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ABSTRACT 

Prediction of the stock market has been of enormous interest for the past decades, as 

having an accurate idea of its future performance can help traders invest more 

appropriately and timely to maximize profits; Better forecasts translate to better risk 

management and better option pricing for the stock market products. This thesis 

examined and evaluated the forecasting ability of Nairobi Securities Exchange (NSE) 

share prices at different time points using Generalized Autoregressive Conditional 

Heteroskedasticity (GARCH) Time series models. Daily, weekly and monthly share 

prices of specific companies listed in the Nairobi Securities Exchange were utilized in the 

research study. The study covered the period from 3rd January 2006 to 31st January 2012.  

In order to obtain the most favorable forecasts, appropriate models were first determined 

for each time point for the companies chosen from amongst the lower order GARCH 

models that is GARCH (1, 1), GARCH (1, 2), GARCH (2, 1) and GARCH (2, 2). Lower 

order GARCH models were utilized because of their simplicity and their ability to 

capture the stylized features exhibited by financial time series. In each case, the best 

fitting GARCH models were chosen based on Akaike Information Criterion (AIC) and 

Bayesian Information Criterion (BIC). Models with the least AIC and BIC values were 

preferred. Parameter estimation and model fitting were done using the chosen models. 

Adequacy of the chosen models was done using Ljung Box and Lagrange Multiplier 

Autoregressive Conditional Heteroskedasticity (ARCH LM) tests. The selected models 

were then utilized in forecasting. One month ahead prices and forecasting performance of 

daily, weekly and monthly returns were compared using statistical forecasting accuracy 

measures such as Mean Absolute Errors (MAE), Root Mean squared Errors (RMSE) and 

MAPE for each company so as to determine intervals with best forecasting ability. The 

intervals with the least mean errors were considered to have the best predictive ability as 

compared to the other time points. Three companies namely; National Bank of Kenya 

(NBK), East African Portland cement and the Kenya Airways (KQ) were selected 

purposively because of their consistency in the NSE for the period of study and were also 

representative of three sectors namely; Finance and Investment, Industrial and Allied and 

Commercial and services as categorized in the NSE. The data was obtained from NSE 

and analyzed using the R software version 3.1.0 and results presented in tables and 

graphs. The results revealed that GARCH (1, 1) models performed well in modeling most 

return series for companies investigated especially for daily and monthly returns. 

GARCH (2, 1) seemed better for KQ weekly data while GARCH (2, 2) performed poorly 

for all the data sets. While comparing the forecasting performance of each time point 

based on the selected models, daily data gave better prediction, followed by weekly and 

lastly monthly returns. This suggests that the models generally perform well when 

modeled with higher frequency data.  
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CHAPTER ONE 

INTRODUCTION 

1.1 Background information 

Stock market, also termed as equity market is a place where securities, shares and bonds 

of publicly held companies are issued and traded either through exchanges or over-the-

counter markets. The main purpose of a stock market is to provide a platform where 

investors can buy and sell shares without necessarily having to move from one place to 

the other looking for prospective buyers. 

The stock market plays a pivotal role in the growth of the sectors listed in the Securities 

exchange and the commerce of the country through the mobilization of resources. It 

makes it possible for idle money and savings to be invested in productive activities for 

the economy to grow, money needs to shift from less to more productive activities. 

Moreover, according to Singh (2011), history has shown that the price of shares and other 

assets is an important part of the dynamics of economic activities, and can influence or be 

an indicator of the social mood. An economy where the stock market is on the rise is 

considered to be an up-and-coming economy. In fact, the stock market is often 

considered the primary indicator of a country's economic strength and development. 

Rising share prices, for instance, tend to be associated with increased business investment 

and vice versa. Share prices also affect the wealth of households and their consumption. 

Therefore, central banks tend to keep an eye on the control and behavior of the stock 

market and, in general, on the smooth operation of financial system functions (Singh, 

2011). 

http://en.wikipedia.org/wiki/Share_(finance)
http://en.wikipedia.org/wiki/Central_bank
http://en.wikipedia.org/wiki/Financial_system
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The stock market is also the primary source for companies to raise funds for business 

expansions or setting up new business ventures. If a company wants to raise some capital 

for the business it can issue shares of the company that is basically part ownership of the 

company in the public market.  

To trade in the stock market, the buyers and sellers agree on a price of a product, in this 

case, the transaction of "shares" which represent an equity or ownership interest in a 

particular company.  

Participants in the stock market range from small individual retail investors, institutional 

investors such as mutual funds, banks, insurance companies to larger hedge fund 

investors, who can be based anywhere in the world. Their orders usually end up with 

a professional at a stock exchange, who executes the order of buying or selling as 

required. 

Stock markets are dynamic environments where many factors come in to play in arriving 

at prices but in most cases it is dictated by supply and demand, where supply equals the 

willing sellers and demand equals the willing buyers. The current price is where their 

mutual interests intersect. That intersection is a moving target so at one moment there is 

more supply than demand and at some other moment the balance may shift to more 

demand than supply. Other factors that influence share prices include; company news and 

performance, industry performance, investor sentiments, economic factors (Interest rates, 

inflation & deflation rates), political shocks and so forth. 

http://en.wikipedia.org/wiki/Stock_investors
http://en.wikipedia.org/wiki/Hedge_fund
http://en.wikipedia.org/wiki/Profession
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The NSE is an institution that deals in exchange of securities issued by publicly quoted 

companies and the Government. It is part of the broader market referred to as financial 

market.  

The NSE began in the early 1920s while Kenya was considered a colony under British 

control. It was an informal marketplace for local stocks and shares; there was no formal 

market, rules or regulations to govern stock brokerage activities. Trading took place on 

gentleman’s agreement in which standard commissions were charged with clients being 

obligated to honour their contractual agreements of making good delivery and settling 

relevant costs. By 1954, a true stock exchange was created when the NSE was officially 

recognized by the London Stock Exchange as an overseas stock exchange. After 

independence, the stock exchange continued to grow and became a major financial 

institution. The NSE is part of the African Stock Exchanges Association (ASEA) founded 

in the early 1990s to create a way for all the stock exchanges in Africa to communicate 

and stay organized. There are about 20 exchanges in the ASEA. NSE is one of the largest 

stock exchanges in Africa, with the fourth largest trading volume across the continent. 

There are more than 20 licensed stock brokers at the exchange. Currently the NSE is 

trading more than a 100 million shares each month, and plays a large role in the 

economic growth of Kenya. It is now one of the most active capital markets and a model 

for the emerging markets in Africa in view of its high returns on investment and as a 

well-developed market structure (Ogum et al., 2005) 

There are more than 50 businesses and companies listed in the Nairobi Stock Exchange, 

including Sasini Tea and Coffee Ltd., Kenya Airways, Jubilee Insurance, Kenya 
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Commercial Bank Ltd., and KenGen Ltd. These companies trading in the NSE have been 

subdivided into Agriculture; Manufacturing and Allied segments; Finance and 

Investment and Commercial services. Most of the businesses in the exchange are in the 

financial or industrial sectors, though agriculture and other commercial services are also 

represented. Also listed are treasury bonds issued by the Government of Kenya. 

Occasionally, there are also privately issued corporate bonds as well.  

The prices of financial securities which are traded in the financial markets as well as 

interest rates and foreign exchange rates are subject to constant variability. Thus their 

returns over the various periods are notably volatile i.e. there is up and down movement 

of prices, rates return and so forth. The up and down movement of prices is not a bad 

thing per se but if the price movements are particularly sharp or high variability happens 

within short periods of time, it increases risks and uncertainties and can cause delays in 

business investments as it scares away investors who mainly adopt a “wait and see” 

attitude and makes decision making difficult. As a matter of fact, excess volatility may 

cause crisis and crashes in the financial markets. It is also well known that higher benefits 

or returns on investments usually come with a great deal of risks, so changes and trends 

in the stock market will automatically be of great interest to investors and other market 

participants. 

Volatility cuts across finance and is an important variable in pricing financial derivatives, 

selecting portfolios, measuring and managing risks more accurately (Wagalla et al., 

2011).  
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Forecasting volatility is a crucial and demanding financial matter which has attained 

extensive attention in the past few decades. It is widely accepted that though returns of 

financial securities prices are more or less unpredictable on daily as well as monthly 

basis, return volatility is forecastable along with vital inference for financial economies 

and risk management (Torben et al., 2009). Good forecasts therefore become extremely 

important in making financial decisions.  

First, the knowledge of volatility could guide traders on the risk of holding an asset or the 

value of an option, thus enabling enormous returns on their investments. Good forecasts 

also provide reasonable forecasting confidence interval (Engle et al., 2005). Moreover, 

reliable models shed further light on the data generating process of the returns (Hongyu 

& Zhichao, 2006). These estimates also give insight of the robustness of the economy and 

the directions of monetary and fiscal policy making. 

Trading in stock market has achieved massive attractiveness all over the world in the past 

few decades. The increasing diversity of financial index related instruments, along with 

the economic growth enjoyed in the past few years has broadened the dimension of 

global investment opportunity to both individual and institutional investors (Alam et al., 

2013). Thus being able to appropriately forecast volatility is of great importance to all the 

interested parties, as well as for the growth of the country’s economy.  

With the recent advancements in technology and communication, and subsequent 

automation of trading activities, real-time stock market information on the listed 

securities facilitates price discovery for the interested persons at whatever times of 

interest. 
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The key motivation of this research was to examine share prices of selected companies at 

three different intervals that is daily, weekly and monthly share prices in order to 

determine the time points from which more accurate volatility estimates and forecasts can 

be made in order to optimally guide the trading activities at the Nairobi Securities 

Exchange.  

A time series approach was utilized to achieve this, because according to Fama (1965), 

“the past behavior of a security’s price is rich in information concerning its future 

behavior. History repeats itself in that ‘pattern’ of past price behavior will tend to recur in 

the future. Thus, if through careful analysis of price charts one develops an understanding 

of the ‘patterns’ this can be used to predict the future behavior of prices and in this way 

increase expected gains.”  

Moreover, future prices being uncertain, they must be described by probability 

distributions, thus statistical methods become a natural way to investigate prices. Time 

series methods have also been found to be able to predict many financial time series 

(Swarzch, 2013). He further argues that time series models are the ultimate tool for 

letting the “data speak for themselves” because all inferences are based on the observed 

series. 

1.2 Scope 

The research study focused on GARCH model estimation and specification and 

subsequently forecasting using daily, weekly and monthly share prices for three chosen 

companies that trade in the Nairobi Securities Exchange. These companies are National 

Bank of Kenya, East African Portland Cement and the Kenya Airways. The chosen 
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companies have been trading consistently in the Nairobi Securities Exchange for the 

study period and are representative of three sectors namely; Finance & Investment, 

Industrial & Allied and Commercial services as categorized in the Nairobi Securities 

Exchange.  

1.3 Statement of the problem 

Modeling of the stock market has witnessed a significant attention and subsequent 

increase over the last three decades. Focus has been to identify efficient models that can 

be applied to particular stock exchange data for forecasting and prediction of volatility 

which is an important variable in financial decision making. However, the time points to 

obtain best volatility forecasts have not been exhaustively studied despite the massive 

generation of stock exchange data at a very frequent rate. The aim of the study was 

therefore to determine the best time points from amongst daily, weekly and monthly 

share prices for the selected companies listed in the NSE that can be reliably employed to 

characterize the share prices volatility and produce best predictions to enable investors 

maximize profits and guide trading and policy making activities at the NSE.  

1.4 Objectives of the study. 

1.4.1 General objectives 

The main objective of the study was to determine the sampling intervals which give best 

forecasts for the representative sectors of the NSE using lower orders GARCH models.  
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1.4.2 Specific objectives 

i. To fit GARCH models for daily share prices for the 3 selected companies 

ii. To fit GARCH models for weekly share prices for the 3 selected companies 

iii. To fit GARCH models for monthly share prices for the 3 selected companies 

iv. To compare forecasts with the actual values in order to determine the best 

sampling intervals for each company from daily, weekly and monthly returns. 

1.5 Justification. 

Generally, the investors at the NSE are faced with the problem of deciding which shares 

to buy, hold or sell in order to maximize profits and minimize losses, thus the main 

objective was that of finding reliable time points that can guide them in their investment 

decision making. The study will therefore go a long way in providing evidence based 

decision making guide that will majorly assist investors in making the right moves at the 

right time. This will not only ensure enormous returns on their investments but also 

economic boosts for the country because loses will be minimized. Moreover, the study 

will assist policy makers and other interested parties in the planning and control of 

business operations. The research will also add to the existing literature on the NSE as 

well as financial time series applications to interested scholars. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 Time series 

Time series analysis is a form of statistical data analysis on a series of sequential data 

points that are usually measured at equal time intervals over a period of time. The most 

common characteristics or patterns of a time series are increasing or decreasing trend, 

cyslic, seasonality, and irregular fluctuations. Time series forecasting takes the analysis 

from the time series data and tries to predict how the data may be in the near future, 

based on what it has been in the past. This is especially important in the field of stock 

market investment as traders and investors, want to make the right moves at the right 

times to maximize financial profit. Thus creating an accurate forecast based on time 

series analysis methods can provide an accurate prediction of what is to come in the near 

future. 

Time series Analysis concerns the analysis of data collected over time for instance, 

weekly, monthly, quarterly and so forth. Usually the intent is to discern whether there is 

some pattern in the values collected to date, with the intention of short term forecasting- 

to use as the basis of business decisions. The aim of time series is to summarize the 

properties of a time series and characterize its salient features. The main reason for 

modeling a time series is to enable forecasts of future values to be made. Forecasts are 

usually made by extrapolation.  

Essentially, time series analysis is rooted in the idea that the past tells us something about 

the future; the question is how to go about interpreting the information encoded in the 
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past events and furthermore, how we are to extrapolate future events based on this 

information, constitute the main subject matter of time series analysis. 

A great deal of data in business, economics, engineering and natural sciences occur in the 

form of time series where observations are dependent. Box and Jenkins (1976) defined 

that the technique available for the analysis of such a series of dependent observation is 

called time series analysis. Kottegoda (1980) defined time series as a set of observations 

that measure the variation in time of some aspect of phenomena, such as share prices of 

certain companies over a certain period of time.  

Statistical analysis of time series data started a long time ago (Yule, 1927) and 

forecasting has an even longer history. Objectives of the two may differ in some situation 

but forecasting is often the goal of time series. Applications played a key role in the 

development of time series methodology in business and economics. Time series analysis 

is used among other purposes to describe, control, predict and forecast processes  

Tsay (2000) in the publication of Time Series Analysis stated that ‘Forecasting and 

Control by Box and Jenkins in 1970 was an important milestone for time series analysis. 

It provided a systematic approach that enables practitioners to apply time series methods 

in forecasting. It popularized the Autoregressive Integrated Moving Average (ARIMA) 

model by using an iterative modeling procedure consisting of identification, estimation, 

and model checking. 

Once an ARIMA model is built and judged to be adequate, forecasts of future values are 

simply the conditional expectations of the model if one uses the minimum mean squared 
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error as the criterion. The success of ARIMA models generated substantial research in 

time series analysis. However, the history of time series analysis was not smooth. First of 

all, time series analysis was originally divided into frequency domain and time domain 

approaches. Proponents of the two approaches did not necessarily see eye to eye, and 

there were heated debates and criticisms between the two schools. The time domain 

approach uses autocorrelation function of the data and parametric models, such as the 

ARIMA models, to describe the dynamic dependence of the series (Box et al., 1994). The 

frequency domain approach focuses on spectral analysis or power distribution over 

frequency to study theory and applications of time series 

Models for time series data can have many forms and represent different stochastic 

processes. When modeling variations in the level of a process, there are three broad 

classes of practical importance these are; AR, I model, MA models. These three classes 

depend linearly on previous data points. A combination of the three ideas produces 

ARMA and ARIMA models. The generalization of the three models produces the Auto 

Regressive Fractionally Integrated Moving Average (ARFIMA) model 

An AR model is a representation of a type of random process; as such, it describes certain 

time-varying processes. The autoregressive model specifies that the output variable 

depends linearly on its own previous values. The notation AR (p) indicates an 

autoregressive model of order p. The AR (p) model is defined as  

t

1

X  = c + ......................................................................................................................... 2.1
p

i t i t

i

X 



  

 

http://en.wikipedia.org/wiki/Stochastic_processes
http://en.wikipedia.org/wiki/Stochastic_processes
https://en.wikipedia.org/wiki/Random_process
https://en.wikipedia.org/wiki/Linear_prediction
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Where p   are the parameters of the model, c is a constant, and t  is white noise.  

The Moving Average (MA) model is a common approach for modelling univariate time 

series models. MA(q) refers to the moving average model of order q, it is defined as: 

t q -q1 -1X  =  µ+ + + ..................................................................................................................2.2t t t    

 

Where μ is the mean of the series, the θ1,..., θq are the parameters of the model and the ɛt, 

εt−1,... are white noise error terms. The value of q is called the order of the MA model. 

This can be equivalently written in terms of the backshift operator B as 

q

1 qtX  = µ + (1+ B + ...+ B )  ..........................................................................................................................2.3
t

  

 

Therefore a MA model is conceptually a linear regression of the current value of the 

series against current and previous (unobserved) white noise error terms.They are used in 

time series to describe stationary events. Fitting a moving average model is more 

complicated than fitting an Autoregressive model because the error terms are not 

observable. 

The Autoregressive Moving Average models(ARMA) consists of two parts, the 

Autoregressive part and the Moving Average part.The model is then referred to as 

ARMA(p,q) where p is the order of the autoregressive part and q is the order of the 

moving average part i.e.  it contains the AR(p) and MA(q) models. ARMA models are 

sometimes called Box Jenkins models after  Box and Jenkins (1970) who expounded an 

https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/White_noise
https://en.wikipedia.org/wiki/Backshift_operator
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iterative method for choosing and estimating them. ARMA model allowed greater 

flexibility in fitting of actual time series. 

The main drawback of linear stationary models is their failure to account for change in 

volatility i.e. the width of the forecast intervals remain constant even as new data become 

available, unless the parameters are changed. 

Among other types of non-linear time series models, there are models to represent the 

changes of variance over time (heteroskedasticity). These models represent 

autoregressive conditional heteroskedasticity (ARCH) and among others the GARCH 

model. Here changes in variability are related to, or predicted by, recent past values of the 

observed series. This is in contrast to other possible representations of locally varying 

variability, where the variability might be modeled as being driven by a separate time-

varying process, as in a doubly stochastic model.  

In describing ARCH behavior we focus on the error process. In particular, we assume 

that the errors are an innovative process i.e. we assume that the conditional mean of the 

errors is zero. The error process is written as εt = σtzt where σt is the conditional 

standard deviation and the zt terms are a sequence of independent zero mean, unit 

variance normally distributed variables.  

Suppose one wishes to model a time series using an ARCH process. Let εt denote the 

error terms (return residuals, with respect to a mean process) i.e. the series terms. These 

http://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity
http://en.wikipedia.org/wiki/Doubly_stochastic_model
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εt are split into a stochastic piece zt and a time-dependent standard deviation σt 

characterizing the typical size of the terms so that εt = σtzt 

The random variable zt is a strong white noise process. The series 2

t  is modeled by 

2

0 1

1

........................................................................................................................................2.4
q

t t i

i








    

 

Where     and     ,  0i   

An ARCH (q) model can be estimated using ordinary least squares. A methodology to 

test for the lag length of ARCH errors using the Lagrange multiplier test was proposed by 

Engle (1982). This procedure is as follows: 

Estimate the best fitting autoregressive model AR (q)  

t t-
1

y   = y  .............................................................................................................2.5i i

q

t
i




   

  

Obtain the squares of the error ˆ and regress them on a constant and q lagged values:  

1
1

ˆ ˆ ˆ ˆ ............................................................................................................................2.6
q

t t i
i



 




     

 

Where q is the length of ARCH lags. 

http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Least_squares
http://en.wikipedia.org/wiki/Lagrange_multiplier_test
http://en.wikipedia.org/wiki/Robert_F._Engle
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The null hypothesis is that, in the absence of ARCH components, we have i    for all 

i=1, 2, 3…,q. The alternative hypothesis is that, in the presence of ARCH components, at 

least one of the estimated i coefficients must be significant.  

The concept of the ARCH model was introduced by Engle in 1982, in his seminal paper; 

the paper measured the time-varying volatility. His model was based on the idea that a 

natural way to update a variance forecast is to average it with the most recent “surprise.” 

While conventional time series and econometric models operate under the assumption of 

constant variance, the ARCH process allows the conditional variance to change over time 

as a function of past errors leaving the unconditional variance constant. According to 

Engle (2004) an ARCH process is a mechanism that includes past variances in the 

explanation of future variances. 

 Although the ARCH model might be only a few decades old, the original ARCH model 

and its various generalizations have been applied successfully in numerous economic and 

financial data series of many countries and have literally revolutionized empirical work in 

financial economics, particularly in modeling of stock returns, interest rates, inflation 

rates, exchange rates and so on. It is employed commonly in modeling financial time 

series that exhibit time-varying volatility clustering i.e. periods of swings followed by 

periods of relative calm. 

 In the empirical application of the ARCH model a relatively long lag in the conditional 

variance equation called for, and to avoid problems with negative variance parameters a 

fixed lag structure is typically imposed.  

http://en.wikipedia.org/wiki/Null_hypothesis
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If an autoregressive moving average model (ARMA model) is assumed for the error 

variance, the model is a generalized autoregressive conditional heteroskedasticity 

(GARCH) model. (Bollerslev, 1986) 

The GARCH model was introduced by Bollerslev to overcome the ARCH limitation. It 

generalized ARCH to make it more realistic i.e. to allow for both a longer memory and a 

much more flexible lag structure. The extension of the ARCH process to GARCH 

process bears much resemblance to the extension of the standard time series AR process 

to the general ARMA process and, this allows a more parsimonious description in many 

situations. 

In that case, the GARCH (p, q) model (where p is the order of the GARCH terms 2 and 

q is the order of the ARCH terms 2 ) is given by 

2 2 2
q t-qt-1 1

... .......................................................................2.7pt t pt
   

   
       

 

Summarizing we get 

2 2

1 1

.....................................................................................................2.8
q p

t i t i i t i
i i

 
 


 

 

       

 

 In the ARCH (q) process, the conditional variance is specified as a linear function of past 

sample variances only, whereas the GARCH (p, q) process allows lagged conditional 

variances to enter as well.  

http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
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Extensive empirical evidence suggests that GARCH (p, q) is more parsimonious than 

ARCH (q) model and provides a framework for deeper time varying estimation. 

According to Kun (2011), one of the outstanding features of GARCH (p, q) is that it can 

effectively remove the excess kurtosis in returns. Particularly, the standard GARCH (1, 

1) model is widely recognized and the most popular for modeling volatilities in many 

financial time series. 

Generally, when testing for heteroskedasticity in econometric models, the best test is the 

White test. However, when dealing with time series data, this means to test for 

ARCH/GARCH errors.  

Although GARCH has good performance for explaining volatility clustering and 

leptokurtosis in financial time series, it cannot explain the leverage effect. It is however, 

probably the most commonly used financial time series model and has inspired dozens of 

more sophisticated models. 

The Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) 

model by Nelson (1991) is another form of the GARCH model. He extended the ARCH 

methodology to better describe the behavior of return volatility. His study is important 

because of the fact that it extended the ARCH methodology in a new direction, breaking 

the rigidity of GARCH and ARCH specification. Nelson listed the following as major 

drawbacks of the GARCH Model; the lack of symmetry in the response to shock, the 

need to impose parameter restrictions to ensure positivity of the continual variance and 

that measuring persistent is difficult. 

http://en.wikipedia.org/wiki/Heteroskedasticity
http://en.wikipedia.org/wiki/White_test
http://en.wikipedia.org/wiki/Time_series
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 His most important contribution was to propose a model to test the hypothesis that the 

variance of return was influenced differently by positive and negative excess returns, his 

study found out that not only was the statement true, but also that excess returns were 

negatively related to stock market.  

It was introduced to capture the asymmetric effect formally, an EGARCH (p, q): 

q p
2 2

k t-k k
k k 

log g(z )+ log ......................................................................................2.9t t k
  


 

    

 

Where 

( ) ( ( 10t t t tg Z Z Z Z      

 

2

t is the conditional variance,  ,  k,  k,   and   are coefficients, and tZ  may be a 

standard normal variable or come from a generalized error distribution. The formulation 

for ( )tg Z  allows the sign and the magnitude of tZ  to have separate effects on the 

volatility. This is particularly useful in an asset pricing context.  

Since 2log t may be negative there are no (fewer) restrictions on the parameters. 

Integrated Generalized Autoregressive Conditional Heteroskedasticity (IGARCH) is a 

restricted version of the GARCH model, where the persistent parameters sum up to one, 

and therefore there is a unit root in the GARCH process. The condition for this is 

1 1

1.............................................................................................................................2.11i

p q

i

i i 

    

 

http://en.wikipedia.org/wiki/Conditional_variance
http://en.wikipedia.org/wiki/Standard_normal_variable
http://en.wikipedia.org/wiki/Generalized_error_distribution
http://en.wikipedia.org/wiki/Unit_root


20 

 

ARCH models are rarely used nowadays to describe financial time series because of the 

fact that GARCH models perform better (Alexander, 2001). 

2.2 GARCH Models 

GARCH models have been found to perform well with stock market returns, exchange 

rates, Consumer price indices and many other variables. Existing literature suggests that 

GARCH models are better in describing returns series that have the changing variance 

level. They have been extensively researched on and tested statistically and empirically. 

The Gaussian GARCH (1, 1) process, in particular, is widely used and highly regarded in 

practice as well as in the academic discourse. It is often preferred by financial modeling 

professionals because it provides a more real-world context than other forms when trying 

to predict the prices and rates of financial instruments. The model is the most celebrated 

among the ARCH family. GARCH (p, q) is a generalization of GARCH (1, 1). 

 The standard GARCH (1, 1) model is defined as: 

2 2 2
1 1

..................................................................................................2.12t t t
  

  
   

 

Where 

 t  are returns with zero mean and unit variance 

 ,   and 


  are model coefficients,  > 0,    0, 


   0 and  + 


  <1 and 

2 ; . .t t t tu u i i d    N(0,1) 
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The GARCH (1, 1) model is equivalent to an infinite ARCH model with exponentially 

declining weights.  

In practice, the standard GARCH (1, 1) has been found to be sufficient to capture the 

volatility clustering in the data. And according to most researches, it is rarely necessary to 

use more than a GARCH (1, 1) model for financial applications. In particular, according 

to Omar (2013), GARCH (1, 1) successfully captures thick tailed returns, and volatility 

clustering, and can readily be modified to allow for several other stylized facts, such as 

non-trading periods and predictable information releases.  

In addition to the standard GARCH (1, 1), other lower order GARCH models have been 

found to fit well to stock returns, for instance GARCH (1, 2), GARCH (2, 1) and 

GARCH (2, 2). These four GARCH models have been utilized in this thesis in order to 

determine the best fitting model for each data set and thereafter carry out forecasting of 

future prices. 

2.3 Financial Time Series reviews. 

There is plenty of literature on behavior of stock market returns, which date back to 

Mandelbrot (1963) and Fama (1965). These seminal studies provide evidence that time 

series of daily stock returns exhibit some autocorrelation for short lags. However, due to 

the small magnitudes of the autocorrelations, it is not possible to form profitable trading 

rules. Low statistical significance of the autocorrelation estimates lead to the assumption 

of serially uncorrelated stock returns.  
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Financial time series data often exhibit some common characteristics. Fan and Yao 

(2003) summarizes the most important features of financial time series as: The series tend 

to have leptokurtic distribution, i.e. they have heavy tailed distribution with high 

probability of extreme values. In addition, changes in stock prices tend to be negatively 

correlated with changes in volatility, that is; volatility is higher after negative shocks than 

after positive shocks of the same magnitude. This is referred to as the leverage effect.  

The sample autocorrelations of the data are small whereas the sample autocorrelations of 

the absolute and squared values are significantly different from zero even for large lags. 

This behaviour suggests some kind of long range dependence in the data. The distribution 

of log returns over large periods of time (such as a month, a half a year, a year) is closer 

to a normal distribution than for hourly or daily log-returns. Finally, the variances change 

over time and large (small) changes of either sign tend to be followed by large (small) 

changes of either sign (Mandelbrot, 1963). This characteristic is known as volatility 

clustering. These are facts characterizing many economic and financial variables, they are 

commonly referred to as ‘stylized facts.’  

Since the introduction of ARCH and GARCH models, there has been a significant 

amount of research on volatility of stock markets of many countries, developed and 

emerging markets alike. For instance, Gary and Mingyuon (2004) applied the GARCH 

model to the Shanghai Stock Exchange, Magnus and Fosu (2006) utilized GARCH 

models in modeling and forecasting Ghana Stock Exchange returns, Onwekwe et al., 

(2011) applied GARCH models to Nigerian Stock returns, Islam (2013) applied GARCH 

models to four Asian markets while Bertram (2004) modeled Australian Stock Exchange 
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using ARCH models. Other studies on these stock markets include Hongyu and Zhichao 

(2006) who forecasted the volatility of the Chinese stock market using the GARCH-type 

models and Ngailo (2011), utilized GARCH models on the inflation rates of Tanzania, 

just to name but a few. 

A few papers have also attempted to apply GARCH models to Nairobi Securities 

Exchange, among them; Ogum et al., (2006) applied the EGARCH model to the Kenyan 

and Nigerian Stock Market returns, Maana et al., (2010) applied GARCH model to the 

Volatility of exchange rates in the Kenyan market, Omar (2013) applied GARCH in 

modeling of foreign exchange and share prices for specific companies listed in the Nairobi 

Securities Exchange for the period 2001-2010 and  more recently Wagalla et al.,(2011) 

applied ARCH type models in modeling volatility of weekly returns of the Nairobi 

Securities exchange.  

The simplest GARCH (1, 1) is often found to be the benchmark of financial time series 

modeling because such simplicity does not significantly affect the preciseness of the 

outcome for instance, Omar (2011) used GARCH to model share prices and foreign 

exchange in Kenya and confirmed the empirical evidence in Bollerslev (1992), that 

GARCH (1, 1) is usually adequate in describing financial time series. Maana et al., (2010) 

also applied GARCH in their research on volatility of exchange rates in the Kenyan market 

and concluded that GARCH (1, 1) was applicable in the estimation of volatility in the 

Kenya foreign exchange market data for the period 1993-2006. Ngailo (2011) applied 

GARCH models to Tanzania Inflation rates and the standard GARCH (1, 1) was found to 

be the best for modeling and forecasting future prices. Magnus and Fosu (2006) while 
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modeling Ghana Stock Exchange also found out that GARCH (1, 1) was able to model and 

forecast conditional volatility of Databank Stock index better than other competing models. 

In practice, GARCH (1, 1) comprising of only 3 parameters (,   and


 ) in the 

conditional variance equation has been found to be sufficient to capture the volatility 

clustering in the data. 

For a long time, the focus of financial time series modeling has been on the ARCH model 

and its various extensions, thereby ignoring the effect of data frequency on forecasting 

performance using the ARCH-type models. As a matter of fact, the subject of data 

frequency for financial modeling and forecasting has received little attention. There are 

few studies that have considered the issue of time points and their ability to forecast 

future values, for instance, Green (2011) used Box Jenkins ARIMA model to compare 

first day of the month and 15th day of the month as well as weekly stock prices of eight 

companies, the results revealed that six out of the eight chosen companies were better 

predicted by data sampled weekly as compared to the 1st day of the month and 15th day of 

the month. The present study therefore aimed at finding the time points or the sampling 

intervals from daily, weekly and monthly share prices that gives the best forecasts for the 

sectors listed in the NSE as represented by the three chosen companies using the GARCH 

models. 

The GARCH models according to Wagalla et al., (2011) are more appropriate for the 

stock market data since they are able to capture the stylized facts exhibited by the NSE.  
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

The study focused on modeling the daily, weekly and monthly share prices for the three 

chosen companies namely, National Bank of Kenya, East African Portland Cement and 

Kenya Airways from Nairobi Securities Exchange.  

The companies selected have been trading in the NSE for the period of study and are 

representative of the three sectors namely, Finance & Investment, Industrial & Allied and 

Commercial & Services categorized in the NSE.  

Kenya Airways was incorporated in 1977 following the breakup of the then East African 

Airlines. Since its inception, the airline has grown its destination network and currently 

flies to 31 international and domestic destinations. The company was listed in the NSE in 

1996 and its stock is widely held both by foreign and local investors.  

The NBK is a large financial services provider in Kenya, serving individuals, small-to-

medium sized enterprises (SMEs) and large corporations. As of December 2011, NBK's 

asset base was valued at approximately US$821 million (KES: 68.7 billion), with 

shareholders' equity valued at about US$125 million (KES: 10.5 billion). In April 2011, 

The NBK was ranked number eight, by assets, among the forty-four licensed commercial 

banks in the country. It was established in 1968 as a 100% government-owned financial 

institution. In 1994, the Kenyan Government reduced its shareholding to 68% by selling 

http://en.wikipedia.org/wiki/Government_of_Kenya
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32% shareholding to the public. The government further divested from NBK over the 

years, until its present shareholding of 22.5%, as of October 2010.  

The East African Portland Cement Company Ltd. is a manufacturer and seller of cement. 

It was founded in February 1933 and is headquartered in Athi River, Kenya. It is the 

second largest cement producer in Kenya and its operations are predominantly within the 

country.  

For over 70 years, East African Portland Cement Limited has been Kenya's leading 

cement manufacturer. By providing the ‘lifeblood’ of the country’s construction industry, 

East African Portland Cement has played a central role in the nation building. 

Blue Triangle Cement, the company's flagship brand, is well known all over Kenya as a 

symbol of quality and reliability. The company's products have been used in projects in 

areas such as housing, road construction, education, health, tourism, transport and 

communication, as well as hydro-electric power across the country. 

3.2 Data 

Three data sets from three companies were considered in this research. The first data set 

was the daily closing stock price from the selected companies collected over the period 

3rd June, 2006 to 31st Jan, 2012. The stock prices were obtained from the NSE historical 

price database. 

The five-year study period was chosen to ensure that likelihood function is well defined 

and that the models properly converge, a few years of data are needed but not too many 
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that current market conditions are not reflected. If we take a too short period data, then 

parameter estimates may not be robust. (Chand et al., (2012) 

3.3 Data Analysis 

Box and Jenkins (1976) approach of ARIMA model building was utilized that is model 

identification, estimation and diagnostic testing. In the model identification stage, 

exploratory analyses were done to determine the characteristics of the data sets but model 

order was however not considered because the models used were already predetermined 

as the lower GARCH models, then the data was fit to the respective models identified by 

estimation and finally diagnostic testing was done to rule out any model misspecification 

that could have occurred. Forecasting, which was the main aim of this thesis, was also 

done using the models chosen, and the time points evaluated. All the analyses were done 

using R software version 3.1.0. 

 3.3.1 Exploratory Data analysis 

In order to explore the three datasets in details, and be able to get clues on the likely 

nature or characteristics of the series, a number of important preliminary investigations 

and descriptive statistics were computed, these were Skewness, Kurtosis, Jarque-Bera, 

mean, maximum, minimum and standard deviation. 

Skewness is a measure of symmetry. Positive skewness of a variable under consideration 

implies that its distribution has a long right tail. On the other hand, negative skewness 

shows that the distribution of a variable under consideration has a long left tail. 

For univariate data sets x1, x2…xn, skewness is given by  
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Skewness  

3
i

i=1
3

(x -x)

..................................................................................................3.1
(n-1)s

= 

n


 

Where, x  is the mean, s is the standard deviation, and n is the number of observations.  

The Kurtosis is a measurement of whether the data is peaked or not relative to the normal 

distribution, and it determines the shape of a probability distribution. A positive kurtosis 

that is higher than three shows that the distribution has higher, acute peaks around the 

mean and has fat tails (Leptokurtic). While, a distribution with negative kurtosis shows it 

has lower, wider peaks around the mean and thinner tails. For a univariate data x1, 

x2,…,xn,  the formula is given by: 

Kurtosis  
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The Kurtosis for standard normal distribution is three. So, Excess Kurtosis is given by 

Excesskurtosis 

n
4

i

i=1

4

(x -x)

3..............................................................................................3.3
(n-1)s

 = 


 

The Jarque-Bera test was an alternative way to test normality. It is a type of Lagrange 

multiplier test that was developed to test normality. The Jarque-Bera statistics is 
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calculated from skewness and kurtosis, and it follows a chi square distribution with two 

degrees of freedom as shown below: 

Jarque-Berra 

2 2

(2)

skewness (kurtosis 3)
~ .................................................3.4

6 24
= n  

 
 


   

The null hypothesis of the normality is rejected if the value for Jarque-Bera statistic is 

greater than the critical value. The Jarque-Berra statistic is also rejected if the p value is 

less than the significant values at the given level of significance 

Measures of central tendencies and dispersion such as Means, maximum, minimum and 

the standard deviation were used. The standard deviation in particular was an indication 

of volatility of the share prices. The mean and standard deviation are given by the 

formulas; 

Mean 

n
i

i=1

x
 = x = ........................................................................................................................3.5

n


 

Standard deviation 

2n
i

i=n

(x -x)
= s = .......................................................................................3.6

n-1

 
 
 
  

Time plots were also used in order to get clear visual characteristics of the series; such as 

if the series has noticeable patterns, for instance Kirchler and Huber (2007) mentioned 

that volatility clustering manifests itself as periods of tranquility interrupted by periods of 
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turmoil. So the visual inspection of the time plots of returns were used to determine 

whether or not the data exhibited volatility clustering or not. 

Transformation of the series into returns was done using the operation; 

t

t-1t

p
p ................................................................................................................................................3.7r  = ln  
 
 

 

 where Pt and Pt−1 are current and previous closing share prices for times t = 1, 2, 3 · · ·  

 The transformed series is now referred to as returns and are expected to be stationary. To 

confirm the stationarity of the returns, Augmented Dickey–Fuller test (ADF) for unit 

roots was utilized. ADF test is a test for unit roots in time series. Presence of unit roots is 

an indication of stationarity. ADF tests the hypothesis that the series is non-stationary 

against an alternative hypothesis that the series is stationary. It is a negative number. The 

more negative it is, the stronger the rejection of the hypothesis that there are no unit roots 

at some level of confidence. The hypothesis is also rejected if the p values are found to be 

smaller than the level of significance used in the investigation. 

Acceptance of the null hypothesis would imply that the series is non stationary, thus 

further differencing would be needed to make the data sets stationary. This is done to 

ensure that the stationarity condition has been achieved before proceeding further to 

estimate and fit time series models. Stationarity is desired in time series because it 

ensures that the time series models can be used to examine the dynamic behavior of 

volatility of returns over time.  

http://en.wikipedia.org/wiki/Unit_root
http://en.wikipedia.org/wiki/Time_series
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Sample autocorrelation function (ACF) plots were then used to ascertained the serial 

dependence for observations x1, x2,…xn at varying time lags. It is rarely necessary to test 

correlations to lags greater than 20, so they were tested at lags 10, 15 and 20. 

ACF is given by  

 

(h)ACF(h) = h  = ,.................................................................................................................3.8
(0)
 


 

ACF plots are plots of the correlations at the varying lags against the time lags h = 0, 1, 

n-1 and where (h) the sample autocovariance is function (ACVF) given by: 

n-h

t t+h
t 1

ACVF(h) = (h) = .............................................................................................................3.91 (x - x)(x - x)n


 

 

The autocorrelations should be near zero for all the time lags if the time series is an 

outcome of a completely random phenomenon, otherwise, one or more of the 

autocorrelations will be significantly non-zero. 

ACF plots of squared returns against time lags were also examined, and if the plots 

exhibit significant correlation and die out slowly the results indicate that the variance of 

returns is conditional on its past history and may change over time.  

Presence of GARCH effects in the returns were then checked using Ljung Box test on the 

returns. Ljung Box and Lagrange multiplier (ARCH LM) as suggested by Engle (1982) 

are the conventional ways of testing ARCH effects. ARCH LM Test is a Lagrange 

Multiplier test for GARCH effects up to order 12 in the residuals. 
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The ARCH effect applies the white-noise test on the time series squared: 

2
t t

y = x ...................................................................................................................................3.10

 

The test hypothesis for the ARCH effect: 

O 1 mH  : =  = 0      

Where: 

 is the population autocorrelation function for the squared time series (i.e. 2

t ty = x ) and 

m  is the maximum number of lags included in the ARCH effect test. 

The Ljung-Box text was formally applied on the returns series to check for the presence 

of GARCH effects. The Ljung-Box modified 
*Q  statistic is computed as: 

2m
j*

j=1

p̂
Q (m) = n(n+2) .................................................................................................................................................3.11

n-1

 

Where: 

 m is the maximum number of lags included in the ARCH effect test,  

 
jp̂  is the sample autocorrelation at lag j for the squared residuals  

*Q (m)  has an asymptotic chi-square distribution with m degrees of freedom. 

* 2

(mQ (m) ~    
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Where 
2

(m  is a Chi-square probability distribution function and m is is the degrees of 

freedom for the Chi-square distribution. 

The computed p-value is compared with the significance level used in the investigation, 

and the hypothesis of no GARCH effects was rejected if the p value is found to be less 

than 0.05. 

In practice, the choice of m affects test performance of the statistic *Q (m) . If T is the 

length of the observed time series, choosing m = ln (n) is recommended (Tsay, 2010). 

 If there are no GARCH effects in the returns then the GARCH model is unnecessary and 

misspecified (Zivot & Gary, 2006) but if the GARCH effects are found to be significant 

then the specification of the appropriate models will be done using Model selection 

criterion such as Akaike Information Criterion and the Bayesian Information Criterion 

(AIC& BIC).  

Akaike Information Criterion (AIC) is a measure of the relative quality of a statistical 

model for a given set of data; as such it provides a model for model selection. For any 

statistical model, AIC is given by  

AIC = 2k-2 ln (L)…………………………………….......……………………...…….3.12  

Where k is the number of parameters in the model and L is the maximized value of the 

likelihood for the model. 
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Bayesian Information Criterion (BIC), on the other hand is also a criterion for model 

selection among a finite set of models. It is based on the likelihood function and is 

closely related to AIC. BIC is given by 

BIC=-2ln(L)+kln (n)…………….……………………………………...……………3.13 

Where k is the number of parameters in the model, L is the maximized value of the 

likelihood for the model and n is the sample size. 

3.3.2 Model Estimation, Selection and fitting 

After exploring the characteristics and distributional properties of the data sets and 

confirming the presence of GARCH effects in the returns, the GARCH models were then 

estimated for the respective series. The lower orders GARCH models were utilized in this 

study because of their simplicity and the ability to capture the stylized features exhibited 

by financial time series.  

GARCH (1, 1), GARCH (1, 2), GARCH (2, 1) and GARCH (2, 2) parameters for the 

three companies for all the returns were estimated using robust method of Bollerslev-

Woodridge’s Quasi Maximum Likelihood Estimator (QMLE) assuming the Gaussian 

standard normal distribution. Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values were thereafter compared for each data set to 

determine the most appropriate model; given a set of competing models for the data, the 

preferred model is the one with the minimum AIC and BIC values. 

 



35 

 

3.3.3 Diagnostic testing 

Adequacy of the models was checked to ensure detection of possible model 

misspecification. This is done by analyzing the residuals (fitting error) from the fitted 

models. Residuals are the difference between the observed values and the estimated 

values. Ljung Box test and ARCH LM tests were used on squared residuals to establish 

the presence of autocorrelation and GARCH effects. P values less than 5% for the test 

statistics suggest rejection of the no autocorrelation and no GARCH effects null 

hypotheses respectively.  

3.4 Forecasting and forecasting performance 

In time series, forecasting is a mathematical way of estimating future values using present 

and historical values of the series (Aidoo, 2010). Forecasting as described by Box and 

Jenkins (1976) provides basis for economic and business planning, inventory and 

production control and optimization of industrial process. Predicting future values using 

the constructed models is one of the main objectives of time series analysis.   

3.4.1 Forecasting evaluation 

Forecasting of future share prices was done using the fitted models of each data set and 

the forecasting performance of each time points evaluated and compared using common 

statistical error functions which measure forecasting accuracy. The intention was to find a 

time point that gives the best forecasting power. These measures are Mean Absolute 

Percentage error (MAPE), Mean Absolute Error (MAE) and Root Mean Square Error 

(RMSE) which are given by: 
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Where n is the sample size, K is the number of steps ahead, t


and t  are the square root 

of the conditional forecasted volatility and the realized volatility respectively. 

The time point which yields the lowest mean error values of the forecast evaluation 

statistics is considered better than the rest 
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CHAPTER FOUR 

RESULTS AND INTERPRETATION 

4.1 Introduction 

The findings and results of data analysis, model estimation and evaluation, as well as 

diagnostic tests and forecasting are presented in this chapter in figures and tables. 

4.2 Exploratory Data Analysis 

4.4.2 Daily series 

The time plots of the daily closing prices of the companies whose share prices were 

analyzed are presented in Figure 1 below. 
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Figure 1: Time plots for the daily series 
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From the time plots in Figure 1, the swings are evident and its clear that the stock prices 

are very irregular with varied degree of flactuations.The mean and variance are not 

constant impling that the series are non stationary. Consequently, transformation was 

done using equation 19, and the returns series plotted against time points. 

 

The plots of daily returns are presented in Fig 2.  
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Figure 2: Time plots of daily returns 
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Unlike the plots of closing prices, the plots of returns are trendless and amplitude of 

returns varies over time. They tend to fluctuate around zero and periods of relative 

calmness interspersed by periods of turmoil.  Table 1 below presents the descriptive 

statistics of the daily returns. 

Table 1: Descriptive statistics for the daily returns 

Compa Min Max Mean Std Skew Kurt Jarque/Berra 

KQ -0.255 0.209 -0.0009   0.028 -0.196 13.459 

11383.880(<2.2e-

16) 

NBK -0.346 0.476 -0.0002 0.034 0.873 37.324 

87741.240(<2.2e-

16) 

EA Port -0.555 0.108 -0.0005 0.027 -5.874 121.509 

936435.500(<2.2e

-16) 

 

The means for the three sets of returns are all negative and the difference between the 

minimum and maximum returns are high. NBK exhibits the highest volatility with 

standard deviation of 0.034 while East African Portland cement was the least volatile 

with a standard deviation of 0.027. KQ has positive skewness while NBK and EA 

Portland both have a negative skewness. Kurtosis for all the returns are greater than three 

thus clearly indicating deviation from the normal distribution. Moreover, the Jarque-Bera 

tests rejects null hypothesis for all the returns in the three cases because of the small p 

values as indicated in brackets. These tests confirm that the returns are not normally 

distributed. 
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Table 2: Unit root testing for daily return and closing prices 

Company Daily returns Prices 

  ADF P-value ADF P-value 

KQ -11.1087 0.01 -1.7900 0.6671 

NBK -34.0284 0.01 -3.6687 0.0607 

EA Port -40.1553 0.01 -3.0446 0.1361 

  

Table 2 presents the stationary checks for the raw data and the returns using ADF test 

statistics. The ADF values are more negative for returns series than for closing prices, p 

values are also conspicuously smaller for the returns series than for the raw series. 

The autocorrelation of returns and squared returns were done to ascertain serial 

dependence in the data. Figure 3 below shows that the ACF plots of the daily returns. 
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Figure 3: ACF of returns and squared returns for the daily returns 

The Ljung Box test statistics for daily returns for lags 10, 15 and 20 are provided in Table 

3. 
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Table 3: Ljung Box test for daily returns 

Company Lag 

  10 15 20 

  Statistic p value Statistic p value Statistic p value 

KQ 52.765  <2.2e-16) 60.064  <2.2e-16 62.257  <2.2e-16 

NBK 61.189  <2.2e-16) 65.534 <2.2e-16 76.844  <2.2e-16 

EA Port 28.378  <2.2e-16) 38.489  <2.2e-16 43.14  <2.2e-16 

 

The p values for all the returns are all less than 0.05, implying a rejection of the no 

autocorrelation null hypothesis at 5% level of significance. 
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4.2.2 Weekly series 
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Figure 4: Time plots of weekly series. 

Visual inspection of Figure 4 above, shows that the weekly prices are quite irregular and 

that, fluctuations are frequent, suggesting that the mean and variance are not constant and 

hence non stationary. Transformation was done and the time plots plotted. 
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The resulting time plots are as shown in Figure 5 below. 
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Figure 5: Time plots of weekly returns  

The weekly returns in Figure 5 appear in clusters, with varying amplitude but generally 

vary around zero. This suggests that the returns are now stationary. The plots are marked 

by periods of relative calmness interposed with turmoil. This phenomenon is referred as 

volatility clustering and it is very conspicuous in all the returns plots.  
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Descriptive statistics were carried out to further explore the distribution characteristics of 

weekly returns and the results are presented in Table 4. 

Table 4: Descriptive statistics for weekly returns 

Comp Min Max Mean Stdv Skew Kurt Jarque/Berra 

KQ -0.1693 0.2331 -0.0045 0.0556 0.8504 3.5984 

210.9605 (<2.2e-

16) 

NBK -0.3637 0.2244 -0.0011 0.0624 -0.2168 4.3222 

251.4412(<2.2e-

16) 

EA Port -0.2758 0.2554 -0.0021 0.0445 -0.3579 

11.711

2 

1824.407(<2.2e-

16) 

 

The means for the three sets of returns are all negative and the difference between the 

minimum and maximum returns are high. NBK exhibited the highest volatility with 

standard deviation of 0.0624 while East African Portland cement was the least volatile 

with a standard deviation of 0.0445. KQ has positive skewness while NBK and EA 

Portland both have a negative skewness. Kurtosis for all the returns are greater than three 

thus clearly indicating deviation from the normal distribution. Moreover, the Jarque-Bera 

tests rejects null hypothesis for all the returns in the three cases because of the small p 

values as indicated in brackets. These tests confirm that the returns are not normally 

distributed. In order to test whether the returns are stationary or not, ADF tests were done 

and the results are shown in Table 5 below. 
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Table 5: ADF test for weekly series and returns 

Company Weekly returns Weekly prices 

  ADF P-value ADF P-value 

KQ -6.5658 0.01 -1.6314 0.7318 

NBK -6.2064 0.01 -3.2398 0.0816 

EA Port -7.3272 0.01 -2.4041 0.4060 

 

The ADF values are more negative for returns series than for the weekly prices. The p 

values were also significantly smaller for the returns series than for the raw series. These 

p values are also less than 0.05, suggesting the rejection of non-stationary null hypothesis 

at 95% confidence level. 

To test the presence of GARCH and serial dependence in the returns, Ljung-Box test and 

autocorrelation plots of returns were used respectively. The results are presents in Table 6 

and Figure 6 respectively. 

The Ljung Box test statistics for weekly returns for lags 10, 15 and 20 are provided in 

Table 6.  

Table 6: Ljung Box test for weekly returns 

Company Lag 

  10 15 20 

  Statistic P value Statistic P value Statistic P value 

KQ 12.0948 0.2788 19.3479 0.1984 23.2288 0.2777 

NBK 31.3988 0.0005 35.3701 0.0022 40.7585 0.0040 

EA Port 19.7058 0.0322  25.2052 0.0473 3.4914 0.9989 
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Weekly returns for NBK are all significant at the lags tested, while EA Port’s returns fail 

to be significant at lag 20. KQ’s returns all fail to be significant FOR GARCH effects at 

lags 10, 15 and 20. 

 

Figure 6: ACF plots of weekly returns and squared returns. 
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4.2.3 Monthly series. 
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Figure 7: Time plots of monthly series 

The time plots of monthly series in Figure 7 show no distinct pattern, the prices are 

varied and irregular suggesting that the series are non-stationary. Transformation of 

prices to returns was done and the time plots for the returns are as shown in Figure 8. 
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Figure 8: Time plots of monthly returns 

Unlike the plots of average monthly prices, the plots of returns in Figure 8 are trendless 

and amplitude of returns varies over time. They tend to fluctuate around zero, implying a 

constant mean and variance. The returns are highly varied for all the returns except for 

East African Portland Cement which exhibits fewer sharp fluctuations.  
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Descriptive analysis of the three data sets was done and summarized in Table 7 below: 

Table 7: Descriptive statistics for monthly returns 

Company Min Max Mean Stdv skew Kurt Jarque/Berra 

KQ -0.263 0.273 -0.0212 0.1124 0.3665 3.2247 1.9572 (0.3758) 

NBK -0.25 0.296 -0.0074 0.0113 0.2878 3.4860 2.0394 (0.3607) 

EA Port -0.385 0.399 -0.0099 0.0958 0.2383 5.9277 113.8534(<2.2e-16) 

 

The means for the three sets of returns are all negative and the difference between the 

minimum and maximum returns are high. KQ exhibited the highest volatility with 

standard deviation of 0.1124 while NBK was the least volatile with a standard deviation 

of 0. 0113.They all have positive skewness implying a right tail, thus asymmetric. 

Kurtosis for all the returns are greater than three thus clearly indicating deviation from 

the normal distribution. The Jarque-Bera tests, however accept the null hypothesis for 

normality for KQ and NBK, but fails significantly for EA Port.  

ADF tests were done to determine the existence of unit roots and the results were 

summarized in Table 8 below. 

Table 8: ADF test for monthly series and returns 

Company Monthly returns Monthly prices 

  ADF P-value ADF P-value 

KQ -6.0401 0.01 -1.3135 0.8548 

NBK -7.0793 0.01 -2.4568 0.3893 

EA Port -9.1448 0.01 -3.0643 0.1420 

 

The ADF values are more negative for returns series than for the closing prices. The p 

values were also significantly smaller for the returns series than for the raw series. The 
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returns series have p values that are all smaller than 0.05, thus significant for existence of 

unit roots at 95% confidence level. 

The Ljung-Box test and autocorrelation plots of returns were used to test the presence of 

GARCH effects and the serial dependence in the returns respectively and squared returns, 

the results are presented in Table 9 and Figure 9 below. 
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Figure 9: ACF plots of monthly returns and squared returns  
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Table 9: Ljung Box test for monthly returns 

Company Lag 

  10 15 20 

  Statistic p value Statistic p value Statistic p value 

KQ 12.5228 0.2516 20.8314 0.1423 21.3069 0.3793 

NBK 7.1604 0.7102 9.0673 0.8740 13.9134 0.8349 

EA Port 6.1396 0.8034 7.7050 0.9351 9.3570 0.9784 

 

None of the p values for all the monthly returns were all greater than 0.05 at lags 10, 15 

and 20. 

4.3 Model Estimation and Evaluation. 

After carrying out exploratory analysis on the three sets of data, and the returns found to 

exhibit the stylized characteristics of financial time series and GARCH effects found to 

be significant (except for monthly returns). Estimation and specification of GARCH 

models was in order.  

The GARCH (1, 1), GARCH (1, 2), GARCH (2, 1) and GARCH (2, 2) parameters for the 

three companies for all the returns were estimated using robust method of Bollerslev-

Woodridge’s Quasi Maximum Likelihood Estimator (QMLE) assuming the Gaussian 

standard normal distribution. Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values were compared to determine the most appropriate 

model; models with smaller AIC and BIC are preferred. The results of AIC and BIC 

parameter estimation for the models under consideration were summarized in Table 10.  
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Table 10: AIC & BIC values for the GARCH Models 

  Models KQ NBK EA PORT 

Criteria   AIC BIC AIC BIC AIC BIC 

 Daily 

Returns 

series 

GARCH (1, 1) -4.5905 -4.5764 -4.3071 -4.2929 -4.4169 -4.4028 

GARCH (1, 2) -4.5891 -4.5714 -4.3058 -4.2881 -4.4159 -4.3982 

GARCH (2, 1) -4.5895 -4.5718 -4.3073 -4.2996 -4.4156 -4.3975 

GARCH (2, 2) -4.5881 -4.5669 -1.5025 -1.3113 -4.4145 -4.3933 

Weekly 

returns 

series 

GARCH (1, 1) -2.9680 -2.9707 -2.7888 -2.7409 -3.7978 -3.7499 

GARCH (1, 2) -2.9771 -2.9772 -2.7847 -2.7249 -3.7915 -3.7317 

GARCH (2, 1) -2.9609 -2.9711 -2.7905 -2.7307 -3.7915 -3.7317 

GARCH (2, 2) -2.9707 -2.8989 -2.7845 -2.7127 -3.7851 -3.7134 

Monthly 

returns 

series 

GARCH (1, 1) -1.5403 -1.4128 -1.5584 -1.4309 -1.9665 -1.839 

GARCH (1, 2) -1.5101 -1.3507 -1.5307 -1.3713 -1.9382 -1.7788 

GARCH (2, 1) -1.5101 -1.3507 -1.5307 -1.3713 -1.9382 -1.7788 

GARCH (2, 2) -1.4819 -1.2907 -1.5025 -1.3113 -1.9123 -1.7188 
 

 

 

From  Table 10 above, KQ, EA Port daily returns and all the monthly returns had 

Minimum AIC and BIC values for GARCH (1,1) model, while NBK daily and weekly 

returns had the smallest AIC and BIC values for GARCH (2,1) and KQ weekly had the 

smallest AIC and BIC values for GARCH(1,2) 

Parameter estimation for the chosen models was done and summarized in Tables 11, 12, 

13 and 14 
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Table 11: Estimation of GARCH (1, 1) models 

 Daily returns 

 

 Parameter

s KQ EA Port 

  Estimate P value Estimate P value 

 0.0002 0.0059 0.0002 0.0553 

 0.4016 0.0042 0.0425 0.0452 

 0.3795 0.0004 0.6871 0.0003 

Weekly returns 

 EA Portland 

  Estimate P value 

 0.0007 0.0101 

 0.5048 0.0403 

 0.1115 0.3848 

 
 

Monthly returns 

  KQ NBK EA Port 

  Estimate P value Estimate P value Estimate P value 

 0.008 0.0084 0.0002 1.0000 0.0035 0.0426 

 0.3408 0.1272 0.0000 1.0000 0.9999 0.1577 

 0.0000 0.9999 0.9968 0.0001 0.0000 1.0000 

 

Table 12: GARCH (1, 2) model for KQ weekly 

Parameters Estimates 

P 

values 

  0.4987 

  0.0584 

  0.4585 

  0.0234 

 

The p values were greater than 0.05 for all the parameters except for   
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Table 13: GARCH (2, 1) models for NBK daily and weekly returns 

  NBK Daily NBK weekly 

Parameters Estimate P value Estimate  P value 

 0.0001 0.0016 0.0019 0.811 

 0.3914 0.0018 0.3164 0.3144 

 0.0921 0.5232 0.2834 0.8650 

 0.5413 <2e-16 0.0000 1.0000 
 

 

The sum of   and  for NBK GARCH (2, 1) model add up to 1.0248, this is a 

violation of the stationarity condition which requires that the sum of all parameters 

should be 1. GARCH (1, 1) model was therefore fit to the data and the parameters and 

their respective p values are as shown in Table 14.  

Table 14: GARCH (1, 1) model for NBK daily  

Parameters estimates P values 

  0.0149 

1  0.0000 

1   <2e-16     

 

The parameter estimates for NBK GARCH (1, 1) model are all significant at 5% level of 

significance 
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4.4 Diagnostic testing. 

Adequacy of the models was checked to ensure detection of possible model 

misspecification. This was done by analyzing the residuals of the fitted models. Ljung 

Box and ARCH-LM tests were carried out on squared residuals for all the returns series 

up to lag 20 and the results summarized in Tables 15, 16 and 17. 

Table 15: LJUNG-BOX & ARCH LM tests for KQ returns   

Returns Q(m) Statistic P value 

Daily 

Q(10) 0.45827 0.99956 

Q(15) 1.11349 0.99995 

Q(20) 3.79738 0.99997 

ARCH LM Test   0.47587 0.99999 

Weekly 

Q(10) 8.2182 0.6075 

Q(15) 16.6508 0.7769 

Q(20) 13.2146 0.8679 

ARCH LM Test   8.3747 0.7552 

Monthly 

Q(10) 7.1494 0.7113 

Q(15) 13.5108 0.5629 

Q(20) 16.7804 0.6672 

ARCH LM Test   6.1043 0.9107 
 

 

The p values for Ljung Box and ARCH LM are all greater than 0.05.  

 

Table 16: LJUNG-BOX & ARCH LM tests for NBK returns 

Returns Q(m) Statistic P value 

Daily 

Q(10) 3.1416 0.9779 

Q(15) 3.8849 0.9981 

Q(20) 65.1961 0.0001 

ARCH LM Test   3.35022 0.9925 

Weekly 

Q(10) 3.4039 0.9703 

Q(15) 5.6408 0.9852 

Q(20) 9.1819 0.9807 

ARCH LM Test   3.5118 0.9907 



57 

 

Monthly 

Q(10) 11.4782 0.3215 

Q(15) 16.3971 0.3562 

Q(20) 17.2118 0.6392 

ARCH LM Test   12.138 0.4347 
 

 

The p values for Ljung Box and ARCH LM are all greater than 0.05 except for NBK 

which is 0.0001 at lag 20. 

Table 17: LJUNG & ARCH LM tests EA Port returns 

Returns Q(m) Statistic P value 

Daily 

Q(10) 0.1401 0.9999 

Q(15) 0.23639 0.9999 

Q(20) 1.11025 0.9999 

ARCH LM Test   0.2044 0.9999 

Weekly 

Q(10) 2.7882 0.9859 

Q(15) 3.4914 0.9989 

Q(20) 5.6806 0.9993 

ARCH LM Test   3.1972 0.9939 

Monthly 

Q(10) 2.5047 0.9908 

Q(15) 3.2935 0.9993 

Q(20) 4.0888 0.9999 

ARCH LM Test   6.4986 0.8889 

 

The p values for Ljung Box and ARCH LM  tests are all greater than 0.05  

4.5 Forecasting and Forecasting Evaluation 

4.5.1 Forecasting 

Forecasting was done and the time points were evaluated in terms of their forecasting 

ability of future returns. The mean errors measures for each of the data set were 

calculated and summarized in Table 18 below. 
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Table 18: Forecasting performance based on MAE, RMSE and MAPE  

  KQ NBK EA Port 

  MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE 

Daily 0.8980 1.6488 1.6663 0.8629 1.5628 2.0205 1.1273 2.6702 1.0810 

Weekly 1.9778 3.1753 3.7798 1.8918 2.8350 4.4067 2.4821 4.3726 2.4729 

Monthly 4.3425 5.7990 8.8383 8.3366 4.4673 8.0333 6.7900 12.7036 6.1590 
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CHAPTER FIVE 

DISCUSSION 

5.1 Introduction 

Three time points for three companies were investigated and several tests carried out to 

investigate the exploratory and descriptive characteristics of the returns. This chapter is 

organized as exploratory analysis, model estimation and evaluation, diagnostic testing 

and forecasting 

5.2 Exploratory Data Analysis 

From the time plots of all the data sets (raw series) Figures 1, 4 and 7, the swings are 

evident and its clear that the stock prices are very irregular with varied degree of 

flactuations. There are no distinct patterns exhibited. This suggests that the mean and 

variance are not constant impling that the series are non stationary. Unstable series such 

as these could be use for for model fitting and further statistical inferences because of 

their grave implications (Gujarati, 2004). Transformation of the raw series was therefore 

done by differencing in order to make the series stationary. 

After differencing the raw series and plotting done on the resulting series, the time plots 

were presented in Figures 2, 5 and 8. These time plots plots provided visual 

representation of the returns. Unlike the time plots for the raw series,  the plots for returns 

are trendless and their amplitudes vary over time. They tend to flactuate  around zero, 

implying a constant mean and stabilized variance. Engle (2001) interpreted this as the 

presence of ARCH effects. The plots are marked by periods of calmness interposed with 
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turmoil. This phenomenon is referred as volatility clustering because the returns appear in 

form of cluster and it is very conspicuous in all the returns plots. 

Descriptive statistics on the data sets were also carried out and presented in Tables 1, 4 

and 7. Generally, the difference between the maximum and minimum returns was large, 

which is a common feature of index returns, and as expected for time series of returns, 

the mean is quite close to zero for all the returns series. The standard deviation for all the 

returns are also high indicating a high level of fluctuations of returns, for instance, for the 

daily series, NBK was the most volatile with a standard deviation of 0.034 while East 

African Portland Cement was the least volatile with a standard deviation of 0.027. The 

kurtosis of all the three data sets exceeded the normal value of 3, indicating evidence of 

fat tails (leptokurtic) and sharp peaks around the mean, the monthly returns series 

however, had conspicuously lower kurtosis values as compared to other returns. This 

implies that their distributions were quite close to normal distributions. This is in line 

with the literature available. Positive and negative skewness were also observable in all 

the returns, this means that the right and the left tail is particularly extreme respectively, 

and an indication of lack of symmetry. The Jarque-Berra test also led to the same 

rejection of normality in all the return series at 5% level of significance, except for KQ 

and NBK monthly returns.  

To check for stationarity of the series, before and after differencing, ADF tests were used, 

and the results summarized in Tables 2, 5 and 8. From the results, the unit roots were 

found to be more negative for the raw series than the returns series, and the p values are 

less than 5% significance level for all the returns series, which leads to the rejection of 
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the no unit roots null hypothesis. This implies that unit roots were detected in returns 

series but failed significantly for the closing prices. This further, shows that unlike the 

raw series, the returns are stationary and could be used for time series modeling in order 

to examine volatility of share prices over time.  

Stationarity is desired in time series because it ensures that the time series models can be 

used to examine the dynamic behavior of volatility of returns over time, and hence the 

stability of the models to be fitted to the data is ensured. 

The above mentioned tests confirmed that the characteristics of the NSE returns were 

consistent with other financial time series, i.e. the stylized facts of financial time series 

such as, high kurtosis, with flat heavy tails and skewed distributions, as well as the 

volatility clustering as observed in the time plots of returns series. 

Autocorrelation plots were further inspected to ascertain the presence of autocorrelation 

and from Figures 3, 6 and 9. ACF plots show no indication of correlation characteristics 

of returns because some time lags had non-zero values (except for lag 0 which is always 

1). The autocorrelations should be near zero for all the time lags if the time series is an 

outcome of a completely random phenomenon, otherwise, one or more of the 

autocorrelations will be significantly non-zero (Ngailo, 2011). The ACF of squared 

returns, however, show significant correlation and die out slowly indicating that the 

variance of returns is conditional on its past history and may change over time. 

The Ljung-Box test were then utilized to ascertain the presence of GARCH effects and 

from Tables 3 and 6, the test rejects the null hypothesis of no GARCH effects in the 

returns series at 5% level of significance as evidenced by the small p values for daily and 
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weekly returns. The test however, fails for all the monthly returns as shown in Table 9. 

This suggests the presence of GARCH effects in the daily and weekly returns but fails to 

detect GARCH effects in the monthly returns.  

5.3 Model estimation and Evaluation 

From the exploratory analysis, the three sets of data were found to be leptokurtic, 

exhibited volatility clustering. GARCH effects were however found to be significant for 

daily and weekly returns series, but failed significantly in the monthly returns. Estimation 

and specification of GARCH models for all the returns series were however done because 

according to Hojatalla and Ramanarayanan (2010) this condition is necessary but not 

necessarily sufficient because the estimate meets the general requirement of a GARCH 

model.  

The GARCH (1, 1), GARCH (1, 2), GARCH (2, 1) and GARCH (2, 2) parameters for the 

three companies for all the returns were estimated using robust method of Bollerslev-

Woodridge’s Quasi Maximum Likelihood Estimator (QMLE) assuming the Gaussian 

standard normal distribution. Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) values were compared to determine the most appropriate 

model; models with smaller AIC and BIC are preferred. The results of AIC and BIC 

parameter estimation for the models under consideration were summarized in Table 10.  

From the comparison of AIC and BIC models in Table 10, GARCH (1, 1) model most 

returns series i.e.  KQ daily and monthly returns, NBK monthly and all the returns series 

for East African Portland cement because they all have AIC and BIC values that are 

smallest as compared to the other models. GARCH (1, 2) has the smallest Akaike 
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Information Criteria value for KQ weekly and GARCH (2, 1) for NBK daily and weekly, 

suggesting a better fit that other competing models.  

Another candidate model fitted to the data and tested was the GARCH (2, 2). The 

analysis showed that the GARCH (2, 2) was less preferred for any data set, this implies 

that it does not capture well the volatility clustering and leptokurtic characteristics of the 

stock returns as compared to the other competing models. This model was therefore not 

fitted to any series. 

The parameter estimates for each of the GARCH (1, 1) models in Table 11 show that the 

coefficients of the conditional variance equation 1 and 1 are all positive and significant 

at 5%, levels, except for some weekly and all monthly returns. This implies a strong 

support for GARCH. The sum of 1 and 1 are quite close to unity for most series, except 

for KQ monthly which was quite low. The sum 1+1 is an indication of volatility 

persistence. A high persistence implies that volatility is likely to die slowly; new shock 

will affect the returns for a longer period. In such markets, old information is more 

important than recent information and such information decays very slowly. (Ngailo, 

2011). 

GARCH (1, 2) for KQ weekly returns was favoured by AIC and BIC, thus it can be 

considered a better model for KQ weekly returns as compared to other competing 

models. The parameters of the model were all positive and insignificant at 5% level of 

significance except for β2. 



64 

 

Parameters estimates for GARCH (2, 1) for NBK daily and weekly are all positive and 

significant at the given levels of significance. Although GARCH (2, 1) for NBK daily has 

been favoured by AIC, the sum of parameters is greater than one, violating the variance 

stationarity condition. GARCH (1, 1) also violates this condition but comparing their log 

likelihood, 3244.053 verses 3242.947 respectively (check Appendix 1), GARCH (1, 1) is 

more preferred because it has smaller log likelihood and it is also simpler; a simpler 

model requires less parameters. The GARCH (1, 1) parameter estimates for NBK daily 

are all positive and significant at 5% level of significance. The sum 1+1 is greater than 

one, suggesting an explosive volatility. This implies that the daily share prices for NBK 

were highly volatile. High volatility implies that, if there is a new shock it will have 

implication on returns for a longer period. 

5.4 Diagnostic testing 

Using squared residuals based on the estimated models of KQ, NBK and EAPort daily, 

weekly and monthly data sets, the Ljung Box test and the ARCH tests in Tables 15, 16 

and 17 indicate acceptance of the null hypothesis because of the large p-values (they are 

all greater than 0.05, except for EA Port squared residuals at lag 20). The ARCH LM test 

fails to reject the no GARCH effects in the residuals (no heteroscedasticity), and the 

Ljung Box test also fails to reject the null hypothesis of no correlation for all the data 

sets. This implies that there is no autocorrelation left in the residuals and that there is no 

heteroskedasticity in the fitted models. This suggests that the GARCH models considered 

were all adequate and fit for describing the volatility of NSE and thus appropriate to 

forecast future volatilities for the companies under investigation. 
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5.5 Forecasting and forecasting performance 

Forecasting performance of the different sampling intervals was established by ranking 

the mean errors with respect to the time points for all the companies under investigation. 

The time point that gave the lowest values of the error measurements was considered to 

be the best one. The results in Table 18 show that the daily returns outperformed all the 

other time points, this is because its smallest error measurements for all the measures 

utilized as compared to the weekly and monthly returns i.e. daily series for each of the 

data sets gave the smallest mean squares, followed by weekly and then monthly series. 

This implies that the higher the frequency of data used (smaller sampling intervals), the 

better the forecasts produced. Better forecasts translate to better risk management and 

better option pricing for the stock market products. 
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CHAPTER SIX 

CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

This thesis examined the forecasting performance of share prices for Kenya Airways, 

National Bank of Kenya and East African Portland cement at different time points i.e. 

daily, weekly and monthly using GARCH models, with the aim of finding out which 

amongst them provides better forecasts in order to guide trading operations of the Nairobi 

Securities exchange. The thesis objectives were greatly achieved.  

GARCH models were estimated and fitted because the exploratory analyses confirmed 

the leptokurtic, volatility clustering and asymmetric properties of financial time series in 

the NSE data. More importantly, GARCH effects were confirmed to be present except for 

all the monthly return series.  

GARCH (1, 1) models performed better for most series, particularly the monthly series 

and daily series for the companies considered while, GARCH (1, 2) and GARCH (2, 1) 

were favoured by KQ and NBK weekly series respectively. This supports several other 

researches which confirmed that the simplest GARCH (1, 1) model captures all the 

stylized characteristics of financial time series and can consequently be used to estimate 

and describe the characteristics of financial time series. GARCH (2, 2) performed poorly 

for all the returns and was therefore not utilized to fit any data set.  

The study revealed that there is no clear difference between the sectors investigated as 

shown by the fact that no model was particularly favoured by one sector as compared to 
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the others. While considering the represented companies, volatilities were quite different, 

for instance KQ was highly volatile around 2007/ 2008, EA Port was highly volatile in 

2008/2009 and NBK around 2010/2011 (Fig. 5). The difference in volatility is probably 

because of the varied extraneous factors that affect different sectors independently.  

Comparing the different time points examined for each company, the study found out that 

there is a strong evidence of data sampled daily performing better than weekly and 

monthly intervals. The outcome of the study therefore suggests that in order to obtain 

accurate volatility forecasts for the sectors investigated in this thesis, investors and other 

stock market participants ought to closely watch the share prices, at a higher frequency. 

This will enable them make better investment decisions and hence increased gains not 

only for individuals but also for the country. 

6.2 Recommendations 

Volatility modeling and subsequent forecasting was done based on past historical 

information, with the assumption that the past and the present have rich information 

about the future. GARCH models considered performed quite well, particularly the 

standard GARCH (1, 1). High persistence were however, experienced for most return 

series and this would suggest the utilization of Integrated GARCH (IGARCH) models 

It would also be beneficial to consider other GARCH extensions and other companies’ 

share prices in the same sectors investigated in this study so as to compare and contrast 

the outcomes, in order to reinforce the findings of the present study.                                                                                                                                                      
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APPENDICES 

 

GARCH MODEL FITTING, WITH SOME SELECTED COMPUTER OUTPUTS. 

 

APPENDIX I: GARCH (1, 1) 

Daily series 

KQ  

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = kqdailyreturns, cond.dist = 

"QMLE")  

 

Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x05038da0> 

 [data = kqdailyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1   

-0.00078085   0.00021026   0.39837677   0.37850578   

 

Std. Errors: robust Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)     

mu     -7.809e-04   7.981e-04   -0.978 0.327853     

omega   2.103e-04   7.644e-05    2.751 0.005948 **  

alpha1  3.984e-01   1.390e-01    2.865 0.004165 **  

beta1   3.785e-01   1.068e-01    3.545 0.000392 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 



74 

 

 

Log Likelihood: 

 3451.486    normalized:  2.297926  

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  25112.88  0            

 Shapiro-Wilk Test  R    W      0.860034  0            

 Ljung-Box Test     R    Q(10)  29.57746  0.001004072  

 Ljung-Box Test     R    Q(15)  38.80359  0.0006856011 

 Ljung-Box Test     R    Q(20)  45.16143  0.00104918   

 Ljung-Box Test     R^2  Q(10)  0.4582735 0.9999956    

 Ljung-Box Test     R^2  Q(15)  1.11349   0.9999995    

 Ljung-Box Test     R^2  Q(20)  3.797376  0.9999697    

 LM Arch Test       R    TR^2   0.4758715 0.9999998    

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-4.590527 -4.576373 -4.590541 -4.585254 

 

NBK  

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = Nbkdailyreturns, cond.dist = 

"QMLE")  

 

Mean and Variance Equation: 

 data ~ garch(1, 1) [data = Nbkdailyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 
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        mu       omega      alpha1       beta1   

1.1359e-04  9.0281e-05  4.4610e-01  5.8850e-01   

Std. Errors: 

 robust Error Analysis: 

        Estimate  Std. Error  t value Pr(>|t|)     

mu     1.136e-04   8.895e-04    0.128   0.8984     

omega  9.028e-05   3.710e-05    2.434   0.0149 *   

alpha1 4.461e-01   1.076e-01    4.148 3.36e-05 *** 

beta1  5.885e-01   6.836e-02    8.609  < 2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Log Likelihood: 

 3242.947    normalized:  2.156215  

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  10653.89  0            

 Shapiro-Wilk Test  R    W      0.9121289 0            

 Ljung-Box Test     R    Q(10)  37.1506   5.32968e-05  

 Ljung-Box Test     R    Q(15)  40.45544  0.0003869615 

 Ljung-Box Test     R    Q(20)  50.72512  0.0001742514 

 Ljung-Box Test     R^2  Q(10)  3.141634  0.9778916    

 Ljung-Box Test     R^2  Q(15)  3.884908  0.9980904    

 Ljung-Box Test     R^2  Q(20)  65.19609  1.086026e-06 

 LM Arch Test       R    TR^2   3.350224  0.9925257    

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-4.307110 -4.292972 -4.307124 -4.301844 
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EA Port  

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = EAPortdailyreturns, cond.dist = 

"QMLE")  

 

Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x02bddda0> 

 [data = EAPortdailyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1   

-0.00090186   0.00019795   0.04253449   0.68708000   

Std. Errors: 

 robust Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)     

mu     -0.0009019   0.0005678   -1.588   0.1122     

omega   0.0001980   0.0001033    1.917   0.0553 .   

alpha1  0.0425345   0.0566152    0.751   0.4525     

beta1   0.6870800   0.1647806    4.170 3.05e-05 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Log Likelihood: 

 3325.568    normalized:  2.211149  

 

Standardised Residuals Tests: 

                                Statistic p-Value    

 Jarque-Bera Test   R    Chi^2  1590110   0          
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 Shapiro-Wilk Test  R    W      0.5423572 0          

 Ljung-Box Test     R    Q(10)  16.78292  0.07930753 

 Ljung-Box Test     R    Q(15)  23.82283  0.06816387 

 Ljung-Box Test     R    Q(20)  28.44635  0.09924718 

 Ljung-Box Test     R^2  Q(10)  0.140103  1          

 Ljung-Box Test     R^2  Q(15)  0.2363888 1          

 Ljung-Box Test     R^2  Q(20)  1.11025   1          

 LM Arch Test       R    TR^2   0.2044358 1          

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-4.416978 -4.402840 -4.416992 -4.411712 

 

Weekly series 

 

KQ 

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = kqweeklyreturns,  cond.dist = 

"QMLE")  

 

Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x0ab94628> 

 [data = kqweeklyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1   

-0.00313563   0.00036163   0.15428066   0.74577787   

Std. Errors: robust  
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Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)     

mu     -0.0031356   0.0030132   -1.041   0.2981     

omega   0.0003616   0.0003474    1.041   0.2979     

alpha1  0.1542807   0.0845213    1.825   0.0679 .   

beta1   0.7457779   0.1428462    5.221 1.78e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Log Likelihood: 468.4997    normalized:  1.496804  

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  124.7705  0            

 Shapiro-Wilk Test  R    W      0.9425982 1.130441e-09 

 Ljung-Box Test     R    Q(10)  12.09481  0.2787611    

 Ljung-Box Test     R    Q(15)  19.34796  0.1983969    

 Ljung-Box Test     R    Q(20)  23.22882  0.2776991    

 Ljung-Box Test     R^2  Q(10)  10.89133  0.3660467    

 Ljung-Box Test     R^2  Q(15)  13.74173  0.5452002    

 Ljung-Box Test     R^2  Q(20)  16.67555  0.6739302    

 LM Arch Test       R    TR^2   10.56791  0.5662655    

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-2.968049 -2.920175 -2.968371 -2.948917  

 

NBK 

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = Nbkweeklyreturns, cond.dist = 

"QMLE")  
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Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x0a405934> 

 [data = Nbkweeklyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

        mu       omega      alpha1       beta1   

-0.0018153   0.0010617   0.3184978   0.4465084   

 

Std. Errors: robust Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)   

mu     -0.0018153   0.0032996   -0.550   0.5822   

omega   0.0010617   0.0005599    1.896   0.0579 . 

alpha1  0.3184978   0.1248147    2.552   0.0107 * 

beta1   0.4465084   0.1858076    2.403   0.0163 * 

--- 

Log Likelihood: 440.4437    normalized:  1.407168  

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  116.0948  0            

 Shapiro-Wilk Test  R    W      0.9618953 2.66408e-07  

 Ljung-Box Test     R    Q(10)  31.39878  0.0005040306 

 Ljung-Box Test     R    Q(15)  35.37012  0.002177386  

 Ljung-Box Test     R    Q(20)  40.75847  0.004000465  

 Ljung-Box Test     R^2  Q(10)  2.642913  0.9886255    

 Ljung-Box Test     R^2  Q(15)  4.576061  0.9951479    

 Ljung-Box Test     R^2  Q(20)  7.905248  0.9924763    

 LM Arch Test       R    TR^2   2.779018  0.9969132    
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Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-2.788778 -2.740903 -2.789099 -2.769646  

EA Portland 

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = EAPortweeklyreturns, cond.dist = 

"QMLE")  

 

Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x04f85358> 

 [data = EAPortweeklyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1   

-0.00299397   0.00072585   0.50481249   0.11154317   

Std. Errors: robust Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)   

mu     -0.0029940   0.0016841   -1.778   0.0754 . 

omega   0.0007259   0.0002822    2.572   0.0101 * 

alpha1  0.5048125   0.2461806    2.051   0.0403 * 

beta1   0.1115432   0.1283327    0.869   0.3848   

 

Log Likelihood: 

 598.3528    normalized:  1.91167  

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  756.081   0            
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 Shapiro-Wilk Test  R    W      0.8801474 6.317427e-15 

 Ljung-Box Test     R    Q(10)  19.7058   0.03216143   

 Ljung-Box Test     R    Q(15)  25.20516  0.04725503   

 Ljung-Box Test     R    Q(20)  29.00357  0.08768903   

 Ljung-Box Test     R^2  Q(10)  2.788152  0.9859793    

 Ljung-Box Test     R^2  Q(15)  3.491368  0.9989849    

 Ljung-Box Test     R^2  Q(20)  5.680614  0.9992652    

 LM Arch Test       R    TR^2   3.197212  0.9939843    

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-3.797782 -3.749907 -3.798103 -3.778650 

 

Monthly series 

 

KQ 

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = kqmonthlyreturns, cond.dist = 

"QMLE")  

Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x0abe25e8> 

 [data = kqmonthlyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1   

-0.02716128   0.00804663   0.34083804   0.00000001   

Std. Errors: 

 robust  
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Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)    

mu     -2.716e-02   1.442e-02   -1.883  0.05967 .  

omega   8.047e-03   3.054e-03    2.635  0.00842 ** 

alpha1  3.408e-01   2.235e-01    1.525  0.12718    

beta1   1.000e-08   2.759e-01    0.000  1.00000    

 

Log Likelihood: 

 58.6799    normalized:  0.8264774  

 

Standardised Residuals Tests: 

                                Statistic p-Value   

 Jarque-Bera Test   R    Chi^2  0.7958027 0.6717283 

 Shapiro-Wilk Test  R    W      0.9905073 0.8737696 

 Ljung-Box Test     R    Q(10)  10.44899  0.4020232 

 Ljung-Box Test     R    Q(15)  18.01141  0.2620661 

 Ljung-Box Test     R    Q(20)  18.89296  0.5287935 

 Ljung-Box Test     R^2  Q(10)  7.149414  0.7112681 

 Ljung-Box Test     R^2  Q(15)  13.51076  0.5629099 

 Ljung-Box Test     R^2  Q(20)  16.78038  0.667185  

 LM Arch Test       R    TR^2   6.104337  0.9107313 

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-1.540279 -1.412804 -1.546187 -1.489586 

 

NBK 

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = Nbkmonthlyreturns, cond.dist = 

"QMLE")  
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Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x0a343a3c> 

 [data = Nbkmonthlyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1   

-9.1408e-03   1.1255e-08   1.0000e-08   9.9678e-01   

 

Std. Errors: robust Error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)     

mu     -9.141e-03   1.523e-02   -0.600    0.548     

omega   1.125e-08   1.571e-04    0.000    1.000     

alpha1  1.000e-08   1.021e-01    0.000    1.000     

beta1   9.968e-01   1.110e-01    8.977   <2e-16 *** 

 

Log Likelihood: 

 59.32457    normalized:  0.8355574  

 

Standardised Residuals Tests: 

                                Statistic p-Value   

 Jarque-Bera Test   R    Chi^2  1.333649  0.513336  

 Shapiro-Wilk Test  R    W      0.9830886 0.4552591 

 Ljung-Box Test     R    Q(10)  7.769196  0.65137   

 Ljung-Box Test     R    Q(15)  9.868474  0.8279307 

 Ljung-Box Test     R    Q(20)  16.50056  0.6851254 

 Ljung-Box Test     R^2  Q(10)  11.47817  0.3214962 

 Ljung-Box Test     R^2  Q(15)  16.39706  0.3561648 

 Ljung-Box Test     R^2  Q(20)  17.21183  0.6391791 

 LM Arch Test       R    TR^2   12.13803  0.4346591 
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Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-1.558439 -1.430964 -1.564347 -1.507746 

EA Portland 

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 1), data = EAPortmonthlyreturns, cond.dist = 

"QMLE")  

Mean and Variance Equation: 

 data ~ garch(1, 1) 

<environment: 0x0502e4f8> 

 [data = EAPortmonthlyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1   

-0.02157635   0.00350550   0.99999999   0.00000001   

 

Std. Errors: robust error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)   

mu     -2.158e-02   1.156e-02   -1.866   0.0621 . 

omega   3.506e-03   1.729e-03    2.027   0.0426 * 

alpha1  1.000e+00   7.078e-01    1.413   0.1577   

beta1   1.000e-08   9.619e-02    0.000   1.0000   

 

Log Likelihood: 

 73.81073    normalized:  1.039588  

 

Standardised Residuals Tests: 

                                Statistic p-Value      
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 Jarque-Bera Test   R    Chi^2  43.69286  3.252494e-10 

 Shapiro-Wilk Test  R    W      0.9327251 0.0009119002 

 Ljung-Box Test     R    Q(10)  5.425078  0.8610363    

 Ljung-Box Test     R    Q(15)  9.487319  0.8506914    

 Ljung-Box Test     R    Q(20)  13.6377   0.84838      

 Ljung-Box Test     R^2  Q(10)  2.504651  0.9908078    

 Ljung-Box Test     R^2  Q(15)  3.293456  0.9992864    

 Ljung-Box Test     R^2  Q(20)  4.088825  0.9999443    

 LM Arch Test       R    TR^2   6.498626  0.8888937    

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-1.966500 -1.839025 -1.972408 -1.915807 
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APPENDIX II: GARCH (1, 2) 

 

KQ  

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(1, 2), data = kqweeklyreturns,  cond.dist = 

"QMLE")  

Mean and Variance Equation: 

 data ~ garch(1, 2) 

[data = kqweeklyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1        beta1        beta2   

-0.00416358   0.00058743   0.23652492   0.20271835   0.39554245   

 

Std. Errors: robust error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|)   

mu     -0.0041636   0.0036371   -1.145   0.2523   

omega   0.0005874   0.0008684    0.676   0.4987   

alpha1  0.2365249   0.1249524    1.893   0.0584 . 

beta1   0.2027183   0.2734499    0.741   0.4585   

beta2   0.3955425   0.1744602    2.267   0.0234 * 

 

Log Likelihood: 

 470.9142    normalized:  1.504518  

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  132.3431  0            

 Shapiro-Wilk Test  R    W      0.9450349 2.103627e-09 

 Ljung-Box Test     R    Q(10)  11.79112  0.2992796    
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 Ljung-Box Test     R    Q(15)  19.59086  0.1881958    

 Ljung-Box Test     R    Q(20)  23.09316  0.2842434    

 Ljung-Box Test     R^2  Q(10)  8.21865   0.607489     

 Ljung-Box Test     R^2  Q(15)  10.65076  0.7769359    

 Ljung-Box Test     R^2  Q(20)  13.21457  0.8679889    

 LM Arch Test       R    TR^2   8.374658  0.7552098    

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-2.977087 -2.971244 -2.977587 -2.953172 
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APPENDIX III: GARCH (2, 1) 

 

NBK WEEKLY  

 

Title: GARCH Modelling  

Call: garchFit(formula = formula ~ garch(2, 1), data = Nbkweeklyreturns, cond.dist = 

"QMLE")  

Mean and Variance Equation: 

 data ~ garch(2, 1) 

[data = Nbkweeklyreturns] 

Conditional Distribution: 

 QMLE  

Coefficient(s): 

         mu        omega       alpha1       alpha2        beta1   

-0.00166418   0.00197255   0.31641695   0.28336722   0.00000001   

 

Std. Errors: 

 robust error Analysis: 

         Estimate  Std. Error  t value Pr(>|t|) 

mu     -1.664e-03   3.755e-03   -0.443    0.658 

omega   1.973e-03   8.260e-03    0.239    0.811 

alpha1  3.164e-01   3.144e-01    1.006    0.314 

alpha2  2.834e-01   1.664e+00    0.170    0.865 

beta1   1.000e-08   3.472e+00    0.000    1.000 

 

Log Likelihood: 

 441.7137    normalized:  1.411226  

 

Standardised Residuals Tests: 

                                Statistic p-Value      

 Jarque-Bera Test   R    Chi^2  102.2326  0            
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 Shapiro-Wilk Test  R    W      0.962599  3.343167e-07 

 Ljung-Box Test     R    Q(10)  34.03165  0.0001824322 

 Ljung-Box Test     R    Q(15)  37.79183  0.0009684386 

 Ljung-Box Test     R    Q(20)  43.50281  0.001753391  

 Ljung-Box Test     R^2  Q(10)  3.40394   0.9702598    

 Ljung-Box Test     R^2  Q(15)  5.640835  0.9851701    

 Ljung-Box Test     R^2  Q(20)  9.181895  0.9807031    

 LM Arch Test       R    TR^2   3.511799  0.9907255    

 

Information Criterion Statistics: 

      AIC       BIC       SIC      HQIC  

-2.790503 -2.730659 -2.791003 -2.766588 

 

 

 

 

 

 

 

 


