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Low soil nitrogen levels, compounded by the high costs associated with nitrogen
supplementation through fertilizers, significantly contribute to food insecurity,
malnutrition, and rural poverty in maize-dependent smallholder communities of
sub-Saharan Africa (SSA). The discovery of genomic regions associated with low
nitrogen tolerance in maize can enhance selection efficiency and facilitate the
development of improved varieties. To elucidate the genetic architecture of grain
yield (GY) and its associated traits (anthesis-silking interval (ASI), anthesis date (AD),
plant height (PH), ear position (EPO), and ear height (EH)) under different soil
nitrogen regimes, four F3 maize populations were evaluated in Kenya and
Zimbabwe. GY and all the traits evaluated showed significant genotypic
variance and moderate heritability under both optimum and low nitrogen
stress conditions. A total of 91 quantitative trait loci (QTL) related to GY (11)
and other secondary traits (AD (26), PH (19), EH (24), EPO (7) and ASI (4)) were
detected. Under low soil nitrogen conditions, PH and ASI had the highest number
of QTLs. Furthermore, some common QTLs were identified between secondary
traits under both nitrogen regimes. These QTLs are of significant value for further
validation and possible rapid introgression into maize populations using marker-
assisted selection. Identification of many QTL with minor effects indicates
genomic selection (GS) is more appropriate for their improvement. Genomic
prediction within each population revealed low to moderately high accuracy
under optimum and low soil N stress management. However, the accuracies
were higher for GY, PH and EH under optimum compared to low soil N stress. Our
findings indicate that genetic gain can be improved in maize breeding for low N
stress tolerance by using GS.
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1 Introduction

Maize (Zea mays L.), a staple crop in sub-Saharan Africa (SSA),
is projected to increase in demand (Ekpa et al., 2018), necessitating
improved breeding systems to maximize productivity. Over the
years, maize productivity in SSA has been limited by the adverse
effects of parasitic weeds (e.g., Striga sp. (Kanampiu et al., 2018;
Yacoubou et al., 2021)), insect infestations (e.g., fall armyworm
(Baudron et al., 2019; De Groote et al., 2020)), and disease incidences
(e.g., Maize lethal necrosis (Boddupalli et al., 2020)). Most notably,
inadequate soil fertility (particularly low nitrogen) is a primary cause
of low maize yields in the region’s smallholder farming
communities. Modelling studies have established that climate
change has the potential to worsen these current maize
production constraints (Tesfaye et al., 2015), especially under low
soil nitrogen conditions (Falconnier et al., 2020). In this regard,
maize breeding holds a significant potential to provide sustainable
solutions to the prevailing and projected biotic and abiotic
constraints (Eriksson et al., 2018; Ndlovu, 2020).

As nitrogen use efficiency (NUE) is critical for sustainable
productivity, there is major interest in developing varieties that
perform better in low soil nitrogen stress conditions (Ribaut et al.,
2007). However, to harness plant breeding for such stress
conditions, an understanding of the performance of maize
genotypes under low nitrogen conditions is required. Assessing
the performance of maize genotypes under different nitrogen
regimes is critical for identifying promising parental lines.
Phenotypic evaluations can reveal useful diversity in maize
germplasm (Shitta et al., 2021; Chen et al., 2023a). However,
morphological characterizations of genotypes are influenced by
both the genotype (G) and environment (E), as well as G × E
interaction, and hence may not accurately reflect the genotypic effect
of nitrogen utilization per se (de Carvalho et al., 2012). In addition,
large genotype X season and genotype × location interactions can
stymie progress in selecting for low nitrogen tolerance (Ribaut et al.,
2007). In this context, understanding the genetic architecture of
grain yield (GY) and other secondary traits that are associated with
low soil nitrogen can speed up genetic improvement (Ertiro et al.,
2020c) for low nitrogen tolerance in tropical maize.

Maize GY under low soil nitrogen is a complex trait governed by
multiple genes. In most cases, maize breeding for low nitrogen
focuses on the anthesis-silking interval (ASI), anthesis date (AD),
plant height (PH), ear position (EPO), and ear height (EH) for
indirect selection and GY for direct selection (Worku et al., 2007;
Worku et al., 2008; Worku et al., 2012; Das et al., 2019; Ertiro et al.,
2020b; Ertiro et al., 2022; Ndlovu et al., 2022). However,
morphological characterizations are time-consuming, cost-
ineffective, and lack accuracy. The complex nature of breeding
maize under low nitrogen conditions has necessitated the use of
quantitative trait loci (QTL) based approaches which have been
shown to contribute significantly to the understanding of the genetic
basis of crop performance and stability under nitrogen-stressed
conditions (Semagn et al., 2015). The discovery and
characterization of QTL can assist breeders in using genomic
regions linked with complex trait expression and deciphering
their genetic contribution at the target loci (Ertiro et al., 2020c).
In addition, through QTL analysis, the biological mechanisms
responsible for phenotypic expression can be pursued.

Furthermore, exploiting molecular markers in breeding has
allowed the mapping of a subset of markers associated with one
or more QTL that contribute to regulating the expression of complex
traits like GY. Such molecular markers can form the concrete basis
for the use of other genomic approaches such as genomic selection in
the desired population (Würschum, 2012). Unfortunately, little is
known about the genetic basis of GY and associated traits under low
nitrogen conditions, and major effect QTLs are yet to be reported
(Ertiro et al., 2020c).

Genomic selection (GS) is a tool increasingly used to reduce
the breeding cycle length and increase genetic gain in both crops
and livestock (Meuwissen et al., 2001). The success of GS in the
dairy industry (where the breeding cycle of the cattle can be
reduced from 7 years to 18 months) has helped to achieve twice
the genetic gain for key traits (García-Ruiz et al., 2016). Such
successes have motivated plant breeders to apply GS in crop
improvement for reducing the breeding cycle and increase
genetic gain. Currently, GS is applied to improve a range of
different traits in maize (Beyene et al., 2015; Ertiro et al., 2020a;
Kibe et al., 2020; Gowda et al., 2021; Ndlovu et al., 2022), wheat
(Dreisigacker et al., 2021; Bonnett et al., 2022; Juliana et al., 2022;
Ficht et al., 2023), and other crops (Hu et al., 2022; Qin et al., 2022;
Chen et al., 2023b). GS has been successfully integrated into maize
breeding programs for improving GY under optimum and drought
conditions (Beyene et al., 2015; Zhang et al., 2017b; Vivek et al.,
2017; Beyene et al., 2019; Wang et al., 2020; Beyene et al., 2021).
Linkage mapping enables the detection of QTL for the target trait
by using different bi-parental populations, whereas GS enables the
selection of superior individuals by considering the effects of
multiple genes controlling a target trait (Crossa et al., 2017;
Yuan et al., 2019). Combining linkage mapping results with GS
will accelerate the breeding efficiency for GY and other complex
traits under low N stress conditions. Therefore, the full potential of
GS needs to be assessed in biparental and/or practical breeding
populations for low soil N tolerance.

Studies conducted over the last 20 years have identified QTL that
generally explained a significant portion of the phenotypic variance,
and therefore gave rise to an optimistic assessment of the prospects
of marker-assisted selection (Semagn et al., 2010). According to
Coque and Gallais (2006), the detected marker QTL associations in
maize revealed the consistency of the involvement of some traits,
such as root architecture and glutamine synthase activity, which
would be of major importance for GY setting under both optimum
and low nitrogen conditions. The discovery of genomic regions
associated with GY and other agronomic traits in maize under low
soil nitrogen conditions is of paramount importance. Hence, this
study sought to evaluate four F3 populations to 1) estimate the
phenotypic effect and heritability for GY and other agronomic traits
under optimum and low nitrogen management 2) identify the
genomic regions associated with these traits, and 3) assessing the
usefulness of GS in improving GY and other agronomic traits under
optimum and low soil N conditions. The findings of this study can
provide genetic resources that can be used in scaling the application
of MAS for enhancing maize GY in nitrogen-starved soils in SSA.
Furthermore, the identification of QTL can hasten maize breeding
cycles and facilitate the release of nitrogen-tolerant or NUE varieties
for resource-constrained smallholder farmer communities in the
region.
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2 Materials and methods

2.1 Plant materials

Four F3 tropical maize populations were evaluated in Kenya and
Zimbabwe. The populations were developed by the Global Maize
Program of the International Maize and Wheat Improvement
Center (CIMMYT). The specific details of the tested populations
are presented in Table 1. These lines are adapted to mid-altitude
regions (1,000–1500 M Above sea level) of SSA. They are bred on a
good-by-good basis and adapted to stress conditions. Populations
are test crossed with an appropriate tester from the opposite
heterotic group for phenotypic evaluations. The CIMMYT lines
utilized for the project were derived from breeding programs
targeting tolerance to low soil nitrogen; hence the best choice for
QTL mapping with most of the lines included in two association
mapping panel (AMP) constituted under IMAS (improved maize
for Africa soils) and DTMA (Drought Tolerant Maize for Africa)
projects (Semagn et al., 2012; Ertiro et al., 2020a). The four
populations formed a set of multiple bi-parental populations used
in the current study.

2.2 Field trial

All four populations were evaluated for response to low soil
nitrogen conditions at one to four different locations; Kiboko
(Longitude 37°E, Latitude 2°S, 975 M A.S.L), Embu (Longitude
37°E, Latitude 3°S, 1560 M A.S.L), and Harare in Zimbabwe
(Longitude 310 E, Latitude 17°S, 1490 M A.S.L). The lines were
evaluated on an alpha lattice incomplete block design under two
nitrogen levels. The two nitrogen treatments were low N (N-
depleted field/plot with no application of N fertilizer) and at
normal farmer practice conditions (optimum N 200 kg/ha). The
low-N sites were prepared by depleting N by growing sorghum at
high density with no N fertilizer sources added for four cropping
cycles. The depletion crop was uprooted at near maturity and
removed from the low-N field to prevent the incorporation of
crop residues into the soil. A soil nitrate concentration ranging
from 7.5 to 15 parts per million (ppm) is indicative of soil nitrogen
deficiency (Zaman-Allah et al., 2018). Low N sites with around
10 ppm of nitrate level provide good experimental conditions for
detecting useful genetic variation. The sites used in the present study
showed soil nitrate levels ranging from 0.10 to 0.12 ppm in stress
experimental sites, while in the optimum sites, the levels were greater

than 0.25 ppm. Single row plots measuring 5 m long at 0.75 m row
spacing with two seeds per hill were sown. After 3 weeks of planting,
plants were thinned to one plant per hill to obtain a final population
density of 53,333 plants per hectare. All entries were planted on the
same day in conventionally tilled plots and maintained under rain-
fed or irrigated conditions.

2.3 Data collection

2.3.1 Phenotyping of important agronomic traits
Ten plants in the middle of the row were selected for each

genotype for phenotypic evaluation. Phenotypic components
measured and analyzed are plant height (PH in centimeters),
anthesis date (AD, days), anthesis silking interval (ASI, days), ear
height (EH, in centimeters), ear position (EPO, ratio of EH/PH),
number of ears per plant (EPP, total number of ears per plot divided
by number of plants per plot) and grain yield (GY in t/ha). Mature
ears were harvested, manually bagged, air-dried, and shelled on an
electric shelling device. The total GY of each plot was weighed on a
balance and converted to GY into t/ha.

Best linear unbiased predictors (BLUPs) were calculated with
mixed model where genotypes and other factors were treated as
random except replications and best linear unbiased estimators
(BLUEs) were calculated where genotype entries and replications
are treated as fixed effects and the rest of the terms as random.
Estimating broad-sense heritability, all the terms were considered
random. Broad sense heritability was estimated by the formula:

h2 � σ2G/ σ2G + σ2GE/E + σ2e/Er( )

Where σ2G is the genotypic variance, σ2GE is the Genotypic by
environment interaction (GEI), σ2e is the error variance, E is the
number of environments and r is the number of replications in each
trial. The phenotypic and genotypic correlations among traits were
evaluated as described by Hirel et al. (2007).

2.4 Genotypic analysis

Phenotypic data was collected on testcross hybrids whereas F3
population lines were genotyped. Since, the single tester was used for
each population, assumption is tester effect is same across lines,
therefore, tester effect was not included in the model for analyses.
Total DNA was extracted from bulked young leaves of the lines

TABLE 1 Details of the populations used in this study and number of locations evaluated under optimum and low N management.

Population Pedigree Tester Population size No of locations

Opt Low N

POPULATION 1 CML494×CML550 CML495 357 3 4

POPULATION 2 CKL05017× CML536 CML444× CML395 276 3 3

POPULATION 3 CML550× CML507 CML442× CML312 315 2 1

POPULATION 4 VL081452× VL058589 CML444× CML395 158 1 2

*Opt, Optimum; Low N–Low soil N management.
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according to the CTAB method (CIMMYT, 2005), and the DNA
quality for each sample was checked using gel-electrophoresis and
spectrophotometer (NanoDrop ND8000 Thermo Scientific) before
genotyping. Genotyping was performed using the Illumina
MaizeSNP1500 Bead Chip evenly spaced SNP to cover the whole
maize genome (Ganal et al., 2011). The above task was performed at
LGC genomic labs in the United Kingdom (https://www.lgcgroup.
com/genotyping/).

Markers which are homozygous for both the parents and
polymorphic between them were retained for mapping in each
population. Linkage maps in all four populations were
constructed using QTL IciMapping version 4.1 software
(Meng et al., 2015). Finally, we used 202, 452, 384, and
387 high-quality SNPs in F3pop1, F3pop2, F3pop3, and
F3pop4, respectively. Linkage map was constructed by using
these SNPs, by selecting the most significant markers using
stepwise regression. A likelihood ratio test was used to
calculate the logarithm of odds (LOD) for each marker at
score of >3 with a 30 cM maximum distance between two loci.
The recombination frequency between linked loci was
transformed into cM (centi Morgan) using Kosambi”s
mapping function (Kosambi, 1916). BLUPs across
environments were used to detect QTLs based on inclusive
composite interval mapping (ICIM) for each population.
Phenotypic variation explained by individual QTL and total
variation explained by all QTLs together was estimated. QTL
naming was done with letter “q” indicating QTL, followed by

abbreviation of trait name, the chromosome and marker
position, respectively (Ribaut et al., 1997). Additive (a)
and dominance (d) effects for each QTL as estimated with
QTL IciMapping v.4.1 were used to calculate the ratio of
dominance level (|d/a|). This ratio was used to classify the
nature of QTL: additive (A; 0 ≤ |d/a| ≤ 0.2); partially
dominant (PD; 0.2 < |d/a| ≤ 0.8); dominant (D; 0.8 < |d/a| ≤
1.2) and overdominant (OD; |d/a| > 1.2).

2.5 Genomic prediction

Genomic prediction (GP) analyses were conducted in R
program version 4.2.1 (R Core Team 2023). GP was applied on
each F3 population to find out the prediction ability of GY and other
agronomic traits evaluated in optimum and low soil N conditions.
We used GP model RR-BLUP to predict the untested lines using a
five-fold cross validation (Zhao et al., 2012; Crossa et al., 2017).
BLUEs across environments for each of the F3 population were used
for the analysis. For GS analyses polymorphic SNPs between the
parents of each population was used, like 202, 452, 384, and
387 SNPs in F3pop1, F3pop2, F3pop3 and F3pop4, respectively
were used. We applied five-fold cross validations with ‘within
population’ approach where both training and estimation set are
derived from within each of biparental population. For each trait in
each population, 100 iterations were done for sampling of the
training and estimation sets. The prediction accuracy was

FIGURE 1
Phenotypic distribution for GY, AD and PH under optimum and low soil nitrogen conditions. The sky blue and pink colour denotes trials conducted
under optimum and low nitrogen conditions, respectively. GY–Grain yield; AD - anthesis date; PH–plant height.
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calculated as the correlation between the observed and predicted
breeding values divided by the square root of heritability (Dekkers,
2007).

3 Results

3.1 Phenotypic distributions and correlation
of traits

GY, ASI, AD, PH, EPO, and EH varied widely across the two
nitrogen regimes (i.e., optimum and low nitrogen environments).
The extent of variation, however, differed between the four bi-
parental maize populations. Low nitrogen conditions increased the
trial mean for AD and decreased the trial mean for GY and PH
across the four F3 populations tested in this study (Figure 1,
Supplementary Table S1). GY showed a negative genotypic
correlation with AD and ASI across the two nitrogen regimes
(Figure 2). Moreover, consistent positive genetic correlations for
GY were recorded with EH, EPO, and PH.

3.2 Trial mean, genetic variance, and
heritability of traits

Population 1 (CML494xCML550): Across the study sites,
average GY was 5.22 t/ha and 2.52 t/ha under optimum and low
soil nitrogen conditions, respectively (Table 2). A margin of 2-day
extension in AD was observed under low soil nitrogen conditions.

The genotypic and genotype × environment interaction effects were
significant (p ≤ 0.05) for GY. Under optimum conditions, moderate
heritabilities across environments were recorded for AD (0.55), GY
(0.54), and EH (0.51). Similarly, AD (0.62), GY (0.58), and EH (0.55)
exhibited slightly higher heritability under low nitrogen conditions.
The lowest heritabilities under optimum nitrogen conditions were
exhibited by PH (0.36) and EPO (0.42) traits. ASI (0.18), PH (0.39),
and EPO (0.48) recorded the lowest heritability values under low
nitrogen conditions.

Population 2 (CKL5017xCML536): Under optimum conditions
(Table 2), moderate heritability was observed for PH (0.68) and EH
(0.49) whilst GY (0.28) recorded low heritability across the studied sites.
Under low nitrogen conditions, all the studied traits recorded low
heritabilities with GY pegged at 0.31. The genotypic and genotype ×
environment interaction effects were significant (p ≤ 0.05) for GY.
Across the studied regions, the mean GY was 7.72 t/ha and 3.37 t/ha
under optimum and low nitrogen conditions, respectively.

Population 3 (CML550xCML507): Low heritabilities were
recorded across the tested traits under both optimum and low
nitrogen conditions (Table 2). GY heritabilities were 0.31 and
0.29 under optimum and low nitrogen conditions, respectively.
The genotypic and genotype × environment interaction effects
were significant (p ≤ 0.05) for GY. In this population, the mean
GY was 6.89 t/ha and 0.94 t/ha under optimum and low nitrogen
conditions, respectively.

Population 4 (VL081452xVL058589): All traits tested using
population 4 under optimum conditions recorded low
heritabilities (Table 2) including GY (0.27). Under low nitrogen
conditions, AD (0.58) exhibited moderate heritability whilst GY

FIGURE 2
Phenotypic correlations of GY and other agronomic traits evaluated under optimum and low soil nitrogen conditions in F3 pop1 CML494 x
CML550 population. The x marks indicated values are not significant at p < 0.05. LN–low soil N conditions. Correlations with >0.11, and >0.19 were
significant at 0.05, and 0.01 (p) levels, respectively. GY–Grain yield; AD - anthesis date; ASI - anthesis silking interval; PH–plant height; EH, ear height;
Epos–ear position; EPP–ears per plant; SEN–senescence.
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TABLE 2 Trait means, heritability and variance components of GY and other traits evaluated under optimum and low nitrogen conditions in four F3 populations
across multiple environments.

Trait Mean σ2G σ2GxE σ2e H2

F3 pop1 CML494×CML550

Optimum GY 5.22 0.44** 0.51** 1.25 0.54

AD 64.58 0.42** 0.26** 1.53 0.55

PH 225.27 17.10** 12.19** 161.99 0.36

EH 107.94 15.09** 1.23** 82.84 0.51

EPO 0.46 0.0002* 0.0000 0.0012 0.42

Low N GY 2.52 0.11** 0.10** 0.41 0.58

AD 66.57 0.53** 0.30** 1.97 0.62

ASI −0.51 0.08* 0.06* 1.35 0.18

PH 154.64 14.92** 23.10** 137.33 0.39

EH 67.05 11.84** 7.55** 62.73 0.55

EPO 0.41 0.0002* 0.00 0.002 0.48

F3 pop 2 CKL5017×CML536

Optimum GY 7.72 0.12** 0.15** 1.60 0.30

AD 71.10 0.42** 0.03** 2.34 0.41

PH 250.79 45.01** 4.99** 74.41 0.68

EH 83.98 33.01** 0.00 129.88 0.68

EPO 0.46 0.0003** 0.00 0.003 0.41

Low N GY 3.37 0.06** 0.01* 0.84 0.31

AD 73.75 0.70** 0.29** 3.49 0.41

PH 180.17 16.61** 5.91** 185.53 0.34

EH 83.98 20.01** 0.00 126.88 0.49

EPO 0.46 0.0003* 0.00 0.004 0.41

F3 pop 3 CML550×CML507

Optimum GY 6.89 0.11* 0.14** 1.24 0.31

AD 67.59 0.50** 0.16** 2.32 0.43

PH 215.46 43.72** 4.35** 156.63 0.51

EH 106.11 14.93** 4.33** 94.40 0.37

Low N GY 0.94 0.03* - 0.13 0.29

AD 82.37 1.10** - 1.69 0.57

PH 142.88 26.73** - 83.97 0.39

EH 63.55 10.25** - 34.65 0.37

F3 pop 4 VL081452×VL058589

Optimum GY 11.05 0.53** - 2.82 0.27

AD 73.76 0.32* - 2.86 0.18

PH 262.81 12.96** - 194.11 0.14

EH 2.01 1.08** - 7.08 0.20

(Continued on following page)
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(0.39) and ASI (0.21) had the lowest heritabilities. The genotypic and
genotype × environment interaction effects were significant (p ≤ 0.05)
for GY. Across the study sites, average yields were 11.05 t/ha and
2.49 t/ha under optimum and low nitrogen conditions, respectively.

3.3 QTLs mapping in four F3 maize
populations

The study obtained a total of 906.83, 1,650.28, 1857.12, and
2169.97 cM from 202, 452, 384, and 387 polymorphic SNPs for F3
population 1, 2, 3, and 4, respectively (Table 3). The mean distance
between adjacent markers was lowest in population 2 (3.65 cM) and
highest for population 4 (5.61 cM). Across the ten maize chromosomes,
a total of 91 significant QTLs were identified for GY (11), AD (26), PH
(19), ASI (4), EH (24), and EPO (7) under optimum (52) and low
nitrogen (39) conditions (Tables 4–7). The identified QTLs were
distributed across 10 chromosomes. Across environments,
chromosomes 1 (16) and 8 (14) had the highest number of QTLs,
whilst chromosomes 7 (5) and 5 (6) had the lowest number ofQTLs. The
identified QTLs were distributed as 19, 36, 18, and 36 for populations 1,
2, 3, and 4, respectively. Proportional phenotypic variance for each QTL
ranged from 0.7% (AD for population 2 under optimum nitrogen) to
15.22% (AD for population 4 under low nitrogen).

Eleven QTLs were identified for GY under optimum (7) and low
soil nitrogen (4) conditions distributed across all chromosomes
except chromosome 4, 5, 6, and 8 (Tables 4–8). Across all
genotypes and nitrogen regimes, no common QTL was identified.
QTLs associated with GY under low nitrogen were detected in
chromosomes 1 (population 2, 3, and 4) and 10 (population 3). On
the other hand, QTL underlying GY under optimum nitrogen
conditions were observed on chromosomes 1 (population 1), 2
(population 4), 8 (population 2), 9 (populations 1 and 3), and 10
(population 4). Under optimum conditions, the total phenotypic
variance explained (TPVE) by all QTL was 11.58%, 16.52%, 12.15%,
and 7.68% for populations 1, 2, 3, and 4, respectively. TPVE by all
QTL under low nitrogen conditions was 6.20% (population 2),
5.12% (population 3) and 19.16% (population 4). Among the
QTL detected for GY, we observed additive, dominance, partial
dominance and over dominance effect QTL across 4 populations.

For AD, 26 significant QTLs were identified across the two
nitrogen regimes. The QTLs were detected on chromosomes 1, 2,
3, 4, 7, and 10 under low nitrogen and on chromosomes 1, 2, 3, 4, 5, 6,
8, and 9 under optimum nitrogen conditions. No common QTL for
the two nitrogen regimes was identified across the studied
F3 populations. TPVE by all QTL under optimum conditions was

8.09%, 18.89%, 11.80% and 12.64% for populations 1, 2, 3 and 4,
respectively. Under low nitrogen conditions, TPVE by all QTL was
7.70% (population 1), 18.55% (population 2), 7.45% (population 3)
and 35.24% (population 4). The nature of the QTLs classified a few as
additive, dominant, partial dominant and overdominance groups.

Four QTLs were identified for ASI under low nitrogen
conditions. These were detected on chromosomes 1, 3, 4, and 6.
As in the case of GY and AD, no commonQTL was identified. TPVE
by all QTLs under low nitrogen conditions was 6.91% (population 1)
and 16.73% (population 4).

For EH, 24 significant QTLs were detected with 9 of those under
low soil nitrogen conditions. The QTLs underlying EH under low
soil nitrogen conditions were detected in chromosomes 1, 2, 3, 5, 6,
7, 8, and 9. Under optimum conditions, the QTLs were found in all
10 maize chromosomes except for chromosome 7. Common QTL
for the two nitrogen regimes was not identified. TPVE by all QTLs
under optimum conditions was 23.20%, 23.35%, 22.25% and 15.26%
for populations 1, 2, 3, and 4, respectively. Under low soil nitrogen
conditions, TPVE by all QTL was 4.87% (population 1), 14.42%
(population 2), and 13.43% (population 3).

Significant QTLs underlying EPO were recorded as 7 under both
nitrogen regimes. One QTL (Chromosome 6: qEPO6_157) was found
in both low and optimum nitrogen conditions. Under low soil nitrogen
management, QTLs were detected in chromosomes 3, 4, and 6. On the
other hand, chromosomes 1, 3, 6, and 8 housed QTL underlying EPO
under optimum conditions. Under optimum conditions, the TPVE by
all QTL was 15.56%, and 11.13% for populations 1 and 2, respectively.
TPVE by all QTLs under low nitrogen conditions was 11.56%
(population 1) and 17.98% (population 2).

For PH, 19 significant QTLs were identified across the studied
genotypes and nitrogen regimes. Nine of those were identified under
low nitrogen conditions in chromosomes 1, 2, 3, 6, 7, and 9. Under
optimum conditions, significant QTLs were detected in chromosomes
1, 4, 6, 8, and 9. No common QTL for the two nitrogen regimes was
identified across the studied F3 populations. TPVE by all QTLs under
optimum conditions was 6.00%, 25.07%, and 25.81% for populations
1, 2, and 3, respectively. Under low nitrogen conditions, TPVE by all
QTL was 9.11% (population 1), 18.76% (population 2), 7.27%
(population 3) and 6.34% (population 4).

3.4 Overlapping QTL for each trait evaluated
under low and optimum nitrogen conditions

The identification of common QTLs is crucial in targeting
markers that can be used in breeding for improved nitrogen stress

TABLE 2 (Continued) Trait means, heritability and variance components of GY and other traits evaluated under optimum and low nitrogen conditions in four F3
populations across multiple environments.

Trait Mean σ2G σ2GxE σ2e H2

Low N GY 2.49 0.08* 0.05* 0.42 0.39

AD 62.49 0.70** 0.27** 1.47 0.58

ASI 1.27 0.26** 0.08** 3.17 0.21

PH 173.09 40.44** 0.00 93.40 0.63

*, ** Significant at p< 0.05 and p< 0.01 levels, respectively. Low N–low soil N conditions. GY, Grain yield; AD, anthesis date; ASI, anthesis silking interval; PH, plant height; EH, ear height; EPO,

ear position; σ2G,- genotypic variance; σ2GxE,- genotypic × environment interaction variance; σ2e,- residual error variance; H2 - heritability.
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tolerance and NUE. This study identified several common QTLs
across the studied F3 populations and nitrogen regimes (Tables 4–8).
Under optimum conditions, one QTL (qAD03_158) for AD was
overlapping with one QTL under low soil nitrogen conditions on
chromosome 3 (157.97–159.08Mbp). For ASI and PH, no common
QTL was identified across the two nitrogen regimes. Under low soil
nitrogen conditions, one QTL for EH, qEH01_21 (16.42–42.32 Mbp),
was overlapping with two QTLs under optimum conditions (from
20.99 to 21.87 Mbp and 16.42 to 42.32 Mbp) on chromosome 1.
Similarly, under low nitrogen, the second QTL for EH (qEH09_108:
107.26 to 113.71Mbp) overlapped with one QTL under optimum
conditions (28.74–119.42Mbp) on chromosome 9. One common
QTL for EPO, qEP06_157, was found under both low and optimum
nitrogen conditions (156.17–159.55Mbp and 156.17 to 159.55Mbp)
on chromosome 6. Under optimum conditions, one QTL for GY
(qGY10_130) was found on chromosome 10 in both population 3
(125.47–131.38Mbp) and population 4 (46.11–130.61Mbp). A
similar observation was made for one QTL underlying EH
(qEH09_108) which was seen on chromosome 9 under optimum
nitrogen conditions in population 3 (28.74–119.42 Mbp) and low
nitrogen conditions in population 2 (107.26–113.71Mbp). This study
found no QTL correspondence among the studied traits across the
nitrogen regimes.

3.5 Genomic prediction correlations for
traits evaluated under low and optimum
nitrogen conditions

To assess the potential breeding value of GY and other agronomic
traits under optimum and low soil N management, GS analysis was
performed on all four populations using NUE-associated traits and
genotypic markers with RR-BLUP. The RR-BLUP prediction
correlations were 0.35, 0.41, 0.06, and 0.35 in populations 1, 2, 3,
and 4, respectively (Figure 3; Table 9) under optimum, whereas under
low soil N management, the correlations were reduced to 0.21, 0.41,
0.04, and −0.02 in population 1, 2, 3, and 4, respectively. For AD,
prediction correlations were 0.31, 0.63, 0.12, and 0.37 under optimum
and 0.26, 0.43, 0.29, and 0.36 under low soil N management,
respectively (Figure 3; Table 9). For PH, prediction correlations
were 0.35, 0.52, 0.34, and 0.18 under optimum, and 0.44, 0.40,
0.15, and 0.10 under low soil N management in populations 1, 2,
3, and 4, respectively. Overall, the prediction correlations were higher
in population 2 and lower in population 4 for all the traits under both
optimum and low soil N management.

4 Discussion

4.1 Impact of low nitrogen stress on GY and
other associated traits

The role of nitrogen stress in yield reduction and overall crop
development cannot be overstated. An in-depth understanding of
GY and other related agronomic traits is critical for the evidence-
based development of varieties that are tolerant to low soil nitrogen
stress (Derera et al., 2008). However, phenotypic characterization of
such complex traits is very challenging due to unpredictableTA
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environmental and edaphic conditions (Liu et al., 2010).
Importantly, selection through morphological characterization
under nitrogen stress conditions is very inconsistent and will not
give correct phenotypic data thereby derailing progress in maize
breeding schemes. In contrast, the integration of precise genomic
tools coupled with conventional breeding can accelerate the
development of nitrogen-stress adaptive cultivars with high
yields. In this research, two nitrogen regimes (i.e., low, and
optimum nitrogen) served as the basis for the identification of
QTLs related to GY and other agronomic traits (i.e., AD, ASI,
PH, EH, and EPO) and their cross-cutting heritabilities in four F3
maize populations.

The target traits measured followed a normal distribution
indicating that the studied traits are quantitative in nature and
the tested F3 populations are stable and suitable for QTL mapping.
The mean GY reduction in this study was 69.82% under low
nitrogen stress. This is very close to the 71% yield reduction
recorded in the study by Ertiro T. B. et al. (2020). Yield
reduction under low soil nitrogen stress demonstrates the
importance of nitrogen in the growth and development of maize
(Ertiro T. B. et al., 2020). Numerous studies have linked a reduction

in yield under low-N conditions to decreased kernel number due to
abortion (Bänziger et al., 1997; Agrama et al., 1999; Ribaut et al.,
2007). Low soil nitrogen environments decrease the number of
kernels and ears per plant, decrease the chlorophyll concentration in
the ear leaf, and lowers PH by roughly half (Ribaut et al., 2007).

Genotypic and genotype × environment interaction effects were
significant for GY across the tested nitrogen regimes. Generally,
across the studied environments, the most responsive trait was AD.
Our results showed that low nitrogen stress extends the AD inmaize.
Furthermore, low nitrogen stress increased genetic variance for AD
across the studied genotypes. This can be viewed as an indication of
the adaptive nature of this secondary trait.

Across the four F3 populations, there was a consistent moderate
to low heritability on all the studied traits across the two nitrogen
regimes. For all traits, heritability was shown to decline under low
nitrogen stress. The heritabilities of almost all the studied traits were
moderate to low. Similar trends were also reported in earlier studies
with DH populations (Ertiro et al., 2020b; Ertiro et al., 2022) and
association panel (Ertiro et al., 2020a) which were evaluated under
optimum and low soil N conditions. Despite this, the heritabilities
were significant enough to facilitate indirect selection for increased

TABLE 4 Genetic characteristics of QTLs detected for GY and associated traits under optimum and low-nitrogen stress in F3 population 1.

Mgmt Trait Chr QTL
name

Position
(cM)

Left
marker

Right
marker

Physical
position
(Mbp)

LOD PVE
(%)

TPVE
(%)

Add Dom QTL

F3 pop1 CML494×CML550

Opt GY 1 qGY01_21 83 PZA02487.1 PZA00425.11 20.99–21.87 4.94 6.03 11.58 −0.18 0.009 A

9 qGY09_30 60 PZB01110.6 PHM13183.12 29.66–76.42 5.39 6.91 0.19 0.029 A

AD 1 qAD01_246 27 PZB00895.1 PZA01588.1 245.60–257.19 3.45 5.17 8.09 −0.14 −0.063 PD

PH 7 qPH07_88 13 PZB00174.1 PZA01690.7 87.78–105.88 3.32 6.00 6.00 −2.20 −1.069 PD

EH 1 qEH01_21 83 PZA02487.1 PZA00425.11 20.99–21.87 3.42 5.07 23.20 −0.71 −0.071 A

4 qEH04_115 46 PZA00704.1 PZA03564.1 114.90–119.66 3.53 5.30 −0.72 −0.039 A

8 qEH08_60 23 PZA02683.1 PZA00379.2 59.15–74.72 5.42 8.46 −0.87 0.216 PD

10 qEH10_95 75 PHM229.15 PZB01358.1 92.58–107.42 3.40 5.22 0.74 −0.037 A

EPO 6 qEP06_157 0 PHM5361.13 PZA00889.2 156.17–159.55 4.68 6.16 15.56 0.00 0.002 PD

8 qEP08_60 23 PZA02683.1 PZA00379.2 59.15–74.72 9.39 12.76 0.00 0.003 PD

Low N AD 8 qAD08_128 15 PZB01454.1 PHM15744.10 127.95–138.96 3.05 5.00 7.70 −0.16 0.023 A

ASI 1 qASI01_21 96 PZA00425.11 PZA00566.5 9.53–20.99 3.81 3.96 6.91 0.03 −0.045 OD

3 qASI03_171 88 PHM17210.5 PZA00538.15 170.91–199.68 3.02 3.07 0.03 0.027 D

6 qASI06_71 83 PZA02606.1 PZA01960.1 70.29–156.68 3.03 6.80 0.02 0.075 OD

PH 1 qPH01_22 73 PZA01963.15 PZA02487.1 21.86–191.32 4.46 9.01 9.11 −1.06 0.692 PD

6 qPH06_120 40 PZA02673.1 PZA00473.5 117.06–135.75 3.50 3.19 −0.53 0.633 D

7 qPH07_120 22 PZA01542.1 PZA02854.13 112.40–120.22 4.13 3.76 −0.74 −0.146 A

EH 7 qEH07_106 20 PZA01690.7 PZA01542.1 105.88–112.40 3.50 4.87 4.87 −0.72 −0.222 PD

EPO 4 qEP04_115 46 PZA00704.1 PZA03564.1 114.90–119.66 3.08 3.80 11.56 −0.01 −0.003 PD

6 qEP06_157 1 PHM5361.13 PZA00889.2 156.17–159.55 5.82 7.76 0.01 0.006 D

Opt, Optimum; Low N- low soil N stress management; GY, Grain yield; AD, anthesis date; ASI, anthesis silking interval; PH, plant height; EH, ear height; EPO, ear position. The italic values

refer to the names of identified QTLs.
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TABLE 5 Genetic characteristics of detected QTLs for GY and associated traits under optimum and low-nitrogen stress in F3 population 2.

Mgmt Trait Chr QTL
name

Position
(cM)

Left
marker

Right
marker

Physical
position
(Mbp)

LOD PVE
(%)

TPVE
(%)

Add Dom QTL

F3 pop 2 CKL5017×CML536

Opt GY 3 qGY03_10 144 PZD00038.2 PHM4621.57 4.65–159.08 3.41 4.08 16.52 −0.15 −0.047 PD

8 qGY08_127 100 PZA00460.8 PHM4203.11 126.42–156.31 4.84 4.15 0.15 0.059 PD

AD 1 qAD01_215 188 PHM759.24 PZA00664.3 213.95–216.05 4.96 0.70 18.89 0.40 0.002 A

2 qAD02_55 95 PHM3055.9 PHM4259.5 51.96–186.31 9.84 2.20 −4.19 −4.208 D

2 qAD02_145 151 PHM5060.12 PZA03211.6 142.76–184.40 17.23 2.23 −0.06 8.428 OD

3 qAD03_158 180 PZA00186.4 PZA01396.1 157.97–159.08 14.47 2.23 4.20 −3.541 D

4 qAD04_14 50 PHM16788.6 PHM 2006.57 13.89–171.71 9.06 2.20 4.14 −4.264 D

5 qAD05_10 18 PZA00963.3 PZA00818.1 1.1–208.34 14.45 2.23 −4.19 −4.629 D

6 qAD06_72 1 PHM2898.24 PZD00072.2 71.99–72.48 14.32 2.21 4.20 −3.821 D

9 qAD09_23 114 PHM4720.12 PZA03671.1 22.54–101.88 12.89 2.20 0.04 8.352 OD

10 qAD10_130 8 PHM3736.11 PZA03605.1 125.47–131.38 15.65 2.29 −0.83 9.220 OD

PH 1 qPH01_45 149 PZA00962.1 PZA00939.1 42.32–104.96 4.84 9.75 25.07 2.15 0.631 PD

6 qPH06_155 106 PHM4503.25 PZA02815.25 154.00–160.83 3.05 4.26 1.48 0.142 A

8 qPH08_104 32 PZA01972.14 PZA02566.1 103.35–104.22 3.38 8.35 2.11 0.302 A

8 qPH08_130 67 PZA00460.8 PHM4203.11 126.42–156.31 5.44 7.74 2.05 0.007 A

EH 1 qEH01_21 136 PZA02393.2 PZA00962.1 16.42–42.32 4.88 8.55 26.35 1.68 0.895 PD

1 qEH01_220 189 PZA00664.3 PHM4992.10 216.05–225.87 3.18 6.72 1.59 −0.229 A

3 qEH03_50 48 PZA00581.3 PZA02645.2 46.96–89.25 4.75 6.45 1.63 0.490 PD

8 qEH08_130 67 PZA00460.8 PHM4203.11 126.42–156.31 3.20 4.03 1.20 0.521 PD

EPO 1 qEP01_214 188 PHM759.24 PZA00664.3 213.95–216.05 3.09 3.22 11.13 0.00 0.000 A

3 qEP03_153 31 PZA00667.2 PHM9914.11 152.70–154.23 3.77 7.70 0.00 0.000 A

Low N GY 1 qGY01_60 230 PHM4752.14 PHM574.14 59.27–288.94 3.43 6.27 6.20 0.04 0.026 PD

AD 2 qAD02_52 94 PHM3055.9 PHM4259.5 51.96–186.31 4.64 1.52 18.55 1.16 1.128 D

2 qAD02_53 123 PHM4259.5 PZA01991.3 51.96–221.13 4.68 1.52 1.15 1.152 D

3 qAD03_120 41 PZA00363.7 PZA00707.9 98.45–120.53 5.70 1.30 0.27 0.002 A

3 qAD03_158 180 PZA00186.4 PZA01396.1 157.97–159.08 4.49 1.15 −1.44 1.717 D

4 qAD04_172 52 PHM 2006.57 PZA01905.12 171.17–251.33 6.29 1.52 −0.74 0.366 PD

4 qAD04_207 194 PHM3587.6 PHM14055.6 206.77–208.12 6.92 1.45 0.01 −2.298 OD

7 qAD07_82 90 PZA01933.3 PHM3435.6 80.61–141.80 6.43 1.50 0.05 −2.262 OD

8 qAD08_126 170 PHM4203.11 PZA00766.1 126.42–126.71 4.46 1.26 −1.44 1.757 OD

10 qAD10_130 8 PHM3736.11 PZA03605.1 125.47–131.13 7.73 1.24 0.07 −2.885 OD

PH 1 qPH01_21 137 PZA02393.2 PZA00962.1 16.42–42.32 4.45 6.45 18.76 0.84 −0.081 A

3 qPH03_175 18 PZA00892.5 PZA03735.1 173.26–192.67 4.13 5.32 −0.76 0.494 PD

9 qPH09_88 22 PHM1766.1 PZA03235.1 86.54–107.26 3.21 4.32 0.71 −0.517 PD

9 qPH09_86 32 PZA03235.1 PZA00225.8 76.31–86.54 4.02 4.58 −0.76 −0.050 A

(Continued on following page)
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TABLE 5 (Continued) Genetic characteristics of detected QTLs for GY and associated traits under optimum and low-nitrogen stress in F3 population 2.

Mgmt Trait Chr QTL
name

Position
(cM)

Left
marker

Right
marker

Physical
position
(Mbp)

LOD PVE
(%)

TPVE
(%)

Add Dom QTL

EH 1 qEH01_21 140 PZA02393.2 PZA00962.1 16.42–42.32 3.04 3.34 14.42 0.81 −0.257 PD

3 qEH03_155 26 PHM17210.5 PZA00667.2 154.23–170.91 7.63 10.23 1.41 0.700 PD

3 qEH03_155 33 PZA00667.2 PHM9914.11 152.70–170.91 5.32 6.86 −1.25 0.350 PD

9 qEH09_108 21 PZA00323.3 PHM1766.1 107.26–113.71 3.14 3.39 0.84 −0.713 D

EPO 3 qEP03_156 26 PHM17210.5 PZA00667.2 154.23–170.91 9.01 8.12 17.98 0.01 0.002 PD

3 qEP03_155 33 PZA00667.2 PHM9914.11 152.70–170.91 4.70 4.28 0.00 0.001 PD

Opt, Optimum; Low N- low soil N stress management; GY, Grain yield; AD, anthesis date; ASI, anthesis silking interval; PH, plant height; EH, ear height; EPO, ear position. The italic values

refer to the names of identified QTLs.

TABLE 6 Genetic characteristics of detected QTLs for GY and associated traits under optimum and low-nitrogen stress in F3 population 3.

Mgmt Trait Chr QTL
name

Position
(cM)

Left
marker

Right
marker

Physical
position
(Mbp)

LOD PVE
(%)

TPVE
(%)

Add Dom QTL

F3 pop 3 CML550×CML507

Opt GY 9 qGY09_25 126 PZB01110.6 sh1.11 17.01–29.66 3.20 3.58 12.15 0.02 −0.003 A

10 qGY10_130 7 PHM3736.11 PZA03603.1 125.47–131.38 3.87 6.21 0.00 0.035 OD

AD 3 qAD03_175 2 PZA01962.12 PZA00892.5 170.91–192.67 3.71 6.09 11.8 0.15 0.003 A

5 qAD05_72 61 PHM13675.17 PZA00261.6 71.08–79.98 3.40 5.07 −0.11 0.115 D

8 qAD08_70 19 PZA01363.2 PZA03012.7 65.14–107.76 4.49 7.10 −0.17 −0.065 PD

PH 1 qPH01_210 153 PZA00664.3 PHM4997.11 6.02–216.05 4.71 5.59 25.81 −1.58 0.298 A

1 qPH01_05 181 PHM4997.11 PZA02129.1 3.83–6.02 3.49 3.87 1.20 0.271 PD

4 qPH04_40 166 PZA03597.1 PZA00541.1 36.33–61.17 3.97 4.32 1.22 −1.050 D

8 qPH08_125 43 PZA01049.1 PZA00770.1 122.03–127.01 4.64 5.31 1.58 0.312 PD

9 qPH09_25 126 PZB01110.6 sh1.11 17.01–29.66 4.70 5.16 1.56 −0.347 PD

EH 5 qEH05_165 95 PZA00148.3 ae1.7 163.41–167.39 3.49 4.67 22.25 −0.71 −0.126 A

8 qEH08_125 43 PZA01049.1 PZA00770.1 122.03–127.01 5.37 7.48 0.82 0.330 PD

9 qEH09_108 123 PHM
1911.173

PZB00544.2 28.74–119.42 5.19 7.62 0.79 −0.520 PD

Low N GY 1 qGY01_200 22 PHM 1968.22 PZA01294.2 63.80–202.86 3.07 5.21 5.12 0.02 −0.014 PD

10 qGY10_120 34 PZA01642.1 PHM15868.56 12.42–120.37 3.45 1.16 −0.33 −0.333 D

AD 3 qAD03_175 0 PZA01962.12 PZA00892.5 170.91–192.67 3.44 5.74 7.45 0.20 −0.174 D

PH 2 qPH02_25 82 PHM4425.25 PZA02378.7 19.52–33.65 3.02 5.00 7.27 −2.95 0.498 A

EH 2 qPH02_80 109 PHM10321.11 PZA01280.2 61.36–143.35 4.07 3.87 13.43 0.57 −0.199 PD

5 qPH05_10 4 PZA01327.1 PZA02367.1 8.62–15.22 3.03 5.14 0.65 1.150 OD

6 qPH06_25 86 PZA02815.25 PHM15961.13 8.62–160.83 4.54 7.18 −0.80 −0.006 A

8 qPH08_140 44 PZB01454.1 PZA00838.2 138.96–151.85 4.52 5.04 −0.71 0.316 PD

Opt, Optimum; Low N- low soil N stress management; GY, Grain yield; AD, anthesis date; PH, plant height; EH, ear height. The italic values refer to the names of identified QTLs.
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GY under low nitrogen stress. By comparison, PH had low
heritabilities under both low and optimum nitrogen conditions.

The pairwise correlation showed a strong negative correlation
for GY with AD and ASI across the studied nitrogen regimes.
However, other agronomic traits showed positive correlations
with GY. These include PH, EH and EPO under both low and
optimum soil nitrogen conditions. Similar correlation trends were
also reported by earlier studies with maize hybrid and inbred line
trials under low soil nitrogen conditions (Ertiro T. B. et al., 2020;
Ertiro et al., 2022). PH, EH and EPO had a positive correlation with
GY suggesting that improvement of these traits lead to improved
maize varieties with high-yielding potentials. Furthermore, these
correlations suggest the high odds of tightly linked loci controlling
low-N tolerance through the coordinated expression of loci
controlling these traits.

4.2 QTL mapping under low and optimum
nitrogen conditions

NUE traits are highly complex, the advent of high-density
marker data has made it feasible to dissect their underlying
genetics. The detection of QTLs underlying GY and other

associated traits under different nitrogen regimes is integral for
scaling breeding initiatives targeting the development of low
nitrogen tolerant maize varieties. A total of 91 significant QTLs
were identified in this study for six traits under low and optimum
nitrogen management (Tables 5, 6, 7, and 8). The disparity in the
number of QTLs under optimum (52) and low (39) indicates the
effect of genetic variance across the environments. Some of these
were found across management conditions and populations.
Across the two nitrogen regimes, chromosomes 1 (16) and 8
(14) had the highest number of QTLs whilst chromosomes 7
(5) and 5 (6) had the lowest. Chromosomes with a high
number of QTLs can be targeted for future research studies
focusing on improving GY under low nitrogen stress.
Proportional phenotypic variance for the QTLs ranged from
0.7% to 15.22%, with an average of 5.05%.

Population 4 had the highest number of QTLs (36). This is a
testament to the diversity within the studied F3 populations across
nitrogen management options. AD (26) and EH (24) had the highest
number of QTLs whilst ASI (11) had the lowest. This is consistent
with another study (Ertiro et al., 2020c) which found the highest
QTL number as those underlying AD. In our study, this was
consistent with the observed high genetic variance for AD and
EH across the two nitrogen regimes.

TABLE 7 Genetic characteristics of detected QTLs for GY and associated traits under optimum and low-nitrogen stress in F3 population 4.

Mgmt Trait Chr QTL
name

Position
(cM)

Left
marker

Right
marker

Physical
position
(Mbp)

LOD PVE
(%)

TPVE
(%)

Add Dom QTL

F3 pop 4 VL081452×VL058589

Opt GY 2 qGY02_25 186 PZA01820.1 PZA02264.5 2.55–46.62 3.26 2.14 7.68 0.05 1.243 OD

10 qGY10_130 137 PZA00062.4 PZA00409.17 46.11–130.61 3.49 3.17 −0.01 1.381 OD

AD 8 qAD08_25 139 PZA01196.2 PZA03612.1 24.45–121.52 3.79 10.73 12.64 −0.04 0.422 OD

EH 2 qER02_03 173 PZA00680.3 PHM5535.8 1.00–3.46 6.24 3.05 15.26 0.07 0.763 OD

2 qER02_185 196 PZA02170.1 PHM5060.12 184.40–231.71 6.06 2.87 0.00 0.823 OD

5 qER05_55 194 PZA02207.1 PHM2769.43 51.25–59.62 5.78 3.77 0.01 0.624 OD

5 qER05_190 213 PHM2769.43 PHM7908.25 59.62–191.25 10.17 3.90 0.02 0.782 OD

6 qER06_140 51 PZB01569.7 PZA02478.7 134.48–153.63 3.20 2.72 0.38 −0.369 D

8 qER08_30 160 PZA01196.2 PZA03612.1 24.45–121.52 5.89 3.39 −0.03 0.728 OD

10 qER10_80 10 PHM3309.8 PZA01451.1 7.12–128.41 3.43 3.00 0.30 −0.397 OD

10 qER10_130 135 PZA00062.4 PZA00409.17 46.11–130.61 3.88 1.95 −0.05 0.846 OD

Low N GY 1 qGY01_125 204 PZA02135.2 PZA01254.2 105.20–155.34 3.65 6.42 19.16 0.02 0.005 PD

AD 1 qAD01_200 310 PZA01216.1 PZA03265.3 190.67–203.29 3.91 4.99 35.24 −0.41 −0.109 PD

2 qAD02_30 188 PZA01820.1 PZA02264.5 2.55–46.62 3.65 4.77 0.15 1.752 OD

7 qAD07_125 41 PHM9162.135 PZA02959.14 120.22–133.75 11.05 15.22 0.71 0.077 A

10 qAD10_125 25 PHM3309.8 PZA01451.1 7.12–128.41 3.20 10.51 0.57 0.344 PD

PH 2 qPH02_230 5 PZD00022.5 PZA02727.1 228.51–233.61 3.84 7.10 6.34 1.33 −2.460 OD

ASI 4 qASI04_05 170 PHM3963.33 PHM3301.28 5.54–5.81 4.00 13.58 16.73 −0.03 −0.103 OD

Opt, Optimum; Low N- low soil N stress management; GY, Grain yield; AD, anthesis date; ASI, anthesis silking interval; PH, plant height; EH, ear height. The italic values refer to the names of

identified QTLs.
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Marker-assisted selection for GY improvement relies on the
successful identification of QTLs with moderate to high effects.
For GY, 11 QTLs were detected under both optimum (7) and

low (4) nitrogen conditions. This is inconsistent with Ertiro
et al., 2020c findings which recorded more QTLs under low
nitrogen management than under optimum conditions. One

TABLE 8 Summary of detected QTL for measured traits under optimum and low-nitrogen stress in F3 populations derived from seven elite lines.

Traits Population Management No of QTL TPVE* (%)

AD F3pop1CML494×CML550 Optimum 1 8.09

F3pop2CKL5017×CML536 9 18.89

F3pop3CML550×CML507 3 11.80

F3pop4VL081452×VL058589 1 12.64

F3pop1CML494×CML550 Low N 1 7.70

F3pop2CKL5017×CML536 9 18.55

F3pop3CML550×CML507 1 7.45

F3pop4VL081452×VL058589 4 35.24

ASI F3pop1CML494×CML550 Low N 3 6.91

F3pop4VL081452×VL058589 1 16.73

EH F3pop1CML494×CML550 Optimum 4 23.20

F3pop2CKL5017×CML536 4 26.35

F3pop3CML550×CML507 3 22.25

F3pop4VL081452×VL058589 8 15.26

F3pop1CML494×CML550 Low N 1 4.87

F3pop2CKL5017×CML536 4 14.42

F3pop3CML550×CML507 4 13.43

EPO F3pop1CML494×CML550 Optimum 2 15.56

F3pop2CKL5017×CML536 2 11.13

F3pop1CML494×CML550 Low N 2 11.56

F3pop2CKL5017×CML536 2 17.98

GY F3pop1CML494×CML550 Optimum 2 11.50

F3pop2CKL5017×CML536 2 16.52

F3pop3CML550×CML507 2 12.15

F3pop4VL081452×VL058589 2 7.68

F3pop2CKL5017×CML536 Low N 1 6.20

F3pop3CML550×CML507 2 5.12

F3pop4VL081452×VL058589 1 19.16

PH F3pop1CML494×CML550 Optimum 1 6.01

F3pop2CKL5017×CML536 4 25.07

F3pop3CML550×CML507 5 25.81

PH F3pop1CML494×CML550 Low N 3 9.11

F3pop2CKL5017×CML536 4 18.76

F3pop3CML550×CML507 1 7.27

F3pop4VL081452×VL058589 1 6.34

*TPVE, total phenotypic variance explained; Low N- low soil N stress management; GY, Grain yield; AD, anthesis date; ASI, anthesis silking interval; PH, plant height; EH, ear height; EPO, ear

position.
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QTL for GY (qGY10_130) was found under optimum conditions
on chromosome 10 in both population 3 (125.47–131.38 Mbp)
and population 4 (46.11–130.61 Mbp). A study by Ertiro et al.,
2020c also found QTLs underlying GY under different nitrogen
regimes on chromosome 10. No common QTL for GY was
identified across the studied F3 populations. Ertiro et al.
(2020a) also observed similar results, i.e., no common QTLs
observed for GY. Noteworthy, the use of a different number of
populations, locations and markers in future studies can give
rise to a different outcome. In this study, some common QTLs
were identified for AD, EH and EPO. The identification of
common QTLs justifies the magnitude of correlation across
the two nitrogen regimes. Common QTLs can also be used for
indirect selection. Similar to the results of Ertiro et al., 2020c,
QTL correspondences detected between the nitrogen regimes
for the studied traits were not similar across F3 populations and

this points to the genetic-background-specific nature of
these QTLs.

The distinct genetic controls of the expression of the phenotypes
reported in this study and related studies (Bänziger et al., 1999;
Ribaut et al., 2007) suggest that selection for low nitrogen stress
tolerance will be more effective under low nitrogen management.
These findings unravel the most promising genomic regions for
MAS to increase maize tolerance to low nitrogen stress. Further
multi-environment trials with larger population sizes are necessary
to validate the stability of the recorded QTLs and utilize them to
identify underlying causal genes.

To achieve higher genetic gain, complex traits in maize breeding
can be improved by integrating genomic, bioinformatic, and
statistical tools into breeding programs (Beyene et al., 2019;
Beyene et al., 2021). Rapid technological advancements have
made available cheaper genotyping tools, while rapid progress in

FIGURE 3
Distribution of the five-fold cross-validated genomic prediction correlations for grain yield (GY), anthesis date (AD), anthesis-silking interval (ASI),
plant height (PH), ear height (EH), and ear position (EPO) evaluated in multiple environments under optimum and low soil N management conditions in
four F3 populations.
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the field of big data and bioinformatics has led to the development of
user-friendly software tools which can handle complex statistical
models and facilitates breeders to apply them to improve complex
traits on amore routine basis. GS, which predicts the breeding values
by employing genome-wide markers is proving to be effective in
improving complex traits that are controlled by multiple minor
effect genes. For instance, RR-BLUP or G-BLUP is now very
commonly used to predict several complex traits in maize (Guo
et al., 2012; Hao et al., 2019; Beyene et al., 2021). Several NUE traits
like chlorophyll index, chlorophyll fluorescence and leaf N content
were also selected by genomic prediction before integrating into
NUE breeding programs in ryegrass (Zhao et al., 2020). In the
present study, GS was performed on GY and other agronomic traits
evaluated under optimum and low soil N stress conditions. The
average genomic prediction correlations ranged from 0.07 to
0.41 under optimum and −0.07 to 0.41 under low soil N stress
conditions. The higher values of prediction correlations are
comparable to earlier studies with a diversity panel evaluated
under optimum and low soil N stress conditions (Ertiro et al.,
2020c). The observed prediction accuracies for other agronomic
traits are comparable to earlier studies reported under different
stresses in maize (Zhang et al., 2015; Yuan et al., 2019).

In population 3, we found low accuracy for GY under optimum
condition, which could be due to its small range of variability
within the population as well as low heritability (Table 2, Figure 1).
We observed a wide range of prediction correlations for same trait
among different populations and management. This could be due
to their differences in sample size, genetic variance, trait
heritability, changes in population structure and linkage
disequilibrium estimates. In some populations, we observed
negative prediction correlations like GY for pop 4 under low
soil N stress conditions (Figure 3; Table 9). Opposite linkage
phases between markers and major-effect QTLs in the
population may be the reason for negative correlations. In
addition, the four F3 populations used in this study were
developed by using tolerant x tolerant crosses for low soil N
stress, which may be another reason why we observed low
prediction correlations (as most of the causal factors for these

traits might have been fixed on both the parental lines). As a result,
variation is low for the traits which is evident with low to moderate
heritability estimates (Table 2). Nevertheless, the prediction
correlation followed a consistent pattern for all traits under
both optimum and low N conditions. Traits with high
prediction correlations also tend to have relatively high
heritability estimates. In GS, the less complex trait AD and PH
had higher accuracy compared to GY, which is consistent with the
nature of trait complexity (Zhang et al., 2017a; Yuan et al., 2019).
For simple inherited traits that are positively correlated with GY,
prediction correlations are moderate to high, which clearly
supports the usefulness of GS for their improvement under
either optimum or low soil N stress conditions.

Overall, the linkage mapping studies with our F3 populations
revealed several QTL with minor to moderate effects for GY and
other agronomic traits under optimum and low Nmanagement. It is
difficult to capture multiple QTL with small to moderate effects for
selection and their environmental and genotypic specific expressions
make it even more difficult to improve these traits only through
traditional breeding or a few QTL based MAS. However, discovery
of genomic regions through linkage mapping will continue to be
vital to understanding the genetic basis of these traits. On the other
hand, genome-wide selection is critical in improving quantitative
traits. The phenotypic selection efficiency per cycle is measured as h
(square root of heritability) and the value of marker-based
prediction accuracy close to h indicates the selection response
based on markers and based on phenotypes are near equal
(Dekkers, 2007; Lorenzana and Bernardo, 2009). The prediction
accuracies observed for GY and other traits was ≥1/2h indicating
that the response to marker-based selection would be at least 50% of
the response to phenotypic selection for agronomic traits. With the
possibility of making three cycles per year by using marker-based
selection, the selection response will be −1.5 times the gain from one
cycle of phenotypic selection. These results indicate that genome-
wide selection would be more efficient in terms of genetic gain per
year. However, one must be cautious as we observed prediction
accuracy of <0.10 for some traits in some populations, where GS has
no additional advantage over phenotypic selection.

TABLE 9 The prediction accuracy for grain yield and other traits evaluated under optimum and low-nitrogen stress conditions for four F3 populations derived from
seven elite lines.

Traits GY AD ASI PH EH EPO

Optimum

F3pop1CML494×CML550 0.35 0.31 0.37 0.35 0.53 0.45

F3pop2CKL5017×CML536 0.41 0.63 0.68 0.52 0.54 0.29

F3pop3CML550×CML507 0.06 0.12 0.44 0.34 0.24 0.37

F3pop4VL081452×VL058589 0.35 0.37 0.20 0.18 −0.09 −0.11

Low N

F3pop1CML494×CML550 0.20 0.26 0.25 0.44 0.42 0.42

F3pop2CKL5017×CML536 0.41 0.53 0.59 0.40 0.49 0.28

F3pop3CML550×CML507 0.04 0.29 0.50 0.15 0.29 0.35

F3pop4VL081452×VL058589 −0.07 0.36 0.38 0.09 −0.07 0.14

Low N- low soil N stress management; GY, Grain yield; AD, anthesis date; ASI, anthesis silking interval; PH, plant height; EH, ear height; EPO, ear position.
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5 Conclusion

Nitrogen-depleted soils are a major factor behind low maize
productivity in smallholder farming systems in SSA. Genomics-
based plant breeding techniques such as QTL mapping and GS can
provide useful information for scaling the development of low
nitrogen tolerant maize varieties. Here, we sought to identify the
genomic regions associated with GY and related traits under
optimum and low soil nitrogen conditions in F3 maize
populations grown in Kenya and Zimbabwe. Our analysis found
a total of 91 QTLs underlying GY, ASI, AD, EH, EPO, and PH.
However, no common QTL for GY was identified across the studied
nitrogen regimes. The validation of these QTLs in the same F3
populations is needed to guarantee the success of future marker-
assisted selections. Identification of many QTL with minor effects
indicates rather QTL mapping on these traits, GS is more
appropriate for their improvement. Genomic prediction
correlations were low to moderate. However, by considering the
possibility to have three cycles per year with marker-based selection,
integration of GS in a low N tolerant breeding program will be more
efficient to improve GY under low soil N conditions.
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