23  mmmmm  , using  21 1   .  

This upon solving gives 

54

122)1(4
23

234

2





mmm

mmmmm
 . 

Thus for m ingredients, we have the unique solution in (0, 1) as the weight vector given 

in the theorem as 

)54(

122)1(
23

23423

1





mmm

mmmmmm


 

and 

54

122)1(4
23

234

2





mmm

mmmmm
 . 

By construction, the weight vector )0...,,0,,(
)(

2

)(

1

)( 
AAA   satisfies the two 

equations in condition in theorem (4.7). 

Therefore, )( )( A  is indeed A-optimal for K   in T. 

To obtain the optimal value for m factors, we adapt the definition of Average-variance 

criterion as provided in Pukelsheim (1993). That is  

1

1

1 )(
1

)(





 







  traceC

s
v , where 







 


2

1m
s . 

For m-factors, we have 

1

1

1 )(
2

)1(
)(





 






 
  traceC

mm
v . 

From equation, (4.33), 
21

2

2

11

)1(

]1)1([)1(4
))((











m

mmm
Ctrace .  

Substituting for the values of  
)54(

122)1(
23

23423

1





mmm

mmmmmm
  and  
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54

122)1(4
23

234

2





mmm

mmmmm
 , we obtain 

12)1(4)3752(

)54(
))((

234234

223
1






mmmmmmmmm

mmm
Ctrace  . 

Hence the optimal value becomes 

 

1

234234
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1

1

1

12)1(4)3752()1(

)54(2

)(

2

)1(

1
)(















































mmmmmmmmmmm

mmm

Ctrace
mm

v 

▪ 

4.4   D-Optimal Weighted Centroid Design 

This section contains the derivation of optimal weighted centroid design for the 

determinant criterion, 0 . 

4.4.1 D-optimal design for 2m ingredients   

Theorem 4.12 

In the second-degree Kronecker model for mixture experiments with two ingredients, the 

unique D-optimal design for K   is 

                212211

)(

3

1

3

2
)(  D

. 

The maximum of the D-criterion for m=2 factors is 20998684.0
108

1
)(

3

1

0 







v . 
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Proof 

From theorem (4.6), we have then )(  is optimal0  for K   in T if and only if  

          











otherwisetraceC

jallfortraceC
CCtrace

p

p

p

j

)(
1


 

Putting, 0p , we have that )(  is optimal0  for K   in T if and only if 

         }2,1{)()( 01  jallfortraceItraceCCtraceC j  . 

The inverse of the matrix )(C  is given in equation (4.21). 

From equations (4.2) and (4.21), we have; 

 































000

2

11
0

2

1
0

1

)(
11

11

1

1




CC  

Hence  

111

1

1

2
0

11
)(


 CCtrace  and 3traceI . 

Thus  

traceICCtrace 1

1 )( , implies that  

3

2
1  . 
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Also from equations (4.3) and (4.21), we have  



























2

2

2

1

2

1
00

2

1
00

2

1
00

)(







CC . 

Now  

2

1

2

1
)(


 CtraceC . 

Thus  

traceICtraceC 1

2 )( , implies that  

3

1
2  . 

Thus for m=2 ingredients we have 
3

2
1   and 

3

1
2   as provided in the theorem.   

From Pukelsheim (1993), the determinant criterion is obtained as 

 sCv
1

0 )](det[)(   , where, 






 


2

1m
s . 

For 2m , we have  3

1

0 )](det[)(  Cv  . 

From theorem (4.6), the information matrix for the design with two factors is 





























488

816

8

16

81616

8

)))((()(

222

2212

2221







 MCC K . 
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Substituting for the values of 
3

2
1   and 

3

1
2   we get 

























12

1

24

1

24

1
24

1

48

17

48

1
24

1

48

1

48

17

)(C  

108

1
)]([ CDet . 

Hence the optimal value becomes   20998684.0
108

1
)](det[)(

3

1

3

1

0 







  Cv . 

4.4.2 D-optimal design for 3m ingredients   

Theorem 4.13 

In the second-degree Kronecker model for mixture experiments with three ingredients, 

the unique D-optimal design for K   is 

                 212211

)(

2

1

2

1
)(  D

. 

The maximum of the D-criterion for m=3 factors is 25.0
2

1
)(

6

1

120 







v . 

Proof 

From theorem (4.6), we have then )(  is optimal0  for K   in T if and only if  

             











otherwisetraceC

jallfortraceC
CCtrace

p

p

p

j

)(
1


 

Putting 0p , we have that )(  is optimal0  for K   in T if and only if 

}2,1{)()( 01  jallfortraceItraceCCtraceC j  . 
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The inverse of the matrix )(C  is given in equation (4.25). 

From equations (4.6) and (4.25), we have; 
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1

6

1
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1
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1
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1
0

1
0

0
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1
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1
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1
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1
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CC  

Hence  

1111

1

1

3
0

111
)(


 CtraceC  and 6)( Itrace . 

Thus  

)()( 1

1 ItraceCtraceC  , implies that  

2

1
1  . 

Also for equations (4.7) and (4.25), we have  
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2
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22

1
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1
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0
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1
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1
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1
0
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1
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0
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1

6

1
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CC . 
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Now  

2

1

2

3
)(


 CtraceC . 

Thus traceICtraceC 1

2 )( , implies that  

2

1
2  . 

Thus for m=3 ingredients we have 
2

1
1   and 

2

1
2   as provided in the theorem.   

From Pukelsheim (1993), the determinant criterion is obtained as 

 sCv
1

0 )(det)(   , where, 






 


2

1m
s . 

For 3m , we have  6

1

0 )(det)(  Cv  . 

From theorem (4.3), the information matrix for the design with three factors is 
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MCC kk . 

Substituting for the values of  
2

1
1   and 

2

1
2   we get 
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3
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1
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1
0

0
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3
0
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1
0
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1
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8

3
0
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1
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1
0
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1
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1
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9
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1

0
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1
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1
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1

96

1

48

9

)(C  
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1
)]([ CDet

. 

Hence the optimal value becomes,   25.0
2

1
)](det[)(

6

1

12
6

1

0 







  Cv . 

4.4.3 D-optimal design for 4m ingredients   

Theorem 4.14 

In the second-degree Kronecker model for mixture experiments with four ingredients, the 

unique D-optimal design for K   is 

                    212211

)(

5

3

5

2
)(  D

. 

The maximum of the D-criterion for m=4 factors is 373719282.0
10

9
)(

10

1

10

6

0 







v . 

Proof 

From theorem (4.6), we have then )(  is optimal0  for K   in T if and only if  

           











otherwisetraceC

jallfortraceC
CCtrace

p

p

p

j

)(
1
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Putting 0p , we have that )(  is optimal0  for K   in T if and only if 

            }2,1{)()( 01  jallfortraceItraceCCtraceC j   

The inverse of the matrix )(C  is given in equation (4.29). 

From equations (4.10) and (4.29), we have; 
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CC  

Hence  
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1

1

4
0
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)(


 CtraceC  and 10)( Itrace . 

Thus  

)()( 1

1 ItraceCtraceC  , implies that  

5

2
1  . 
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Also for equations (4.11) and (4.29), we have  
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1
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0
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1
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1
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1
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1
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. 

Now  

22

1

2
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CtraceC . 

Thus  

traceICtraceC 1

2 )( , implies that  

5

3
2  . 

Thus for m=4 ingredients we have 
5

2
1   and 

5

3
2   as provided in the theorem.   
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From Pukelsheim (1993), the determinant criterion is obtained as 

 sCv
1

0 )(det)(   , where 
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1m
s . 

For 4m , we have  10

1

0 )(det)(  Cv  . 

From theorem (4.5), the information matrix for the design with four factors is 
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Substituting for the values of 
5

2
1   and 

5

3
2   we get 



























































10

9
00000

40

3

40

3
00

0
10

9
0000

40

3
0

40

3
0

00
10

9
0000

40

3

40

3
0

000
10

9
00

40

3
00

40

3

0000
10

9
00

40

3
0

40

3

00000
10

9
00

40

3

40

3
40

3

40

3
0

40

3
00

160

19

160

1

160

1

160

1
40

3
0

40

3
0

40

3
0

160

1

160

19

160

1

160

1

0
40

3

40

3
00

40

3

160

1

160

1

160

19

160

1

000
40

3

40

3

40

3

160

1

160

1

160

1

160

19

)(C

 

10

6

10

9
)]([ CDet . 

Hence the optimal value becomes,   373719282.0
10

9
)(det)(

10

1

10

6

10

1

0 







  Cv . 

4.4.4 D-optimal design for 2m ingredients   

We now derive the general expressions giving the optimality candidates in (0,1) and the 

optimal value for the D-criterion. 

Theorem 4.15 

In the second order Kronecker model for mixture experiments with 2m  ingredients, 

the unique D-optimal design for K   is 
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                     212211

)(

1

1

1

2
)( 









m

m

m

D . 

The maximum of the D-criterion for m  factors is 

    

)1(

2

22

0
)1(

2

)1(8

)1(
)(



















































mm
m

m

mmm

mm
v  . 

Proof 

From theorem (4.7), the proposed optimal design is unique. We start by first deriving the 

optimality candidate. 

Let mT )0...,,0,,( 21   be a weight vector with }2,1{)(   and suppose )( is  

D-optimal for K   in T.  Let )))((()(  MCC k . 

Theorem (4.6) implies that 

              








otherwiseCtrace

jforCtrace
CCtrace j

))((

}2,1{))((
)(

0

0

1




 

after substituting for p=0. 

From lemma (3.1), any matrix ),( HssymC  can be uniquely represented in the form 

              





























 32

2

21

212

gWfWeIdVcV

VdVcbUaI

C
m

m

 

With coefficients; ga ...,, . The terms containing V2 , W2 and W3 only occur for 

3m  or 4m , respectively. 

In the proof of lemma (3.1), any given symmetric matrix )(ssymC , can be 

partitioned according to the block structure of matrices in H , that is  
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2221

2111

CC

CC
C  

with )(11 msymC  ,
m

m

C










2

21  and 






















2
22

m
symC . 

For 1j , we have  

)()()( 01

1 ItracetraceCCtraceC    

Now from equations (4.15) and (4.33), we obtain  
























00

)1(

11

)( 1

11

1

1

V
mm

I
CC m

  

Hence, 
11

1

1

1
))((




m
ItraceCCtrace m 







 , since mItrace m )( . 

Also for m  factors, 
2

)1(
)(




mm
Itrace s , where 







 


2

1m
s . 

Thus )()()( 01

1 ItracetraceCCtraceC   , implies that 

2

)1(

1




mmm


.  

From this we get 
1

2
1




m
 . 

Similarly, from equations (4.16) and (4.33), we obtain 


































22

1

11

2 1
0

)1(

1
0

)(

m
I

V
mm

CC




 . 

Hence  
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222

1

2
2

)1(1
))((































 mm
ItraceCCtrace

m
. 

Thus, )()()( 01

2 ItracetraceCCtraceC   , implies that 

2

)1(

2

)1(

2




 mmmm


. This gives, 

1

1
2






m

m
 . 

Thus for m  factors, we have the unique solution in (0, 1) as the weight vector given in 

the theorem when 
1

2
1




m
  and 

1

1
2






m

m
 . 

Secondly, we verify the D-optimality. 

From equation (4.17), the information matrix for a design with m factors is given as 

       






































2

2
1

2

1
2

2
221

8

)1(

8

8)1(88

8

)(

m

m

I
mm

V

VU
mm

I
m

C 



 . 

Substituting the values of 
1

2
1




m
  and 

1

1
2






m

m
 , we get 

       


















































2

2

1

12

)1(8

)1(

)1(8

1

)1(8

1

)1(8

1

)1(8

15

)(

m

m

I
m

mm
V

m

m

V
m

m
U

mm
I

mm

m

C  . 

Now  

m
m

mmm

mm
C 

































)1(

2

)1(8

)1(
))(det(

22

 . 

From Pukelsheim (1993), the determinant criterion is obtained as 

 sCv
1

0 )(det)(   , where, 






 


2

1m
s . 
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Hence the optimal value becomes 

         

)1(

2

22

)1(

2

0
)1(

2

)1(8

)1(
))(det()(





















































mm
m

m

mm

mmm

mm
Cv  ▪ 

4.5   E-Optimal Weighted Centroid Design 

This section contains the derivation and calculation of optimal weighted centroid designs 

for the smallest eigenvalue criterion,  , that is, E-optimality criteria. We need to adopt 

two theorems in Pukelsheim (1993), which specifically focuses on E-optimality. 

Theorem 4.16 

Assume the set   of competing moment matrices and convex, and intersects the 

feasibility cone )(cA . Then a competing moment matrix M  is optimal for c  in 

  if and only if  M  lies in the feasibility cone )(cA  and there exists a generalized 

inverse G  of M  such that   AallforcMcGAGcc ▪ 

Theorem 4.17 

Let mT , be the weight vector for a weighted centroid design, )(  which is feasible 

for K   and let )(  be the set of active indices, ( }0:...,,1{)(  jmj  ).  

Furthermore, let )))((( MCC k  and ]1,(p . Then the following assertions hold 

(i) The weighted centroid design  )(  is E-optimal for K   in T if and only if 

there is a matrix )(),( sNNDHssymE  satisfying 

1traceE  and 








otherwiseC

jallforC
EtraceC j

)(

)()(

min

min




, 

where )(min C , denotes the smallest eigenvalue of C. 
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(ii) Suppose )( is E-optimal for K   in T and E is a matrix satisfying the 

optimality condition for  )(  given in (i). furthermore, let )(  be a further 

weighted design which is E-optimal for K   in T. then the information matrix  

)))(((
~

MCC k , satisfies  

ECKC )(
~

min ▪ 

The following theorem dictates on the choice of the matrix E of theorem (4.17) above. 

Theorem 4.18 

Let MM  be a competing moment matrix that is feasible for K   and let sz  be an 

eigenvector corresponding to the smallest eigenvalue of the information matrix, )(MCk . 

Then, M  is optimalp   for K   in M   and the matrix 
2

z

zz
E


  satisfies the normality 

inequality of theorem (4.17) if and only if M is optimal for Kz   in M . If the smallest 

eigenvalue of )(MCk  has multiplicity 1, then M is optimalp   for K   in M if and 

only if M  is optimal for Kz   in M . 

Proof 

We show that the normality inequality of theorem (4.17) for optimality  coincides 

with that of theorem (4.16) for scalar optimality. With 
2

z

zz
E


 , the normality inequality 

of theorem (4.17) reads; 

))((min

2

MC

z
AGKzGKz

k
 , for all MA . 

The normality inequality of theorem (4.16) is 

 cMcAGcGc    for all MA  
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With Kzc  , the two left hand sides are the same. So are the right hand sides, because of 

 
))((min

2

1

MC

z
zCzKzMKzcMc

k
  . 

If the smallest eigenvalue of )(MCk  has multiplicity 1, then the only choice for E is  

 
2

z

zz
E


 ▪ 

Therefore in obtaining optimal designs for E-ctriterion, we need to obtain smallest 

eigenvalue and its corresponding eigenvector, of the information matrix for the weighted 

centroid design. We proceed as follows: 

From equation (3.4), the information matrices involved in our designs can be uniquely 

partitioned as  








 


2221

2111

CC

CC
C …………………………………………………………… (4.35) 

For  , let  

 ),(
12221

21111
Hssym

WCC

CUC
IC s 

















 . 

Then the characteristic polynomial can be written as  

])()det[()det()det()( 21

1

1112112211 CUCCWCICIC ssc
  …… (4.36) 

Where the matrix 21

1

11121122 )()( CUCCWC    is the schur complement of  

111 UC   and lies in the }{ 321 WWWspan (as shown in corollary (2.1)). 

The roots of this polynomial are the eigenvalues of the information matrix C  and are 

computed as follows: 
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Lemma 4.2 

Let ga ,,  be the coefficients of the matrix ),( HssymC , as given in lemma(3.1) 

with d, f and g occurring only when 3m or 4m  respectively. 

Furthermore, define 

 2
2

1 )2(2)1(2
2

2
)2(2)1( dmcmg

m
fmebmaD 















 


………. (4.37)

 

  22

2 ))(2(4)1()4( dcmgmfmebaD  ………………………… (4.38) 

Then, in the case 4m , the matrix C has eigenvalues: 

gfe  21 , …………………………………………………………………… (4.39) 

















 
 13,2

2

2
)3(2)1(

2

1
Dg

m
fmebma  and ……………………. (4.40) 

 25,4 )3()4(
2

1
Dgmfmeba 

…………………………………… (4.41)
 

With multiplicities; 
2

)3( mm
, 1 and )1( m  respectively. 

In the case m=2, only the eigenvalues 432 ,,  occur, whereas for m=3 there are four 

eigenvalues 5432 ,,  and . 

The poof of this lemma is provided by Klein (2004). 

4.5.1 E-optimal design for 2m ingredients   

Theorem 4.19 

In the second-degree Kronecker model with m=2 ingredients, the weighted centroid 

design 

212211

)( 54545454.045454545.0)(  E
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is E-optimal for  K   in T. 

The maximum of the E-criterion for m=2 ingredients is 09090909.0)( v . 

Proof 

We begin by observing that the proposed optimal design is unique in view of theorem 

(4.7). From theorem (4.6), we obtained the information matrix  

        





























488

816

8

16

81616

8

)))(((

222

2212

2221







MCk ………………………………… (4.42) 

From equation (3.3) any matrix ),( HssymC  can be uniquely represented in the form 

         


























 32
2

21

212

gWfWeIdVcV

VdVcbUaI

C
m

m

. 

For the case m=2, the information matrix )))((( MCk  can then be written as 

         






 


11

12

eWcV

VcbUaI
C

m
 

With coefficients; ecba ,,, , since the terms containing V2, W2 and W3 only occur for 

m>2. 

From lemma (3.1), we get 











10

01
21 IU , 




























01

10

10

01

11

11
11 2222 IU ,  

)11()()( 2112

21
2

1,

1  




 eeEeeEV

ji
ji

jiij  and 1

2

21 








IW . 
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Thus the information matrix )))((( MCk  in equation (4.37) can be written as 

      

    

































































 


ecc

cab

cba

ec

cba

eWcV

VcbUaI
C

m

111

1

1

01

10

10

01

11

12
………… (4.43) 

Where; 
16

8 21  
a , 

16

2
b , 

8

2
c  and 

4

2
e  

From lemma (4.2), we compute the eigenvalues of the above matrix as follows; 

   
64

92633
22 1

2

122

1





cebaD  

 
2

12

2
4

13







 



ebaD  

using equation (4.43) and equation (4.40) in lemma (4.2), we obtain 

   926333
16

1

2

1
1

2

1113,2   Deba  

again,  using equation (4.43) and equation (4.41) in lemma (4.2), we obtain 

 
22

1 1
24


  Deba  

Thus for the case m=2, the eigenvalues that occur are 

 926333
16

1
1

2

112    

 926333
16

1
1

2

113    

2

1
4
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From theorem (4.18), if the smallest eigenvalue of )(MCk  has multiplicity 1, then the 

only choice for the matrix E is 
2

z

zz
E


 , where sz  is an eigenvector corresponding 

to the smallest eigenvalue of the information  matrix )(MCk . In our case, the smallest 

eigenvalue is  

       926333
16

1
1

2

113min   . …………..…………..…………… (4.44) 

We therefore need to get an eigenvector, z corresponding to the smallest eigenvalue of 

the matrix, )(MCk . 

By definition,  , is an eigenvalue of matrix C if  

0)(  zIC     zzC   with 0z  

where 





















3

2

1

y

y

y

z , is an eigenvector of C corresponding to  . 

Thus, from equation (4.43) and equation (4.44), we have 

0)( min  zIC  , implies that  







































































0

0

0

16

263351

88

816

9263326

16

81616

9263326

3

2

1

1

2

1122

21

2

112

221

2

11

y

y

y







 

If we let  

9263326 1

2

11  p , 12 1  q  and 9263351 1

2

11  r ,  
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0

0

0

22

2

2

3

2

1

y

y

y

rqq

qpq

qqp

 

we obtain the equations 

02 321  qyqypy  

02 321  qypyqy  

022 321  ryqyqy  

Solving the above system of linear equations, we obtain the eigenvector corresponding to 

min  as; 

   










































r

q
y

y

y

z
4
1

1

3

2

1

 

Then the matrix 

   































2

21644

4
11

4
11

r

q

r

q

r

q
r

q
r

q

zz  and 
2

22
2 162

r

qr
z


  

Thus the matrix E is given as; 

       


















































22

2

2222

2222

2

22

2

2222

2

22

2

2

162

16

162

4

162

4

162

4

162162

162

4

162162

qr

q

qr

qr

qr

qr

qr

qr

qr

r

qr

r

qr

qr

qr

r

qr

r

z

zz
E …………………...……(4.45) 
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from equation (4.2) and equation (4.45), we have 

   







































000

)162(2

4

)162(2)162(2

)162(2

4

)162(2)162(2

2222

2

22

2

2222

2

22

2

1
qr

qr

qr

r

qr

r

qr

qr

qr

r

qr

r

EC  

Thus 
22

2

1
162 qr

r
EtraceC


  

Now  

)(min1 CEtraceC  , implies that 

 926333
16

1

162
1

2

1122

2





qr

r
 

This simplifies to 

0536909233 1

2

1

3

1

4

1   , ...…………………………………………… (4.46) 

upon substituting the values of q  and r . 

The roots of polynomial (4.46) are 

33333333.045454545.0,1,11 and  

Since, )1,0(1  , then it implies that 45454545.01   or 33333333.01  . 

When, 45454545.01  , 54545454.01 12    and  

  09090909.0926333
16

1
1

2

11min    

When, 33333333.01  , 66666667.01 12    and  

  08333333.0926333
16

1
1

2

11min    
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We observe that min  is maximum when 
11

5
1   and 

11

6
2  . 

Thus for m=2, ingredients we have, 45454545.01   and 54545454.02  . 

From Pukelsheim (1993), the smallest-eigenvalue criterion )()( min Cv   . 

From equation (4.44), the smallest eigenvalue is 

  09090909.0926333
16

1
1

2

11min    

Hence the optimal value for the E-criterion for m=2 factors becomes 

09090909.0)()( min  Cv   ▪ 

4.5.2 E-optimal design for 3m ingredients   

Lemma 4.3 

In the second-degree Kronecker model with m=3 ingredients, the weighted centroid 

design 

212211

)( 33333321.066666679.0)(  E

                                 

is E-optimal for  K   in T. 

The maximum of the E-criterion for m=3 ingredients is 16666667.0)( v .              

The information matrix for second-degree Kronecker model with m=3 ingredients,  

)))((( MCk  can be written as 

      


























 2
2

21

212

fWeIdVcV

VdVcbUaI

C
m

m

 

where; 
24

8 21  
a , 

48

2
b , 

8

2
c , 0d , 

4

3 2
e  and 0f  

with the matrices; U1, U2, V1, V2, W1, W2 and W3 defined as in lemma (3.1). 
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Proof 

In theorem (4.3), we have obtained the information matrix )))((( MCk  for a mixture 

experiment design )(  with m=3 ingredients as 













































4

3
00

88
0

0
4

3
0

8
0

8

00
4

3
0

88

88
0

24

8

4848

8
0

84824

8

48

0
88484824

8

)))(((

222

222

222

222122

222212

222221













MCC kk  

From equation (3.3), any marix ),( HssymC can be represented in the form 

      


























 32
2

21

212

gWfWeIdVcV

VdVcbUaI

C
m

m

 

with coefficients ga ...,, . The terms containing V2, W2 and W3 occurring for 3m  

or 4m  respectively. 

For the present case m=3 and so the information matrix )))((( MCk  can be written as 

      













2321

2123

fWeIdVcV

VdVcbUaI
C  

From lemma (3.1), we get  



















100

010

001

31 IU , 




















































011

101

110

100

010

001

111

111

111

11 3332 IU , 
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3

1,

33

1 )(

ji
ji

jiij eeEV  

)()()( 3223311321121
 eeEeeEeeEV  

Now, 



















0

1

1

)( 21 ee , 


















1

0

1

)( 31 ee  and 


















1

1

0

)( 32 ee  

The vectors, 
3ijE ,   jiji  ,3,2,1, , with index pairs (i,j), considered in their 

lexicographic order are 231312, EandEE . These vectors form the standard basis for 3  

and are   00112E ,   01013E and   10023E . 

Thus  

    


















110

101

011

)()()( 3223311321121 eeEeeEeeEV . 

    







3

1,

3

},{
1

33

2

ji
ji

jik
k

kijeEV  

   


















001

010

100

1232133122 eEeEeEV , 

   

1},{},{

)3(
3

1,

3

1,

2



 






lkji

symEEW

LI
ji

lk
lk

klij
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011

101

110

1323122323131213231213122 EEEEEEEEEEEEW  

From the definition of W3, we get that W3=0, since the side condition  },{},{ lkji , 

cannot be satisfied for m=3. 

Thus the information matrix for m=3 factors can be written as 

































































































































































011

101

110

100

010

001

001

010

100

110

101

011

001

010

100

110

101

011

011

101

110

100

010

001

)))(((

fedc

dcba

MCk   





























effccd

fefcdc

ffedcc

ccdabb

cdcbab

dccbba

………………………………………… (4.47) 

where; 
24

8 21  
a , 

48

2
b , 

8

2
c , 0d , 

4

3 2
e  and 0f . 

Theorem 4.20 

In the second-degree Kronecker model with m=3 factors, there is a weighted centroid 

design,     with }2,1{)(    which is E-optimal for  K   in T. 

Proof 

From lemma (4.2), we compute the eigenvalues of the above matrix as follows 

   
576

4001056720
242 1

2

122

1





dcebaD …………………………… (4.48) 



110 

 

 
2304

136935582745
)(4 1

2

122

2





dcebaD ………….………………… (4.49) 

Using equation (4.47) and equation (4.37) in lemma (4.2), we obtain for m=3 

   40010567202012
48

1
2

2

1
1

2

1113,2   Deba  

Similarly, using equation (4.47) and equation (4.49) in lemma (4.2) we get 

   1369355827453721
96

1

2

1
1

2

1125,4   Deba  

From lemma (4.2) the eigenvalues that 5432 ,,  and  occur for the case m=3. These 

are  

 40010567202012
48

1
1

2

112   , with multiplicity 1, 

 40010567202012
48

1
1

2

113   , with multiplicity 1, 

 1369355827453721
96

1
1

2

114   , with multiplicity 2 and 

 1369355827453721
96

1
1

2

115   , with multiplicity 2. 

From theorem (4.17), if the smallest eigenvector of )(MCk  has multiplicity 1, then the 

only choice for the matrix E is,  
2

z

zz
E


 , where sz   is an eigenvector corresponding 

to the smallest eigenvalue of the information  matrix )(MCk . In our case, the smallest 

eigenvalue is  

 40010567202012
48

1
1

2

113min   ……………………………… (4.50) 



111 

 

We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of 

the matrix, )(MCk . 

By definition,  , is an eigenvalue of matrix C if  

0)(  zIC     zzC   with 0z  

Where,   654321 yyyyyyz , is an eigenvector of C corresponding to  . 

Thus, from equation (4.47) and equation (4.50)  

0)( min  zIC  , implies that  

   

























































































0

0

0

0

0

0

00660

00606

0066

660

606

066

6

5

4

3

2

1

y

y

y

y

y

y

rqq

rqq

roqq

qqpqq

qqqpq

qqqqp

 

where, 40010567201826 1

2

11  p , 12 1  q  and 

40010567201624 1

2

11  r
 

066 54321  qyqyqyqypy  

06 64321  qyqyqypyqy  

066 65321  qyqypyqyqy  

066 421  ryqyqy  

066 531  ryqyqy  

066 632  ryqyqy  
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Solving the above system of linear equations, we obtain the eigenvector corresponding to 

min  as; 


































































r

q
r

q
r

q

y

y

y

y

y

y

z

12

12

12
1

1

1

6

5

4

3

2

1

………………………………………………………………… (4.51) 

Then the matrix 





















































2

2

2

2

2

2

2

2

2
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Thus the matrix E is given as; 
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From equation (4.6) 
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1C and equation (4.52), we have 
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Where 
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Now  

)(min1 CEtraceC  , implies that 

 40010567202012
48

1

4323
1
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1122

2
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r
………………………… (4.54) 

This simplifies to 

01146617856773967053202164241204

0321052999702665886515011752833022149908480

1

2

1

3

1

4

1

5

1

6

1








…. (4.55) 

Upon substituting the values of q  and r . 

The roots of polynomial (4.55) are 66666679.079999697.01 and  

Since, )1,0(1  , then it implies that 79999697.01   or 66666679.01  . 

When, 79999697.01  , 20000303.01 12    and  

  133334848.040010567202012
48

1
1

2

11min    

When, 66666679.01  , 33333321.01 12    and  

  16666667.040010567202012
48

1
1

2

11min    

We observe that min  is maximum when 66666679.01   and 33333321.02  . 

Thus for m=3, ingredients we have, 66666679.01  and 33333321.02  . 

From Pukelsheim (1993), the smallest-eigenvalue criterion )()( min Cv   . 

From equation (4.50), the smallest eigenvalue is 

  16666667.040010567202012
48

1
1

2

11min    

Hence the optimal value for the E-criterion for m=3 factors becomes 

16666667.0)()( min  Cv  ▪ 
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4.5.3 E-optimal design for design 4m ingredients   

Lemma 4.4 

In the second-degree Kronecker model with m=4 ingredients, the weighted centroid 

design 

212211

)( 18181099.01,0.8181890 )(  E
 

is E-optimal for  K   in T. 

The maximum of the E-criterion for m=4 ingredients is 18181818.0)( v . 

Proof 

In the second-degree Kronecker model any matrix H) sym(s,C can be uniquely 

represented in the form  
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cdV

dVbUaU

C '
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121

 

And for the case m=4 ingredients the information matrix )))((( MCk  can then be 

written as  
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VV
cdV
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21

 

With coefficients  dc,b,a, , 

where; 
32

8 21  
a , 

96

2
b , 

8

2
c , and 0d

2

3 2
e 0f 0g  

with the matrices; U1, U2, V1, V2, W1, W2and W3defined as in lemma (3.1). 

 Information matrix )))((( MCk   equation (4.12) for a mixture experiment design 

)(  with m=4 ingredients as 
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 ……………………………………………………………………………………… (4.56) 

From equation (3.3), any marix ),( HssymC can be represented in the form 
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212

gWfWeIdVcV

VdVcbUaI

C
m

m

 

with coefficients ga ...,, . The terms containing V2, W2and W3occurring for 3m  or 

4m  respectively. 

For the present case m=4 and so the information matrix )))((( MCk  can be written as 
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From lemma (3.1), we get  
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Thus the information matrix )))((( MCk  can be written as   
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Where; 
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8 21  
a , 

96

2
b , 

8

2
c , and 0d

2

3 2
e 0f 0g  

From lemma (3.1), we compute the eigenvalues of the above matrix as follows 
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…………………… (4.57) 
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.…………… (4.58) 
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From lemma (4.2), for m=4, 

2

33

2

3
00

2

3
2 122

1





 gfe  

Using equation (4.57) and equation (4.40) in lemma (4.2), we obtain for m=4 

   62514348252521
32

1
43

2

1
1

2

1113,2   Dgfeba  

 

Similarly, using equation (4.58) and equation (4.41) in lemma (4.2) we get  

   53291236271777361
96

1

2

1
1

2

1125,4   Dgeba  

From lemma (4.2) the eigenvalues 54321 ,,,  and  occur for the case m=4. These are  

2

33

2

3
2 12

1





 gfe , with multiplicity 2, 

 62514348252521
32

1
1

2

112   , with multiplicity 1, 

 62514348252521
32

1
1

2

113   , with multiplicity 1, 

 53291236271777361
96

1
1

2

114   , with multiplicity 3 and 

 53291236271777361
96

1
1

2

115   , with multiplicity 3 

From theorem (4.18), if the smallest eigenvector of )(MCk  has multiplicity 1, then the 

only choice for the matrix E is, 
2

z

zz
E


 , where sz   is an eigenvector corresponding 

to the smallest eigenvalue of the information  matrix )(MCk . In our case, the smallest 

eigenvalue is  
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 62514348252521
32

1
1

2

11min   , ………………………………… (4.59) 

We therefore need to get an eigenvector z, corresponding to the smallest eigenvalue of 

the matrix, )(MCk . 

By definition,  , is an eigenvalue of matrix C if  

0)(  zIC   zzC  with 0z  

where,   10987654321 yyyyyyyyyyz ,  

is an eigenvector of C corresponding to  . 

Thus, from equation (4.56) and equation (4.59)  

0)( min  zIC  , implies that  
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where 

 62514348252428
32

1
1

2

11  p , 12 1  q  and  

 62514348252327
32

1
1

2

11  r . 
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01212123 7654321  qyqyqyqyqyqypy  

01212123 9854321  qyqyqyqyqypyqy  

01212123 10864321  qyqyqyqypyqyqy  

01212123 10974321  qyqyqypyqyqyqy  

031212 521  ryqyqy  

031212 631  ryqyqy  

031212 741  ryqyqy  

031212 832  ryqyqy  

031212 942  ryqyqy  

031212 1043  ryqyqy  

Solving the above system of linear equations, we obtain the eigenvector corresponding to 

min  as; 
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Then the matrix 



121 

 























































































2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

6464646464648888

6464646464648888

6464646464648888

6464646464648888

6464646464648888

6464646464648888

888888
1111

888888
1111

888888
1111

888888
1111

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q

r

q
r

q

r

q

r

q

r

q

r

q

r

q
r

q

r

q

r

q

r

q

r

q

r

q
r

q

r

q

r

q

r

q

r

q

r

q

zz

…... (4.60) 

and 
2
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2 3844

r
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z


  

Thus the matrix E is given as; 
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From equation (4.10)  
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and equation (4.61), we have  
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Where 
)3844(4 22

2
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r
a


  and 

)3844(4

8
22 qr
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b




  

Thus 
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aEtraceC  

Now  

)(min1 CEtraceC  , implies that 

 62514348252521
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This simplifies to 
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01465122816924372173202427007796

0339455508502667655987011168907261946419200

1

2

1

3

1

4

1

5

1

6

1








…… (4.63) 

Upon substituting the values of q  and r . 

The roots of polynomial (4.63) are 81818901.091966779.01 and  

Since, )1,0(1  , then it implies that 91966779.01   or 81818901.01  . 

When, 91966779.01  , 08033221.01 12    and  

   115435693.062514348252521
32

1
1

2

11min  
 

When, 81818901.01  , 18181099.01 12    and  

  18181818.062514348252521
32

1
1

2

11min  
 

We observe that min  is maximum When 0.818189011  , 18181099.01 12    . 

Thus for m=4 ingredients we have, 0.818189011   and 18181099.02   

From Pukelsheim (1993), the smallest-eigenvalue criterion )()( min Cv   . 

From equation (4.59), the smallest eigenvalue is 

  18181818.062514348252521
32

1
1

2

11min    

Hence the optimal value for the E-criterion for m=4 factors becomes 

18181818.0)()( min  Cv  ▪ 
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4.5.4 E-optimal design for 2m  ingredients 

Theorem 4.21 

In the second degree Kronecker model with m-ingredients the weighted centroid design  

2211

)( )(  E
is E-optimal for  K   in T. 

The maximum value of the E-criterion for K  with m ingredients is  

  Dmmmm
m

Cv  26
16

1
)()( 23

1

23

min   

Where 
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Proof 

From equation (3.3) any matrix ),( HssymC can be uniquely represented in the form  
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For the caseof  m ingredients the information matrix  )))((( MCk can then be written as  
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Form lemma (3.2) we get  
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Hence the information matrix )))((( MCk  can be written as 
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From lemma (4.2) for m ingredients we have  
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The eigenvalues are; 

 13,2 )1(
2

1
Dcbma   



















 1

2221

8

)1(

)1(8

)1(

8

8

2

1
D

mm

mm

m

m


 

  Dmmmm
m

 26
16

1 23

1

23   

Where

   

 4442

2424242423620202

23456

1

234562

1

23456





mmmmm

mmmmmmmmmmD 

with multiplicity 1 

Hence the smallest eigenvalue is   Dmmmm
m

 26
16

1 23
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3     

 Now let   Dmmmm
m
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1 23
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23

min   then min is an eigenvalue for 

C if for corresponding eigenvector, say ,z we have 0)(  zIC   or )( zzC   with 

0z  
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Now let  
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Solving these equations for iz we get,  

 

 

 where c=2 for even number of ingredients and varying fraction for odd number of 

ingredients as the eigenvector corresponding to min  
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And from equation (4.15) and equation (4.66) 



















00

11
21

2222

2

1

cqVU
m

U
m

qmcmr

r
EC  

From theorem (4.17) a weighted centroid design )(  is E-optimal for K  in T if and 

only if t ).(min CEtraceC j   

 For j=1 

)()(
....

)( 2222

2

2222

2

2222

2

1
qmcmr

r

qmcmrm

r

qmcmrm

r
EtraceC








  



























































 r

cmq
z

z

z

m

1

.

.

.

1

.

.

.

1

1



129 

 

Hence 

  .26
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Putting
2q , Dr  26 11   and  
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Then solving the polynomial using Matlab, the value of 
1  is chosen such that 

);1,0(1   substitute this values to min and take the values that miximizes the min , hence 

the optimal E-criterion is  

  Dmmmm
m

Cv  26
16

1
)()( 23

1

23

min   

4.6   Numerical example  

The following is a numerical example using Response (% Dead Insect) Data from 

applications of 4 chemical compounds in a mixture experiment. The assumption is that a 

researcher wishes to examine 4 chemical compounds (X1, X2, X3, and X4) for their 

effectiveness (independently or in combinations) for insect control. The % dead insect is 

determined as a response to these chemicals in this numerical example (Bondari, K., 

2005). 
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Table 4.4: Numerical example ____________________________________ 

                             Components 

  ________________________ 

Run  Blend   Type    X1  X2  X3  X4  Resp 

_____________________________________________________________________ 

1  Pure  Vertex    1  0 0  0  4.6 

2 Pure   Vertex    0  1  0 0 51.8 

3  Pure   Vertex    0  0  1  0  58.2 

4 Pure   Vertex    0  0  0  1  78.0 

5 Binary   Edge Centroid  0  0  0.5  0.5 10.8 

6  Binary   Edge Centroid  0  0.5 0 0.5  7.2 

7  Binary   Edge Centroid  0  0.5  0.5  0  58.4 

8  Binary   Edge Centroid  0.5  0  0 0.5  7.8 

9  Binary   Edge Centroid  0.5  0  0.5  0  75.8 

10  Binary   Edge Centroid  0.5  0.5  0  0  22.4 

11  Ternary  Face Centroid   0  1/3   1/3  1/3  45.0 

12  Ternary  Face Centroid  1/3  0  1/3  1/3  6.2 

13  Ternary  Face Centroid   1/3  1/3  0  1/3  5.8 

14 Ternary Face Centroid   1/3  1/3  1/3  0  23.2 

15  All   Overall Centroid  1/4    1/4 1/4   1/4  2.6 

______________________________________________________________________ 

4.6.1   Application of A-optimal Weighted Centroid Design  

Consider the simplex centroid design for four ingredients in the above design. The A-

optimal design for four factors can now be applied to four factor numerical example. In 

this study only pure blends and binary blends are considered. 

From A-optimal for four ingridients, we have; 
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Implying that, the unique A-optimal weighted centroid design for K   in m=4 

ingredients is 212211 331046251.0668953748.0)(  A
 .  

Therefore the corresponding A-optimal for the above design is as follows. 
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Table 4.5: Application of A-optimal Weighted Centroid Design _______                   _  

                             Components 

   ________________________ 

Run   Blend  Type       X1          X2          X3      X4                

_____________________________________________________________________ 

1        Pure Vertex        668953748.0    0       0               0                  

2        Pure  Vertex          0      668953748.0   0           0                 

3        Pure  Vertex          0      0  668953748.0        0                  

4        Pure  Vertex          0        0            0         668953748.0       

5        Binary  Edge Centroid       0      0  0.165523125  0.165523125     

6        Binary  Edge Centroid       0      0.165523125   0       0.165523125     

7        Binary  Edge Centroid       0     0.165523125   0.165523125    0     

8        Binary  Edge Centroid       0.165523125    0       0 0.165523125    

9        Binary  Edge Centroid       0.165523125    0  0.165523125  0      

10      Binary  Edge Centroid       0.165523125   0.165523125    0   0       

______________________________________________________________________ 

4.6.2   Application of D-optimal Weighted Centroid Design 

The unique D-optimal weighted centroid design for K   in m=4 ingredients is 

   212211

)( 6.04.0)(  D
 .  

Therefore the corresponding D-optimal Design for the above experiment is as follows. 

Table 4.6: Application of D-optimal Weighted Centroid Design___________       ___  

                             Components 

  ________________________ 

Run  Blend   Type    X1  X2  X3  X4  

_____________________________________________________________________ 

1  Pure  Vertex    0.4  0 0  0   

2 Pure   Vertex    0  0.4  0 0  

3  Pure   Vertex    0  0  0.4  0   

4 Pure   Vertex    0  0  0  0.4   

5 Binary   Edge Centroid  0  0  0.3  0.3  

6  Binary   Edge Centroid  0  0.3 0 0.3   

7  Binary   Edge Centroid  0  0.3  0.3  0  

8  Binary   Edge Centroid  0.3  0  0 0.3   

9  Binary   Edge Centroid  0.3  0  0.3  0   

10  Binary   Edge Centroid  0.3  0.3  0  0   

______________________________________________________________________ 
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4.6.3   Application of E-optimal Weighted Centroid Design  

The unique E-optimal weighted centroid design for K   in m=4 ingredients is 

212211

)( 18181099.01,0.8181890 )(  E
.  

Therefore the corresponding E-optimal Design for the above experiment is as follows. 

Table 4.7: _Application of E-optimal Weighted Centroid Design __________   ____ 

                             Components 

   ________________________ 

Run   Blend  Type       X1          X2             X3      X4               

_____________________________________________________________________ 

1        Pure Vertex        0.81818901    0       0                0                  

2        Pure  Vertex         0      0.81818901    0            0                 

3        Pure  Vertex          0       0  0.81818901         0                  

4        Pure  Vertex          0         0            0         0.81818901       

5        Binary  Edge Centroid       0       0  0.090905495  0.090905495     

6        Binary  Edge Centroid      0      0.090905495    0       0.090905495     

7        Binary  Edge Centroid       0      0.090905495 0.090905495    0      

8        Binary  Edge Centroid       0.090905495     0       0 0.090905495     

9        Binary  Edge Centroid       0.090905495     0  0.090905495  0      

10      Binary  Edge Centroid       0.090905495    0.090905495    0   0       

______________________________________________________________________ 

 

The above numerical example illustration demonstrates the applicability of the weighted 

values of the designs in this study. It is clearly seen that the number of runs is reduced 

and only pure and binary blend are considered in this case. Thus this cut on the cost 

which is always the goal of every experimentor.  
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

5.1   Conclusion  

Investigations were done based on the selected optimality criteria and each design was 

subjected to the Kiefer-Wolfowitz equivalence Theorem. The optimal moment and 

information matrices were obtained based on the choice of the coefficient matrix K   of 

interest. It was found that for second-degree model with 2m  ingredients the unique D-, 

A- and E- optimal weighted centroid designs for K  , exist for the choice of the 

coefficient matrix specifically in this study.  

The study indicates that for the average-variance criterion (A- criterion), as the number of 

ingredients m  increase, 
)(

1

p  increases while 
)(

2

p  decreases. The value of the maximum 

criterion increases. For the determinant criterion (D-criterion), as the number of 

ingredients m  increase,
)(

1

p decreases while 
)(

2

p  increases. The value of the maximum 

criterion also increases. Also for the smallest eigenvalue criterion (E-criterion), as the 

number of ingredients m  increase,  
)(

1

p  increases while 
)(

2

p  decreases. The value of 

the maximum criterion increases. 

In summary, the optimal values obtained have been found to be larger than those 

obtained in the previous studies. These large values indicate that the information matrices 

of these designs carry large information. Thus the model is more informative. This is 

always the goal of every experimenter and it is the main result of this study.  
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Table 4.8: optimalp   weights for K  , 4,3,2m  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  p   
)(

2

p
  pv  

2   0.45454545 0.54545455 0.09090909 

 -1 0.52786405 0.47213595 0.16718427 

   0 0.66666667 0.33333333 0.20998684 

3   0.66666667 0.33333332 0.16666667 

 -1 0.60647018 0.39352982 0.23229856 

   0 0.50000000 0.50000000 0.25000000 

4   0.81818901 0.18181099 0.18181818 

 -1 0.66895375 0.33104625 0.27397905 

   0 0.40000000 0.60000000 0.373719282 

)(

1

p
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5.1 Recommendations 

The regression function considered in this study is the Kronecker square, .)( tttf   

Since the computation of the matrices with unknows is done by hand, it would therefore 

be very interesting to develop a programm that can compute the optimal values.  
 

The hypothetical example clearly indicates that the designs in this study meet the goal of 

every experimenter since the cost of the experiment is reduced. Considering the simplex 

centroid design for four ingredients in the above designs, the number of runs is reduced. 

Therefore it can be clearly seen that the design in the study is practically applicable, 

hence it is recommented that such design can be used in mixture experiments to cut on 

cost. 
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