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ABSTRACT 

 

Many theories that attempt to describe the superconducting state have suffered significant 

failures, leaving the t-J model as the only model which effectively captures the physics of 

the strong correlations inherent in this problem.  However, many aspects of this model 

are quite complex and the thermodynamic properties of the superconducting state need to 

be analyzed carefully. In this thesis, second quantization techniques involving Bogliubov-

Valatin transformation have been used to diagonalize the t-J model Hamiltonian so that 

the thermodynamic properties of high temperature superconductors can be studied. 

Formulae for ground state energy,   , specific heat,   , and entropy,  , of high 

temperature superconductors have been derived in the framework of the t-J model. 

Additionally, the superconducting dipole Hamiltonian has been diagonalized and the sum 

of the t-J and dipole Hamiltonians obtained resulting in what is now referred to as the „t-

J-d model‟. Transition temperature for LSCO in the t-J formalism is obtained as    
       and            in the t-J-d system. Transition temperature for YBCO in the 

t-J formalism is obtained as           and           in the t-J-d model. Both 

models predict Tc that is higher than the experimental value of 90K but remarkably close 

to the known values. Highest heat capacity of the superconducting state of the t-J model 

is found to be               while the highest entropy value is 3.15×10
-3

eV/K for 

high-Tc superconductors. The total energy of the system increases exponentially with the 

temperature.  
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Introduction to Superconductivity 

Superconductivity is the disappearance of d.c electrical resistance of a conductor when 

the conductor is cooled to a certain characteristic temperature called critical temperature, 

Tc. It was discovered in 1911 by Onnes Kamerlingh (Kamerlingh, 1911) who worked on 

mercury at very low temperatures using Helium as a refrigerant (Andrei, 2004). At the 

temperature of 4.2K, the electrical resistance of mercury abruptly disappeared and 

mercury became a superconductor.  

This phenomenon was not well understood until 1957 when an acceptable microscopic 

theory (Bardeen, et al., 1957) based on the concept of pairing of electrons of opposite 

spins and momenta near the Fermi surface was given by Bardeen, Cooper and Schriffer. 

The theory was named after the three scientists as Bardeen-Cooper-Schriffer theory (BCS 

theory). In this theory, superconductivity was explained as a phenomenon which 

originates from the effective interaction between a pair of electrons called Cooper pair. 

The pair of electrons exchange a phonon through virtual means leading to a virtual 

attraction between them, specifically when the energy difference between the electronic 

states involved    is less than the phonon energy,   . The strength of this electron – 

phonon interaction is maximum when the electrons are in the states of equal and opposite 

momenta and spins. The importance of the role played by electron-phonon interaction 

was emphasized by the discovery of the fact that the critical temperature of the transition 
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from normal to the superconducting state depends on isotopic mass. In 1950, 

     ̈      (   ̈     , 1950) proposed that vibrating atoms of a material play an 

important role causing it to superconduct. Following his proposal, the isotope effect was 

introduced by E. Maxwell and C.A Raynolds. They studied different superconducting 

isotopes of mercury and established a relationship between the critical temperature, Tc 

and the isotope mass, M as; 

     
 

                                                                                                                                    

This pointed to the understanding that the superconducting transition must be involving 

some kind of interaction with the crystal lattice. 

Superconducting state is described as a diamagnetic state. In 1933, W. Meissner and 

R.Ochsenfeld (Meissner, 1933) discovered that superconductors exhibit one fundamental 

property called perfect diamagnetism. They found that magnetic flux is expelled from the 

interior of the sample that is cooled below its critical temperature in weak external 

magnetic field, a phenomenon called Meissner effect.  The relationship between the 

magnetic flux B and the magnetic field H (Qiang, et al., 1992) is given by; 

                                                                                                                                        

where   
 

 
 is magnetic susceptibility and    is magnetic intensity. When B=0, 

magnetic susceptibility is negative    
 

  
 , a condition for diamagnetism. 

Similarly, electric field, E inside the superconductor is expected to be zero. In 1935, two 

brothers, F. London and H. London came up with two equations which govern the 

microscopic electric and magnetic fields in the superconductor. The London equations 

explained Meissner effect and also provided an expression for the first characteristic 
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length of superconductivity called the London penetration depth,    . When the 

superconductor is cooled to temperatures below the critical temperature, current density, 

J is found to be very large as the conductivity   approaches infinity. From the relation; 

  
 

 
                                                                                                                                                    

it is very clear that for infinite  , the electric field,   must be equal to zero, thus we 

expect the exclusion of electric field from the inside of a superconductor. We further note 

that for infinite current flow, Maxwell‟s relation stipulate that the rate of change of 

magnetic flux must be equal to zero, i.e; 

  
  

  
                                                                                                                            

Eq. (1.3) implies that B is constant inside the material. This constant, according to 

Meissner is zero. In 1950, V. Ginzburg and L. Landau proposed an intuitive theory of 

superconductivity called the Ginzburg-Landau theory which helped in understanding the 

behavior of superconductors in strong magnetic fields. The theory confirmed the London 

equations and provided an expression for the second characteristic length, called the 

Ginzburg-landau coherence length,    .  

1.2 The superconducting state and the thermal transport properties 

The onset of the superconducting state is accompanied by drastic changes in the 

thermodynamic equilibrium and thermal transport properties of a superconductor. The 

heat capacity of a normal conductor is determined by the normal electrons with a small 

contribution from the thermal vibrations of the crystal lattice and is nearly proportional to 

the temperature. At the transition temperature, there appears a discontinuity in heat 

capacity which then decreases more rapidly with decreasing temperature. At temperatures 

well below critical temperature, heat capacity varies exponentially as       
 

  
  where   
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is the energy gap and k is Boltzmann constant. Such exponential temperature dependence 

is a hallmark of a system with an energy gap in the spectrum of allowed energy states. 

The thermal conductivity of a superconductor is less than that of the normal conductor 

and approaches zero at very low temperatures. This is because the transport of heat 

requires transport of disorder or entropy and the superconducting state being one of 

perfect order or zero entropy we expect very low or no thermal conductivity. 

Most of the superconducting electrons are located either on the Fermi surface or very 

close to the Fermi surface (Bardeen et al, 1957). This is because the Fermi energy is 

much larger than the phonon energy and two electrons deep inside the Fermi sea cannot 

form a Cooper pair as they are constrained by Pauli Exclusion Principle. When these 

electrons are on or close to the Fermi surface they form a bound pair as phonon energy 

here is now lager. 

To obtain the superconducting state of the conventional superconductors, liquid helium 4, 

which is costly, has to be used. For this reason large scale production of superconducting 

materials becomes too expensive. A great breakthrough was realized in 1986 when high 

temperature superconductivity was discovered in La-Ba-Cu-O. This will be discussed 

later in this thesis. Research is still on-going to discover materials with transition 

temperature greater than 77K which is the temperature at which liquid nitrogen can be 

used as a coolant. Liquid nitrogen is much cheaper than helium 4. 
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1.3 Characteristics of the superconducting state  

The features discussed below characterize the superconducting state of high-Tc 

superconductors. They describe why superconducting state occurs and what causes it 

(Andrei, 2004). 

i. Critical temperature 

This is the temperature at which the second order phase transition from normal into the 

superconducting state occurs. Critical temperature is a macroscopic quantity and at the 

time of this research there is no consensus on the rule for predicting critical temperature 

in high temperature superconductors. 

ii. Cooper pair wave function 

In quantum mechanics, any particle is characterized by a wave function. Similarly, a 

Cooper pair is also characterized by a wave function          where       are the 

positions of the electrons in the real space. The attraction between two electrons in a 

superconductor leads to the coupling of the pair forming a composite boson called 

Cooper pair. The wave function of this pair is a complex scalar having an amplitude and 

a phase. The probability to find a Cooper pair in real space is given by    , where    is 

a complex conjugate of  . 

iii. Order parameter (    ) 

This is the wave function of the superconducting condensate. The superconducting state 

is characterized by a single wave function; 

                                                                                                                                 

where   is the phase. The order parameter has the following properties; 
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a) It is a complex scalar which is continuous in real space. 

b) It is a single-valued function. 

c) In the absence of magnetic field,        at      and        at      

d)        outside the superconductor 

e) It is usually normalized so that |    |  gives the density of the Cooper pairs at 

point r. 

f) In the momentum space, the variations of |    | are proportional to the energy 

gap,   

g) The phase of the order parameter is a periodic function in the real space. If the 

order parameter is known explicitly, then almost complete information about the 

superconducting condensate is known too. 

iv. Penetration depth,   

This is a very thin layer from the surface of a superconductor in which surface current 

that sets up a magnetic field which cancels the applied field flows. It can also be defined 

as the length in which the applied magnetic field is exponentially screened from the 

interior of the superconducting sample. It was first predicted by the London brothers.  
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Fig.1.1: Schematic diagram showing penetration depth of a superconductor. 

(Source: Andrei, 2004) 

 

Penetration depth is temperature- dependent and it can be expressed in terms of critical 

temperature, Tc as; 

     
    

[  (
 

  
)
 
]

 
 

                                                                                                             

where      is penetration depth at 0K and T is the temperature of the system. In metals 

the London penetration depth (Andrei, 2004) is          

v. Coherence length,   

This is the characteristic length or scale over which the variations of the order parameter 

occur in a spacially-varying magnetic field (Andrei, 2004). Coherence length defines 

variations of order parameter of the superconducting condensate and it is temperature-

dependent.  It was first predicted by Ginzburg and Landau. It diverges as temperature 

approaches critical temperature.  
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In conventional superconductors, at zero Kelvin temperature, the Ginzburg- Landau 

coherence length,    , is equal to the size of the Cooper pair.  In the framework of the 

BCS theory for conventional superconductors, coherence length determined by the 

energy gap at zero Kelvin temperature,      , is called intrinsic coherence length,   , 

and it can be expressed in terms of Fermi-velocity and reduced Planck‟s constant,   as;  

    
   

     
                                                                                                                                        

In metal superconductors the value of intrinsic coherence length is           . 

In „dirty‟ superconductors i.e. superconductors in which electron mean free path 

(approximate width of the path of the electron),   , is much less than the intrinsic 

coherence length, the Ginzburg- Landau temperature dependence of coherence length at 

temperatures close to Tc  is given by; 

                 
 

 (  
 

  
)
 

 

 
                                                                                                

vi. Type I and type II superconductors 

Type I superconductors are those that expel magnetic flux completely from their interior 

while type II superconductors are those that expel magnetic flux completely only in a 

small magnetic field but partially in higher external fields. This is because the surface 

energy of the interface between the normal and the superconducting region is positive for 

type I superconductors and negative for type II superconductors. 

  

The ratio of the penetration depth to the Ginsburg –Landau coherence length is called the 

Ginzburg-Landau parameter,  . Hence; 



9 
 

 
 

   
 

   
                                                                                                                                            

This parameter characterizes the superconducting material and allows one to distinguish 

between type I and type II superconductors. A superconductor is type I if   
 

√ 
 and if  

  
 

√ 
 then the superconductor is type II. In unconventional superconductors (most high-

Tc superconductors),     hence they are of type II. Most metallic superconductors are 

type I superconductors. 

vii. Critical magnetic field, Hc 

The superconducting state can be destroyed by applying sufficiently strong magnetic 

field. In type I superconductors, superconductivity is destroyed when the applied field 

reaches a single critical field value, Hc. For type II superconductors there are two critical 

fields (Qiang Du et al, 1992), the lower critical field, Hc1 and the upper critical field Hc2. 

If the applied field is less than Hc1, the superconductor completely expels the field but at 

fields just above Hc1, flux begins to penetrate the superconductor in microscopic 

filaments called vortices which form a regular lattice surrounded by a superconducting 

region. 
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Figure 1.2a: A diagram showing 

temperature dependence of type I  

superconductors 

Figure 1.2b: A diagram showing 

temperature dependence of type II 

superconductors

i. Critical current, Jc 

Superconductivity can also be destroyed by a d.c electrical current. The critical current, Jc 

is the maximum current that a superconductor can support. Above Jc, the current breaks 

the Cooper pairs and thus destroys the superconducting state. Thus, any superconductor is 

characterized by a critical d.c current density, jc. At T=0 K, the critical current density 

can be estimated using the superfluid density, ns, and the velocity of the Cooper pair Vc 

as; jc= nseVc. The maximum current density that can theoretically be sustained in a 

superconductor is of the order of  jc≈10
6
A/cm

-2
. 

 

ii. Energy scales 

The superconducting state is characterized by a few energy scales namely; pairing energy 

gap, phase coherence gap, phases stiffness and condensation energy.  
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a. Pairing energy gap,     

The pairing energy gap measures the strength of the binding of the electrons or quasi-

particles into the Cooper pairs. The value of this gap corresponds to the binding energy 

that holds the electrons together. The pairing energy gap is directly proportional to the 

pairing temperature such that; 

                                                                                                                                           

b. Phase coherence energy gap,     

This is the condensation energy of a Cooper pair when the long-range phase coherence 

appears. Its magnitude is temperature dependent and it is highly anisotropic in high-Tc 

superconductors 

c. Phase stiffness 

This is the energy scale that measures the ability of the superconductor to carry a 

supercurrent. 

d. Condensation energy 

This is the free energy difference between the normal and the superconducting state given 

as; 

             
   

    

  
                                                                                                               

where symbols carry their usual meaning. The condensation energy in a conventional 

superconductor is of the order of                . 

NB. Values of some of the characteristic features of high-temperature superconducting 

cuprates are given in the table 1.0; 
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Table 1.0: Characteristics of some selected superconductors  

(Source: Puri et al., 2001) 

 

YEAR Critical 

Temp.TC 

(K) 

MATERIAL CLASS CRYSTAL 

STRUCTURE 

TYPE Critical 

field, HC 

(MA/M) 

1911 4.2 Hg Metal Tetragonal I 0.033 

1913 6.2 Pb Metal f.c.c I 0.064 

1930 9.25 Nb Metal b.c.c II 0.164 

1940 15 NbN Interstitial 

Compound 

NaCl II 12.2 

1950 17 V3Si Intermetallic  

Compound 

B-Tungsten 

W3O 

II 12.4 

1954 18 Nb3Sn Intermetallic  

Compound 

W3O II 18.5 

1960 10 Nb-Ti Alloy B.c.c II 11.9 

1964 0.7 SrTiO3 Ceramic Perovskite II Small 

1970 20.7 Nb3(Al, Ge) Intermetallic W3O II 34.0 

1977 23 Nb3Ge Intermetallic W3O II 29.6 

1986 34 La1.85Ba0.15CuO4 Ceramic Tetragonal II 43 

1987 90 YBa2Cu3O7 Ceramic Orthorhombic II 111 

1988 108 Bicuprates Ceramic Orthorhombic II - 

1988 125 Ticuprates Ceramic Orthorhombic II - 

 

1.4 Basic properties of the superconducting state 

The main basic properties of the superconducting state are; zero d.c electrical resistance, 

meissner effect, magnetic flux quantization and the Josephson effect. 
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a. Zero d.c electrical resistance 

Every superconductor has zero resistivity or infinite conductivity (Timusk et al, 1996) for 

a small-amplitude direct current (d.c) at any temperature below Tc. In essence, the 

resistivity of a superconductor is smaller than        
which is 18 times smaller than the 

resistivity of copper at room temperature. Such a value of resistivity implies that the 

current lifetime in a superconducting ring in zero magnetic field is not less than     years 

(Andrei, 2004). However, the resistivity of a superconductor to an alternating current 

(a.c) is not zero. Alternating current flows on the surface of a superconductor within a 

thin layer of the order of the London penetration depth. 

b. Meissner effect 

This is the exclusion of weak magnetic field from the inside of a superconductor. Every 

superconductor exhibits perfect diamagnetism. The applied magnetic field penetrates into 

the superconductor within a very thin surface layer of thickness,   . To cancel the applied 

field, a superconductor creates a direct current on the surface which gives rise to a 

magnetization, M that cancels the applied field. 

 

Figure 1.3: Meissner effect 
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In figure 1.3(a), Magnetic field penetrates the material in normal state (T >Tc), while part 

(b) shows exclusion of magnetic field from the inside of the material in the 

superconducting state (T< Tc).  

c. Flux quantization 

Since the superconducting state is a quantum state occurring on a macroscopic scale, the 

magnetic flux characterizing the state can also be quantized. If a superconductor with a 

hole inside is cooled to T<Tc, the magnetic field trapped inside the hole is found to exist 

only in discrete values, a proof of the fact that magnetic field in a superconductor can be 

quantized. 

d. Josephson effect 

An oscillating current of Cooper pairs flows when a steady voltage is maintained across 

the tunnel barrier between two superconductors. This effect is called a.c Josephson effect 

and it plays an important role in superconducting applications like SQUIDs 

(Superconducting Quantum Interference Devices) 

1.5 High Temperature superconductivity 

The real history of high-Tc superconductivity begun in 1986 when Bednorz and   ̈     

found evidence for superconductivity at Tc =30 K in La-Ba-Cu-O ceramic (Rapando et al, 

2013). In 1987, the groups at the universities of Alabama and Houston under the direction 

of M.K Wu and P.W Chu jointly announced the discovery of the superconductor, 

YBaCuO whose Tc was 93K. This discovery was very important since liquid nitrogen 

which has a high boiling point of 77K could now be used as a coolant instead of the 

expensive liquid helium. A high- Tc  superconductor is defined (Khanna, 2008) as one 



15 
 

 
 

whose critical temperature is greater than 90K and the superconducting state can be 

reached by cooling in liquid nitrogen. 

 

In 1988, Bismuth and Thallium-based superconducting cuprates were discovered 

(Andrei, 2004) having Tc=110K and Tc=125K respectively. In 1993, the highest critical 

temperature of 135K was discovered in mercury-based cuprates. At high pressure this Tc 

increased to 164K. The four main families of mixed oxides that have shown high-Tc 

superconducting properties are; 

a) Yttrium-Barium-Copper-Oxide (YBa-Cu-O) 

b) Bismuth-Strontium-Calcium-Copper-Oxide (Bi-Si-Ca-Cu-O) 

c) Thallium-Barium-Calcium-Copper-Oxide (Tl-Ba-Ca-Cu-O) 

d) Mercury-Barium-Calcium-Copper-Oxide (Hg-Ba-Ca-Cu-O) 

Some of the superconducting Cuprates with their corresponding Tc values are shown 

in table 2.0. 
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Table 2.0:  Some of the superconducting cuprates  

(Source: Marouchkine, 2004.) 

Cuprate CuO2planes Tc(K) Abbreviation 

La2−xSrxCuO4 1 38 LSCO 

Nd2−xCexCuO4 1 24 NCCO 

YBa2Cu3O 6+x 2 93 YBCO 

Bi2Sr2CuO6 1 12 Bi2201 

Bi2Sr2CaCu2O8 2 95 Bi2212 

Bi2Sr2Ca2Cu3O10 3 110 Bi2223 

Tl2Ba2CuO6 1 95 Tl2201 

Tl2Ba2CaCu2O8 2 105 Tl2212 

Tl2Ba2Ca2Cu3O10 3 125 Tl2223 

TlBa2Ca2Cu4O11 3 128 Tl1224 

HgBa2CuO4 1 98 Hg1201 

HgBa2CaCu2O8 2 128 Hg1212 

HgBa2Ca2Cu3O10 3 135 Hg1223 

 

With the discovery of high- Tc superconductivity in copper oxides which are very bad 

electrical conductors, the first reaction of most scientists was to think of another 

mechanism of superconductivity since phonon-mediated mechanism was impossible at so 

high a temperature. In 1988, A.S Davydov suggested that high- Tc superconductivity 

occurs due to the formation of bisolitons (Andrei, 2004). Bisolitions are electron or hole 

pairs coupled in a singlet state due to local deformation of copper oxide planes. 
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In 1994, A.S Alexandrov and N.F. Mott pointed out that in cuprates it is necessary to 

distinguish the internal wave function of a Cooper pair and the order parameter of a 

Bose- Einstein condensate which may have different symmetries. In 1995, V.J Emery and 

S.A Kivelson emphasized that superconductivity requires pairing and long-range phase 

coherence (Emery et al, 1987). They demonstrated that in cuprates the pairing may occur 

above Tc without the onset of long-range phase coherence 

 

In 1997, V.J Emery, S.A Kivelson and O. Zachar presented a theoretical model of high- 

Tc superconductivity based on the presence of charge stripes and in 1999 the analysis of 

tunneling and neutron scattering measurements showed that in Bi2Sr2CaCu2O8+z and 

YBa2Cu3O6+x the phase coherence is established due to spin fluctuations. 

1.6 Characteristics of high temperature superconductors 

Three main features characterize high-Tc superconducting cuprates; 

(a) Strong correlations on copper 

In cuprates, copper ions are the main sources of electrons while oxygen ions are the main 

donors of holes. The valence state of copper is Cu
2+

. The only hole of the copper ion is 

localized since the energy barrier prevents transfer of the hole to the neighboring oxygen 

ion. The magnetic moments associated with spin-1/2 of the copper ion are coupled by the 

super-exchange interaction to a given anti-ferromagnetic ground state with Neel 

temperature greater than 300K. When the oxygen content is increased, additional holes 

mainly from oxygen are transferred into O (2P) states in the copper planes. These holes 

form a band of states within energy gap for the copper charge excitations. When the 
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number of holes increases, they tend to align adjacent spins in a parallel configuration 

that leads to a Mott insulator and the material becomes a superconductor. 

b) Profound Anisotropy 

High-Tc superconductors exhibit strong anisotropic behavior due to their quasi-two-

dimensional structure. Superconducting currents flow in copper oxide planes implying 

that the coupling between adjacent layers is in the form of a tunneling process. 

c) Large electron-phonon coupling 

The critical temperature is of superconductors is given in the BCS formalism as; 

    

           ( 
 

      
)                                                                                                          

where k is Boltzmann constant, V is the coupling constant and       is the density of 

states at Fermi surface. This equation shows that for Tc to be large the electron- phonon 

coupling constant V should be large. 

1.7 Room Temperature superconductivity 

It is necessary to note that the expression “a room-temperature superconductor” 

inherently contains an ambiguity. Some perceive this expression as a superconductor 

having a critical temperature Tc ∼ 300 K, others as a superconductor functioning at 300 

K. There is a huge difference between these two cases. From a technical point of view, 

superconductors only become useful when they are operated well below their critical 

temperature-one-half to two-third of that temperature provides a rule of thumb. 

Therefore, for the technologist, a room-temperature superconductor (Andrei, 2004) would 

be a substance whose resistance disappears somewhere above 450 K. Such a material 

could actually be used at room temperature for large-scale applications. A room 
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temperature superconductor can also be considered as a substance whose critical 

temperature is approximately equal to 350K. 

 

In 1992, T.H Geballe summarized some guidelines that can give insight into the 

possibility of developing a room temperature superconductor. 

 The room temperature superconducting materials should be multi-component 

structures with more than two sites per unit cell where one or more sites not 

involved in the conduction band can be used to introduce itinerant charge carriers. 

 Composition of the material should be near metal-insulator, Mott transition. 

 On the insulating side of the Mott transition the localized states should have spin-

1/2 ground states and anti-ferromagnetic ordering of the parent compound. 

 The conduction band should be formed from anti-bonding tight-binding states that 

have a high degree of cation-anion hybridization near the Fermi level. There 

should be no extended metal-metal bonds. 

 Structural features that are desirable include two- dimensional extended sheets or 

clusters with controllable linkage or both. 

All these hints are based on the working experience with cuprates. These hints are correct 

but, not complete. This thesis sets out to give more conditions necessary for high-Tc 

superconductivity. If we suppose that, one day, a room-temperature superconductor will 

be available, and that in time, scientists and engineers synthesize it in useful forms and 

build devices out of it then we expect a technological revolution in the world never 

witnessed before. 
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 First of all, all devices made from the room-temperature superconductor will be 

reasonably cheap since its use would not involve cooling cost. The benefits would 

range from minor improvements in existing technology to revolutionary 

upheavals in the way we live our lives. Energy savings from many sources would 

add up to a reduced dependence on conventional power plants. 

 Compact superconducting cables would replace unsightly power lines and 

revolutionize the electrical power industry. A world with room-temperature 

superconductivity would unquestionably be a cleaner world and a quieter world. 

 Compact superconducting motors would replace many noisy, polluting engines. 

 Advance transportation systems would lessen our demands on the automobile. 

 Superconducting magnetic energy storage would become commonplace. 

 Computers would be based on compact Josephson junctions.  

 High-frequency, high-sensitivity operation of superconductive electronics, mobile 

phones would be so compact that could be made in the form of 

an earring.  

 

1.8 The t-J model for High – Tc Superconductors 

 

The t-J model was first proposed in 1977 from the Hubbard model by Józef Spałek 

(Wikipedia free encyclopedia, 2015). The model describes strongly correlated electron 

systems. It is used to calculate high temperature superconductivity states in doped anti-

ferromagnets. The Hubbard model, as the beginning point of the t-J model, based on the 

electron- electron interaction alone to explain superconductivity on a two- dimensional 

square lattice of copper oxide since the phonon mediation could not explain the 

http://en.wikipedia.org/wiki/Hubbard_model
http://en.wikipedia.org/w/index.php?title=J%C3%B3zef_Spa%C5%82ek&action=edit&redlink=1
http://en.wikipedia.org/wiki/High_temperature_superconductivity
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occurrence of superconductivity in high-Tc superconducting systems which have very 

large electron correlations. The Hubbard model considered strong repulsive Coulomb 

interaction, U, on lattice sites and gave the Hamiltonian of the interacting electrons (K. 

Park, 2005) in terms of hoping energy matrix, t, electron creation and annihilation 

operators on neighbor sites, (i and j),    
  and     respectively, onsite Coulomb energy, U 

and electron occupation number operators,    as, 

       ∑     
 

               ∑                                                                     

While working on the Hubbard model, Heisenberg found that when copper oxide is 

doped to half-filling level and the onsite Coulomb energy is increased to large values, the 

cuprate system becomes anti-ferromagnetic with neighboring electrons acquiring 

opposite spins; hence an electron would gain energy in hoping to the neighbor site where 

the other electron has opposite spin. This leads to pairing of electrons forming Cooper 

pairs that facilitate the process of superconductivity. The pairing electrons were found to 

exchange spins and as a result there exists exchange energy, J.  

From Hubbard model, the Heisenberg model was developed. The Heisenberg 

Hamiltonian was expressed in terms of spin exchange integral, J, the electron spin 

operators in the neighboring sites,    and   , and the number operators,    and    as: 

              ∑            
    

 
                                                                                      

Combining the Hubbard model and the Heisenberg model in the strong Coulomb 

repulsion or in the limit of large U resulted into the t-J model whose Hamiltonian is 

expressed in both the hoping integral t and spin transfer integral, J, and electron creation 

and annihilation operators in the neighboring sites (   )    
  and      respectively as: 
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     ∑  (     
 

 
    )  ∑    (   

        )                                                                

The t-J model therefore, describes an anti-ferromagnetic system in which if in the initial 

and final states, alignment of electrons is such that they have like spins for closest 

neighbor electrons, both t and J will be zero, while opposite spin pairing will give rise to 

energy gain in the magnitude of  
 

 
  or   

   

 
  (K. Park, 2005) as shown in t figure 1.4. 

 

Figure 1.4: Spin alignment and matrix elements in the t-J model 

(Source: Park, 2005) 

1.9 The t-J model and the basic electronic structure of high-Tc superconductors  

By now it is well established that the physics of High temperature Superconductivity is 

that of the Copper-Oxygen layers. Superconducting currents flow in the CuO2 planes. 

The essential aspects of the electronic structure of CuO2 planes may be described by the 

two-dimensional t-J model. There are copper and oxygen sites where electrons can 

interact with each other by hoping, exchange and Coulomb interaction. The hoping is 

represented by the hoping integral t for the nearest neighbor hoping between two lattice 

points. The on-site repulsion could be the Coulomb interaction, U, and the exchange 
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between the nearest neighbors is represented by the integral, J. The t-J model basically 

describes interacting electrons on a lattice. In general, three energies are involved, i.e., U, 

t, and J and they are related through the equation;  

  
   

 
                                                                                                                               

In the parent compound of cuprates such as La2CuO4, the formal valence of Cu is 2+, 

which means that its electronic state is in the d
9
 configuration. The Copper is surrounded 

by six oxygen atoms in the octahedral environment (the apical Oxygen lying above and 

below the copper atoms) as shown in figure 1.5 (a) 

 

 
 

Figure 1.5 (b): Atomic arrangement in 

Hg1223 (Source: Kazuhiko, 2011)

Figure 1.5 (a): Atomic arrangement in 

La2CuO4 (Source: Kazuhiko, 2011) 
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Figure 1.6 shows an energy level diagram for the arrangement. The Copper d
9
 

configuration is represented by the energy level Ed occupied by a single hole with   
 

 
. 

The Oxygen p orbital is empty of holes and it lies at energy Ep, which is higher than Ed

 

Figure 1.6 – The copper d and oxygen p orbitals in the hole picture.  

A single hole with S = ½ occupies the copper of orbital in the insulator.  The energy to 

doubly occupy Ed (leading to a 8d  configuration) is Ud, and this is quite large, can be 

taken as infinity. 

The lowest energy excitation is the charge – transfer excitation in which the hole hops 

from d to p with amplitude – tpd.  If Ep-Ed is sufficiently large compared with  tpd ,the hole 

will form a local moment on Cu. Experimentally an energy gap of 2.0ev is observed, and 

is interpreted as the charge-transfer excitation (Kastner et al, 1998). 

In the one band Mott- Hubbard insulator, virtual hopping to doubly occupied states leads 

to  an exchange interaction JS1,.S2, where;  
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In the Mott-transfer insulator the local moments on the nearest neighbor Cu prefer anti – 

ferromagnetic alignment because both the spins can virtually hop to the Ep orbital.  

Ignoring the Up for doubly occupying the “p” orbital with holes, the exchange integral is 

given by; 

    
   
 

(     )
                                                                                                                                    

                                                                                                    

 

Experimentally, the insulator is found to be in an anti ferromagnetic ground state.  By 

fitting Raman scattering to two magnon excitations, the exchange energy is found to be J 

= 0.13 eV, for La2CuO4 (Sulewsley et al. Al, 1990).  This is one of the largest exchange 

energies known.  

By substituting  divalent Sr for trivalent La, the electron count on the Cu-O layer can be 

changed in a process called doping.  For instance, in La2-xSrxCuO4, x holes per Cu are 

added to the layer.  As can be seen in Fig, 1.5, due to the Ud, the hole will reside on the 

oxygen p orbital. The hole can hop via tpd, due to translational symmetry.  The holes are 

mobile and form a metal, unless localization due to disorder or some other phase 

transition intervenes.  The full description of hole hopping in the three-band model is 

complicated, and a number of theories 
4,5

considered this essential to the understanding of 

high Tc superconductivity ( Emery, 1987).  However, there is strong evidence that the 

low energy physics (on a scale small compared with tpd and Ep-Ed) can be understood in 

terms of an effective one –band model.  The essential insight is that the doped hole 

resonates on the four oxygen sites surrounding a Cu and the spin of the doped hole 

combines with the spin on the Cu to form a spin singlet.  This is known as the Zhang –



26 
 

 
 

Rice
 
singlet (Zhang and Rice, 1988).  The state is split off by energy of order, 

(   )
 

  (     )
 

since the singlet gains energy by virtual hopping.  However, the Zhang-Rice singlet can 

also hop from site to site.  Since the hopping is a two-step process, the effective hopping 

integral t is also of the order of   
(   )

 

(     )
  . Parametrically, t is the same as the bonding 

energy of the singlet. 

By focusing on the low lying singlet, the hole –doped three-band model simplifies to a 

one-band tight-binding model on the square lattice, with an effective nearest –neighbor 

hopping integral ,t, with (Ep-Ed) playing a role analogous to U.  In the large (Ep -Ed) limit, 

this maps onto the t-J model. It is also possible to dope with electrons instead of holes.  

The typical electron-doped system is Nd2-xCexCuO4+δ (NCCO). The added electron 

correspond to the removal of a hole from the Cu site in the hole picture, i.e. the Cu ion is 

in the d
10

 configuration.  This vacancy can hop with a teff and the mapping to the one –

band model is more direct than the hole doped case. 

It is well known that the electron correlation is strong enough to produce a Mott 

insulation at half-filling.  Furthermore, the one-band t-J model captures the essence of the 

low-energy electronic excitations of the cuprates.  Particle-hole asymmetry may be 

accounted for by including further-neighbor hopping t‟. 

1.10 Electron-phonon interaction- The breathing and buckling modes. 

Breathing phonons are high frequency phonons that run parallel to the CU-O planes 

while buckling phonons are low frequency phonons that run perpendicular to the Co-O 

planes. Breathing phonons may have a strong coupling. This may be understood by  
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noticing that the formation of the Zhang-Rise singlet in the t-J model involves a large 

energy of several electron Volts. In the breathing mode, O atoms in the CU-O plane 

move in the direction of the Copper atoms thereby changing the bond-lengths. This 

directly modulates the CU-O hoping integral, tpd determining the Zhang-Rise singlet 

energy and leads to substantial coupling. 

1.11 The role of Coulomb interaction and hoping in high-Tc superconductors 

Coulomb interactions play an important role in superconducting process in the cuprates. 

A frequently used model for describing this is the three-band model. The model includes 

the Cu-O hopping integrals and the Coulomb interaction between two electrons on the Cu 

orbital. From this model, the t-J model can be derived such that each site corresponds to a 

copper atom in the copper-oxide plane. In the udoped system, corresponding to all copper 

atoms being in the d
9
 configurations, each site is occupied by one hole. In a hole-doped 

system the holes go primarily on to the O sites. Such an O hole forms a Zhang-Rise 

singlet with a Cu hole. A Zhang-Rise singlet is described by an empty site in the t-J 

model 

1.12 Electronic dipoles 

Superconductivity occurs when two electrons pair up to form a composite boson leading 

to resistance-free flow of charges in the crystal. Thus, superconductivity could be 

explained in terms of phonon-mediated electron-electron pairing, electron-hole pairing, 

hole-hole pairing or any other hitherto unknown mechanism. The electrons in cuprates 

are generated by the copper ions (electron reservoirs) and they flow to the electron-

deficient oxygen ions (hole reservoirs) 
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By definition, a dipole is a pair constituting an equal negative and a positive charge 

interacting by their electric fields. 

 

Figure 1.7a: Electronic dipole 

In high-Tc superconductors the broken symmetry, lattice distortion and oxygen vacancies 

lead to local polarization of highly polarizable ions (Heebok Lee et al, 1991). The 

absence of the inversion symmetry at an oxygen site in the multilayered high-Tc 

superconductors causes electronic polarization of oxygens such that the valency electrons 

are displaced on one end leaving the other end effectively positive. This polarized oxygen 

ion form a dipole. 

.  

Figure 1.7b: Polarized atom 
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Once induced dipoles are present in the system they oscillate in a self-sustained and 

collective manner. When an electron flows through the crystal, it causes dynamic 

perturbations on the crystal field-generated electronic dipoles changing the dipoles in 

magnitude and direction and provides the time-dependent changing electric fields on the 

other dipoles. These dipoles, influenced by the changing electric fields on the other 

dipoles thus form a system of dipoles oscillating collectively generating lattice vibration. 

Quantized lattice vibrations are called phonons, responsible for electron pairing which 

lead to superconductivity. 

1.13 Crystal-Field generated Electronic Dipoles 

The crystal fields that can induce dipoles on highly polarizable ions are present on the 

oxygen-ion sites in high-Tc superconductors. The local electric field    acting on the ith 

ion can be written as;  

     
  ∑ (   )                                                                                                                                                       

In eq. 1.18,    is the electronic dipole of the jth ion;   
  is the electric field at the ith ion 

produced by the monopoles (ionic charges) on the surrounding ions and (   )    

represents the electric field at the ith site due to a dipole    at the jth site.   
 , in general, 

is not zero where a sub lattice point does not have inversion symmetry and is expressed 

as; 

  
  ∑

  
 

   
                                                                                                                                                                                                

In eq. 1.19,   
  is the (effective) charge (monopole) of the k-th ion and     is the position 

vector directed from the k-th ion to the i-th ion; (   ) is the Lorentz tensor. 
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The dipoles in high-Tc superconductors depend strongly on the oxygen deficiency 

parameter  , and in this study the effects of monopoles as well as dipoles should be taken 

into account. Most of the high-Tc superconductors have layered structure. In some single-

layered crystals, the oxygen sites in the CuO2 planes contain inversion symmetry, and 

consequently, there are no oxygen dipoles in the planes. Because of the absence of 

dipoles in the conducting planes of these systems, the superconductivity is not expected 

to occur due to the collective dipole mechanism, and hence such systems are not found to 

be high-Tc superconductors. 

However, there are multi-layered pure crystals that do not have inversion symmetry at the 

oxygen sites in CuO2 planes and thereby posses induced dipoles. Since such systems have 

induced dipoles in the superconducting CuO2 planes, they are expected to be the high-Tc 

superconductors under the collective dipole mechanism, consistent with the experimental 

observations. 

Dipolon created electron-electron pair correlations in superconductivity 

In general, the electron energy,   , is determined experimentally and it includes 

necessary electron correlations. Thus the dipolon theory considers necessary electron 

correlations in the band energy. 

Dipolons are cooperative oscillations of crystal-field generated dipoles. They have 

inherent electronic correlations present in their formation. Quantum mechanical dipoles 

refer to transitions with probabilities of electrons from the occupied orbitals of the ion to 

the higher unoccupied orbitals due to the electric field (Corson Jet al, 2000, Curro N J et 

al, 2000). The dipoles on the oxygen ions are formed by the transition of electrons from 
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the 1s, 2s and 2p orbitals to 3s, 3p and 3d and higher orbitals due to the electric field with 

different probabilities. Similarly, the dipoles on the copper ion are formed by the 

transition of electrons from 1s, 2s, 3s, 2p, 3p, 3d to 4s, 4p and 4d and higher orbitals with 

different probabilities under the action of electric field. Thus the strong correlations 

between the orbitals on all and every ion in the crystal constitute a strongly correlated 

system in the dipolons created electron-electron pair-correlations which lead to 

superconductivity. Since the crystal fields change due to doping in the crystal, such 

considerations (effects of the electric field and dipolon created electron-electron pair 

correlations) inherently include changes in the electronic correlations due to doping.  

Out of a large number of electronic correlations present in the superconductors (under the 

dipolon theory), two types of correlations may be very significant; 

(i) Electron- or hole-on-site Coulomb correlations (called U parameter) 

(ii) The correlation between the d-electron of copper and the p-electron of oxygen called 

the charge transfer correlation generally represented by     parameter. This is similar to 

the t-J model. 

 1.14 Statement of the problem  

 Most high temperature superconductors with practical applications are Mott insulators. It 

is now a widely accepted view that the problem of high-Tc superconductivity (Patrick Lee 

et al, 2003) is how to achieve the Mott insulator state and its working principles that lead 

to high-Tc superconduction. Many theories that attempt to describe this state have 

suffered significant failures as discussed in chapter two of this thesis, leaving the t-J 

model as the only model which captures the physics of the strong correlations inherent in 
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this problem effectively.  However, the t-J model ignores the effect of electronic 

interaction with the lattice. Furthermore, thermodynamic properties of the 

superconducting state can only be obtained using this model if its Hamiltonian is 

diagonalized. This thesis provides solutions to these inefficiencies of the t-J model. 

Objectives of the study 

1.15 General Objective 

 This research aims at considering an in-depth study of the structure of High-Tc 

superconductors, the existing theories and the equations involved with an intention of 

developing a high temperature Superconductivity theory of t-J model and electronic 

dipoles.    

1.16 Specific Objectives 

(i) To diagonalize the t-J model Hamiltonian using Bogliubov-Valatin 

transformation and hence obtain expressions for the thermodynamic properties of 

high-Tc superconductivity namely; system energy, specific heat capacity, entropy 

and transition temperature.  

(ii) To develop a dipole mediated t-J Hamiltonian (The t-J-d model) that can lead to 

high-temperature superconductivity and hence obtain expressions for the 

thermodynamic properties of high-Tc superconductivity namely; system energy, 

specific heat capacity, entropy and transition temperature based on the t-J-d 

model.  

(iii) To analyze the effect of varying the temperature and the electronic transfer 

energy on the thermodynamic properties of high-Tc superconductors. 
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1.17 Rationale/justification 

Experimental evidence has shown that charge carriers in high temperature 

superconductors are strongly correlated but also coupled with lattice vibrations or 

phonons (Alexandrov, 2012). This signals the idea that the true origin of high-Tc 

superconductivity can only be found in proper combination of Coulomb and electron-

phonon interactions. As such, this study which describes a model that strongly considers 

on-site Coulomb repulsion energy, U, electron hopping, t, and exchange energy J, is quite 

appropriate in the analysis of the phenomenon of high-Tc superconductivity. Further, 

there is need for the Hamiltonian of the t-J model which captures the physics of strong 

correlations of high-Tc superconductivity to be diagonalized in order to get the energy of 

a system of independent fermions so as to obtain thermodynamic properties of the 

system. 

 1.18 Importance of the study 

Knowledge generated in this thesis will help in building High-Tc superconductors that 

can work at room temperature in order to avoid costs spent on coolants to achieve critical 

temperature. With this knowledge we expect transformation in number of technologies 

connected with computers, energy sector, electronics and electrical engineering, medical 

diagnostics, power generation and transportation. Successful applications of high-

temperature superconductors (Ayodo, 2011) include;  

i. Magnetic levitation 

Transport vehicles such as trains can be made to „float‟ on strong superconducting 

magnets virtually eliminating friction between the train and its tracks. Such trains 

are called magnetically levitated trains or MAGLEVS. A MAGLEV runs using 
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superconducting levitation (floating) electromagnets and propulsion 

electromagnets. To achieve levitation, electromagnets are mounted on arms that 

extend around and under the guide-way. When a current is sent to an 

electromagnet, the resulting magnetic field creates induced magnetism in a rail 

mounted in the guide-way. The upward attraction force from the induced 

magnetism is balanced by the weight of the train so that the train moves without 

touching the rail or the guide-way. By controlling the direction of the currents in 

the train and guide-way electromagnets it is possible to create unlike poles in the 

guide-way just a head of each electromagnet on the train and a like pole just 

behind. Each electromagnet on the train is thus pushed forward by electromagnets 

on the guide-way. By adjusting the timing of the like and unlike poles, the speed 

of the train can be adjusted. A landmark for the commercial use of MAGLEV 

technology occurred in 1990 when it gained the status of a nationally-funded 

project in Japan. Yamanashi MAGLEV Test line opened in April 3, 1997 and in 

1999, the MLX01 test vehicle attained a speed of 343 miles per hour.  

ii. Magnetic Resonance Imaging 

By impinging a strong superconductor-derived magnetic field into the body, the 

hydrogen nuclei that exist in the water inside the body and fat molecules are 

forced to accept energy from the magnetic field. They then release this energy at a 

frequency that can be detected and displayed graphically by a computer. This 

technique is used by doctors as a non-invasive means of determining what is 

going on in the body of a human being. It is applied in Magnetic Resonance 

Imaging (MRI). 



35 
 

 
 

Very sensitive devices called Superconducting Quantum Interference Devices 

(SQUIDS) can detect minute changes in magnetic fields. They are used in 

biomagnetic applications to monitor accurately heart and brain activity non-

invasively. 

iii. Petaflop computers 

A petaflop is a thousand-trillion floating point operations per second. It has been 

conjectured that devices of the order of 50 nanometers in size along with 

unconventional switching mechanisms such as the Josephson junctions associated 

with superconductors will be necessary to achieve petaflop speeds that will be 

applied in the manufacture of very high speed computers called petaflop 

computers.  

iv. Ultra-high-performance filters  

Sine superconducting wire has near-zero resistance, it can be used to build Ultra-

high-performance filters which are devices that have the ability to pass desired 

frequencies and block undesired frequencies in high-congestion radio-frequency 

applications such as cellular telephone systems. ISCO International and 

Superconductor Technologies are companies currently offering such filters. 
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CHAPTER TWO 

LITERATURE REVIEW 

 2.1 Introduction  

The problem of the nature of charge carriers and the elementary excitations which lead to 

superconductivity in the doped copper oxides can be studied in the two-dimensional 

Hubbard model, and its strong coupling limit, the t-J model (Anderson P.W, 1987), 

(Zhang et al, 1988). This model is generally assumed to be the simplest model possibly 

able to describe some essential features of these materials, an important feature being the 

metal-insulator transition with doping. However, in spite of many years of theoretical 

efforts, many properties of this model are not well understood. In this chapter, a study of 

the research done on the t-J model and related work by various authors is carried out. In 

this study, the strong points and weaknesses of the proposed models are pointed out with 

an intention of coming up with a better explanation of the features of the t-J model and 

another new model that best describes the phenomenon of high-Tc superconductivity. 

2.2 The t-Jp-U model 

As an essential generalization of the t-J model, the t-Jp-U model (Alexandrov, 2012) was 

introduced. The model discussed electron-electron and electron-phonon correlations 

providing a microscopic explanation of the high-Tc superconductivity phenomenon. It 

showed that the inclusion of the residual on-site interaction  ̃ which was neglected in the 

t-J model drives the system to a Bose-Einstein Condensation/ Berdeen-Cooper-Schrieffer 

cross over that reconciles the polaron-bipolaron theory of superconductivity with the 

observation of large Fermi surface in overdoped cuprate conductors. It was found that the 

polaron (an electron surrounded by a cloud of phonons) exchange energy, Jp, is attractive 
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for polarons in the singlet channel and repulsive for triplet channel. The explanation for 

this is that if two polarons with opposite spins occupy nearest-neighbor sites, they can 

exchange sites without any potential barrier between them, which lowers their energy by 

Jp proportional to the un-renormalized hopping integral squared.  

Further, it was found that if the polaronic hopping, t, was ignored (t=0), the ground and 

the highest energy states become bipolaronic spin-singlet and spin-triplet, respectively, 

made up of two polarons on neighboring sites. For t not equal to zero, the probability to 

find nearest neighbor bipolarons fall as the hopping is increased or the strength of on-site 

repulsion  ̃ for 100x100 square lattice is increased. Importantly, although small 

bipolaronic configurations persist for any values of the hopping at   ̃   , for  ̃    and 

large values of t up to a critical value; 

    ̃     (  ̃        )⁄                                                                                                          

the presence of a finite onsite interaction leads to the crossover from small to large 

bipolaronic configuration. Further increasing t, the system undergoes a phase transition to 

an unbound state at     . 

2.3 The density function Theory 

The local -density function Theory (Hybertson et. al, 1990) was used to calculate the 

value of J and a value of          was obtained for cuprates. This was in excellent 

agreement with the experimental values.  Also, t   0.41ev was obtained for electron 

doping and t= 0.44ev for hole doping.  Based on their results, the commonly used 

parameter 
t

J
 for t- J model is ⅓.  However, in view of the fact that the on-site repulsion 
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is the largest energy scale in the problem, it would be appropriate to begin the modeling 

of the Cuprates with the t-J model. 

 

Fig. 2.1: Electronic structure of cuprates for a two-dimensional copper-oxygen layer 

for a one band model. 

 

The essence of the problem is that doping can be understood from Fig. 2.1 when a 

vacancy is introduced into an anti-ferromagnetic spin background, it would like to hop 

with amplitude t to lower its kinetic energy.  However, after one hop, its neighboring spin 

finds itself in a Ferro-magnetic environment, at an energy cost of 
2

3
 J if the spins are 

treated as classical S= ½.  It is clear that the holes are very effective in destroying the 

anti-Ferro magnetic background.  This is particularly so at t » J when the hole is strongly 

delocalized.  The basic physics is the competition between the exchange J and the kinetic 

energy which is of the order t per hole or kinetic energy which is of order, xt per unit 

area.  When xt » J, we expect the kinetic energy to win and the system would be a Fermi-

liquid metal with a weak residual anti-ferromagnetism correlation.  When  xt ≤ J, 

however, the outcome is much less clear since the system would like to maintain the anti-

ferromagnetic correction while allowing the hole to move as freely as possible.  

Experimentally it is known  (Lee, Patrick, 2006)  that the Neel order is destroyed with 3% 

hole doping, after which the d-wave superconducting state emerges as the ground state up 
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to 30% doping.  Exactly how and why superconductivity emerges as the best compromise 

is the central problem of the high –Tc puzzle.  However, the competition between J and xt 

sets the correct scale such that   
 

 
 

 

 
. 

 
It is well known experimentally that the 

normal state above the superconducting Tc behaves differently from any other metallic 

state that may be known up to now.   

After knowing the properties and structure of the High Tc superconductors, it is clear that 

the high -Tc superconductors are different from the BCS or conventional superconductor.  

Another difference comes from the measurement of the change in kinetic energy through 

the transition.  In conventional BCS theory, pairing between quasi-particles leads to the 

gain in the attractive potential energy since the Fermi-distribution is smeared by the 

creation of the energy gap.  There are two major differences between high- TC 

superconductors and convectional BCS superconductors.  The first being due to the super 

fluid density of the superconductor which is small and vanishes with decreasing hole 

concentration.   

Second when the pairing is d-wave, the gap vanishes at four points on the Fermi surface 

(called gap nodes) so that the quasi particle excitations are gapless and affect the physical 

properties even at the lowest temperatures. 

The physical properties to which the nodal quasi particles clearly contribute are the 

thermo- dynamical quantities such as the specific heat.  Because their density of states 

vanishes linearly in energy they give rise to a T
2
 term, which dominates the low 

temperature specific heat.  In practice, disorder rounds off the linear density of states, 

giving instead a               behavior.  It should be noted that since the BCS quasi-



40 
 

 
 

particle is a superposition of a particle and a hole, the charge is a good quantum number.  

However, the particle component with momentum P and the hole component with 

momentum – k each carry the same electrical current –   
   

  
   , and it would be proper to 

consider this to be the current carried by the quasi-particle.  It should be noted that the 

velocity, V(jk/e), of the quasi-particles is very different from the group velocity   
   

  
  . 

The quasi-particles also contribute to the low –temperature transport properties (Lee, 

1993). 

2.4 Resonating Valence Bond Theory for High Tc superconductors (RVB – theory) 

It is well understood that the Neel spin order is incompatible with hole doping.  Thus 

could there be another arrangement of the spin which achieves a better compromise 

between the exchange energy and the kinetic energy of the hole? 

Soon after the discovery of high –Tc superconductors, Anderson (Anderson, 1987) 

revived the RVB idea and proposed that with the introduction of holes, the Neel state is 

destroyed and the spins form a superposition of singlets.  The vacancy can hop in the 

background of what he envisioned as a liquid of singlet and a better compromise between 

the hole kinetic energy and the spin exchange energy may be achieved.  The vacancies 

are responsible for the transport in the plane.  The conductivity spectral weight in the 

plane is in the form of hole concentration „x‟ and is unaffected between planes 

conductivity, an electron is transported between planes.  In this picture, the 

superconductivity is driven by the phase coherence of holes, which lowers the kinetic 

energy of the holes. 
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A second concept associated with RVB idea is the notion of spinons and holons and the 

spin-charge separations.  Anderson postulated that spin excitations in a RVB state are S= 

½ fermions, which he called spinons.  This is in contrast with excitations in a Neel state 

which are S = 1 magnons or S = O gapped singlet excitations. 

The concept of spinons is a familiar one in one-dimensional spin chains where they are 

well understood to be domain walls.  In two dimensions‟; 

 

Fig. 2.2: A cartoon representation of the RVB liquid or singlets.(a) Solid bonds and 

vacancies,(b) An electron removed from the plane. 

 

In Fig. 2.2(a) the solid bond represents a spin-singlet configuration and the circles 

represent a vacancy (b) When an electron is removed from the plane in photoemission on 

a C- axis conductivity experiment.  This requires the breaking of a pair. The concept is a 

novel one which does not involve domain walls.  Instead, a rough physical picture is as 

follows:- 

If we assume a background of short range singlet bond, forming the so called short-range 

RVB state, a cartoon of the spinon is shown in fig. 2.2   If the singlet bond are liquid, two 

S = ½ spins formed by breaking a single bond can drift apart with the liquid of singlet 

bond, filling in the space between them.  They behave as free particles and are called 
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spinons.  The vacancy left over by removing a spinon is called a holon.  The holon carries 

charge „e‟ but no spin. 

2.5 Effects of Higher Hopping Terms on the Stripe states in the Hubbard Model 

The purpose of the two-dimensional Hubbard model was to investigate whether the stripe 

states exist in the electron doped cuprate NCCO or the bilayer system such as 

           . Using the variational Monte Carlo method for the two – dimensional  

          Hubbard model (Mitake Miyazaki, 2005), it was  found that while stripe 

states with the periodicity consistent with experiments for               are stabilized 

in the case of        , the positive       makes the stripe state unstable with the lowest 

energy state being the commensurate AF state which is consistent with experiments on 

the electron doping system such as              . In this model, it was also shown 

that the stripe state is sensitive to the value of      and the results indicated that the 

nesting condition is a critical factor to the stripe instability. To study this for the 2D 

Hubbard model on a square lattice, the Hamiltonian given in eq.1.12 was used. The 

transfer energy for the nearest neighbor hopping,              , if sites   and      are 

nearest, second nearest, third-nearest neighbor pairs,      was taken as unit energy, 

   
        is the creation (annihilation) operator of the electron with spin         at site 

  and        
    . U is the on-site Coulomb energy. 

The Variational total energy was calculated as; 

          
⟨ | | ⟩

⟨ | ⟩
                                                                                                                          , 

where the trial wave function was defined as; 
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  〉                                                                                                                      

In eq.2.2,     is the Gutzwiller projection operator and    
 is a projection operator which 

extracts only the states with fixed total electron number,   . 

However, this model does not give the nature of pairing mechanism that leads to the 

phenomenon of superconductivity. The physical properties of the superconducting state 

e.g. electronic specific heat, Gibb‟s free energy and entropy were not discussed. In this 

thesis, the physical properties of the superconducting state will be discussed in detail. 

2.6 Polaronic Mechanism of superconductivity in cuprates 

In order to comprehend the nature of the superconducting state, it was found necessary to 

construct a consistent microscopic theory which could describe superconductive and 

normal properties of HTSCs. The Polaronic model of charge carriers in cuprates (Pradeep 

et al, 2013) was proposed. A Hamiltonian that governs electron- phonon and electron-

electron correlations was developed. A one particle temperature-dependent Greens 

function with an anomalous component was developed disregarding electronic spins. The 

Greens function was used to obtain the correlation functions which were used in 

calculating the superconducting order parameter,  and hence the physical properties 

namely critical field   , free energy,   and electronic specific heat,    . The 

superconducting order parameter was found to drop exponentially with rise in 

temperature from 2.6 eV at 4 K to 0.9 eV at 90 K for phonon and polaron interaction. The 

same trend was observed for phonon interaction but at a lower level ranging from 2.5 eV 

at 4 K to 0.8 eV at 90 K for YBCUO. Temperature rise did not have effect on order 

parameter for Polaron-Polaron interaction, the order parameter remained constant (0.1eV) 
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at all temperatures. The electronic specific heat was virtually zero from 0 K to 25 K, and 

beyond 25 K, it increased linearly with rise in temperature. Free energy increased non-

linearly with temperature reaching peak of 0.22 eV at around 58 K before it dropped to 

approximately 0.11 eV at 90 K. The same trend was observed in the variation of specific 

heat with temperature having a peak at the same temperature, 58 K. It must be noted that 

in this model the hopping mechanism for the charge carriers was not considered and no 

attempt was made to analyze the transition temperature of the superconductors in this 

model, gaps of which this thesis sets out to fill. 

2.7 Thermodynamic properties of small superconductors with fixed number of 

particles 

Recent progress in single-electron tunneling spectroscopy has revealed the persistence of 

a pairing effect even at very small number of particles. By varying the number of 

particles, careful analysis has been made of thermal excitations or of the action of 

external magnetic field.  The variation-after- projection approach (Danilo et al, 2012) was 

applied to the Richardson pairing Hamiltonian and used to describe the thermodynamics 

of small superconductors with a fixed number of particles. The canonical description of 

the quantum finite system was obtained by minimizing Helmholtz free energy and the 

pairing Hamiltonian used was; 

  ̂  ∑           ̂  
  ̂    ∑  ̂   

  ̂   
  ̂    ̂                                                                , 

where B is the external magnetic field, G is the pairing strength,    is the level energy,   

is spin state and  ̂   
  ̂   are creation and destruction operators. In this model, free energy 

was found to rise from around -27 eV at 0 K reaching an approximately constant value of 

-10 eV at 5 K for the finite- temperature projection- after- variation (FT-PAV) approach, 
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while specific heat rose from 0 J/Keg  at 0 K to a peak value of 6 J/Keg  at 1K, there after 

dropped non-linearly for the same system. The same trends were observed for the finite-

temperature variation-after-projection (FT-VAP) approach for energy and specific heat. 

In addition, entropy was found to rise non-linearly with temperature reaching a constant 

value of 10J/K for the temperature range of 0-5 K. Energy gap dropped non-linearly with 

rise in temperature reaching an almost constant value of 0.1eV for the temperature range 

of 0 - 5 K. While a good comparison was made for the FT-PAV, FT-BCS and FT-VAP 

approaches in describing the thermodynamic properties, it must be noted that this model 

has only been applied for low temperature, 1-5 K. It is well known that the FT-BCS 

theory suffers from sharp superfluid- to- normal phase transition as the temperature 

increases hence the results obtained differ from the exact solution. Better results are 

anticipated while using VAP approach. However, this approach requires that the variation 

be minimized by both varying the components of quasiparticle creation operators    and 

   and the energy    consistently. In principle, such minimization has never been 

performed because the BCS Hamiltonian and projector operator do not commute and 

therefore cannot be diagonalized simultaneously. When a projector operator does not 

commute with the Hamiltonian, no phase transition takes place. The minimization in this 

model was done via quadratic programming method not attested. Calculations were done 

for a very small number of particles, N=10. This thesis aims at coming up with a theory 

applicable to bulk high temperature systems for practical purposes through t-J model. 

Suitable values of     and    are chosen to minimize variations. 
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2.8 Collective modes in the superconducting ground states 

Applying the gauge theory approach to the t-J model (Patrick Lee et al, 2003), the 

question as to whether the superconducting ground state that emerges out of the gauge 

theory is completely conventional or not was addressed. It was found that the gauge 

theory predicts collective modes in the superconducting ground state which have 

experimental consequences. Unlike the conventional BCS theory where the only order 

parameter is the complex pairing order parameter , here, the hopping matrix element was 

also considered as an order parameter. In this model, collective modes appear at fairly 

high energy, approximately equal to the exchange energy, J, thereby confirming 

unconventional/ high-Tc superconductivity and the effectiveness of the t-J model in the 

analysis of high-Tc superconductivity. In this thesis we now proceed to employ the t-J 

model and electronic dipoles in obtaining transition temperature and the thermodynamic 

properties of high-Tc superconductors. 

2.9 Spin liquid states near the Mott transition 

In the large Coulomb repulsion limit, the Hubbard Hamiltonian model reduce to the t-J 

model which has an insulating and spin order at half filling. Using a U(1) gauge theory of 

the Hubbard model in the slave-rotor representation (Sung-Sik et al, 2005), it was argued 

that the spin liquid phases may exist near the Mott transition in the Hubbard model on 

triangular and honeycomb lattices at half filling. The spin liquid is a state in which  the 

charges exhibit no spin order and it is important to this study in that it is the state that is 

just on the insulating side of the Mott transition. It has also been shown that a spin liquid 

state with spinon Fermi  surface may be stable if the t-J model is extended to include 

higher order virtual hopping, a realization of the resonating Valence Bond (RVB) theory. 
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This extension is hereby provided for in this thesis so that the parameters under study will 

conveniently be analyzed in the proper Mott insulation state of high-Tc 

superconductivity. 

2.10 Effect of chalcogenides on critical temperature 

 

Tsendin and Denisov proposed that the replacement in large amount of Oxygen with 

Chalcogenides e.g. sulphur in YBaCuO will significantly increase critical temperature 

(Tsendin et al, 2001). 

In this model, attention is given to localized pairs of electrons and negative-U centres. 

Negative-U centres are centres of localized electrons that neighbor one another or simply 

the copper ion centres in the lattice with energy U. Transition of electrons from one 

centre to another in the process of forming Cooper pairs is guided by a matrix element tij. 

It is considered that where energy of electrons U>0 and tij<<U, negative values of U lead 

to attraction between electrons with opposite spins on the same negative U centre. At 

temperature, T = 0 K, all electrons are localized in pairs on the negative U centers. At T ≠ 

0 K, the system represents an assembly of empty centers, centers occupied with one 

electron and centers occupied with two electrons. The number of negative U centers 

occupied with one electron is proportional to    
 

 , where n is concentration of electrons. 

When t<<U, the amount of single electrons is very little in comparison with the number 

of pairs and hence, the concentration of single electrons can be neglected. Thus, the 

formula of superconducting transition temperature is obtained as; 
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where w is the width of the pair‟s band and   
    

 
  ; z is the number of the nearest 

neighbours of the given centre, and   
 

 
    where N is the concentration of negative U 

centres. Analyzing the eq. 2.4, it is seen that to increase Tc, it is necessary to increase the 

matrix element of electron transition from one negative U centre to another. 

 

Figure. 2.3 Structural lattice of Y1Ba2Cu3O7 (Tsendin, 2001) 

A possible way of increasing the matrix element ty is by replacing the atoms of oxygen 

with those of the elements of the same group e.g. sulphur. For a separation distance of 

more than 1.5Å, the matrix element for sulphur, tcus will be greater than the matrix 

element for oxygen, tcuo. In the same lattice of YBaCuO, the distance between atoms of 

Cu and O is 1.95 Å and tcuo is -0.609Ry where Ry is the distance between atoms in y-

direction. If in the same lattice some atoms of Oxygen are replaced by those of sulphur, 

Tc will increase because the matrix element of transition of Cu-S on distance 1.95Å is -

0.929Ry. Ideally if all atoms of Oxygen are replaced, the Tc would be increased 2.3 

times.  
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However, the constants of a structural lattice for full replacement of atoms of Oxygen by 

atoms of Sulphur are not known. Secondly, expressing the matrix element for electron 

transfer, tcuo, which has units of energy as a function of inter-atomic distance (tcuo = -

0.609Ry) brings about dimensional problem because the right hand side has units of 

length.  

2.11 The t-J model and Monte-Carlo calculations 

 

Mishchenko and Nagaosa (Mishchenko et al, 2004) studied an undoped infinite Holstein-

t-J model using a diagrammatic Monte-Carlo variation method. They used diagrams with 

crossing phonon propagators but neglected diagrams with magnon propagators crossed 

by phonon or other magnon propagators. They used electron phonon frequency     to 

hoping integral   ratio parameter as     ⁄           and the exchange integral to 

hoping integral ratio   ⁄     . They found self-trapping for electron- phonon strength 

      for an electron at the bottom of the band for this system. It was concluded that 

the anti-ferromagnetic ground state and the coupling to magnons help the formation of 

polarons. 
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CHAPTER THREE 

METHODOLOGY 

3.1 Introduction 

This chapter presents a detailed description of the techniques used in the formulation of 

the theories. It also presents the methods of data generation and data analysis. The 

assumptions and the approximations used are enlisted. 

3.2 The t-J model 

In order to obtain the quasi-particle Hamiltonian, the t-J model Hamiltonian, 

  ∑  (     
 

 
    )  ∑    (   

        )       was diagonalized by carrying out 

conversion of operators from the old to the new operators using second quantization 

techniques. Proper choice of conversion constants was done which made the elimination 

of the off-diagonal terms possible.  

Neglecting the effect of the fourth-order terms, the diagonalized Hamiltonian was 

obtained. This gave the ground state energy of the t-J system, E0, and the expression of 

system energy at any temperature, E, was obtained by multiplying the ground state 

energy by the thermal activation factor. The derivative of energy with respect to 

temperature gave the expression of specific heat. Solving the integral of the quotient of 

specific heat and system temperature, entropy was obtained. The formula for critical 

temperature was found by equating the temperature derivative of heat capacity to zero.  
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3.3 The t-J-d model 

As already stated in the introduction, the t-J model very well captures the physics of 

electronic correlations on a lattice site but does not account for the interaction of the  

electron with the lattice as a whole. In order to include the aspect of electronic interaction 

with the lattice in the t-J model, the dipole oscillation Hamiltonian was diagonalized and 

added to the diagonalized t-J Hamiltonian to obtain the t-J-d Hamiltonian. The 

contribution of electronic dipoles to the superconducting energy, heat capacity, entropy 

and critical temperature was considered. Research Variables 

The following variables were considered; 

a. Energy of the superconducting state 

b. Specific heat  

c. Entropy  

d. Temperature of transition 

3.4 Generation of Data 

The data tables were obtained when the values of the constants were substituted in 

equations derived. Using MathCAD Application software, the resulting expressions were 

simplified and the tables of values generated. 

3.5 Data presentation 

Data generated was presented in tabular form. Graphs showing the variation of Tc and the 

independent variables were plotted and interpreted. Conclusions are drawn.  
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3.6 Approximations and assumptions used 

In this thesis, the following approximations and assumptions were made; 

i. The lowest energy state described by the derived Hamiltonian was assumed to 

have occupation numbers equal to zero, a condition that befits high-Tc 

superconductivity. This is because at high temperature most of the electrons are 

thermally excited to higher states. Thus, all the occupation numbers          

were equal to zero. 

ii. The contribution of the fourth order terms in the derived Hamiltonian to the 

energy of the system was too small and could be neglected, thus all fourth order 

terms were dropped. 

iii. All the off-diagonal terms in the Hamiltonian were eliminated so that we could be 

left with a Hamiltonian of a system of independent fermions and bosons that lead 

to the formation of quasi-particles responsible for high-Tc superconductivity. 

iv. In the conversion of operators from the old to the new operators, a choice of 

conversion constants    and    was made such that the constants were real and 

would obey the condition that   
    

    for fermions and   
    

    for 

bosons. This condition was necessary for the complete elimination of the off- 

diagonal terms. 
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CHAPTER FOUR 

THE DIAGONALIZED t-J HAMILTONIAN AND THE THERMODYNAMIC 

PROPERTIES OF HIGH-Tc SUPERCONDUCTORS 

 

4.1 Introduction 

The spin fluctuation of superconductivity was first proposed as an explanation of 

superconductivity in heavy fermions (Miyage et al, 1986). This model is based on short 

range Coulomb interaction leading to an exchange coupling        between near- 

neighbor copper spins    and    and strong spin fluctuations. The super-exchange 

constant is denoted by J. In cuprates it has an extremely high magnitude,         . 

The underlying microscopic physics can be described by the t-J model. In this chapter, 

we proceed to diagonalize the t-J model Hamiltonian in order to obtain the ground state 

energy of the quasi- particles and hence, the thermodynamic properties of the 

superconducting state.  The t-J Hamiltonian is given by (Lee and Nagaosa, 2003);   

  ∑ (     
 

 
    )  ∑   (   

        )                                                        

      

 

Here, transfer energy,              for the nearest, second nearest, and third-nearest-

neighbor pairs, respectively, and it is the electron transfer energy from  ith location to the 

jth location,    and     are the electron spin operators in the ith and jth locations 

respectively,    and    are electron occupation number operators,   is the spin exchange 

energy while     stands for the Hermitian conjugate of the electron creation operator, 

   
  and annihilation operator,    . The effect of the strong Coulomb repulsion is 
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represented by the fact that the electron operators    
  and     are the projected ones in 

which double occupation is forbidden.   

High-Tc superconductivity is obtained in the strong Coulomb repulsion regime. The 

effect of strong Coulomb repulsion is represented by the fact that the electron operators 

   
  and     are the projected ones in which double occupancy is prohibited. The 

constraint for the operators is written as an inequality; 

∑   
    

 

                                                                                                                           

This constraint can only be handled by the slave-boson method 
33

(Barnes, 1976) by 

representing the electron operator as; 

   
     

              
                                                                                                          ) 

where      = -      is the anti-symmetric tensor and    
  and      are the fermion 

operators,    and,    
  , are the slave- boson operators. To produce all the algebra of the 

fermion operators, we impose another constraint; 

   
        

       
      

                                                                                                

In eq. (4.4),    
  is the creation operator for a fermion in spin up mode at the i-th site,     

is the annihilation operator for a fermion in spin down mode at the i-th site. As such, 

    
     represents the number operator for fermions in spin up and    

     represents 

number operator for fermions in spin down mode while   
    stands for the boson number 

operator in the same state and   
    is the number operator for doubly occupied states. 
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The sum of occupation numbers is one showing that there exists a particle on the site. We 

exclude double occupancy following Pauli exclusion principle. Eq. (4.3) now becomes; 

   
     

                                                                                                                                         

The Heisenberg exchange term written in terms of fermion operators is given by  

( Baskaran et al, 1987); 

       
 

 
   

       
     

 

 
    

       
     

    
  (             )  

 

 
    

              

The number operators ni and nj are given by; 

        
                                                                                                                                

And 

   (    
   )                                                                                                                         

Thus, their product is; 

          
    (    

   )                                                                                                 

Substituting eqn. 4.5 and its Hermitian conjugate, eqns. 4.6 and 4.9 in eqn. 4.1 we obtain 

the t-J Hamiltonian as; 
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    (    
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 ∑   (   
        

       
    

   )              

    

 

4.2 The canonical transformation 

In order to obtain the quasi particles of the Hamiltonian given in eqn. 4.10, we have 

to diagonalize the Hamiltonian, by performing a canonical transformation that will 

convert the old operators into new operators that obey the same commutation laws. 

The most convenient way to do this is by use of the Bogoliubov- Volatin 

transformation (Khanna, 2008). This approach allows us to convert fermion    or 

boson   operators into quasi-particle operators      that govern the superconducting 

state in such a way that the quasi-particle operators obey the same commutation laws 

of the fermions or bosons. 

In eqn. 4.10, we single out the following operators; 

i.         

ii.         

iii.         

iv.         

v.    
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vi.    

These operators together with their conjugates can be classified into two categories 

(a) Electron operators,         

(b) Boson operators      

In the canonical transformation, we define new operators for each category as follows; 

(a) Electron operators 

Let the new operators,     be defined in terms of the old operators,      as; 

i.                   
   and                     

                                             

The complex conjugates of the operators in eq. 4.11 are; 

   
        

           and      
         

                                                                 

ii.                   
   and                     

                                            

Their complex conjugates are;  

   
        

           and      
         

                                                               

The constants    and    are screened Coulomb repulsion term and the electron 

interaction term respectively (Khanna, 2008). A positive value of     corresponds to a net 

attractive interaction between electrons, a condition that is necessary for 

superconductivity to occur. A suitable choice of these constants will enable us to 
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eliminate the off-diagonal terms of the Hamiltonian. They are chosen to be real and 

positive constants and for fermions, they obey the condition that; 

   
    

                                                                                                                                     

With this condition, the new and old operators obey the same fermion anti-commutation 

relations such that; 

{      }  {      }  {  
     

 }                                                                                       

And 

{  
     }  {   

      }       {
      

                                                                           

(b) Boson operators 

Let the new boson operators    be defined in terms of the old operators    as; 

i.             
                                                                                                          

The complex conjugate of the boson operator in eq. 4.18 is; 

  
      

                                                                                                                        

ii.             
                                                                                                          

The complex conjugate is; 

  
      

                                                                                                                      

For this canonical transformation, the new and old boson operators obey the same 

commutation relations such that; 
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[  
     

 ]  [      ]  [      ]                                                                             

And 

[      
 ]  [      

 ]       {
      

                                                                            

The constants   and    are real and for bosons, they obey the condition that; 

    
    

 

                                                                                                                                                

4.3 Inverse transformation 

The inverse transformation of the electron and boson operators in eqs. 4.11 to 4.21 is 

obtained as follows; 

We multiply eq. 4.11 by     and eq. 4.12 by     to obtain; 

          
               

                                                                                                   

And 

            
               

                                                                                                 

      
           

      
                                                                                                       

 And   

       
            

     
                                                                                                    

Adding eq. (4.25) and eq. (4.28), we obtain; 
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Substituting eq. (4.15) in eq. (4.29) we get; 

                  
                                                                                                             

Eq.(4.30) gives the inverse transformation of the electron operator. To obtain the inverse 

transformation of boson operator, we multiply eq. (4.18) by    and eq. (4.19) by    to get; 

       
          

                                                                                                                

And 

     
        

    
                                                                                                           

Adding eq. (4.31) to eq. (4.32) and using eq. (4.24) we get;   

            
                                                                                                                      

Eq. (4.32a) is the inverse transformation of boson operator. 

Using the above information we now obtain the inverse transformations of all the 

electron and boson operators as enlisted below; 

i.                   
   and                     

                                         

The complex conjugates of the operators are; 

   
        

           and      
         

                                                                

ii.                   
   and                     

                                          

Their complex conjugates are; 
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           and      
         

                                                             

iii.             
                                                                                                        

The complex conjugate is; 

  
      

                                                                                                                    

iv.             
                                                                                                       

The complex conjugate is; 

  
      

                                                                                                       

Using eqs. (4.33) – (4.40) in eq. (4.10), we obtain; 
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 )-                                                                                      

We now represent the particle spin up state with   and spin down with –  . The scattered 

particle spin states will be represented by    and      for spin up and spin down, 

respectively.  It should also be noted that for the superconducting state, electrons in 

neighboring sites have opposite spins, thus while the electron in i-th state will be 

considered to be in spin up, the electron in j-th state will be in spin down mode. Applying 

this condition to eq. (4.41), we have; 
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  (      
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 ∑    {     
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 (           
 )     

              
                

     
    }                                                                                                         

Eq. 4.42 has ten terms to be expanded in the process of diagonalization. We will progress 

step by step; 
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i. [     
          (               

 )(        
        )        

    
  ]  (       

             
     

                             
 ) 

      (           
                            

   
 

           
 )                                                 

Equation 4.43 can be simplified using a new pair of number operators (Khanna, 2008) 

      
    and         

                                                                                  ) 

Such that           
  and              

                                               

Substituting eqs. (4.44) and (4.45) in eq. (4.43) we obtain; 

[                            
     

                ] 

[                       
   

                           ] 
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ii.      
           (        

        ) 

         
     

         
                   

                       

Substituting eqs. (4.44) and (4.45) we have; 

     
           (        

        ) 

         
     

                                                               

iii. (      
      )       

            

          
    

            
                

               

Substituting eqs. (4.44) and (4.46) we obtain; 

(      
      )       

            

          
    

                                                 

iv.                 
  (               

 ) 

                                 
           

               
     

  

Using eqs. (4.44) and (4.45), 

                
  (               

 ) 

                                                     
     

         

v. (               
 )                
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Substituting eqs. (4.44) and (4.45); 

(               
 )                

  

                                         

            
    

                                                                       

vi. (      
         )(           

 )          
             

    
  

                         
  

Substituting eqs. (4.44) and (4.45); 

(      
         )(           

 )

                   
    

                                     

 

v i i .       
                 

   

   
   

          
   

             
     

                      

Let the boson number operator   be defined as; 

 

     
    , such that          

                                                                             

 

Using eq. (4.53) in eq. (4.52 ) we obtain; 
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v i i i .       
                 

     
     

    
            

   
  

     . This equation is the same as eq. (4.54). 

ix.      
                   

  (               
 )     

        

    
   

          
   

                       
   

(          
                       

   
            

   )         

We define new number operators for a mixture of fermions and bosons as; 

     
   ,          

   ,  and            
             

           

       
    ,             

  and           
     , 

              
                                                                                                         

Using eqs. (4.56) and (4.57) in eq. (4.55), we obtain; 

     
                   

  (               
 )     

       

 [  
          

   
                         ] 

                  [                                  
   

            ] 
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x. (           
 )     

              
                     

     

 [  
     

                   
   

          
   ] 

[        
            

   
                           

 ]           

Substituting eqs. (4.56) and (4.57) in eq. (4.59), we get the following equation; 

(           
 )     

              
                     

     

 [  
                         

   
          ] 

[                 
   

                             ] 
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Substituting the ten terms numbered i-x in the t-J Hamiltonian, we obtain; 
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                                              ]

 
 

 
[(        

     
                                     )

  (         
    

                        

             )][(                              

                     
     

 )

 (                                        

            
    

   )]

 
 

 
[                  

    
                            ]

 
 

 
*  (  

     
    

            
   

       )+ [     
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 ∑    {(  
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                        )

 (  
                  

               
   

 

   
                      

                     

                                   
   

  

                                            

                 
   

                
   

     
   

  

               
   

                               
   

  

                                    
   

  

                       

                        )}                                                                      

We can simplify the ten expressions belonging to the t-J Hamiltonian by making two 

assumptions. First, we assume that the lowest energy state of this system has all the 

occupation numbers          equal to zero. Secondly, we consider the effect of the 

fourth order terms as negligible. Thus the ten expressions reduce to; 
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i. [                            
     

                ] 

 [                       
   

                           ] 

                                 
     

 

                  
   

                                                            

  

ii.      
           (        

        ) 

         
     

                                                                      

iii. (      
      )       

            

          
    

                                                                            

iv.                 
  (               

 ) 

                                    
     

                                            ) 

v. (               
 )                

   

                                  
    

                                         

vi. (      
         )(           

 )           
    

              

                                                                                                                                 

vii.      
                 

     
         

   
                      

viii.      
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ix.      
                   

  (               
 )     

        

           
   

                                             

               
   

                                                                                                  

x. (           
 )     

              
                     

     

    
         

   
    

                
                       

               
   

                                                                                              

Using eqs. (4.62) – (4.70), the t-J model Hamiltonian can now be expressed as; 
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Expanding further the factors in eq. (4.71) we obtain, 
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We again make the assumption that the  contribution of the fourth order terms to 

the energy of the system is negligible, thus we drop fourth order terms in eq. 

(4.72) and also that all               are equal to obtain, 
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 }                                                                                

To diagonalize the Hamiltonian in eq. 4.73, we put the sum of the off-diagonal 

terms equal to zero and simplify the resultant expression to obtain the 

diagonalized Hamiltonian as; 

      ∑  { 
 

 
 

 

 
  

  
 

 
  

  
 

 
  

   
 }  ∑    {   

   
 }                   

       

 

To determine the values of     and    used for the diagonalization, we equate the 

off-diagonal term ( 
  

 
     

 

 
    

 )    
   

        to zero. Thus; 

( 
  

 
     

 

 
    

 )    
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Solving equation 4.75 and using equation 4.24, we obtain the values of     and 

   as;     √   and                                                                                           

4.4 Thermodynamic properties of high-Tc superconductors  

 

i. Superconducting energy of the t-J system 

Using equation 4.76 in equation 4.74 the magnitude of the ground state energy of 

the system is obtained as; 

                                                                                                                             

We can express the energy of the system at any temperature, E as a function of 

temperature by multiplying the ground-state energy, E0 by the thermal activation 

factor,    
  

    (Khanna, 2008), where k is Boltzmann‟s constant and    is the 

energy gap. The energy gap for superconductors is a very small quantity and it is 

generally 1% of the minimum energy of the system (Khanna, 2008). Thus     

      . So at any temperature T, the energy of the system is given as; 

     
 
      

      
 

  
                                                                               

Substituting equation 4.77 in equation 4.78, we obtain the magnitude of energy of 

the system at any given temperature as; 

          
 (

      
     

)
                                                                                             

 



79 
 

 
 

ii. Specific heat capacity of the t-J system 

The specific heat capacity at constant volume     of the system is obtained by 

determining the first derivative of the energy of the system with respect to the 

temperature (Khanna, 2008). Hence, using equation 4.79, we calculate the 

magnitude of    as follows; 

    
  

  
 

 

  
0        

 (
      
     

)
1  

       

      
  

 (
      
     

)
             

Hence, according to this model the superconducting specific heat capacity at 

constant volume is given as; 

   
       

      
  

 (
      
     

)
                                                                                

iii. Entropy of the t-J system 

Entropy s of the system is obtained by evaluating the integral given below 
35

(Khanna & 

Kirui, 2002); 

  ∫
    

 
                                                                                                                       

Where    is specific heat capacity at constant volume and    is the temperature of the 

system. 

Substituting equation 4.81 in equation 4.82 we have; 

 

  ∫

0
       

        
 (

      
     

)
1   

 
  0

      

 
 
 (

      
     

)
    

 (
      
     

)
1         
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Thus the superconducting entropy by this model is given as;  

  
      

 
 
 (

      
     

)
    

 (
      
     

)
                                                                       

 

iv. Transition temperature of the t-J system 

Transition temperature of the superconducting state, Tc is calculated from the 

condition 

that (Khanna and Kirui, 2002); 

[
  

  
]
    

                                                                                                                                      

Substituting equation 4.81 in equation 4.85, we have; 

 

  
.
       

      
  

 (
      
     

)
/

    

                                                                                              

Evaluating the partial derivative in equation 4.86, we obtain; 

       

    
  

 (
      
     

)
 2 

 

  
  

      

       
3                                                                              

Solving equation 4.87, we obtain transition temperature of the t-J system as; 
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CHAPTER FIVE 

THE DIPOLE MEDIATED t-J MODEL OF HIGH-Tc SUPERCONDUCTIVITY: 

“THE t-J-d MODEL” 

 

5.1 Introduction 

In this chapter, a new model of high-Tc superconductivity, called the t-J-d model, is 

derived. The effective Hamiltonian of this model is obtained from the sum of the 

diagonalized t-J model and the diagonalized electronic dipole interaction Hamiltonian. 

Thus, the contribution of dipole vibration energy to the t-J model energy in the 

superconducting state is considered. 

The interaction Hamiltonian of a dipole of dipole moment P(R, t) at the location R 

interacting with an electron at position r is given by (Heebok Lee et al, 1991); 

    ∑            (   
     )     

                                                                  

          

 

where      
  and     are the creation and annihilation operators for an electron with wave 

vector   and spin   while    
  and     are the creation and annihilation operators for a 

collective dipole quantum with wave vector   and polarization  . The constant 

            is defined as; 

             |     | [
 

         
]

 
 
(         )  

   
                                          

where G is a reciprocal vector,       is the frequency of vibration of a dipole with 

polarization index   at a generalized location  ,    is the moment of inertia of the 
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oscillating dipole,     is the     component of the unit polarization vector    of the 

collective wave,   is the number of the oscillating dipoles in the crystal.       is the 

dipole moment in the x-direction at time t=0, i.e static state and      where   is 

polarazability and   is the electric field. The dynamic matrix   
   

 is defined as; 

  
   

 ∫                 
 

 |   |
       

                                                              

where e is the electronic charge unit,   is energy of an electron and        
    is the 

Bloch state of the electron in the system. 

5.2 Diagonalization of the dipole Hamiltonian,      

By considering eq. (5.1), we express the quantum dipole operators as a product of two 

electron operators such that; 

   
     

     
                                                                                                                               

And 

                                                                                                                                         

Thus  

(   
     )     

     
                                                                                                     

Substituting eq. (4.5) in eq. (5.6), we obtain; 

(   
     )     
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Carrying out the canonical transformation from the old operators     
 ,     and   

     to 

the new operators,     
 ,     and   

 ,    respectively, we substitute eqs. (4.33)-(4.40) in 

eq. (5.7) to get; 

(   
     )         

                    
  (       

        )          
  

 (              
 )     

                      
       

 

                                                                                                              

We now represent the particle spin up state with   and spin down with –  . The scattered 

particle spin states will be represented by    and      for spin up and spin down 

respectively. Eq. (5.8) becomes; 

(   
     )       

                  
        

                 
  

            
       

                  
       

 

                                                                                                      

Expanding the expressions in eq. (5.9); 

i.      
                  

        
                 

   

 [  
   

          
   

              
      

 ] 

    [  
    

           
   

             
     

 ]                                                 

We substitute eq. (4.56) in eq. (5.10) to obtain; 

     
                  

        
                 

   

 [  
           

   
           

        ] 
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    [  
             

   
          

       ]                                                         

Expanding eq. (5.11) we obtain; 

     
                  

        
                 

  

   
         

           
   

          
   

         

   
         

   
           

   
    

   
            

   
       

     
          

   
           

   
           

     
            

   
       

   
                                                                                           

We assume that the lowest energy state of this system has all the occupation numbers     

equal to zero and the contribution of the fourth order terms is negligible, then eq. (5.12) 

becomes; 

     
                  

        
                 

  

      
    

   
             

     
   

          
            

ii. The second expression in eq. (5.9) can now be expanded as follows; 

           
       

                  
       

       

 [  
     

         
   

             
    

   ] 

                            [  
      

        
   

              
   

   ]            

Again we substitute eq. (4.56) in eq. (5.14) to obtain; 
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 [  
                

   
          

    ] 

    [  
                

   
           

   ]                                                

Expanding eq. (5.15), we obtain; 

           
       

                  
       

        

   
                 

            
   

           
   

          

  
              

   
          

   
     

   
          

   
         

    
       

   
          

   
                

       
   

         

  
                                                                                                                                  ) 

We assume that the lowest energy state of this system has all the occupation numbers     

equal to zero and the contribution of the fourth order terms is negligible, then eq. (5.16) 

becomes; 

           
       

                  
       

       

   
    

      
   

        

   
       

   
                                                                            

Substituting eqs. (5.13) and (5.17) in eq. (5.9), we have; 

(   
     )  {   

    
       

    
   

             
     

   
       

   
      

   
           

       
   

       }                 

We now consider the electron operators      
      in eq. (5.1). Using eq. (4.5) we can 

express these operators as; 
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Using the inverse- transformed electron operators in eqs. (4.33) to (4.36) in eq. (5.19), we 

obtain; 

     
      (      

         )(         
 )(       

        
 )     

                

Representing the particle spin up state with   and spin down with –  , the scattered 

particle spin states will be represented by    and      for spin up and spin down 

respectively then eq. (5.20) becomes; 

     
      (      

         )(             
 )           

       
 

                                                                                                                   

Expanding the expression in eq. 5.21, we obtain; 

(      
         )(             

 )           
       

        

 [   
    

                            
    

     
        

 ]  

    [  
      

                  
   

    
   

   ]                                            

Substituting eq. (4.56) in eq. (5.22), we obtain; 

(      
         )(             

 )           
       

       

 [   
           (           

    
 )     

        ] 

                            [  
                      

   
     

   ]                          

Expanding eq. (5.23) we get; 



87 
 

 
 

(      
         )(             

 )           
       

       

    
   

               
                 

   
      

   
      

         
        (           

    
 )

           (           
    

 )         
   

  

         
   (           

    
 )     

   
               

    
                      

   
  

    
   

                                                                                       

For the lowest energy state, we now set the number operators     . We also consider 

the effect of the fourth order terms to be negligible because their contribution to the 

energy of the system is too small. Thus eq. (5.24) yields; 

(      
         )(             

 )           
       

       

     
   

          
 (           

    
 )

    
              

   
                                                                    

 

We now substitute eqs. (5.18) and (5.25) in eq. (5.1) to obtain; 

    ∑    {   
    

       
    

   
             

     
   

       

   

   
      

   
           

       
   

       }[    
   

 

         
 (           

    
 )

    
              

   
  ]                       

Expanding eq. (5.26), we obtain; 
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        (           
    

 )

   
   

    
    

   
                 

   
  

   
   

    
     

   
       

   
   

           
   

       (           
    

 )

   
   

    
     

   
                

   
  

   
    

      
   

           
            

   
        (       

    
    

 )    
   

    
    

   
                 

   
  

   
    

       
   

       

   
             

   
       (           

    
 )

   
   

    
     

   
             

   
   

  }                                                                    

The fourth order terms can be neglected because their contribution to the energy of the 

system is too small, then eq. (5.27) becomes; 
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 (           

    
 )

   

    
    

         
          

   
      

   
    

    
   

        

   
   

    
     

   
          

    
      

   
        

   
    

       
   

 

      }                                                                                                

Equating the off-diagonal terms to zero, we obtain the diagonalized dipole Hamiltonian 

from eq. (5.28) as; 

   ∑    {   
   

    
    

  }                                                                          

   

 

The t-J-d Hamiltonian can now be expressed as the sum of the diagonalized t-J and  

dipole Hamiltonians by combining eq. (4.74) and eq. (5.29) to obtain the result below; 

       ∑  { 
 

 
 

 

 
  

  
 

 
  

  
 

 
  

   
 }  ∑    {   

   
 }

       

 ∑    {  
   

    
    

  }

  

                                                                   

The Hamiltonian in eq. (5.30)  can now be use to study the thermodynamic properties of 

high-Tc superconductors. 

5.3 Thermodynamic properties of high-Tc superconductors in the t-J-d model  

 

i. The superconducting energy of the t-J-d system 

Substituting the values of     and    in eq. (5.30) we obtain the ground state energy of 

the t-J-d system as; 
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The energy of the system, E at any temperature can be obtained by multiplying the 

ground-state energy, E0, by the thermal activation factor,   
  

  , where k is Boltzmann‟s 

constant and    is energy gap which is generally 1% of the minimum value (Khanna, 

2008) of the system energy (   
  

   
). Thus; 

                   
 .

(    
      

   )

     
/
                                                                  

 

ii. The specific heat capacity of the t-J-d system 

 

The specific heat capacity at constant volume     of the system is obtained by 

determining the first derivative of the energy of the system with respect to the 

temperature (Khanna, 2008). Hence, using eq. (5.32), we have; 

    
  

  
 

 

  
6                 

 .
(    

      
   )

     
/
7

 
                

      
  

 .
(    

      
   )

     
/
                                         

The specific heat capacity of the superconducting system according to t-J-d system can 

now be expressed as; 
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(    

      
   )

 

        
 (

(    
      

   )

     
)

                                                                                 ) 

iii. Entropy of the t-J-d system 

Entropy s of the system is obtained by substituting eq. (5.34) in eq. (4.82); 

 

  ∫
                

      
  

 .
(    

      
   )

     
/
                                               

 

Evaluating the integral in eq. (5.35) gives the superconducting entropy as; 

  0
               

 
  1   

 .
(    

      
   )

     
/
                                                           

iv. Transition Temperature of the t-J-d system 

By substituting eq. (5.34) in eq. (4.85), we evaluate the critical temperature of the 

superconducting state as follows; 

 

6
 

  
4
                

      
  

 .
(    

      
   )

     
/
57

    

                                                

The result of eq. (5.37) is; 

                

    
  

 .
(    

      
   )

     
/
 2 

 

  
  

               

       
3               

Solving eq. (5.38), we obtain transition temperature of the t-J-d system as; 
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CHAPTER SIX 

RESULTS AND DISCUSSION 

 

6.1 Numerical evaluation of the ground state energy 

(a) The ground state energy of the t-J system  

The magnitude of the ground state energy of the t-J system is given in eq. (4.77) as; 

              

The experimental values of    and      for the electron-doped LSCO nearest neighbor 

hoping are 0.13eV and 0.41eV respectively (Lee et al,2006). Using these values in the 

above equation gives the superconducting ground state energy of LSCO as          . 

Experimental values of   and      for the hole-doped YBCO are given as  0.17eV and 

0.44eV, which on substituting in eq. (4.77), we obtain the ground state energy of YBCO 

as  

           High-Tc superconducting cuprates are either electron-doped or hole-doped, 

thus we expect their ground state energy to fall within the range 1.77   to 1.89     

(b)The ground state energy of the t-J-d system 

The Magnitude of the ground state energy of the t-J-d system is given in eq. (5.31) as; 

                  . We need to evaluate the numerical value of      . Eq. (5.2) 

gives the expression of       as;              |     | *
 

         
+

 

 
(      

   )  
   

         . Taking the polarization vector           as unity (Heebok et al, 

1991), then; 

             |     | [
 

         
]
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The dynamic matrix   
   

 can be expressed as (Heebok et al, 1991); 

  
   

 
|     ||      |

√     

       | |  |  |  
 

 
                                                                              

In eq. (6.1),    is polarazability. 

When the distance of the incident and scattered electron from the scattering centre are 

equal,  then   | |    |  | and  the exponential in eq. (6.1) reduces to 1, thus; 

  
   

 
|     ||      |

√     

 
 

 
                                                                                                      

For      eq. 6.2 reduces to 

    
   

 
|     |

 

  
 
 

 
                                                                                                                         

For an oxygen ion in a superconducting crystal (Heebok et al, 1991),            , 

where   stands for electronic units of force,             and        . Substituting 

these values in eq. (6.3) we obtain; 

   
   

                      . The frequency of vibration of a single dipole 

                (Heebok et al, 1991). If the electron interacting with the dipoles is 

at a distance averagely equal to a lattice constant away from the dipole, then      

     . When these values are substituted in eq. (6.0), the value of      is obtained as; 

                                                                                                                                   

 

Having calculated the value of      , we now obtain the ground state energy of the t-J-d 

system by substituting      in eq. (5.31). For LSCO, J=0.13eV and t=0.41eV (Tsendin, 

2001); the magnitude of the ground state energy of the electron-doped LSCO is obtained 

as  
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             For the hole-doped YBCO, J=0.17eV and t=0.44eV thus the ground 

state energy of YBCO is evaluated as            . Thus, in the t-J-d model, the 

ground state energy of high-Tc superconducting cuprates is expected to fall in the range 

of          to          with small deviations.  

 

A quick comparison of the t-J system and t-J-d system ground state energy reveals that 

the ground state energy of the t-J system is lower than the ground state energy of the t-J-d 

system. This increase is attributed to the electron-dipole interactions. As explained in 

chapter one of this thesis, the interaction of electrons with polarized oxygen ions 

(compound dipoles) causes dynamic perturbations on the crystal-field generated dipoles 

changing their magnitudes and directions. The dipoles then oscillate collectively 

generating lattice vibrations or phonons which are quantized energy. Inelastic Neutron 

Scattering (INS) experiments (Andrei, 2004) show that phonons are an essential part of 

high-Tc superconductivity for they are highly coupled to the charge carriers.  

 

An electron-phonon interaction parameter called spectral function        characterizes 

the coupling strength between charge carriers and phonons. ARPES measurements 

(Andrei, 2004) performed in LSCO, YBCO, Bi2212 and Bi2201 show a kink in the 

dispersion at 55-75 meV confirming the fact that optical phonons of energy 55-75meV 

are coupled with charge carriers. Regardless of the origin of phonons in HTS, their 

energies are usually high thus the true ground state energy of the HTS can only be 

obtained if phonon energy is considered as it has been done in the t-J-d model. In this 

case, the coupling phonon energy added to the t-J system is                 A 
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detailed analysis of the transfer energy, t and its effect on the superconducting transition 

temperature is done in section 6.3 (a) of this thesis. 

 

6.2 Graphical analysis of system energy 

a. Variation of the system energy, E with temperature, T of the system. 

To obtain the variation of  the energy of the system with the temperature, experimental 

values J=0.13eV, t=0.41eV for LSCO, J=0.17eV, t=0.44eV for YBCO and the calculated 

value of      is substituted in eqs. (4.79) and (5.32). The value of      is applicable for 

both superconductors since it calculated using experimental parameters that govern 

general superconducting crystals. Figures 6.0 and 6.1 are thus obtained for the t-J model 

and the t-J-d models respectively.  

 

Figure 6.1 (a): Variation of system energy with temperature for the t-J model 
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Figure 6.1 (b): Variation of system energy with temperature for the t-J-d model 
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temperature range of 0 K-220 K. However, at high temperatures approaching room 

temperature (T>220 K), the trend is reversed with YBCO showing a lower rate of change 

of system energy. High-Tc superconductivity, being a low-energy process requires that 

the system energy should be kept as low as possible. Thus YBCO would be a better 

candidate for the construction of a room-temperature superconductor. At about 220 K, 
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drops exponentially as is revealed in the graph.  From these results, we can conclude that 

superconductors with lower transfer energy experience a low rate of change of energy 

with temperature at low temperatures and low rate of change of energy at high 

temperatures while the opposite is true for superconductors with high transfer energy.  

 

Similar graphs were obtained by Danilo Gambacurta and Denis Lacroix (Danilo et al., 

2012) when studying the energy of small superconductors with a fixed number of 

particles (see Appendix E). Starting with a system of 10 particles whose energy was 

approximately -0.30 eV, increase in temperature from 0K to 5 K witnessed a 

corresponding exponential increase in energy in the positive y-axis. While Danilo used 

variational theory applied to low temperature small systems of particles, I have used the 

t-J-d theory applicable to high temperatures and can be generalized to large systems. 

 

6.3 Numerical evaluation of the transition temperature 

a. Numerical Tc  of the t-J system 

The critical temperature of the t-J system is given by equation 4.89. Substituting the 

values J=0.13 eV and t=0.41eV for LSCO and k= 8.63×10
-5 

eV/K, we obtain the 

numerical value of Tc for LSCO as              The experimental value of     for 

LSCO is 38 K (Andrei, 2004). The t-J model thus predicts a critical temperature value for 

LSCO that is 2.7 times higher than the present experimental value. It must be noted that 

LSCO was the first HTS discovered in 1987 with Tc=38K. (Park, 2005, Appendix A). In 

the same year it was discovered that under moderate pressure, the Tc of LSCO increased 

to 52 K. Shortly afterward a higher Tc was obtained in YBCO (90 K) and even a higher 
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one in HgBaCaCuO (135 K). Research was shifted to the mercury based cuprates with 

much higher Tc and less has been done on LSCO. However the application of the t-J 

model reveals that higher Tc can be achieved in the LSCO. 

 

Substituting J=0.17eV, t=0.44 eV for YBCO (Tsendin, 2001) in eq. 4.89,    

(    
   )

    
   we get the numerical value of            , which is higher  than the current 

experimental value of 90 K (R. K. Puri et al, 2001) by 21.8 K. By applying the same 

calculations, one realizes that room temperature superconductivity (Tc=300 K) in LSCO 

is possible if the transfer energy is 1.262 eV and 1.252 eV in YBCO. 

Since the lowest ever achieved experimental exchange energy for high-Tc 

superconductors is J=0.13 eV, we apply it together with experimental Tc values for 

various high-Tc superconductors in eq.4.89 to calculate transfer energies of t cuprates in 

the t-J model. The results are summarized in the table 3.0; 
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Table 3.0: A summary of transfer energy values of the t-J system for various high-Tc 

superconducting cuprates  

Cuprate Abbreviation Tc (K) Transfer energy, t (eV) 

Bi2Sr2CuO6 Bi2201 ∼12 0.0193 

Nd2−xCexCuO4 NCCO 24 0.0711 

La2−xSrxCuO4 LSCO 38 0.13147 

YBa2Cu3O 6+x YBCO 93 0.3688 

Bi2Sr2CaCu2O8 Bi2212 95 0.3774 

Tl2Ba2CuO6 Tl2201 95 0.3774 

HgBa2CuO4 Hg1201 98 0.3904 

Tl2Ba2CaCu2O8 Tl2212 105 0.4206 

Bi2Sr2Ca2Cu3O10 Bi2223 110 0.4422 

Tl2Ba2Ca2Cu3O10 Tl2223 125 0.5069 

HgBa2CaCu2O8 Hg1212 128 0.5241 

TlBa2Ca2Cu4O11 Tl1224 128 0.5198 

HgBa2Ca2Cu3O10 Hg1223 135 0.5500 

 

Two very important observations can be made from Table 3.0. First, we observe that 

using the t-J model, the current critical temperature values of the various high-Tc 

superconducting cuprates can be achieved at transfer energy lower than the current 

experimental values. A good example is YBCO whose experimental transfer energy of 

0.44 eV has been lowered to 0.3688 eV. This is a  19.3% decrease. For the electron-

doped LSCO, t has been raised slightly from 0.13eV to 0.13147 eV. Secondly, the table 

shows that critical temperature increases with increase in transfer energy for high-Tc 

superconductors. It is, therefore, possible to achieve higher Tc by increasing t. Transfer 

energy; t can be increased by increasing onsite Coulomb repulsion energy U since 
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 (Park, 2005). The challenge that faces this approach is that for a given 

superconductor, U is increased by increasing charge carriers on a centre and these 

charges can only be increased to a certain maximum value beyond which stability will 

not be sustained. The second challenge is that for t-J system, the experimental ratio   
 

 
 

should be equal to a third (Jakub Jedrak, 2011). However, this can be overcome by 

increasing J proportionately.   

b. Numerical Tc  of the t-J-d system 

The Tc formula for the t-J-d system is given in eq. 5.39;     
(    

      
   )

    
. Substituting 

the J and t values of LSCO and the calculated       value in eq. 6.4 

(              ) we find Tc for LSCO as 103.98 K. We observe that the t-J-d system 

gives a transition temperature that is both higher than that of the t-J system (102.5 K) and 

the highest known experimental value of 38 K (Andrei, 2004). 

 

On substituting the J and t values of YBCO in eq. 5.39, Tc for YBCO is 113.2 K. This Tc 

is higher than that of the t-J model (111.8 K) by 1.4 K. For Bi2Sr2CuO6 whose first 

neighbor hoping energy is t=0.27 eV (Jakub Jedrak, 2011), Tc in the t-J-d model is found 

to be 71.5 K. Compared to the experimental value of 12 K, the t-J-d system Tc is almost 

six times the experimental value.  

Using the experimental Tc values for various high- temperature superconducting cuprates 

in eq. 5.39, the corresponding transfer energies are calculated and summarized in the 

table 4.0  
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Table 4.0: A summary of transfer energy values of the t-J-d system for various high-

Tc superconducting cuprates 

Cuprate Abbreviation Tc (K) Transfer energy, t (eV) 

Bi2Sr2CuO6 Bi2201 ∼12 0.0131 

Nd2−xCexCuO4 NCCO 24 0.0649 

YBa2Cu3O 6+x YBCO 93 0.3626 

Bi2Sr2CaCu2O8 Bi2212 95 0.3712 

Tl2Ba2CuO6 Tl2201 95 0.3713 

HgBa2CuO4 Hg1201 98 0.3842 

Tl2Ba2CaCu2O8 Tl2212 105 0.4144 

Bi2Sr2Ca2Cu3O10 Bi2223 110 0.4360 

Tl2Ba2Ca2Cu3O10 Tl2223 125 0.5001 

HgBa2CaCu2O8 Hg1212 128 0.5136 

TlBa2Ca2Cu4O11 Tl1224 128 0.5136 

HgBa2Ca2Cu3O10 Hg1223 135 0.5439 

 

Comparing the results of the t-J-d system to those of the t-J system, it is clear that the t-J-

d system has lowered transfer/ hoping energy for all the enlisted high-Tc cuprates. 

Experimentally, low transfer energy is a prerequisite for the achievement of higher 

critical temperatures. Such a recommendation was made by Lee, Nagaosa and Wen (Lee 

et al, 2006) who stated that when    , holes are strongly delocalized. There exists 

competition between the exchange energy   and the kinetic energy which is of the order 

of   per hole or    per unit area, where   is the doping level. When      we expect the 

kinetic energy to win and the system would be a Fermi-liquid metal with a weak residual 

anti-ferromagnetic correlation, a situation that is not favorable for the superconducting 

process. When     , however, the system would like to maintain the antiferromagetic 
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correlation while allowing the hole to move as freely as possible. This is the case of a 

Mott insulator and it enhances high-Tc superconductivity. The variation of critical 

temperature of the superconducting cuprates with transfer energy is shown in figure 6.2 

(Appendix). 

6.4 Variation of Heat capacity, Cv with Temperature, T 

Substituting the experimental values J=0.13eV, t=0.41eV for LSCO, J=0.17eV, t=0.44eV 

for YBCO, and the calculated value of                  in eqs. (4.84) and (5.34), 

heat capacity is found to vary with temperature in the t-J and t-J-d models as shown in 

figure 6.3. 

 

Figure 6.2(a): Variation of specific heat capacity with temperature for the t-J model 

-0.001

0

0.001

0.002

0.003

0.004

0.005

0 50 100 150 200 250 300 350

Sp
e

ci
fi

c 
H

e
at

 c
ap

ac
it

y 
(e

V
/K

) 

Temperature (K) 

Cv- LSCO

Cv-YBCO



103 
 

 
 

 

Figure 6.2 (b): Variation of specific heat capacity with temperature for the t-J-d 

model 

For both LSCO and YBCO, the heat capacity is observed to drop exponentially with 

temperature from a given peak value which is constant for both LSCO and YBCO 

(regardless of the value of t). The maximum value of heat capacity for the cuprates is 

maintained at             .  

 

At the peak or turning point of each graph, *
  

  
+
    

  , hence the temperature 

corresponding to the peak is critical temperature of the superconductor. Clearly, Tc for 

LSCO is approximately 100 K which is higher than the experimental value of 38 K 
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graph of YBCO gives Tc= 110 K which is also approximately equal to the calculated 

value of 111.8 K.  

 

The shapes of the graphs obtained in this theory are in fine agreement with those obtained 

by Khanna and Kirui (Khanna et al, 2002) for the variation of heat capacity and 

temperature for the cuprates Tl2Ba2Ca2Cu3O10  and YBa2Cu3O7-δ. In both cases heat 

capacity drops exponentially from a peak value and vanishes at T=0 K. In their theory; 

Anharmonic apical oxygen vibration in high-Tc superconductors, the peak of the graph 

gives Tc= 255 K for YBa2Cu3O7-δ which is far above the experimental value making the t-

J-d theory a better theory in the approximation of Tc in YBCO. 

 

Volya, Brown and Zelevinsky  studied thermodynamical properties of small 

superconductors with a fixed number of particles at very low temperature ranging from 

0K to 5 K (Volya et al, 2001). They applied the Finite Temperature BCS (FT-BCS) 

approximations in the diagonalization of the quasi- particle pairing Hamiltonian for a 

small system of particles, N=10 particles. The results are shown in figure 6.4.  
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Figure 6.3: Evolution of energy with temperature obtained with FT-BCS, PAV 

(Danilo, 2012). 

 

The shape of exact solution graph obtained for the variation of heat capacity, cv with 

temperature perfectly agrees with that obtained in the t-J-d theory. A smooth curve with 

an exponential drop of cv from a peak value is observed. The highest cv obtained was 

approximately              for N=10 particles, which is in agreement with the t-J-d 

results (            ) for a one particle system, except that the t-J-d heat capacity is 

lower by a factor of 10
-1

. If the number of particles in the t-J-d system is increased we 

expect a corresponding increase in cv and the two results would thus agree. While 

Vyola‟s graph gives low Tc=1 K (peak temperature), the t-J-d system gives high-Tc for 

superconductors. It must also be noted that the FT-BCS theory suffers from the problem 

of overestimation of energy as it uses variational approach and a sharp super fluid- to- 

normal phase transition as the temperature increases. 
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6.5 Numerical Cv of the t-J and the t-J-d models 

In the t-J model, the value of cv by calculation is obtained as                for 

LSCO using the calculated value of T=Tc =102.5 K in eq. 4.81, and               

for YBCO at T=Tc=111.8 K. In the t-J-d model, by using T=Tc=103.98 K for LSCO and 

T=Tc=113.2 K for YBCO in eq.5.34, the value of cv is calculated as               

for LSCO and             .It is observed that for the same superconductor, cv  of  

the t-J-d model is lower than that of the t-J model. The reduction is attributed to the 

attractive energy between the electron  and the dipole which enhances phonon-mediated 

pairing of electrons hence lowers heat per particle pair. In the derivation of ground state 

energy formula, we allowed all terms in the Hamiltonian to vanish and remained with the 

quasi particle excitation creation terms   
    

  so that only pairs of quasi particles could 

be excited. The minimum energy required to create such excitations is the exponential    

(Khanna, 2008). Thus heat capacity will drop with increase in the energy that leads to the 

creation of quasi particles. 

6.6 Variation of entropy, s with Temperature, T 

Substituting the experimental values J=0.13eV, t=0.41eV for LSCO, J=0.17eV, t=0.44eV 

for YBCO, and the calculated value of                  in eqs. (4.84) and (5.36), 

entropy is found to vary with temperature as shown below. 
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Figure 6.4(a): Variation of entropy with temperature for the t-J model. 

 

Figure 6.4 (b): Variation of entropy with temperature for the t-J-d model 
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The results presented shows exponential growth of entropy with temperature for both 

LSCO and YBCO in t-J and the t-J-d model. With small variation, the maximum entropy 

for LSCO and YBCO is approximately 3.13×10
-3 

eV/K in the t-J model and 3.15×10
-3 

eV/K in the t-J-d model.. At maximum entropy, critical temperature of LSCO is Tc= 200 

K and that of YBCO is Tc= 220 K. We also note that the rate of increase of entropy with 

temperature of the system for LSCO is higher than that of YBCO. High-Tc 

superconductivity requires low entropy hence YBCO is better in building 

superconductors that can work at room temperature. 

 

In their study of thermodynamic properties of small superconductors (Danilo et al, 2012), 

Danilo Gambacurta and Denis Lacroix applied the Finite Temperature Variation –After- 

Projection (FT-VAP) technique in minimizing free energy of superconducting state and 

calculated entropy of the system as;      ∑   
      

 , where    is Boltzmann 

constant and   
  are the eigenvalues of the statistical operator in the Fock space 

composed by all the many body configurations with N particles. Variation of entropy 

with temperature graph was a smooth curve showing an exponential decrease of entropy 

with temperature from a maximum value of 0.125 eV/K (Appendix E/ Danilo et al, 

2012). The shape of the graph is in agreement with t-J-d result. The maximum value of 

entropy in the FT-VAP theory is lower than the corresponding value of the t-J-d system 

as expected since the FT-VAP theory is dealing with very low temperatures 

(0 K-5 K) while the t-J-d theory is dealing with the whole range of temperature from low 

to high. 
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6.7 Numerical entropy of the t-J and the t-J-d models 

The t-J model value of entropy at T=Tc =102.5 K for LSCO was calculated as       

         and               for YBCO at T=Tc =111.8 K. The t-J-d calculated 

value of entropy at T=Tc=103.98 K for LSCO was                and      

         for YBCO at T=Tc =113.2 K. Again one quickly notices that the t-J-d model 

has lower entropy as compared to the t-J model, a condition that is quite favorable for 

high-Tc superconductivity given that superconducting process is a high order process that 

require low entropy. 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

 
 

CHAPTER  SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1  CONCLUSIONS 

 

The work covered in this thesis can be divided into two characteristic sections. In the first 

section, the t-J model Hamiltonian was diagonalized using Bogliubov-Volatin 

transformation and the thermodynamic properties of high-Tc superconductors, namely, 

energy, heat capacity, entropy and critical temperature in the t-J model were studied. The 

results obtained are in fine agreement with the FT-VAP study of thermodynamic 

properties of small superconductors (Danilo et al., 2012). The t-J model has been found 

to predict transition in YBCO more accurately than the anharmonic apical oxygen theory 

(Khanna et al., 2002) of high-Tc superconductivity. The t-J model, being a model that 

captures strong electronic correlations in HTS predicts the possibility of achieving more 

than double the experimental value of Tc for the electron-doped LSCO. 

 

In the second section, the dipole interaction energy was included in the t-J model 

resulting in  what is now referred to as the t-J-d model. As a proof of ARPES 

measurements (Andrei, 2004) that show high charge carrier coupling with phonon 

energy, the inclusion of phonon energy generated as a result of dipole oscillation has 

raised the ground state energy of the t-J model and the transition temperature of LSCO 

and YBCO. Due to attractive interaction energy between the charge carriers and the 
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dipoles the heat capacity and entropy of the t-J-d model is lower than that of the t-J model 

providing a better platform of high-Tc superconductivity. 

 

Transfer energy for twelve categories of superconducting cuprates were calculated and it 

now evident that a linear relation between transfer energy and transition temperature 

exists. Careful application of this discovery can lead a rise in Tc of high-Tc 

superconductors. In summary, the theories developed in this research are of general 

validity and can be applied to any high-Tc superconductor in the analysis of 

thermodynamic properties. 

7.2 RECOMMENDATIONS 

The approach presented in this thesis pertaining to the development of new Hamiltonians 

of high-Tc superconductivity and the analysis of their thermodynamic properties is 

thorough and rigorous. However, it can be improved on in some ways, some of which are 

enlisted below; 

a In this thesis, emphasis was laid on first or nearest neighbor electron transfer 

energy. An extension can be made to second and third neighbor transfer energy 

with caution given that long-range electronic interaction destroys Cooper pair 

formation. 

b The effect of the on-site Coulomb energy, U, was not considered in this thesis. 

The inclusion of this energy in the developed theories will give more insight in 

the study of strong coupling  when U>>t in the Heisenberg model and weak 

coupling when U=0 eV. I t should be noted that an increase in on-site Coulomb 

energy reduces transfer energy (Belinicher et al, 1994, Appendix B). 
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c Doping level is another paramount factor that can significantly alter the results if 

considered. Hole doping, for instance, affects the anti-ferromagnetic background 

of the superconductor because the movement of a hole creates a string of flipped 

spins (Demler, 2010) which results to an effective attraction between the holes. 

d The results obtained on the contribution of dipole energy to the superconducting 

state properties can be strengthened further by extending the one-particle study 

done in this research to the many particle system. 
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Appendix II: VARIATION OF HOPING INTEGRAL     WITH ON-SITE 

COULOMB REPULSION ENERGY,    FOR TRANSITIONS FROM P TO D 
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Appendix III: DIPOLE STATISTICS IN CUPRATES 
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Appendix IV: TABLES OF 

RESULTS FOR THE t-J-d MODEL 

Table of results for variation of 

specific heat capacity with 

temperature  

T Cv-LSCO Cv-YBCO 

1 0 0 

2 0 0 

3 0 0 

10 3.47E-09 6.45E-10 

20 2.85E-05 1.34E-05 

30 4.05E-04         2.588E4 

40 1.29E-03 9.61E-04 

50 2.33E-03 1.91E-03 

60 3.24E-03 2.82E-03 

70 3.90E-03 3.55E-03 

80 4.33E-03 4.08E-03 

90 4.57E-03 4.41E-03 

100 4.67E-03 4.60E-03 

110 4.65E-03 4.67E-03 

120 4.58E-03 4.66E-03 

130 4.46E-03 4.59E-03 

140 4.31E-03 4.48E-03 

150 4.15E-03 4.35E-03 

160 3.97E-03 4.20E-03 

170 3.80E-03 4.04E-03 

180 3.63E-03 3.88E-03 

190 3.46E-03 3.72E-03 

200 3.30E-03 3.57E-03 

210 3.14E-03 3.41E-03 

220 3.05E-03 3.27E-03 

230 2.91E-03 3.13E-03 

240 2.78E-03 2.99E-03 

250 2.65E-03 2.86E-03 

 

 

 

 

 

 

 

 

 

 

Table of results for variation of 

entropy with temperature  

T s-LSCO s-YBCO 

1 0 0 

2 0 0 

3 0 0 

10 1.67E-10 2.85E-11 

20 2.73E-06 1.18E-06 

30 5.83E-05 3.43E-05 

40 2.47E-04 1.70E-04 

50 5.59E-04 4.21E-04 

60 9.32E-04 7.45E-04 

70 1.31E-03 1.10E-03 

80 1.66E-03 1.44E-03 

90 1.97E-03 1.75E-03 

100 2.23E-03 2.02E-03 

110 2.45E-03 2.26E-03 

120 2.63E-03 2.45E-03 

130 2.77E-03 2.62E-03 

140 2.88E-03 2.75E-03 

150 2.97E-03 2.86E-03 

160 3.03E-03 2.95E-03 

170 3.08E-03 3.01E-03 

180 3.11E-03 3.06E-03 

190 3.13E-03 3.10E-03 

200 3.14E-03 3.12E-03 

210 3.14E-03 3.14E-03 

220 3.14E-03 4.14E-03 

230 3.12E-03 3.14E-03 

240 3.11E-03 3.14E-03 

250 3.09E-03 3.13E-03 
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Table of results for variation of 

temperature with energy 

T E-LSCO E-YBCO 

1 0 0 

2 0 0 

3 0 0 

20 5.47E-05 2.36E-05 

40 7.91E-03 6.79E-03 

60 5.70E-02 4.50E-02 

80 1.33E-01 1.15E-01 

100 2.24E-01 2.03E-01 

120 3.17E-01 2.96E-01 

140 4.06E-01 3.88E-01 

160 4.89E-01 4.75E-01 

180 5.65E-01 5.55E-01 

200 6.34E-01 6.30E-01 

220 6.97E-01 6.98E-01 

240 7.55E-01 7.61E-01 

260 8.07E-01 0.818 

280 8.54E-01 0.87 

300 8.97E-01 0.919 

320 9.37E-01 0.963 

340 9.74E-01 1.004 
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Appendix V: PREDICTIVE POWER OF FT-VAP (Danilo et al, 2012) 

(a) Energy 

(b) Entropy 

(c) Heat capacity 

(d) Average gap 
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Appendix VI: MATHCAD RESULTS 

 

(a) Energy for the t-J model 
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(b) Energy for t-J-d model 
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(c) Heat capacity for the t-J model 
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(d)  Heat capacity for the t-J-d model 
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(e)  Entropy for the t-J model 

 

 

 

 

 

 

 

 

 

 

 

 

T 1 500

S T( )
0.13 4 0.41( )

T









e

0.13 4 0.41( )

0.00863T










0.0000863 e

0.13 4 0.41( )

0.00863T


U T( )
0.17 4 0.44( )

T









e

0.17 4 0.44( )

0.00863T










0.0000863 e

0.17 4 0.44( )

0.00863T


T

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

 S T( )

0

0

0

0

0

0

4.764·10      -14

1.624·10      -12

2.492·10      -11

2.19·10      -10

1.285·10    -9

5.569·10    -9

1.914·10    -8

5.485·10    -8

1.359·10    -7

2.995·10    -7

 U T( )

0

0

0

0

0

0

3.676·10      -15

1.745·10      -13

3.463·10      -12

3.74·10      -11

2.597·10      -10

1.295·10    -9

5.014·10    -9

1.591·10    -8

4.307·10    -8

1.025·10    -7



0 200 400
0

0.002

0.004

S T( )

U T( )

T



132 
 

 
 

(f) Entropy for the t-J-d model 
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Appendix VII: Critical Temperature and transfer energy for t-J-d model. 

 

Figure 6.2: Variation of critical temperature with transfer energy. 

Table of constants used  

 

Quantity Magnitude 

 Angstrom(Å) 

 

        1Å = 1.0×10
-10

M 

 Electron charge(e)         e = 1.6×10
-19

C 

 Electron mass(Me)         Me = 9.1×10
-31

Kg 

 Electron-Volt (eV)         1eV = 1.6×10
-19

J 

 Proton mass(Mp)         Mp= 1.673×10
-27

Kg 

 Reduced Planck‟s constant(ħ)          ħ = 1.055×10
-34

Js 

 Exchange energy, (J)for LSCO          J= 0.13eV 

Exchange energy, (J)for YBCO          J=0.17 eV  

Bipolaron exchange energy for 

cuprates(Jp) 

         Jp=1eV 

Boltzmann constant(kB)           kB = 8.63×10
-5

eVK
-1

 

On-Site Energy U, at maximum Tc                                                 U = 1-2eV 

Hopping energy t for Hole-doped 

Cuprates 

         t=0.44eV 

Hopping energy t for electron-doped 

Cuprates 

          t=0.41eV  

           

Hopping energy t for YBCO           t=0.609 eV 

Superconducting order parameter of 

YBCO at T= 87.9K 

           Δ=0.00156 eV 

Fermi energy of YBCO            Ef =0.23 eV 
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