DECLARATION

	Decl	larat	ion	bv	candi	date
--	------	-------	-----	----	-------	------

This thesis is my original work and has not been submitted for any academic award in any institution; and shall not be reproduced in part or full, or in any format without prior written permission from the author and/or University of Eldoret.

KIBOI DISMAS CHENGE	Sign	Date	
SC/PGP/047/14			
Declaration by supervisors:			
This thesis has been submitted	l with our app	roval as university su	pervisors.
1. PROFESSOR K.M.K	CHANNA	Sign D	Date
DEPARTMENT OF P	HYSICS,		
2. PROFESSOR J.K. T	ONUI	Sign D	D ate

DEPARTMENT OF PHYSICS,

DEDICATION

I am pleased to dedicate this MSc thesis to my dear wife Sarah Kuloba Buyube, my Parents Alice Chenge and Bramwel Chenge.

ABSTRACT

Superconductivity is an observable scientific fact exhibited by some materials at extremely low temperature approaching 0 K where their specific heat capacities (a thermodynamic bulk property) change as they transition to superconducting state from normal from normal. When the transition to the superconducting state is studied under a magnetic field, it is found that the specific heat difference or jump between the superconducting state (C_s) and the normal state (C_n) depends on the magnitude of the applied magnetic field. The specific heat jumps for conventional and unconventional superconductors occur at different applied magnetic fields in order to preserve the superconducting state of the material. The effects of the magnetic field on the value of specific heat jump for LiTi₂O₄ (usually refereed as LTO) were studied. This material is only one of its kinds in the midst of oxide superconductors in numerous features reminiscent of chemistry, crystal formation and superconducting properties. The consequence of applied magnetic field (H) on the specific heat jump and transition temperature of this material was established by deriving a correlation equation. The outcomes demonstrate that the existence of magnetic field enhances the superconducting state of the material since superconductivity in LTO is predominantly due to electroninteractions. The specific heat jump increases from the 3.863745316mJmol⁻¹ K⁻² for H=2T to 55.09474118 mJmol⁻¹ K⁻² for H=32.8T. At $T = T_c$ the value of specific heat jump was calculated to be 38.3mJmol⁻¹K⁻², and the corresponding magnetic field, H was 22.369246T. This value falls within the range that has been reported by several researchers regarding LTO.

TABLE OF CONTENTS

Contents	Page
DECLARATION	ii
DEDICATION	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
ABBREVIATIONS, ACRONYMS AND SYMBOLS	ix
ACKNOWLEDGMENT	xi
CHAPTER ONE	1
INTRODUCTION	1
1.1 Background of the study	1
1.2 Problem Statement	7
1.3 Objectives	7
1.3.1 General Objective	7
1.3.2 Specific Objectives	7
1.4 Justification of the study	8
CHAPTER TWO	9
LITERATURE REVIEW	9
2.1 Introduction	9
2.2 Theories for high temperature superconductivity	10
2.2.1 Bipolarons theory	11
2.2.2 Exciton theory	12
2.2.3 Spin bag theory	12
2.2.4 Friedel's theory	12
2.2.5 Resonating Valence Bond state theory	13
2.2.6 Plasmon Mechanism Theory	14
2.3 Properties of HTSC	14
2.4 Meissner effect	14
2.4.1 Exclusion of the flux	15
2.5 Room temperature superconductivity	17
CHAPTER THREE	25
THEORETICAL DERIVATIONS	25
3.1 Introduction	25
3.2 Theoretical derivations Equations (3.40) and (3.41) will be used to calculate the specific heat jump at	25
in terms of the applied magnetic field H.	33
CHAPTER FOUR	34
RESULTS AND DISCUSSION	34

4.1 Introduction	34
4.2 The Value of specific heat jump	
for LTO in the presence of magnetic field.	34
4.3 The magnitude of the transitional magnetic field for LTO.	36
CHAPTER FIVE	39
CONCLUSION AND RECOMMENDATION	39
5.1 Conclusion	39
5.2 Recommendation	40
REFERENCES	41
APPENDICES	47
Table Appendix 1: Values of specific heats in the normal	47
and superconducting states for the temperature range 1-20K	47
obtained from equations (3.29) and (3.33)	47
Table Appendix 2: Numerical data of magnetic field,	49
H and specific heat jump, obtained from equations	49
(3.40) and (3.41)	49

LIST OF TABLES

Table]	Page
Table Appendix 1	Values of specific heats in the normal and superconducting sta	ites
	for the temperature range 1-20K	49
Table Appendix 2	Numerical data of magnetic field, H and specific heat jump,	51

LIST OF FIGURES

Figure		Page
Figure 2.1	Illustration of Meissner effect	17
Figure 2.2	Illustration of type I superconductors	19
Figure 2.3	Illustration of type II superconductors	21
Figure 4.1	Specific heat capacity versus temperature	37
Figure 4.2	Specific heat jump versus applied magnetic field	39

ABBREVIATIONS, ACRONYMS AND SYMBOLS

ARPES Angle-resolved photoemission spectra

BCS Bardeen Cooper Schrieffer (Theory)

C_v Specific heat at constant volume

C_s Specific heat in superconducting state

C_n Specific heat in normal state

dos Density of states

G₈ Gibb's free density at superconducting state

G_n Gibb's free density at normal state

 G_{NS} Gibb's free energy per unit volume

H Magnetic field

H_c Critical magnetic field

 $H_c(T)$ Critical magnetic field at T at which the superconducting state disappears

HTSC High temperature superconductors

LTSC Low temperature superconductors

LTO Lithium Titanium Oxide

MRI Magnetic Resonance Imaging

M Magnetic intensity

MR Magnetoresistance

p Pressure

RVB Resonating valence bond (Theory)

SQUIDs Superconducting Quantum Interference Devices

S_s Entropy per unit volume in superconducting state

S_n Entropy per unit volume in normal sate

T_c Critical transition temperature

T_f Fermi temperature

T Temperature

u Internal energy

 u_m Magnetic energy

vHs Van Hove Singularities

v Volume per mole

x Magnetic susceptibility

Y Specific heat coefficient

λ Penetration depth

ΔC Specific heat jump

ACKNOWLEDGMENT

I thank the Almighty God for having given me sound mind and good health during the entire period of my Msc. work.

The Univerty of Eldoret gave me an opportunity to build up my career. I thank its management and staff for the profound programs that make systems run. Allowing me use the available resources in the University to carry out my Msc. Work was tremendously remarkable.

My supervisors Professors JK Tonui and KM Khanna played an outstanding role in inculcating in me the best scientific knowledge in my entire Msc Work. I am highly indebted to them for their availability and sacrifice to attend to my thesis work unconditionally.

I say kudos to My Classmates Mr. S. Chemogos and Mrs. R. Julia who were very supportive in boosting my morale to go on with my work. Their presence and encouragement stirred up my passion to bring the thesis work to completion. Their keenness and interest to point out mistakes in my work whenever they read kept me on toes.

I hold my parents Mrs. A. Chepsagit and Mr. B. Chenge together with my siblings led by Mr. M. Mono so dear. Their moral support was remarkable. They were always consistent in cheering me up to present commendable work.