THE SPATIAL AND TEMPORAL VARIATION OF SELECTED HEAVY METALS, NITROGEN AND PHOSPHORUS IN WATER AND SOILS OF YALA SWAMP, KENYA

BY

ONYANGO CHRISTOPHER OTONDE

SC/PGC/09/08

A THESIS SUBMITTED TO THE SCHOOL OF SCIENCE IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE AWARD OF THE DEGREE OF MASTER OF SCIENCE IN CHEMISTRY, UNIVERSITY OF ELDORET, KENYA

OCTOBER, 2013

DECLARATION

Declaration by the student

This thesis is my original work presented to University of Eldoret for the Master of Science degree in chemistry. The work has not been presented for a degree in any other university. No part of this thesis may be reproduced without the prior permission of the author and /or University of Eldoret.

Signature Date.....

Onyango Christopher Otonde

SC /PGC/ 09/ 08

Declaration by the supervisors

This thesis has been submitted for examination with our approval as university supervisors.

 1. Signature
 Date.

Prof. Lusweti Kituyi

Senior lecturer,

Department of Chemistry and Biochemistry

University of Eldoret

2. Signature Date.....

Dr. Gelas Simiyu

Department of Environmental Biology and Health

School of Environmental Studies

University of Eldoret

DEDICATION

This work is dedicated to my wife, Dorothy and children, Davica, Arnold and Adrian for their moral support and encouragement during the period of study.

ABSTRACT

Studies involving pollutants in the environment have been used as an indicator of their accumulation resulting from human activities. A study of spatial and temporal variation of pollutants involving forty four water and soil samples collected from four different fields within the Yala swamp has been undertaken. The samples were collected in duplicates. Soil samples were dried in the open, crushed, sieved through 2 mm sieve, weighed and digested using the wet method in a block digester. Atomic Absorption Spectrometer was used to analyze heavy metals (Zn, Co, Mn, Cd, Cu, Pb, and Cr). Total N and P were analyzed using colorimetric technique. Respective average levels of Zn and Cu in water 0.505 ppm and 0.129 ppm which were much lower than the maximum values of 5.000 ppm and 1.000 ppm set by WHO/ FAO. Those for Co, Mn, and Cd were 0.219, 1.352 and 0.176 ppm, respectively and were higher than the respective WHO/FAO values. The respective values of Pb and Cr in water were 1.668 and 1.984 ppm, much higher than the maximum limits set by WHO/ FAO and KEBS of 0.010 and 0.050 ppm. The average value of Zn in soil was 0.415 ppm while Co, Mn and Cd had corresponding levels of 0.262, 1.491 and 0.117 ppm which were higher than the maximum set limits of 0.100, 0.100 and 0.003 ppm by WHO / FAO and KEBS. The average value of Cu in soil was 0.237 ppm while those for Pb and Cr were much higher at 1.820 and 5.005 ppm, respectively. The average level of N in water was 0.095 ppm while in soil was 0.118 ppm. The level of P in water was 0.063 ppm while in soil was 0.092 ppm. The results showed a general increasing trend in pollutant accumulation towards the lake hence posing a threat to aquatic life. Therefore, proper and continuous monitoring of pollutants should be done to avoid future dangers caused to the environment.

TABLE OF CONTENTS

DECLARATION	ii
DEDICATION	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	xii
LIST OF FIGURES	xiv
ACKNOWLEDGEMENTS	xvi
CHAPTER ONE	
INTRODUCTION	1
1.1 General Introduction	1
1.2 Background of the study	4
1.3 Statement of the problem	6
1.4 Justification of the study	8
1.5 Rationale	9
1.6 Objectives of the study	9
1.6.1 General objectives	9
1.6.2 Specific objectives	10
1.7 Hypotheses	10

CHAPTER TWO

LITERATURE REVIEW	11
2.1 Introduction	11
2.2 Zinc	11
2.2.1 Sources of zinc	12
2.2.2 Uses of zinc	14
2.2.3 Toxic effects of zinc	15
2.3 Cobalt	16
2.3.1 Sources of cobalt	17
2.3.2 Uses of cobalt	19
2.3.3 Toxic effects of cobalt	21
2.4 Manganese	22
2.4.1 Sources of manganese	22
2.4.2 Uses of manganese	23
2.4.3 Toxic effects of manganese	24
2.5 Cadmium	26
2.5.1 Sources of cadmium	26
2.5.2 Uses of cadmium	29
2.5.3 Toxic effects of cadmium	29
2.6 Copper	31
2.6.1 Sources of copper	31
2.6.2 Uses of copper	33
2.6.3 Toxic effects of copper	34

2.7 Lead	36
2.7.1 Sources of lead	37
2.7.2 Uses of lead	38
2.7.3 Toxic effects of lead	39
2.8 Chromium.	40
2.8.1 Sources of chromium	41
2.8.2 Uses of chromium	42
2.8.3 Toxic effects of chromium	43
2.9 Phosphates	44
2.9.1 Sources of phosphates	44
2.9.2 Importance of phosphorus to plants	45
2.9.3 Toxic effects of phosphorus	46
2.10 Nitrates	46
2.10.1 Sources of nitrogen	46
2.10.2 Importance of nitrogen to plants	48
2.10.3 Toxic effects of nitrogen	50
2.11 Fertilizers	51
2.12 Past studies of heavy metals, nitrogen and phosphorus in water and soil	56
2.13 Atomic absorption spectroscopy	57
2.13.1 Principles of atomic absorption spectroscopy	57
2.13.2 Instrumentation	59
2.14 Spectrophotometer/Colorimetric analysis	61
2.14.1 Principles of spectrophotometers	61

2.14.2 Instrumentation	61
CHAPTER THREE	
MATERIALS AND METHODS	63
3.1 Introduction	63
3.2 Equipment and glassware	63
3.2.1 Glassware	63
3.2.2 Analytical balance	63
3.2.3 Equipment and/ other apparatus	63
3.3 Study area	64
3.3.1 Fielding of the sampling area	66
3.4 Sampling	67
3.4.1 Sampling of water	68
3.4.2 Sampling of soil	68
3.4.2.1 Drying and storage of soil samples	68
3.5 Reagents	69
3.5.1 Reagents for digestion and actual digestion of samples	69
3.6 Digestion of samples	69
3.6.1 Digestion of samples for colorimetric analysis	69
3.6.2 Wet digestion of soil samples for heavy metals analysis	70
3.7 Colorimetric analysis	70
3.7.1 Analysis of phosphorus	71
3.7.1.1 Preparation of reagents and standards	71
3.7.1.2 Colorimetric procedure for total phosphorus	72

3.7.1.3 Preparation of standards plot for phosphorus	73
3.7.2 Analysis of nitrogen	74
3.7.2.1 Preparation of reagents and standards	74
3.7.2.2 Colorimetric procedure for total nitrogen	74
3.7.2.3 Preparation of standards plot for nitrogen	75
3.8 Preparation of stock and working solutions	76
3.8.1 Zinc stock solution	76
3.8.2 Cobalt stock solution	76
3.8.3 Manganese stock solution	77
3.8.4 Cadmium stock solution	77
3.8.5 Copper stock solution	78
3.8.6 Lead stock solution	78
3.8.7 Chromium stock solution	79
3.9 AAS analysis of heavy metals	79
3.9.1 Instrument operating conditions	79
3.9.2 Calibration of working curves.	81
3.9.3 Analysis of samples	81
3.9.4 Recovery tests	82
CHAPTER FOUR	
RESULTS AND DISCUSSION	84
4.1 Introduction	84
4.2 Mean concentration of some heavy metals, total N and P in water	84
4.2.1 General trend in field A	85

4.2.2 General trend in field B	89
4.2.3 General trend in field C	93
4.2.4 General trend in field D	96
4.2.5 Mean concentration of the elements from the four fields	99
4.3 Mean concentration of some heavy metals, total N and P in soil	105
4.3.1 General trend in field A	106
4.3.2 General trend in field B	109
4.3.3 General trend in field C	112
4.3.4 General trend in field D	114
4.3.5 Mean concentration of the elements from the four fields	117
4.3.6 Comparison of the concentration levels of the elements in water and soil	122
4.3.7 Overall concentration of the elements in water and soil	132
4.4 Temporal variation in the concentrations of selected heavy metals, total N	
and P	134
4.4.1 Temporal variations in concentrations of heavy metals, N and P in water	134
4.4.2 Temporal variations in concentrations of heavy metals, N and P in	137
soil	137
CHAPTER FIVE	
CONCLUSION AND RECOMMENDATIONS	139
5.1 Conclusion	139
5.2 Recommendations	141
REFERENCES	142
LIST OF APPENDICES	155

LIST OF TABLES

Table1: Atomic absorption optimized conditions for determination of zinc, cobalt,	
manganese, cadmium, copper, lead and chromium	.80
Table 2: ABC optimized conditions for determination of zinc, cobalt, manganese,	
Cadmium, copper and chromium	.80

LIST OF FIGURES

Figure 1: General relationships between rock types and total cobalt content
Figure 2: Operation principle of an atomic absorption spectrometer
Figure 3: Block diagram of instrumentation of AAS
Figure 4: Map of Kenya65
Figure 5: Map of Nyanza province showing Yala swamp
Figure 6: Yala swamp Dominion Farm Rice fields and Sampling plots
Figure 7: Calibration curve for phosphorus
Figure 8: Calibration curve for nitrogen
Figure 9: Concentration of heavy metals (ppm) in water in field A85
Figure 10: Concentration of total P and total N in water in field A
Figure 11 Concentration of heavy metals (ppm) in water in field B
Figure 12: Concentration of total P and total N in water in field B90
Figure 13: Concentration of heavy metals (ppm) in water in field C
Figure 14: Concentration of total P and total N in water in field C93
Figure 15: Concentration of heavy metals (ppm) in water in field D96
Figure 16: Concentration of total P and total N in water in field D
Figure 17: Mean concentration of heavy metals in different fields
Figure 18: Mean concentration of total P and total N in different fields102
Figure 19: Concentration of heavy metals (ppm) in soil in field A106
Figure 20: Concentration of total P and total N in soil in field A106
Figure 21: Concentration of heavy metals (ppm) in soil in field B109
Figure 22: Concentration of total P and total N in soil in field B110
Figure 23: Concentration of heavy metals (ppm) in soil in field C

Figure 24: Concentration of total P and total N in soil in field C113
Figure 25: Concentration of heavy metals (ppm) in soil in field D115
Figure 26: Concentration of total P and total N in soil in field D116
Figure 27: Mean concentration of heavy metals in different fields in soil
Figure 28: Mean concentration of total P and total N in different fields in soil119
Figure 29: Comparison of levels of heavy metals in water and soil in field A123
Figure 30: Comparison of levels of total P and N in water and soil in field A123
Figure 31: Comparison of levels of heavy metals in water and soil in field B126
Figure 32: Comparison of levels of total P and N in water and soil in field B127
Figure 33: Comparison of levels of heavy metals in water and soil in field C128
Figure 34: Comparison of levels of total P and N in water and soil in field C129
Figure 35: Comparison of levels of heavy metals in water and soil in field D130
Figure 36: Comparison of levels of total P and N in water and soil in field D131
Figure 37: Overall Mean concentration of heavy metals in water and soil132
Figure 38: Overall Mean concentration of P and N in water and soil
Figure 39: Temporal variation in concentration of heavy metals in water
Figure 40: Temporal variation in concentration of P and N in water
Figure 41: Temporal variation in concentration of heavy metals in soil
Figure 42: Temporal variation in concentration of P and N in soil

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to my supervisors Prof. Lusweti Kituyi of the Department of Chemistry and Biochemistry, School of Science and Dr. Gelas Simiyu of the Department of Environmental Biology and Health, School of Environmental Studies for their assistance and guidance in writing this thesis.

I am also grateful to the entire Department of Chemistry and Biochemistry of University of Eldoret for its invaluable assistance and support. Special thanks go to Mr. Otieno and Mr. Kirwa, for technical support.

Last but not least, I thank God for giving me the strength, energy and good health during the entire study period.