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ABSTRACT

Properties of nuclear matter and large finite nutdee been studied using different types
of nucleon-nucleon (NN) interaction potential. histstudy, focus is on the thermodynamic

properties of a large nucleus of RheniuffiRe) using NN-interaction potential. Rhenium

has been chosen because of its applications indéady, it's used in engines of airplanes,
missiles and high temperature thermo-couplers ithmay equally have an application at
lower temperatures. The NN-interaction is used perturbation and general methods of
guantum mechanics as well as many-body technigaee heen used to calculate the
energy, the heat capacity and the entropy. Ituadahat the heat capacity exhibits a phase
transition at a critical temperature of 0.144K. Thesat capacity increases linearly with
increase in excitation energy at constant tempeyadnd this is due to changes in the
internal energy of nuclei. The entropy of the nuitlereases linearly with temperature and
becomes zero at absolute OK. These results sugpespossibility of Rhenium, a fermi-
system exhibiting superfluid properties below th&aal temperature &0.144K.
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CHAPTER ONE

INTRODUCTION
1.1 Background infor mation
The present concept of the atom, gained after irmalde scientific investigations over
many decades is that it is composite, hence dleissind synthesizable. It is now
universally accepted that the atom consists ofdistinct regions. The tiny central core,
called the nucleus having a radius of the ordea é¢w fermis (~18°m), and the
relatively extensive sorounding space refferedsttha outer sphere which has a radius
of the order of 18° M. Every atom in turn is made of three differeattjrles the
electrons, protons and neutrons. The single exaepd this is the atom of ordinary
hydrogen which contains only an electron and agordtut no neutron. It is further
established that while electrons occupy the oyibere, the protons and neutrons are

inside the nucleus.

1.2 General Survey

Discovery of neutron by Chadwick completed moreless on the knowledge of
structure of the nucleus. After this discovery iluieleus was proposed to be composed
of neutrons and protons, which have almost the samags. Protons and neutrons
commonly referred to as nucleons are spin-halfigas which obey Fermi-Dirac

statistics distribution (Roy and Nigam 1967).

The fact that nucleons in a nucleus are confinedgmall region of space, is therefore,
convincing proof of the presence of very strongaattve and nuclear forces binding
them together. There are several kinds of intevastithat are presently known and

existing between different bodies and particlestéG@007)



I.  Gravitational interaction between different celaistiodies
ii.  Weak interactions, which give rise to the emisibf-particles.
ii.  Electromagnetic interaction, which exists betwekarged particles by virtue
of their charge, current and magnetic moments.

iv.  Strong interaction, which binds the nucleons inueleus.

In the past, there has been a tremendous expesaheffirt devoted to the study of
scattering of protons on protons, and neutronsrotops. Since the neutron as a target
is not available, the neutron-neutron scattering inéerred mostly from the scattering
of protons on deuterons. All this effort leads tlaage database of cross-sections and
phase shifts that provide the most extensive inébion on the binary interactions
between nucleons. There have also been numerampst to model the interaction
between nucleons by different kinds of potentitdladenet al., 2007). A successful
way of describing nuclear interactions is to camdtrone potential for the whole
nucleus instead of considering all its nucleon congmts that may result to a complex

matrix to solve.

There has been growing interest towards the cdionl@f the properties of nuclear
matter and large finite nuclei using different tgpef NN-interaction potentials.
(Moszkowski. 1970; Lassey 1972; Khanna and Bar@i@blKrewaldet al, 1976; and
Deanet al, 2003). Particularly, the ground state energghefnuclear matter has been

calculated using various types of nucleon-nuclemtemtials.

A velocity dependent effective potentialssfvave interaction was proposed (Dzhibuti
et al, 1969) to calculate the properties of nuclear mattgpecially binding energy and

radii of different nuclei fronfHe to2%%Pb.



A set of NN interaction (Deart al, 2003) is characterized by the existence of a
strongly repulsive core at short distances, wittharacteristic radius: 0.5 fm. The
interaction obeys several fundamental symmetriesh ss translational, rotational,
spatial reflection, time-reversal invariance, ardh@nge symmetry. It also has a strong
dependence on quantum numbers such as totaf spichisospirf’, through the nuclear
tensor force that arises, for instance, from omm#@xchange. It also depends on the
angles between the nucleon (pairs) spins and deparkeector. The tensor force thus
mixes different angular momeritaof the two-body system, that is, it couples twahpo
states with total angular momentuinL—1 andJ=L+1. For instance, for a proton-
neutron two-body state, the tensor force couplesstates’S: and 3D1, where the

standard spectroscopic notat@iL; has been used.

There is no unique prescription as how to constaudiN-interaction, a description of
the interaction in terms of various meson exchamgas present the most quantitative
representation (Wiringat al, 1995; and Machleid2001)in the energy regime of

nuclear structure physics. It should be emphasited meson exchange is an

appropriate picture at low and intermediate ensrgie

1.3 Problem Statement

Several interaction potentials have been usedittyshe nucleon properties of matter
that may include velocity-dependent, spin-dependadtdensity-dependent potential,
but in this study second quantization approachbessn used in studying the nuclear

properties of matter.

Considering an interaction between nucleons viatergialV = X3 + yX* and using

it in a many body quantum mechanical system HamdioH = H, + V, whereH; is



the unperturbed Hamiltonian and is the interaction between the particles, the

expression for the energy eigenvalues will be aetiv

Using Bogoliubov transformation which provides #hea powerful tool for nuclear
many-body problem, the Hamiltonian will be diagoredl to get the energy
eigenvalues. Hence we get the energy of the sysstatwill be used to investigate its

thermodynamic properties.

1.4 General Objective

To study thermodynamic properties ‘8fReusing NN-interaction potential.

1.4.1 Specific Objectives

1. To derive an expression for the Eneiggnd the Binding Energy per Nucleon

E
(Nj for':Re.

2. To determine expression of the Heat Capaciand Entropys using the energy
of 2Re.

3. To determine the Critical Transition Temperatlig®f'5.Re.

1.5 Justification
Recently, there has been an increase on the reséatt theoretical and experimental,

to study the properties of matter to explore pag¢ateas of applications in technology.

However, there have been also different theoretippfoaches on this study but due to
the dynamics of nuclear properties and their appbos, new approaches may yield
more precise results that impacts on further dgetnts on its applications in

technology.



' Re is an important element because of its applicationtechnology, its used in

high-temperature thermocouplers, refractory metadmonents of missiles, igniters of

flash bulbs and oven filaments, thus the studyisfrinaterial will provide more precise

information that will help improve its applicatians



CHAPTER TWO

THEORY AND LITERATURE REVIEW

2.1 Background infor mation

One of the major challenges in nuclear theory isnderstand and predict the structure
of nucleonic matter based on microscopic NN andynmatleon interactions. In recent
years, there has been significant progress in eactilations of ground and excited
states of light nuclei based on various high-prenisnteractions fitted to NN data
(Kamadaet al, 2001; Piepeand Wiringa 2001; Wiring&t al, 2002; Noggeet al,
2002; Navratilet al, 2000; Navratil and Ormand 2003; Noggiaal, 2006). These
results clearly show that three-nucleon forces @Nentribute significantly: Without
3NFs, the binding energies depend strongly on tNepltential used, which can be
traced to scheme and model dependences in anyythesiricted to NN interactions.
The study of 3NFs in systems beyond the lightestenus an important goal. This
requires a flexible technique to solve the manyybprbblem including NN and 3N
interactions.

A lot of interest has been devoted in the calcolatf the properties of nuclear matter
and large finite nuclei using different types of Niteractions. (Moszkowski, 1970;
Lassey 1972; Khanna and Barhai 1975; Krewalidhl, 1976; Dearet al, 2003).
Particularly, the ground state energy of the nuategiter has been calculated using the

various types of NN potentials.

2.2 The Veocity-Dependent I nteraction Potential.
A velocity dependent effective potentialsivave interaction with one free parameter

was proposed (Dzhibuti and MamasaRhlisov, 1969¢aiculate the properties of



nuclear matter, especially binding energy and @fdiifferent nuclei fronfHe t02%%Pb.

The velocity-dependent effectigavave interaction is defined by,

Vg () = %{Veﬁ(r) e{‘aﬂ + e[aar}\/eﬁ(r) } -A ( A)%Z{a(r) 2 + DZa(r)} (2.0)

a-r

e—ur

Vv real(r) = -VO (21)

ur

where Vea(r) is the initial realistic potential parametrizedaccordance with the two

nucleon problem in vacuum aad- r is the substitution that must be made in the two-
a
particle matrix elements after acting with the @per (e”“ar ) on the wave function of

the pair from the right, and with the operatca“ta? ) on the analogous function from
the left. The second term on the right-hand-sideEgh (2.0) contains only the
additional parametet, and this represents phenomenological the mulighareffects
or many body interactions. In the first versionsath a potential ¥a(r) can be taken
in the Yukawa form (Krewal@t al.,1976) the effective interaction in this case \wél
referred to as VY with identical parameters forgéeh and triplet central forces. With

parameters from the free nucleon-nucleon scattetihgw energies, written as,
V, =48.1 MeV; u=0.86"1 (2.2)
F=1fm=10%m.

In the second version of this potentialeM(r) can be taken in the Gaussian form and

the effective interaction in this case will be re¢el to as VG, i.e.

2

Veallr) = [@(T1. ) + @y 7 (01.05) (B T3 )] € 75 (2.3)

whereg; andT'; are the spin and isospin parameters



ar= 2.096 MeVia, y= 7.767 MeVyr,= 2.18 F (2.4)

In the case of VY interactiod, turns out (Hassagt al.,1978) to bed = 1.3F3, and for

VG interaction A = 3.9F3.

2.3 Spin-Dependent | nteraction Potential

A set of NN interaction (Deart al, 2003) is characterized by the existence of a
strongly repulsive core at short distances, wittharacteristic radius: 0.5 fm. The
interaction obeys several fundamental symmetriash @s translational, rotational,
spatial reflection, time-reversal invariance, arndh@nge symmetry. It also has a strong
dependence on quantum numbers such as tota spid isospirf’, through the nuclear
tensor force that arises, for instance, from o @xchange. It also depends on the
angles between the nucleon (pairs) spins and deparkeector. The tensor force thus
mixes different angular momenta of the two-body system, that is, it couples two-
body states with total angular momentdmnh—1 andJ=L+1. For instance, for a proton-
neutron two-body state, the tensor force couplesstates’S: and 3D1, where the

standard spectroscopic notatiti'L;has been used.

There is no unique prescription as how to constaudiN-interaction, a description of
the interaction in terms of various meson excharmgas present the most quantitative
representation (Krewaldt al, 1976; Lassewt al, 1972) in the energy regime of
nuclear structure physics. It should be emphasitted meson exchange is an
appropriate picture at low and intermediate ensrdibus in the NN-interaction, it may
be enough to include central, spin-spin, tensorsgmal-orbit interaction terms. Hence

the interaction (Deaat al,, 2003) omitting isospin, can be written as,



V, =<Cl+C+Ca.0,+C 1+ 3 43 S( 1)+ G S A s
n c c 7Y1:Y2 m, r (m,r)z 2 L m r (my’r)z m,r

(2.5)
Wherem, is the mass of the relevant meson 8pgdis the tensor force term,
Si12(r)= 01.0,7% — (01.7)(0,.7) (2.6)

Whereo is the standard operator for spipparticles within meson-exchange models,

we may have the exchangemp, o, w, § andn mesons. As an example, the co-efficient

— ~ —(9knm) (Mm% 0l — (i
for the exchange ofmameson ar€ = CT_(T) (12m2 ) andC¢ = C¢ = Cgp, = 0 with
N

the experimental (Machleidt 2001) value ffyy,, = 13-14, andMy is the mass of a

nucleon and it will be taken as the average optis¢on and neutron masses.

2.4 Density-Dependent | nteraction Potential
There is another nucleon-nucleon interaction (Klaagtral, 1973) that can be used to

study the infinite nuclear matter. It is of therfor

V=V, +Vg (2.7)
_ [-12y2] [z

whereV, = V;(W; + M Pel w1+ v,(W, + M,P,)e! "k (2.8)

Vg = Gs(41)6(112) (2.9)

HereGg(4n) =~ Cxi(r) is the local Fermi momentumis the distance from the centre
of a very large hypothetical finite nucleus havihg density of a nuclear matter whose
surface thickness is zero (Elton 19€ljs a constant that can be determined from the

nuclear matter saturation conditions apds the density of one kind of nucleon.
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The Va part of the interaction represents the Volkov poé (Volkov 1965; Zofkaet

al., 1970)for
Wl == WZ = 0.4’ andWl + Ml = WZ + MZ == 1 (210)

The & part represents the density-dependent delta intenaand the value of K2 =
(4n)?°Now two sets of calculations can be done by hawimgtypes of potentials. The
first can be in which the exchange parametrandM:zare considered equal while in
the second set the original Volkov potential (Valkd965) with unequal exchange
mixtures can be used. HeM represents Wigner force (which is a short-range
repulsive) andM represents Majorama space exchange forcdPamlthe Majorama
space exchange operator which gives +1 for staithsewen and -1 for states with

odd<?.

Thus for the first set of calculations, it can betten,

Wi =We= 0.5, andM + Mi= Wo+ M2 = 1 (2.11)
In this case, Y given in Eqn 2.8 becomes,

Va=2(1+Px) U (y12) (2.12)

Where

ri2

rLZ)Z]

U (v12) = 'Vle[_(“l)z] +V; e[_(”z (2.13)
For the second set the values given in Eqn (2.80used and hence gives
Va= (04+06R) U (v12) (2.14)

The parameters of the Volkov potential (Volkov, 598ofka, 1970are,

Vi1=83.3 MeV; V2= 144.9 MeV; i, = 1.6 fm, u, = 0.8¥m (2.15)
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There is another nucleon-nucleon interaction (Kaa2008) of the form V x> +
vx* where V is the potential that is inserted into HeamiltonianH = Ho + V where

Ho is the unperturbed Hamiltonian, and V is the iatéon potentialp and y are

1
a21/2

perturbation parameters and= (a + a*) wherea, a* is the annihilation and

1
creation operator anck™! = (miw) % this potential has been considered in this study.

2.5Many Body Theory

Many-body theory is used to study Hamiltonians Wwhiave terms other than the
kinetic energy term. In a given nucleus made umofe than two nucleons, the total
nucleon interaction is the sum of the interactietwteen all pairs of nucleons. For a
nucleus ofA nucleons the Hamiltonian takes the form (Hageal.,2010)

H =YL, TG+ XL, V(i) (2.16)
WhereT denotes the single-particle kinetic energy operatal V the two nucleon
potential. The restrictiorx] in the second sum takes care of the fact thahtkeaction
has to be summed only counting each pair once Stheodinger equation
He(1,2,..,4) = Ep(1,2, ..., 4) (2.17)

can not generally be solved in a straight forwasehner.

2.6 Thermodynamic Properties of Nuclei

One of interesting problems in the study of sm@dtem phase transition is the possible
existence of a phase transition from a hadronis@ha quark-gluon plasma in high
energy physics as shown in Appendix B. The yellawnt pf Appendix B shows that the
phase transition between the nuclear liquid andsaod nucleons is not the only phase
transition that heavy ion scientists are studying.

At even higher temperatures and densities, theepusl themselves can undergo a

phase transition, also existence of a phase tramgiom normal state to a superfluid
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state which is accompanied by rather drastic chengeboth the thermodynamic

equilibrium and thermal transport properties otipesfluid.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction
186

*’Re is studied using the an interactive potenfigl =X 3 + yX* which is added

to the unperturbed Hamiltonian to create unharmtniic the system, second

guantization techniques are employed to solve tleegy of the system.

3.2 Energy of the System

The Hamiltonian of the system is given as
H=H,+V (3.1)

whereH, = unperturbed Hamiltonian which will be the kirmeginergy of the system.

(Hagenet al.,2010).

_p* 1 2
Hy= p—- + > kx (3.2)
and
V=H'=BX3+ yXx* (3.3)

V is the perturbation potential due to interactietween the nucleons. Using the

concept of many-body systems we can write

(n[Hn) = (n[H,|n) + (n|H'|n) (3.4)

The right hand side of Eq 3.4 can be expressedllasvé

(n|Hop|n) = Eo(n|n) (3.5)
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whereE, = (n + %) hw, n=0,1,2,3... (3.6)

(n|H*|n) =(n|BX° + yX*|n)
=(n|fX3[n) + (n|yX*|n)
=B(n|X3[n) +y (n|X*|n)

Wheres, y are perturbation parameters?

The second quantization creation and annihilatjperators are given as

Y .

_1(. 0 _( mew _ip

T 2(‘( 65] 2 ) &7
¥ .

1 0 | ( mw)? ip

gl 3 ) o9

With the following properties

a’|n :(n+1)%| n+1)
1 (3.9)
a|n = re|n-1)

Using these operators, Eq. 3.7 and 3.8, the displant operator become,

x:(%wjz(a+ a+):(n_idJ2i2(a+ a*) (3.10)

1
-1 _(_h) 72 - 1 + -
Leta —(mm) therefore X = o (a+a*);

X3 =a%@(a +a*)3 (3.11)



x4 Iﬁ(a + at)* (3.12)

(n[H*|n) =—L=(n|(a + a*)?|n) +- (n|(a + a*)*|n) (3.13)

working out the first part of Eq. 3.13 on the ridpaind side. We need to expand

(a + a*)3 then substitute the below Bogoulibov transformatio

a= uR€R+ VR€+R

3.14
a" = Uyl + Vi (3149

+
! R, fR are new operator's anda* are old operator’s.

g=a"(u, +v,a d)o>

<@|H|p >=<0la(u, + Vzad H (y+ w4 &) &j0>

U2 +\2=1 (3.15)

(3.16)

Us = Ve :E (3.17)

Expanding the expressign + a*)® we end up getting

(a+ a*)3 = aaa+ aad+ aa a+ aad aan ‘ada ‘data’da
(3.18)

Now substituting Eq. (3.14) into each of Eq. (3.18)
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For
aaa=(lMR+ vaR)( uf -+ v,[,;( ug & V[F:)a

A Y Y A T U AR ST
HEVL Y o t URPE b 6 VR Gl & VO

B #uéw UYL LR FWR R W MRLM
B MR o UK b 5 T Wl e A6

R (3.19)

Eqgn. 3.21 gives zero because it has both odd nuaflmeeation and annihilation

operators.

ror 888 = (Wl o+ W) (U o+ vET ) ug & v )

_URlCRL LUV bk F VR el U VR
HURVRl L ULk b F VR Gl | VIR

B m#w LHUYE b b &V BGRGR U LY RLﬁ 0
V8 VY £ UVE & b & VWG & 00

Eq. (3.20) gives zero.

For

aat = /ot W W v ) W V)
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B #Lw FUVE GG & PWllel U & éﬁ 0
I TR A e

(3.21)

Eqgn. 3.21 gives zero

aa’a =(ulp+ W) ud et VE ) Uk F Vh )

WL R UYE Rk g UGG RUW L

ﬁ’@
cNé #ﬂw LR UFEE ULk

(3.22)

This gives zero

Fora'aa a ad, 4 4 a a a a will give a result of zero. Thus the first paf Eqn.

3.13 will be zero.

The second part of Eqn. 3.13 on the right handiside

422 <n,0‘(a+ a’ )4‘ n, 0) (3.23)

+\4
Expanding the part that contains powe(ael- a )

acoat accA+ adafh adda hasta 'adaa "danma adaa
daoardash+ Aadad adda "da#ta Adaa’ Aania’dd|

oo -

(3.24)



Using Egn. 3.14 and substitute to Eqn. 3.24

aaaa=(LMR+ \@WR)( W gt V£+»)( ug & VKF:):( Wr \ﬁ;)
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Ug(N, 0|0 ol of £ 4N, 0).ee e,
noy............

usve(n,0
usve(n,0
usve(n,0
viuL(n,0
usve(n,0
viuL(n,0
ULVva(n,0
ULVva(n,0

va(n,0

The following gives zero.

Ul o g
Ul o'
URl'S d g
CRlR g
URl e d
URl /g
CRU AR

CRUR T g

Ul el o o Gt Uk ke & U MRl ¥ VE & R -
+®w¢%&adﬂw%@tdﬂxw¥aﬁ%éfgﬁ@
MRV d FUVE bl R UWRL Y oV Wh R R R w
MRV 4 FUYE R rlr R UL W EE 6w

noy............
noy............
noy............
NOy............
NOy............
n,oy............
noy............

CRURLLTN 0
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The following does not give a zero

UVA(N 0|l £ L4 An0 . ... (md(mr 2§ %
UAVA(nole £* ¢ £kn0............ (n+9* ¢ ¢
UAVA(NOL L kO 1 gy
WAVA(NO Y L L5k 1§y
UAVA(NO Y L0 k0. ....... It Fo\i,

UAVA(NO[ Ll o N0y n(n-1) {4

(3.25)

For

asad =( W/ o+t Wi w o i N vk & Vi un v

WL § UGG R RO LY & BV LRl - R
_y mcﬂév&w § & OVE el RO L £ 3Vl el 56
A MR 4 BV R GlR OV L 6 VRl lela

HOR L L £ FUNR R RUNCLE b W GGl A -




The following give zero

U0 of f L0 |
URVE(NO L kN0 ............
UAVA(NO0|l L 4 dnO ...
WAVA(NO Y L5 hn0 ..
UVA(N O\ L kO =0
URV(NO[£ £ £ £ kN0 ...,
URVR(N O o L7 kO,
UZVA(N O Rl L 0.
Vel MO Rl dn 0

The following doesn’t give a zero.

UVe(NO/ of LT a0
UVR(NO// S, £ 47O
UVi(nOle L4 kno...........
UVe(NO/ L*f L7 hn0 ...
U Vi(nOley £°4 kno............
URVR{ Ol f g O)eeie




For
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aaa a= (Ul + W) (Wt V) U & v M U £ V3)

:L<n’o

WA FUVR RGBT VR L kR r &
HEW o {'d FUVR R le B UL U Y &k R 6

2 G T VIO o T A VR A R TR g AT o4 B

The following gives zero.

Ur(N, 0|0 f o7 1,0y
NO............
NO............

O ............

URVe(N Ol ol o o &
URVR(N 0L ol o &7
URVR(N, 0L ol L7 &
URVR(N,Of¢ L7
URVR(N, 0L 7L o
URVR(N, O£l LY
URVR(N, O£l ol gl

UpVa( N, 0|0l "L

va(n,0

MRV ' d FUNE R R BUNL L Ll E Rk gl

O ............
NO............
NO............
N,0)............
O ............

Rl AN 0
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The following doesn’t give a zero

UpVe(N O f L7741,
URVR(N O £ g1,
USVR(N O£ £
UV O o 7,
URVA(N O\ &4
URVa(n O£ L

(3.27)

For

aaa a = (ot W) (W et v Ut Ve ) UR £ Vi)

Ul UV kbl RO WL o et Ve i
ZL<HO@V¥£{£$&§%€€£MB&@¥¥ TN NNA RS

A MR L VR Gl ROV 4 VR Gl
HRV L FUNE Rl kUL R el o -




The following gives a zero

u3Ve(n,0
u3Ve(n 0
uVe(n,0
uSve(n 0
uzva(n0
uzva(n0
UrVe( N0
UrVa(n,0
UrVa(n,0
UrVa( N0

CRL AL g
CRld g
UL g™

UL g™

............

............

............

............

............

............

............

............

............

............

The following doesn’t give a zero.

UR(NO¢ of LN () (m+ 2|
uévﬁ(n,o‘é LS Fﬂz NO..oooennnn. nntd gy
URVA(N O ' kO (2”@ ¥
vé(n,Oé}(*RfF.zF‘n,(b ............ n(n-1) v
URVA(N O[T 7 kO A
UAVA(n Ol Fﬂz NOY...ovvvenn. n(n+1) B}

(3.28)

For

aa*aa:(LMR+ \MR)( W st V4 ;( ug & V@::)F( W: + WE)



T T VN 8 SV &
P VY R oY N & T TR A
A7 MR FUNE Gl R VL UV G ol

A

R {4 FUVE R R RUNL L R

The following gives a zero.

V(N O/l dn 0.
UAVECRO kRO
URV(NO[/ £ £ £ knO...oo..
UEVANO|C £ o £Thn0 .
URVA(N Ol o 74

WA O £k

URVR(N O[T k0
URVa(N 0| Rl n,
VRO o

V(N Ol SN0
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The following doesn’t give a zero.

For

aaad =( Wt Wi W v ) W& VB URk V)

:L<n,0

uzvi(n,0
usve(n,0
uve(n,0
usve(n,0
uve(n,0

uRV:I;< n, 0

CRl A
CRULH
Col
UL A
Ul A

Ul g

O ............
NO............
nO............
NO............
nO............
N,0)............

(n+ D" ¢ V¢
n(n+t 1) ¢ v
(n+)(n+ 2 d v,
n(n-1 ¢ v
n(n+1) ¢ v

n’u. V2,

Ul o' e UV Koo & U Wl U VE 66w
RV o 4 UV bl & UL MU VR kR 2
HRL W VG e s PR U VK 6 e
HRR Y 4 FUVE bl le R U L 4 £ & gl
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(3.29)




The following gives a zero

uive(n,
uive(n,
uive(n,
uzvz({n,
UgVa(n,
usvg(n,
uzva(n,
UgVva(n,
UgVa(n,

UgVva(n,

Cll A0y
LN 0y
Ol o L0y
[0l & AMOy
Col L A0y
T LN 0y
CLTLTLTA N0y
A AN A T 0 ) S
L AN 0
LN 0y

The following does not give a zero

For

+ &

aa a a-=

ugm'o‘gRg*Rg Rf*#n,(» ............ (n+2|)2 I
VAN O L' dn0 (1) §¥
VARO[ £ L4 en0............ (m(mr 2 gy

.
VAN O  dn0 n(n-1) § ¥
.

UAVA(NOety £ L5 kn0 . n(ntd § ¥

VA(N,0

(Wt Wi ura v ) uE & Ve )b Ut V)
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(3.30)



=——(n,0

The following gives zero

usve(n,0
usve(n,0
usve(n,0
uzvz(n,0
3
UsVR(N,0
3
UsVve(n0
2,2
UsVR(N,0
3
UsVve(n,0
3
UsgVe(NO0

UsVe(n,0

Ul /' UV b R R & WL U VE 476 K = A
RV f 'd UV &l & U WRC R U VR 4
RV L UYR R R e & UL U VB 6
RV d'd FUVE &kl & U R VL 4

CRl'e d A
CRl) g
Crl d'd

Ul o Y
CRURLH g
CRURLY
UrlRl glg
URl /g

CRl e g

O ........ ...
NO ............
NO ............

[AEARANAEY N o) ST
NO...........

NO ............
NO...........
n,o)............
NO ............
O ......... ...
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The following does not give a zero

UR(NOC L" dN O n( ) ¢

u2va(n o0\l L4 g*FLn,Q ............ (m2* ¢ ¥
VAN O f LT AND (m (D gy
uévﬁ(nOFRf*RfFf*n,Q ............ nn3 ¢y
URVA(N O ' kO A
vé(n,O‘f*Ffo Ré*#n,0> ............ n(n+1) 4

(3.31)

For
st d =t ) W ) 0k V)l G v

Ul L UN KR & & MR U VE 6 & &
_ Y PR R UYR R R R UL U VG Kk R
- <n’032++++ + o+ + o+ + + )+ ?1’@
A7 MRVl K PV Rl £ PO U Y
RV L UVE &k & UG &FV04 6 &

R IR




The following gives zero

ué(n,OV
uzva(n,0
uzvz(n,0
uzva(n,0
UgV3(n,0
usve(n,0
uzvz(n,0
uzva(n,0
uzva(n,0

va(n,0

The following does not give a zero.

For

Rﬁ +R£ +R€ +R

CRlRl g
Url 7 4
Crl ol Y

CRURTH
UL g
KT?K*-RK R€+R
AT

uive(n,0
uSve(n0
uve(n,0
UgVa(N,0
UgVa(n 0

UgVa(n,0

noy............
nO............
noy............

[0l L dn 0y
nO.............

nO.............
n,o)............
noy............
Ol ol o M0

UL
CRld A
CRl
Ul o
Ul
Ul

nN,O).......... ...

AT T T VA | T AR I A VS
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Ul d UV Kb lp & W UORLRL o U VBT 76 g

O+U§VR€+R€+FE { FUYEE Gl & WML U VR EE

RV o f § FUYR b klg & UL otRU VR 4K e

RV LY § FUYR Bl & UL otV EETR g

The following gives a zero.

us(n,0

uzvi(n0
uzvi(n0
uzvi(no0
uzvi(n0
uve(n0
uzvi(no0
uzvi(n,0

uzvi(n0

VA0l NG

Ul ol AN O |

Ol LA
CLLAND
CLLL AN
CLLLAND
0l d dnO .
(el L AN
(ol AN, O,

CL L N0

R
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The following doesn’t give a zero.

USVR(N O £ L7ANn 0 ..o n(n+ 1) § g
USVR(N, Ol L dn0)............ P UV,
USVR(NO[ L' L dn0 oo n(n=1) §
URVR(N Ol of L AN 0 oo (nt D(n+ 2) y ¥,
UpVE(N, 0l %l £7dn 0y (n+ D) g ¥
URVR(N 0|0 L7 dn0)...........on(n+ D ug i |

(3.33)

For
alaad =( Wit W (U VN U Rk Unt Vo)

N A NN
A Y T G Y S
N L A AT T

RV, ' {7 U YR Bkl kU BRI eV LT e




The following gives zero

uivg(n,0
uivg(n,0
uivg(n,0
uzvi(n,0
UgVva(n,0
uve(n,0
uzvz(n,0
UgVe(n,0
UgVva(n,0

UgVva(n,0

URl Rl g
CRl R
CRLTRE
Ul
UL
Crl ol {7y

gRg R€+R€ R
T
CRl7Rl

n,o)......... ...
n,o)......... ...
n,o)......... ...
n,o)......... ...
n,oy......... ...
n,o)......... ...

[0l & N0
n,oy......... ...

n,oy......... ...
n,oy......... ...

The following does not give a zero.

us(n,0

uzva(n,0

uzvz(n0

For

dad a=( Wit W W BN Wk VR b Upt ¥

CRl el N0
Ul L
URVR(N 0|l of
URVR(N 0|0 of L7
rarara

O ............
nO...........
nO...........
O ............
VAN, 0|4 ol [0 0)

n(n+3)
? 2.7,

(-1 ¢ ¥

(n+ D" ¥

n(n+1) 4

(n+3(r 2 ¢ ¥

+R)
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(3.34)



The following gives zero

u3ve(n,0
usve(n,0
uzva(n,0
uzva(n,0
ULva(n,0

usve(n,0

UsVa(n,0
Usva(n,0

ULVa(n,0

Ul 'l UV B R & WWRLRL S U VETL K = A
O+U§VR€+¥+F£+£ FUVE R R & UL S U VL
RV {4 UV kR kR & WL el Vi &
RV L FUVR R R UL otV Eh & R R

Ul Y
Ul A
Ul A
Ul
CRUH AT

Ul ' A

ERK Rg R[+R
CRURLH

CRld o g

nOY............
nOY............
noy......
noy......
O ............
noy......

URVE(NOlL o £ £ dn0)... ...
n,o......

nNOY............
noy......
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The following does not give a zero.

UR(NO[Hl f7 dN O rf U,
uévﬁ(nOé*RfRfFf*FLnQ ............ Nl gy
URVA(N O kO (9§ ¥
URVR(N Ol f L7 kn 0O (D (24
URVR(N O 77 k0O (1) ¢ g
Van Ol ol N0y (n+1)°

(3.35)

For
aaa'f:( L&f;+\ﬁ€|3)( W s+ Vé+)z( LQ-RI_ \[R)Fé lf;;‘lf:g \[R)

Ul ' Y G B & WLl BV L L6
RV o CE R G B UM et kK
MRV o T VRl & PNl L u%éé@m’

RV L FUNE G R UVL L L oV 46 6 e s




The following gives zero

uive(n,0
usve(n,0
uive(n,0
uzvz(n,0
u,va(n,o0
R "R '
3
UsVe(Nn,0
2,,2
UsVve(n0
3
UsVg(N,O0
3
UsVe(n,0

UsVe(n,0

The following does not give a zero

Us(n,0

u

u2va(n 0

uzva(n0

For

a'daa=( Wit W (W b N Wt )k Uk v

CRl /g
URl e d g
CRURLH g
CRUR g
CRU Y

Ul o 'd

ERK Rg R£+R
CRl) g

CRl'e d

Oy ........ ...
NO ............
NO ............
NO............
O ........ ...
NO............

0l L A0
n,o0y............

NO ............
NO ............

CL L dn0
VRN O[3 o

u2va(n 0

+R)
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(3.36)
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The following gives zero

UVe{N 00"l L£5dn 0. ...
USVR(N, 0 0"y A n 0y e
UAVE(N, 00" e dn 0y,
USVe{N 00"l £ £ dn0)y............
URVe (N0 L7505 n 0y

=0
USVR(N,00 L7 £ AN 0y ..
UVe (N, 00 £ L N0y ..
USVA(N, 0|0 ol ol o N, 0.l
UVe(N 00 0 of L5dNn 0y .o
UVe (N0l 0 74 . N0 ..o |
The following does not give a zero
ué(n,Of}é*RKRKJn,Q ............ n(n-1
VARO[ o kO (] g%
VARO[ L7 k0 i F%,
VRO ' kN0 (m2° ¢V
URVR(N O 77 k0O (1) ¢y
Va(n 0| of (L7 7AN0) (n+D(n+ |

WL A Y E B bl s CWRL S R R v

:l -l-UéngJng Fg Fg R+uzlifé+@e &6; ® Lf\éZJ'Ré Fng rErU \%:@a [FM; ﬁ,@
A5 MRV L d F EV G el kR VL e Vil

O L 4 FUNE hlle RUVL L GGG ol
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For
a'alad =( Wit W W bl Wt Rk Urk ¥y

VT VY o o A SV VI R g
:_y<n O"'l.l,iVR€+¥ { F€+R+ uzﬁfé:@ N d\égw F£+R€+R+Ru \%féz ng ﬁ,@

A0 MW, BV G el B BNl W Gl
O L L AUVl e RUVL LW 6 6l

The following gives zero

UR(N, 0|0l el L7 M0y

USVR(N O AN 0 e
UAVE(N O L AnO)oee ...
UAVE(NO" L £ L An0)........ ..
UAVE(N O L7470 e
URVE(N, 0|0 L7 £ AN Oy,
UAVE(N, O L7747 ANn 0 e
UAVE(N, Ol of ol LN, 0) e,
UVe(NO|l ol £ £ dn 0y,
VA(N,0|¢ ol o7 0,0y




The following does not give a zero

uve(n 0
uzva(n0
UgVe( N0
USVe(n 0
UVA(Nn 0
UgVe( N0

+ +

For aaaa=

=——(n0

A

UCRLA A g,
UL g™
CRUA g
CRLAE g1,

Ul d

I FUYE R R R RUWL A VGG LR
R 4 FUVE R R 4§ VR h ol RG
W A UV R R R R Ul Ve el
HRR {4 UV R RRERUWL L 4 F k&R rlr

NO.ooenn... n(n1 ¢
NO..cc...... n(m1) § v
NO............ TRV

NO ... (1" § ¢
NO..cc...... (1§ v
NO............ (n+1)(n+ 2

(Wit we v ) Ui Ve Upt ¥

(3.38)
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The following gives zero

us{n,0

usve(n,0
uzva(n,0
uzva(n,0
uzva(n,0
uzva(n,0
uzva(n,0

uzvz(n,0

Ul
Ul A
Ul Y
Ul & # o
CRUHEY
CRlUH A
Crl e q

Ul N0

O ............
nO............
O ............
O ............
nOY............
nOY............
n,oOy............

URVE(N 0|l o0 £ £ dn 0.
VA(N, 00 ol o 7N, 0

The following does not give a zero

UpVe( N O|C " & g
UAVE(N O\ L gy
URVa(NO|C o g,
URV(N O\ L7 g,
UgVa(N 0|l " &g,
UpVa(n Ol of 4"

For

addd=( it uWe N wE Vet Uik Vi)

(3.39)
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The following gives zero

Ur (N, O[3l ol "m0y

usve(n,0
usve(n,0
usve(n,0
usve(n,0
usve(n,0
UsVa(n,0
UsVa(n,0

UsVa(n,0

WL FIVE R R R UW Ll VK ke v &
R 4 FUYR R Rl RUWL {4 VR & e A6
W LY N Rl R UV el Ve el
HRH L FUVR R R UL L b klk gl

Ul A
CRUH AT
Ul Y
Ul & # 4
CRUHEY
LRl
Crl LR

Ul o Y

noy......
O ............
O ............
noy......
nOY............
noy......
n,0y............
no......

VR(N, 0l ol of £ dn, 0

The following does not give a zero

uivi(n0
UuZva(n0
URVR(N 0
URVR(N 0
URVR(N 0
UuZva(n0

£+R€+¥¥41n,Q ............ r(n_])li\i
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(3.40)
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Summing up equations 3.25, 3.26, 3.27, 3.28, 3234, 3.31, 3.32, 3.33, 3.34, 3.35,

3.36, 3.37, 3.38, 3.39 and equation 3.40.

Ug| 7 +6n+ 3|
VA 44r7+ adn+ 22)
=2 | 1BV 19rF + 200+ 17 ( n, O,

+HUpVR| 1917 +18n+ 9)

[ 7P +8n+ 4]

1
4 _ 4 2 _ - —

V= U = VAU = V= uR\?R—Z
Inserting Eqn. 3.42into Eqgn. 3.41 and summingivieg

_y
16a?

(96n2 +96n+ 49

<n,o\H‘\n,@=af/§(o)+16‘;2(9aF+ ogH 49

E =é(96n2 +96n+ 49

The energy of the system is calculated as

_poLp - 1 y
E = En+En—(n+§Jhw+ o (9617 + 96n+ 49

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)



3.3 Heat Capacity and Transition Temperature

Heat capacity is expressed as,

(%

_hw

_hw

(3.47)

42

E, is multiplied by thermal activation fact@® T to getE= Eneﬁ . This value of

the energy will be used to et T, etc.

(3f=]

h_?; e—ﬁ

C=E

3.4 Entropy

ds= da.

dT’

dQ - MCdT
IdS:Id('I?:-[ T

_hw
s= thEjiseKT daT
T

Integrating Egn. 3.51 by parts we get

_MnwE| k | 3k*  6TKk* 6T%"*| "¢
S= + 2 + 3 3+ 4, .4 et
kK |Tho o o’ h'o

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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3.5 Binding Energy per Nucleon
The binding energy per nucleon or the binding foarct is derived from Eq. (3.46) by
dividing the total energy of the system by the nemdf nucleons in the system. This

yield,

f=1 (n+—1jha)+ Y (9617 + 96n+ 49 (3.53)
Al 2 16
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CHAPTER FOUR

RESULTSAND DISCUSSIONS

4.1 Introduction

From Eq (3.46) the energy of the system can beulzéxd by the corresponding

parametersa’® :%} and y:h—w, For ground state energy the value of n=0 such
&

that the Eq (3.46) reduces to

E =lho+ 2Y

= 5.1
(n=0) 2 1&,2 ( )

The ground energl (n=0) is used to calculate heat capa&tynd entropys.

The following values for different physical quarg# have been used

h=6.626x10"* JS
w=6x10s

Kk =1.3807x1G° J/k
1=8.369x10° Kg
a, =1.3x10"° A* M
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4.2 Variation of Heat Capacity with Temperature

The equation

_he
c="% (n+3jhw+ Y (9617 +96n+ 49 || ex
KT 2)"" 16z

has been used to calculate the values of heatitapgorarying the temperature from

0.0200K to 0.400K. The data is recorded on talle 4.



Table4.1: Variation of Heat Capacity with Temperature.

Temperature T (K) | Heat Capacity C (J/K)
0.0200 8.69808E-28
0.0400 2.91262E-25
0.0600 1.42695E-24
0.0800 2.66492E-24
0.1000 3.50393E-24
0.1200 3.93237E-24
0.1400 4.07063E-24
0.1600 4.03045E-24
0.1800 3.88962E-24
0.2000 3.69726E-24
0.2200 3.48295E-24
0.2400 3.26398E-24
0.2600 3.05009E-24
0.2800 2.84646E-24
0.3000 2.65557E-24
0.3200 2.47833E-24
0.3400 2.31469E-24
0.3600 2.16413E-24
0.3800 2.02585E-24
0.4000 1.89894E-24
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Figure4.1: Variation of Heat Capacity with Temperature.

The relationship between heat capacity and temyreraicreases non-linearly to a
maximum value corresponding to T=0.144K and dee®akhis peak value at
0.144K, appears to be the transition temperaturé&fge from normal to a superfluid

State.

As T 0, the heat capacity converges to zerg ffansition is of second order in
which it occurs with no latent heat. The transitiemperature is 0.144K this is in the
region of other experimental values of 0.95K (Feitbauseet al.,1969). Previous
experimental working with impure samples of Rhenhawe reported

superconducting transition at 2.2K and 2.4 K (Helnal.,1957).
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Table 4.2: Comparative valuesfor transition Temperature.

Theoretical values Experimental values  Others

Transition Temperature 0.144K 0.95K, 2.2K, 2.4K | 2.5-2.8K

Te )
Frieberthauser, Huln

and Goodman

There is a deviation in the theoretical transitiemperature value from the

experimental value, this is due to the strengtpesturbation used in this study.

4.3 Variation of Excitation Energy with Heat Capacity at constant Temper ature.

The equation

_ho
c="% (n+1jhw+ V(9617 + 96n+ 49 | | e
KT 2 laa

has been used to calculate the values of heatitgpgorarying the excitation energy
at different constant temperatures of 0.100K, 0Kld44d 0.200K. The data is

recorded on table 4.3
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Table4.3: Variation of Heat Capacity with Excitation Energy at constant

Temperatures.
Heat Capacity C (J/K)

n | Excitation Energy (J) T=0.1 K T=0.144K T=0.2K

0 2.17E-24 3.5E-24 4.07E-24 3.6972E-24
1 6.81E-24 1.1E-23 1.28E-23 1.1617E-23
2 1.22E-23 1.97E-23 2.28E-23 2.0737E-23
3 1.82E-23 2.94E-23 3.42E-23 3.1057E-23
4 2.5E-23 4.04E-23 4.69E-23 4.2577E-23
5 3.24E-23 5.24E-23 6.09E-23 5.5298E-23
6 4.06E-23 6.56E-23 7.63E-23 6.922E-23
7 4.94E-23 7.99E-23 9.29E-23 8.4341E-23
8 5.9E-23 9.54E-23 1.11E-22 1.0066E-22
9 6.93E-23 1.12E-22 1.3E-22 1.1819E-22
10 8.03E-23 1.3E-22 1.51E-22 1.3691E-22
11 9.19E-23 1.49E-22 1.73E-22 1.5683E-22
12 1.04E-22 1.69E-22 1.96E-22 1.7795E-22
13 1.17E-22 1.9E-22 2.21E-22 2.0028E-22
14 1.31E-22 2.12E-22 2.47E-22 2.238E-22
15 1.46E-22 2.36E-22 2.74E-22 2.4853E-22
16 1.61E-22 2.6E-22 3.02E-22 2.7445E-22
17 1.77E-22 2.86E-22 3.32E-22 3.0158E-22
18 1.93E-22 3.13E-22 3.64E-22 3.299E-22
19 2.11E-22 3.41E-22 3.96E-22 3.5943E-22
20 2.29E-22 3.7E-22 4.3E-22 3.9015E-22
21 2.47E-22 4E-22 4.65E-22 4.2208E-22
22 2.67E-22 4.31E-22 5.02E-22 4.5521E-22
23 2.87E-22 4.64E-22 5.39E-22 4.8954E-22
24 3.08E-22 4.98E-22 5.79E-22 5.2506E-22
25 3.29E-22 5.32E-22 6.19E-22 5.6179E-22
26 3.52E-22 5.68E-22 6.61E-22 5.9972E-22
27 3.75E-22 6.05E-22 7.04E-22 6.3885E-22
28 3.98E-22 6.44E-22 7.48E-22 6.7918E-22
29 4.22E-22 6.83E-22 7.94E-22 7.2071E-22
30 4.48E-22 7.24E-22 8.41E-22 7.6344E-22
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Figure4.2: Variation of Heat Capacity with Excitation Energy at constant

Temperatures.

The relationship between heat capacity and exaitanergy in Fig. 4.2 has a linear
relationship. The gradient increases with increasésmperature and attains a
maximum gradient corresponding to the transitiongerature (0.144K) and above
this temperature the gradient lowers. This showashkat capacity and excitation
energy are maximum at transition temperature. Koéation energy approaches zero
as the heat capacity goes to zero. These resgiiests the strong dependence of the

internal energy of the particles of the systemtanhteat capacity.
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4.4 Variation of Entropy with Temperature

The equation

S

_MuwE| k | 3k*  6TKk* 6T%*| -2
= t St t—— e«
Kk |Thw re® 10’ h'w

has been used to calculate the values of entropakyyng the temperature from 0.1K

to 2.0 K. The data is recorded on table 4.4.



Table4.4: Variation of Entropy with Temperature

Temperaturd (K) | EntropyS (J/K)
0.1 5.18509E-22
0.2 1.04197E-21
0.3 1.57037E-21
0.4 2.10373E-21
0.5 2.64204E-21
0.6 3.18529E-21
0.7 3.73349E-21
0.8 4.28664E-21
0.9 4.84474E-21

1 5.40779E-21
11 5.97579E-21
1.2 6.54873E-21
1.3 7.12663E-21
14 7.70947E-21
15 8.29726E-21
1.6 8.89E-21
1.7 9.48769E-21
1.8 1.00903E-20
19 1.06979E-20
2 1.13104E-20
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Figure4.3: Variation of Entropy with Temperature.

The graph of entropy against temperature increasedinearly with temperature. This
is due to the fact that as the temperature incsedise nucleons are expected to be more
disorderly this is in agreement with Deah al., 2003 results of entropy against
temperature. For P 0, the entropy convergeseto. This shows that Rhenium

becomes orderly at very low temperatures.
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CHAPTER FIVE

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion
The second quantization approach in the study efttlermodynamic properties of
186

-eRe has provided a basis to more precise values.ribvg easy to compare some

fundamental experimental facts of the propertieSeRe.

The energy of 3¢Re has been obtained successful, it has been usealdalate the

heat capacity, Excitation energy and Entropy.

The heat capacity fol3¢Re exhibit Sshaped heat capacity curves as a function of
temperature which is interpreted as a fingerpriat phase transition (Hessal, 2004)
which is a second order phase transition (Belical., 2004). We note that both

theoretical and experimental results exhibit f®#haped curves.

The values calculated for heat capacity are p@sidind this is mainly due to the
Coulomb interaction. The relationship of heat c#yaend temperature is non-linear,
as temperature approaches zero heat capacity afserges to zero. These results
obtained are similar to those reported by Detaad.,2003; Luiet al, 2001 and Khanna.
et al, 2010 but within close temperature ranges. Thsition temperature fd£<Re

of 0.144K with a peak value of 1.5J/K, suggestspihgsibility that the material attains

a phase change to a superfluid state just bel@atridmnsition temperature.

The transition temperature of 0.144K, from the tkeéoal calculations ascertains the
results obtained from different experimental aspeéirieberthause and Notarys

1969). Some experimental working with impure samplieRhenium have reported
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superfluid transition temperature at 0.95, 2.2 2ddK (Hulm and Goodman 1957).
And this could explain the deviations from the idba&oretical results of 0.144K. The
low Tcobtained could also be due to the strength of geation used for the
calculations that may appear larger than the teaperturbation such that to realize

the superfluid state.

The calculated variation of heat capacity with &tedn energy at constant temperature
exhibits a linear relationship but with increasgrgdients at higher values of constant
temperatures to a maximum gradient corresponditiget@ritical temperaturé.. This
could be strongly linked to thermal excitation loé thuclei and that the maximum heat
capacity observed at different excited states spoeds to the critical transition

temperaturd.

From these results it can now be confirmed th# possible to use the interaction
potential and second quantization approach intindyf thermodynamics properties
of the heavy nuclei and to predict accurately ttandition temperature at which

superfluidity appears in heavy nuclei.

5.2 Recommendations
1. Apart from second quantization approach otheotétical approaches may still be

used to ascertain this result i.e statistical mdecdynamics.

2. There is need to consider an interaction pakerbtiat may account for Spin-
dependent, density-dependent and velocity-depenoaential that may give more

precise results.

3. Adding a perturbation to power six to improve omreotions.
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APPENDICES

Appendix |
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The phase diagram for nuclear matter, as predittearetically. The horizontal axis
shows the matter density, and the vertical axisvshime temperature. Both axes are
shown in logarithmic scale, and the density is giwe multiples of normal nuclear
matter density. (Nuclear science-A guide to thelearcscience wall chart 2004

contemporary physics Education project [CPEP]
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