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ABSTRACT

The electronic structure and defects of barium fluoride, BaF2, have been stud-
ied using the denstiy functional theory, DFT and density functional perturbation
theory, DFPT. Lattice parameter of 6.10 Å was calculated comparable to experi-
mental value of 6.20 Å for the cubic phase. Orthorhombic and hexagonal phases
also give values close to experimental. Band gap of 7.20 eV in this work appears
closer to experimental value of 10 eV in comparison to other theoretical results.
Phonons and phononic properties have also been investigated and are discussed in
this work. Elastic contants of cubic, orthorhombic and hexagonal phases of BaF2

are calculated and discussed and do show good comparison with both experiment
and other calculations. Stability parameters are also presented for all the three
phases. Calculations using ab initio methods to find the defect formation energy
and vacancy migration energies in barium flouride have been done for both anion
and cation. Interstitial and Frenkel defects have also been studied and their effect
on the band gap width analyzed. Migration of an anion and cation was found
to show good agreement with experimental data and migration paths were also
considered. Anion migration energy is easiest in the VF 〈100〉 at 0.53 eV compa-
rable to experimental value of 0.59 eV. Migration energies for anion in the other
low index directions VF 〈110〉 and VF 〈111〉 were calculated as 1.17 eV and 1.15
eV, respectively. The migration energy was highest at 2.22 eV for the cation in
the VBa〈100〉 direction, while the other paths were found to be unfavourable for
the cation. It was found that the interstitial formation energies for cation and
anion were 3.14 eV and -0.62 eV, respectively. Vacancy formation energies were
15.64 eV and 8.73 eV for the anion and cation, respectively. This is slightly higher
than 8.34 eV for anion and 13.75 eV for cation in CaF2. Frenkel defect energies
were also determined at near and infinite distances and were found to be 8.11 eV
and 18.78 eV for the anion and cation, respectively. Potential parametrization
was also considered in this study and it was found to improve the previously used
pair potentials in the molecular dynamics study of BaF2. Molecular dynamics
and thermodynamics properties were investigated using a classical inter-atomic
force field parametrized using the forces, stresses and energies obtained from the
ab initio calculations. Using the parametrized potentials developed in this study,
the superionic properties of cubic BaF2 were studied through the phase transition
diagram (energy versus temperature), where it was found out that the superionic
transition of BaF2 occured at about 1000 K, while melting temperature was estab-
lished at about 1700 K. This shows a great improvement which this new potential
brings into the understanding of the superionic properties of BaF2 over previous
works. Radial distribution functions and mean square displacements of cations
with BaF2 have also been studied where it was established that at around 800 K,
both cation and anion are still at their mean positions, whereas at 1000 K, the
anion (F−) starts diffusing. The anion on the other hand was found to move from
its mean position at about 1700 K confirming this as the melting temperature
of c-BaF2. Diffusion constant was found to be in the range of 4.55× 10−5 cm2/s
at around 500 K to 1.52× 10−4 cm2/s at 1000 K which is typical of superionic
conductivity.



viii

LIST OF TABLES

5.1 Structural optimizaton of the cubic phase of BaF2 at ground state

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Band gap energies (in eV) of c-BaF2 in comparison with previous

calculations and experiment. . . . . . . . . . . . . . . . . . . . . . . 72

5.3 Theoretical and experimental optical gamma-point frequencies (in

cm−1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Effective charge z∗ and high frequency dielectric constant ε∞ of

c-BaF2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Elastic constants in gigapascals of cubic phase of BaF2. The results

are compared with other theoretical results and experimental ones. 77

5.6 Elastic constants for orthorhombic phase of BaF2 given in GPa. . . 81

5.7 Calculated bulk moduli for the cubic, the orthorhombic and the

hexagonal phase of BaF2 given in GPa compared with other ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8 Calculated elastic constants for the hexagonal phase of BaF2 given

in GPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.9 Stability properties of cubic phase of BaF2. . . . . . . . . . . . . . . 82

5.10 Stability properties of orthorhombic and hexagonal phases of BaF2. 83

5.11 Interstitial and vacancy formation energies of BaF2 in eV. . . . . . . 84

5.12 Frenkel formation energies for neutral cation and anion in cubic

BaF2 in eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.13 Vacancy migration energy for cation VBa and anion VF for BaF2

in eV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



ix

5.14 Force field parameters for BaF2. qF is charge of flourine and qBa

charge of barium. DF−F , DBa−F and DBa−Ba are parametrization

constants between F-F, Ba-F and Ba-Ba atoms, respectively. γF−F ,

γBa−F and γBa−Ba are the short range polarization parameters, re-

spectively. rF−F , rBa−F and rBa−Ba are the distances between dif-

ferent atoms and α is the polarization constant. The constants b

and c are fitting parameters of the model. . . . . . . . . . . . . . . 92

5.15 Lattice parameters and bond lengths obtained from molecular dy-

namics compared to DFT data for BaF2. The DFT calculations

used the steepest descent approximations. . . . . . . . . . . . . . . 93

A.1 Variation of Fermi level against energy change for charged anion

vacancy of BaF2 at ground state conditions. . . . . . . . . . . . . . 124

A.2 Variation of Fermi energy against change in energy for charged

cation interstitial of BaF2 at ground state conditions. . . . . . . . . 125



x

LIST OF FIGURES

2.1 Super-cell crystal structure of BaF2. The cell contains 96 atoms

which has eight cubes of four formula units each. Blue (large) circles

are the barium atoms and the gray (small) ones are the fluorine atoms. 8

3.1 An all-electron in dashed lines and pseudopotential in solid lines.

Given is the rc, the cut-off radius for the pseudopotential. Courtesy

Ref.[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Schematic representation of a potential barrier, which an ion has to

overcome to exchange its site with a vacancy. The barrier height in-

creases with introduction of electric field. (a) Without an external

electric field; (b) with an external electric field. d = distance be-

tween two adjacent, equivalent lattice sites; Q = activation energy.

Courtesy Ref.[2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Cubic unit cell crystal structure of BaF2. The unit cell contains

four formula units where green colour (small spheres) is flourine

and gold (large spheres) is barium atom. . . . . . . . . . . . . . . . 52

4.2 Orthorhombic unit cell crystal structure of BaF2. The unit cell

contains four cations (big spheres) and eight anions (small spheres). 54

4.3 The Hexagonal unit cell crystal structure of BaF2. The unit cell

contains two cations (large) and four anions (small). . . . . . . . . . 60

5.1 Optimized structure of the cubic phase of BaF2. . . . . . . . . . . . 69

5.2 Optimized plot of energy (in Ry) versus lattice constant (in a.u.).

The optimized lattice constant is found at the minimum point of

the curve at 11.529 Bohrs (1 a.u. = 0.5291 Å). . . . . . . . . . . . . 70

5.3 Band structure and DOS of cubic phase of BaF2. . . . . . . . . . . 71

5.4 Phonon dispersion curves for c-BaF2 obtained from ab initio DFT

theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



xi

5.5 Variation of Frequency versus lattice parameter. . . . . . . . . . . . 73

5.6 Dielectric Charge variation with volume of c−BaF2. . . . . . . . . . 75

5.7 Frequency dependence on volume. . . . . . . . . . . . . . . . . . . . 76

5.8 Changes in the pressure (∆E/Vo) as a function of the strain (δ)

for the cubic phase of BaF2. The open circles represent the calcu-

lated values and the solid lines are the polynomial fit. Fig (a) is to

estimate C44, fig (b) is for C ′ and fig (c) is for bulk modulus B. . . 78

5.9 Changes in the pressure (∆E/Vo) as a function of the strain (δ) for

the orthorhombic phase of BaF2. The open circles represent the

calculated values and the solid lines are the polynomial fit. D1 to

D9 corresponds to the matrices given in section 4.3.2. . . . . . . . . 79

5.10 Variation of Pressure (∆E/V ) versus Strain δ for the calculation

of elastic constants of the hexagonal phase of BaF2. The open

circles represent the calculated values and the solid lines are the

polynomial fits while D1-D10 (section 4.3.3) represent the distortion

matrices used in each case. . . . . . . . . . . . . . . . . . . . . . . . 80

5.11 Formation energy as a function of Fermi energy for F and F− inter-

stitial defects in BaF2. . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.12 Vacancy formation energies of anion as a function of Fermi energy

for F and F−. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.13 Interstitial formation energies as a function of Fermi energy for Ba

and Ba2+. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.14 Vacancy formation energy as a function of Fermi energy for Ba and

Ba2+ vacancy defects in BaF2. . . . . . . . . . . . . . . . . . . . . . 88

5.15 Variation of anion vacancy migration energy with migration path

〈100〉. The saddle point S is the maximum energy point in this

direction. The dots are the energy level against position joined by

the line for all positions along the direction 〈100〉. . . . . . . . . . . 90

5.16 The temperature dependence of the total energy of c-BaF2. . . . . . 93



xii

5.17 The radial distribution function at 800 K. Both cation and anion

are within their lattice site positions. . . . . . . . . . . . . . . . . . 95

5.18 The radial distribution function at 1000 K. Cations and anions are

still in their mean lattice positions. . . . . . . . . . . . . . . . . . . 95

5.19 The radial distribution function at 1400 K. . . . . . . . . . . . . . . 96

5.20 The radial distribution function at 1700 K. . . . . . . . . . . . . . . 97

5.21 The radial distribution function at 2000 K. . . . . . . . . . . . . . . 97

5.22 Mean square displacement 〈4r2〉 as a function of time in picoseconds. 98

A.1 Density of states of the cubic phase of BaF2. . . . . . . . . . . . . . 120

A.2 Density of states of the orthorhombic phase of BaF2. . . . . . . . . 121

A.3 Density of states of the hexagonal phase of BaF2. . . . . . . . . . . 121

A.4 Band structures of the cubic phase of BaF2. . . . . . . . . . . . . . 122

A.5 Band structures of the orthorhombic phase of BaF2. . . . . . . . . . 122

A.6 Band structures of the hexagonal phase of BaF2. . . . . . . . . . . . 123

C.1 Force matching procedure. . . . . . . . . . . . . . . . . . . . . . . . 129

C.2 Comparison of the force distribution from density functional theory

(blue in soft copy) to that minimized by the classical molecular dy-

namics of Asap Code (red). The two forces are very close indicating

that the newly generated potential is close to the DFT forces. . . . 130

C.3 The temperature dependence of the total time steps. . . . . . . . . 131

C.4 The energy dependence of the time steps. . . . . . . . . . . . . . . . 131



xiii

SYMBOLS AND ABBREVIATIONS

Ψ Full or many body wave function

E Hamiltonian total energy

MI Nuclei masses

ZI Nuclei charges

~ Reduced Plank’s constant

52 Second derivative of gradient

e Electronic charge

m Electron mass

~RI Nuclei positions

H Total Hamiltonian

He Electron Hamiltonian

ri Electron position

ψe Electron wave-function

ψnucl Nuclei wave-function

n~r Charge density

v~r Ground state potential

Exc Exchange correlation energy

F [n(r)] Universal functional

T Kinetic energy

εk Lagrange multiplier

εhomxc Homogeneous exchange correlation

Tm Melting point temperature

Tc Phase transition temperature

σ Ionic conductivity

∆E Defect formation energy

kB Boltzmann constant

ε Strain tensor



xiv

C ′ Shear modulus

Ea Energy of single atom

Ec Energy of crystal without defect

EF Frenkel defect energy

Ei Energy of crystal with interstitial

HB Born-Oppenheimer Hamiltonian

un~k(~r) Modulation function

ρc Density of charged systems

α Madelung Constant

5 Partial differential

Dα Diffusion Constant

vLDAxc Exchange correlation potential (Local Density Approximation)

pi Dipole moment on ion i

psri Short-range dipole moment on ion r

E(ri) Electric field at position ri

B Bulk modulus

τ Stress tensor element

V0 Volume of the unstrained box

Ef
i Interstitial formation energy

Ef
v Vacancy formation energy

Edisp Energy of crystal with atom displaced

Γ Summation of forces, stresses and energies

z∗ Value of effective charge of a system

Ψ∗ Pseudo wavefunction

DFT Density functional theory

KS Kohn-Sham

HK Hohenberg-Kohn

IFC Interatomic force constant

PAW Projector augmented wave



xv

USPP Ultrasoft pseudopotentials

LAPW Linearized augmented plane waves

NV E Number, Volume and Energy

LDA Local density approximations

LSDA Local Spin Density Approximations

GGA Generalized gradient approximations

PBEGGA Perdew-Burke-Ernzerhof GGA

PW91 Perdew and Wang 91

c−BaF2 Cubic Barium Flouride

GEA Gradient Expansion Approximation

EPBE
c GGA correlation energy function

HPBE Gradient contribution to EPBEc

5n Charge density variation

Fx(s) Enhancement factor for local exchange

LNose Nosé Langragian



xvi

ACKNOWLEDGEMENTS

A PhD thesis is a contribution of countless people and this one is no exception.

Supervisors, friends, family, church and strangers at conferences and schools can

bring in new thoughts that can set the research rolling. This means that I will

be forgetting someone, but with a little hope that they will never read this intro-

duction and that makes me safe. The order of acknowledgment should not be an

issue since I will not obey any order in listing my acknowledgments.

Allow me to thank God for His divine connection that allowed me to meet all

the people on the way to this work and while on this work. He ensured that all

things were at the right place and at the right time for me. Though some may

have delayed of which patience was being tested and experience being developed,

but eventually in His wisdom all the necessary requirements came at His perfect

timing. So all things worked for my good. God is the great discoverer and the

wise teacher declares that “Whatever is, has already been, and whatever will be,

already is. God repeats what has passed.“ (Eccl 3:15).

University of Eldoret, thank you for giving me the opportunity to undertake

this program in your institution. Also I will not forget the department of Physics

for allowing me in their department. Dr. N.W. Makau was patient in every step

of this work. From its inception, through its development to full maturity he was

available. Discussions with Nic always brought out deep details that at some stage

were overlooked. This was true mentor-ship. Thank you sir. Prof. G.O. Amolo

was always available. His suggestion to apply for Sandwich Training Programme in

Education in The Abdus Salam International Centre for Theoretical Physics will

remain in the memory for the rest of my career. Your hard work will be rewarded

by the Almighty. Prof. S. Sandro is an amazing teacher. Our discussions were

always productive. His insights and experience have lifted this research to beyond

initial perspective.

Sandwich Training in Education Programme of The Abdus Salam Interna-



xvii

tional Centre for Theoretical Physics, thank you. The opportunity I got in this

institution and the discussions I had with the group at the Condensed Matter

Physics; just to mention a few, Dr. Ghosh, Dr. Somesh, Dr. Inam, Dr. P. Carlos,

Dr. Raji, Dr. Omolulu among others can not be measured. Without this funding

I could have missed the challenge that I got in my work from these great people.

STEP secretary Dory Calligaro you are a wonderful communicator. Thank you

for all your correspondences. Prof. Bingelli, thanks a lot for the headship of STEP

programme.

African School on Electronic Structure Methods and Applications (ASESMA)

was such a great team. The school in Cape Town South Africa in the month

of July 2010 added friends who catapulted this work higher. Dr. Kris Delaney,

thank you for the discussions on the elastic constants and defects. Dr. Alison

Hatt was an inspiration and a challenge in this school. All the other mentors

and participants gave a renewed energy for work and a push to the edge in this

research. The network has continued to vibrate along way and may we continue

in that spirit of a family.

Many thanks also goes to Emerging Nations Science Foundation (ENSF) for

paying my thesis examination fees. This gesture has made my study faster and

better.

May I thank my patient and lovely wife Helen for taking care of our children

Faith and Caleb while I was away for a duration of 20 months and two weeks

because of research. My dear, you are special to me and I have you always in my

heart and mind. Remain a blessing to us all in our family.

Bishop Dr. George Gichana (G.G.) of Deliverance Church Eldoret was an

inspiration in all his sermons. He disqualified my one degree and disoriented my

thinking to reorient it for higher thought and vision. Your message on VISION is

the root course of all this ”mess”. You remain a spiritual father always.

Space and time will not allow me to mention all that Kabarak University

has done for me, but I will not forget to mention the study leave and research



xviii

funding, as well as collegues at Kabarak University; Dr. C. Maghanga, R. Rotich,

Mumbua P. S., Elizabeth O. and the entire department staff of Computing and

Mathematics, you have been my cheer peers and have always urged me to run

on. Prof. R. Gateru (currently Principal Kenya Methodist University - Nairobi

Campus) thank you for inspiring me to continue in my thirst for knowledge.

Finally, I want to appreciate Plane Wave Self-consistent field (PWSCF)_forum

team of Quantum Espresso, you are too diverse and numerous to be listed here,

and too spread out over the globe to fit in one category. Let us keep Quantum

Espresso code moving on.



1

CHAPTER ONE

INTRODUCTION

1.1 Background on Barium Flouride, BaF2

Barium fluoride (BaF2) falls in the family of compounds referred to as alkaline-

earth fluorites. In general, fluorites constitute a large family of compounds with

interesting physical properties, crystallizing in a variety of structures [1, 2]. BaF2

crystallizes into cubic, orthorhombic and hexagonal phases with the cubic phase

being the most stable of the three phases at room temperature. Many of the

fluorides such as CaF2 are already employed in technological applications such as

optical coatings [3, 4]. BaF2 is a high-density luminescent material (radiation hard

material) used in gamma ray and elementary particle detectors. In the process of

irradiation, there is formation of defects and the more difficult the formation of

defects, the better is the material for such an application [5].

BaF2 has also been found to exhibit superionic property and this property

can be improved by doping it by a small amount of appropriate impurities to

create redistribution of ions in the space charge region [6]. Superionic materials

or fast ions are conductors that ions are highly mobile. For this reason, BaF2 is

considered as a material that can be used in the high-temperature batteries, fuel

cells, chemical filters and sensors [6].

Specifically, materials crystallizing in the fluoride structure have been studied

extensively [7]. However, several questions pertaining to structure-property rela-

tionships still remain unanswered. The clarification of these questions to a great

extent relies on first principles or ab initio calculations. In this study, a quantum

mechanical study on electronic structure (i.e. band structure, density of states

and phonons) and the independent elastic constants of BaF2 was carried out.

Elastic constants of solids give important information about their mechanical

and dynamical properties and they also provide important details concerning the
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nature of the forces at play in the solids [8, 9]. The single crystal elastic constant

of solids help in interpreting seismic wave velocities and their lateral variations.

A study of elastic constants can help in the understanding of inter-atomic inter-

actions, mechanical stability of solids, material strength and the general internal

structure of materials. Elastic properties are also related to the thermal properties

according to Debye theory [10]. When elastic constants are studied for different

phases of a solid, they can help in the understanding of phase transition prop-

erties of the material. Elastic constants of the cubic phase of BaF2 have so far

been studied extensively [8] since it is the most stable phase at room temperature

and low pressure. In this study, the elastic constants of the cubic phase were

studied at room temperature and low pressures by using first principles with peri-

odic boundary conditions. Calculations of elastic constants for the orthorhombic

and hexagonal phases have also been done. These later states are known to be

metastable [11].

Superionic properties of BaF2 were studied using molecular dynamics ap-

proach. While in the previous studies simple interaction potentials such as Buck-

ingham potential were used [12], here, a more comprehensive potential was devel-

oped for BaF2. The potential was generated from the first principles calculations

to capture the electronic properties and hence improve on the results in compari-

son to what has been done so far regarding BaF2. The first principle methods were

done under the framework of density functional theory, DFT, which is discussed

in chapter 3.

1.2 Examples of Superionic Compounds

Some of the most studied superionic materials are silver iodide, AgI and lead

flouride, β-PbF2. While lead flouride superionic behaviour resembles that of bar-

ium flouride, AgI behaves in a totally different way. AgI exists as both β and

γ phases in ambient conditions and these possess the hexagonal wurzite (P 6̄3mc

[13]) and cubic zincblende (F 4̄3m [14]) crystal structures, respectively. AgI under-
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goes an abrupt superionic transition at 420 K [15]. Within the superionic phase,

the ionic conductivity is majorly by Ag+, and the electronic component σe being

about 107 times lower [16]. The I− was found to be located at a body-centred cubic

arrangement. This anion sublattice contains a number of empty sites available as

sites for Ag+ to diffuse to.

Lead fluoride (β-PbF2) shows a rapid ionic conductivity though continuous

with increase on heating. It is the anions that diffuses through the crystal of

β-PbF2. This has been confirmed to be true also for a large variety of flourite-

structured compounds [17, 18]. In these compounds, the diffusion of the anion

is easier than the energy required for the cation defect formation [18]. They

also have a large electronic band gap which will need large amount of energy

to cross. The transition to the superionic state is accompanied by a λ-peak in

the specific heat Cp, whose maximum is generally taken to define the superionic

transition temperature which is 711 K for β-PbF2. Ealier reports of the ionic

distribution within superionic β-PbF2 proposed a molten anion sublattice [19].

However, while there is still no conclusive agreement on this fact, analysis of the

Cp data, diffraction studies [20, 21] and molecular dynamics simulations [22] all

suggest that the anion defect concentration is less than ∼ 10% at temperature

above Tc. This is probably a consequence of repulsive interactions between defects

[23], which suppress the development of complete sublattice disorder of the type

observed in β-AgI2.

The development of models to describe the inter-ionic interactions allows the

possibility of varying the properties of the ions within the simulations and assess

the role of, for example, the ionic charge or polarizability in the development of

superionic properties.

1.3 Factors affecting superionicity

Factors affecting superionic properties of materials can be listed as;

1. Ionic polarizability: Highly polarizable ions in the immobile sublattice can
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deform to allow diffusing ions to pass through smaller gaps.

2. Bonding character: Mixed bonding character like ionic-covalent is suggested

to be an important characteristic of good superionics by allowing the mobile

ion to be stable in several different co-ordinations in diffusion process [24].

3. Concentration of mobile ions: An increase in the concentration n of mobile

ions within the expression σ = nZeµ is an advantage though it also depends

on the available vacant sites.

4. Ionic charge: Lower charge results in lower Coulomb energies during diffu-

sion.

5. Ionic radius: A small mobile ion is better than a large ion. The small ion is

able to diffuse through the gaps.

These factors are not independent but are linked to each other. However, no single

factor can stand alone as the most preferred one to explain the presence of high

ionic conductivity [25].

1.4 Statement of the Problem

BaF2 remains the fastest luminescent material known, making it an ideal high-

density luminescent material for applications in gamma ray and elementary par-

ticle detectors.

However, most literature on BaF2 has not considered its superionic properties

in detail, but have majorly focused on characters such as band structures, phonon

transmission and other properties. This work seeks to understand in details the ba-

sic properties which include their mechanical, electronic, vibrational and transport

properties, as well as defect formation energies and vacancy migration energies.

Another aspect of this work includes the generation of empirical potential for

BaF2, which is expected to give more accurate results with regard to the properties

of c-BaF2 unlike the classical potential that have been used previously.
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1.5 Objective of the Study

The objectives of this study include:

• The study of electronic structure properties of BaF2 using density functional

theory (DFT) calculations. Some of these properties include ground state

electronic and mechanical properties of BaF2, phonon calculations and elas-

tic constants of cubic, orthorhombic and hexagonal phases.

• To study the defects in BaF2 such as interstitial, vacancy and Frenkel, using

density functional theory. The effect of defects on the band gap on the stable

cubic phase of BaF2 is also studied.

• To generate empirical force field for BaF2 from ab initio methods.

• To use molecular dynamics calculations to study some of the properties of

cubic BaF2 such as superionic transition and melting temperatures using the

newly generated classical force field.

1.6 Significance of the Study

The study of the electronic structure has been undertaken to understand the suit-

able industrial applications of materials and the same has been considered here

to establish the appropriate application of BaF2 in industry. Some of the appli-

cations of BaF2 are the manufacture of energy conserving batteries and vacuum

ultra-violet windows. The mechanical properties such as elastic constants of the

cubic, orthorhombic and hexagonal phases of BaF2 are key to the understanding

of the stability of each phase. Other mechanical properties such as bulk modulus,

anisotropy parameters and stiffness constants ξ have also been studied to help

understand the general stability of BaF2 at different phases, which is important

in the application of the material in various ways.

In nuclear radiations, defect formation is common when hard materials are

bombarded by radioactive elements. BaF2, is radiation-hard and the nature of
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defects formation of this material are calculated to bring a clear understanding

of the energy necessary for the formation of these defects. Migration energies

establish the exact nature and paths that the cation and anions would take in

actual migration experiments, an aspect that has not been addressed conclusively

before.

Molecular dynamics simulations play a key role in understanding the nature of

mobility of molecules at different temperatures. Given that BaF2 is a superionic

material, the exact temperature at which this transition takes place has not been

clear and the use of this new potential is expected to bring in a new insight on

the superionic transition and melting point, which are both expected to be more

accurate than those reported earlier.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

BaF2 has been extensively studied because of its intrinsic optical properties as

pointed out earlier in chapter one. Rubloff [26] did an extensive work on far-

ultraviolet reflectance spectra of ionic crystals including BaF2, using synchroton

radiation as a light source. Other experimental studies include characteristic en-

ergy loss spectra [27], photoelectron spectroscopy [28] among others. These works

somehow confirmed existence of excitation peaks which was first observed in the

reflectance spectra. The observed BaF2 electronic excitation peaks were then in-

terpreted by comparing the results with those of KCl and CaF2 [29] since there

were no theoretical studies on BaF2 by then.

Some of the recent works on the theoretical electronic structure of BaF2 are

reported by Jiang et al [11] where the electronic structure of the three phases

are reported. Schmalzl [30] has done an extensive work on the electronic struc-

ture but included also the volume and temperature relationships. For processing,

fabrication and application, it is important to know the volume and temperature-

dependent effects by inducing stresses and strain in the material [30]. Jia et al [31]

have reported some findings on the atomic and electronic structure of CaF2 and

BaF2 with H-centres. In another separate, work Shi et al [32] have also looked

at the F-centres in BaF2 using the first-principles approach employing CASTEP

computer code. Electronic and elastic properties are reported by Xyang et al [33]

for the cubic phase of BaF2.

Reduction of thickness in photolithography is limited by the cutoff wavelength

of the ultraviolet (UV) transmission. A decrease in wavelength raises problems

in making lenses to focus the radiation. For vacuum ultraviolet (VUV) radiation,

the lens material of choice is either CaF2 or BaF2 since both are wide-band-gap
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insulators (10 eV and above). Some of these optical properties are also studied by

Jiang et al [11].

The superionic transition temperature Tc of BaF2 is located at about 1233 K

and the melting temperature, Tm, is at about 1593 K by Jiang et al. Superi-

onic conductivity is associated with a disorder of the anion sub-lattice and mobile

defects at a temperature (Tc) well below the general melting temperature, Tm.

However, inspite of these changes, the cation lattice remains stable until melting

point is reached [34]. A large thermal motion is therefore associated with the an-

ions which also happen to be the lighter ions. Ivanov [12] has done some molecular

dynamics study on BaF2 using potentials of Born-Mayer-Huggins potential and

also established that the molten state of BaF2 allows the anions to diffuse more

than cations. Molecular dynamics of other fluorites such as CaF2, SrF2, PbF2 and

SrCl2 have also been studied as reported in [35].

The alkaline earth fluorides usually undergo a series of pressure-induced phase

transitions to highly coordinated AX2 structures. At ambient conditions BaF2

crystallizes in the cubic fluorite structure (Fm3̄m,Z = 4) with three atoms in the

primitive face-centred cubic unit cell and twelve atoms in the conventional simple-

Figure 2.1: Super-cell crystal structure of BaF2. The cell contains 96
atoms which has eight cubes of four formula units each. Blue (large)
circles are the barium atoms and the gray (small) ones are the fluorine
atoms.
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cubic cell. In this phase, the cations are at (0,0,0), (1
2
,1
2
, 1

2
), (1

2
,0,1

2
), (1

2
,1
2
,0)

and anions at (±1
4
,±1

4
,±1

4
) in units of the lattice parameter, a. Fig 2.1 shows a

96-atom supercell of cubic BaF2.

BaF2 transforms to the orthorhombic cotunnite-type structure (Pnam,Z = 4)

at about 5 GPa then to a hexagonal phase at between 10 and 15 GPa. The

high pressure phase transition at zero temperature makes the orthorhombic and

hexagonal phases metastable [36].

2.2 Superionics

A number of solids exhibit ionic conductivities comparable to those found in

molten salts and are referred to as superionic conductors, fast-ion or solid elec-

trolytes. The conductivities of these materials reach values of the order of 1

Ω−1cm−1 which is comparable to those observed in the molten state [25]. BaF2

as one of the flourites is known to exhibit superionic properties. Dynamical struc-

tural disorder characterizes superionic conduction and is a major challenge to their

study. Neutron scattering and molecular dynamics simulation have been recently

used to help understand these materials [37, 38]. Availability of large single crys-

tals and the accessible temperature regime at which the phenomena occurs allows

a wide range of experimental techniques to be employed in the study of fluorites.

The simple structure with disorder and transport being virtually restricted to the

anion sub-lattice, make the fluorites exceptionally good test-beds for theoretical

calculations.

One property of superionics is that they can go through solid to solid phase

transition just before reaching melting point. This transition is subdivided into

type I and type II superionics. Type I superionics evolve to highly conducting

state abruptly and type II evolve continuously [39]. Superionic conductors are not

only of scientific curiosity but there is need to identify new highly conducting solids

for the rapidly expanding technological applications within lightweight solid state

batteries, high power fuel cells and fast response gas sensors [40]. It is generally
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accepted that the specific heat jump and high-temperature conductivity behaviour

are due to a diffuse phase transition at which there is a relative disordering of the

anion sub-lattice. Nominal pure crystals are known to demonstrate a ’normal’

behaviour under ordinary conditions i.e to have a rather low ionic conductivity

which is described in terms of a classical approach and is due to the formation

and motion of isolated anti-Frenkel defects. At the same time, for a number of

fluorite-type compounds (SrCl2, CaF2 and BaF2) the presence of a broad peak

in the heat capacity curve has been observed at a temperature TC (specific heat

maximum) essentially below the melting point Tm. According to Derrington et al

[41], the electrical conductivity of crystalline salts (SrCl2, CaF2, SrF2) increases

continuously with temperature and in the premelting region becomes comparable

to that of the melts. Precision measurements carried out later for SrCl2 [42]

and β-PbF2 [42, 43] have allowed the peculiarity to be revealed that the ionic

conductivity, starting from the intrinsic region grows not linearly but according

to a sigmoid-like curve so that the apparent activation energy has a maximum at

a temperature close to that for heat capacity jump.

According to classical molecular dynamics study done in Ref.[12], BaF2 be-

comes superionic at a temperature of about 1250 K. In this present work we will

show that indeed this material is superionic using custom-made parametrized po-

tential method which is more accurate. A phase shift of solid-solid phase transition

is reported giving further evidence that the anions sub-lattice undergoes disorder,

well before melting.
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CHAPTER THREE

THEORY

3.1 The Density Functional Theory, DFT

3.1.1 Introduction to DFT

Density Functional Theory (DFT) is currently the most widely used framework for

the simulation of electronic structure of materials and molecules. DFT is primar-

ily a theory for investigating the electronic structure and molecules in condensed

matter. It is capable of covering the prediction of properties at the ground state

of any system of electrons. DFT has relativistic extensions and extension to elec-

tromagnetic fields has also been achieved. There are a number of approximations

which are usually made in order to enable the computations to be accessible to

current computers since more precision comes with more computation hours and

hence more computational cost.

DFT is usually preferred in the study of solid state systems over other ap-

proaches since it uses the electronic density n(~r) of the system which is much

simpler to work with than the 4N-dimensional wavefunction [44]. Another advan-

tage of DFT is the fact that it can also be used in the study of both periodic and

non-periodic systems of infinite sizes.

3.1.2 Fundamentals of DFT

The many-body theory describes the interaction of electrons of a large system

(∼ 1023) with atomic nuclei. This large number of interactions makes the theo-

retical calculations difficult to solve exactly, and hence some approximations are

required. These interactions govern most of the observed properties of matter

such as mechanical, electrical, thermal and optical properties among others. The
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Schrödinger equation for such a system is given as;

HΨ = EΨ. (3.1)

In this expression, Ψ is the full or “many-body” wave-function for all the particles

in the interaction (electrons, nuclei and also electromagnetic field). E is the energy

eigenvalue corresponding to the wave-function Ψ and H is the total Hamiltonian

given as;

H = −
∑
i

~2

2m
52
i +

1

2

∑
i 6=j

e2

|~ri − ~rj|
−
∑
i,I

ZIe

|~ri − ~RI |
−
∑
I

~2

2MI

52
I+

1

2

∑
I 6=J

ZIZJe
2

|~RI − ~RJ |
.

(3.2)

In eqn.(3.2), the first, second and third terms on the right hand side are the

kinetic energy of the electrons, the electron-electron Coulomb interaction and the

electron-nuclei interaction, respectively. The fourth term is the kinetic energy of

the nuclei and the last term is the nucleus-nucleus interaction. The symbols ~ri

denote the electron position, ~RI refers to nuclei positions, m is the electron mass,

e is the electron charge, MI are the nuclei masses, ZI are the nuclei charges and

~ is the reduced Plank constant.

The Born-Oppenheimer approximation simplifies the many-body problem by

assuming that since the nuclei are far much heavier than the electrons, they will

move slowly so that electronic and nuclear motion can be separated. Nuclei are

treated to be stationary and the electrons move relative to them. Eq.(3.1), can be

separated into two independent eigenvalue problems such that the wave function

is written as the product of the electron and nuclei wave functions

Ψ(~r, ~R) = ψe(~r, ~R)× ψnucl(~R), (3.3)

where the electron wave function depends on the nucleus co-ordinates. Given that

the nuclei are now treated to be stationary, we neglect the nuclei problem since it
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can be incorporated later. The Schrödinger equation for the electron is now

Heψe = Eeψe, (3.4)

and the electron Hamiltonian is

He = −
∑
i

~2

2m
52
i +

1

2

∑
i 6=j

e2

|~ri − ~rj|
− 1

2

∑
i,j

ZIe

|~ri − ~RI |
. (3.5)

The first term on the right hand side of eqn. (3.5) is the kinetic energy of the

interacting electrons and the wave function ψ depends on the all-electron co-

ordinates which is still a very difficult many-body problem. Hartree [45] suggested

that one-electron approximation could be used, and in this case a many-body

problem is transformed into a set of one-particle equations for an electron moving

in an average potential created by the other electrons. The potential of this non-

interacting system is the sum of the potential energy of the ions plus the potential

energy of all the electrons. For such a non-interacting system, the N -electron

wavefunction becomes the product of the one-electron wavefunctions;

Ψ = ψ1(r1)ψ2(r2)...ψN(rN), (3.6)

where the variables ri include both co-ordinates and spin. The wavefunction is

antisymmetric with respect to an interchange of any two electron positions. This

assumption ignored the Pauli exclusion principle which requires that the wave

function should be antisymmetric under permutation of two co-ordinates. This

problem was solved by Hartree-Fock by writing the total wave function as a Slater
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determinant of one-electron wave functions;

Ψ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(x1) ψ1(x2) ...ψ1(xN)

ψ2(x1) ψ2(x2) ...ψ2(xN)

. .

. .

. .

ψN(x1) ψN(x2) ...ψN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (3.7)

where ψi(xj) are the one-electron wavefunctions. Minimizing the expectation value

of the Hamiltonian Ĥ with respect to the one-electron wavefunctions gives the

Hartree-Fork equations. But the correlation energy which is the sum of all the

other quantum effects is beyond the Hartree-Fock theory and requires a more

general approach as described in subsection 3.2.

3.2 Hohenberg-Kohn (HK) Theorems

The foundation of density functional theory was laid in 1964 by Hohenberg and

Kohn [46]. They showed that there is a direct relationship between the potential

Vext(~r) and the ground state electron density n(~r), in such away that the infinitely

complex many-body problem of solving the Schrödinger equation for N -particles

can be replaced by an equation for the charge density n(~r). This theorem states

that for any system of interacting electrons in a general external potential Vext(r),

the ground state electron density n(r) uniquely determines Vext(r) to within a

constant:

n(r)→ Vext(r). (3.8)

According to Hohenberg and Kohn, no two different potentials acting on the elec-

trons of a given system can give rise to same ground-state electronic charge density

n(~r). This implies that the HK theorem applies to non-degenerate ground states

only. The complete many-body Hamiltonian is then implied by n(~r). Hence all the
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excited states and their energies are also implied by n(~r). The Hohenberg-Kohn

theorem therefore confirms that by using n(~r) rather than wave-functions, the de-

tails of many-body Physics can be understood [47]. Consider two different external

potentials V (1)
ext (r) and V

(2)
ext (r) which are different by more than a constant but give

the same ground state density n(r). These external potentials have corresponding

Hamiltonians Ĥ1 and Ĥ2 with different ground state wavefunctions, Ψ1 and Ψ2

which are supposed to have the same ground state density n(r). Given that Ψ2

is not the ground state wavefunction of Ĥ1, then from Rayleigh Ritz variational

principle

E1 = 〈Ψ1|Ĥ1Ψ1〉 < 〈Ψ2|Ĥ1Ψ2〉, (3.9)

where

〈Ψ2|Ĥ1Ψ2〉 = 〈Ψ2|Ĥ2Ψ2〉+

∫
d3r[V

(1)
ext (r)− V

(2)
ext (r)]n(r), (3.10)

and

E1 < E2 +

∫
d3r[V

(1)
ext (r)− V

(2)
ext (r)]n(r). (3.11)

The inequality in eqn.(3.11) is due to the variational principle for non-degenerate

ground states and it can also be shown that

E2 < E1 +

∫
d3r[V

(2)
ext (r)− V

(1)
ext (r)]n(r). (3.12)

Adding eqns.(3.11) and (3.12) gives,

E1 + E2 < E1 + E2, (3.13)

which is not true and therefore the desired result is obtained. Thus, the den-

sity uniquely determines the external potential to within a physically irrelevant

additive constant [44, 48].

Hohenberg and Kohn also showed that there exists a universal functional

F [n(r)] (i.e. it is same for all electron systems) which is a functional of elec-

tron density n(~r) only, such that the actual ground state energy E[n(~r)] is given
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by eqn. (3.14).

E[n(~r)] = F [n(~r)] +

∫
n(~r)Vext(~r)d

3r. (3.14)

The energy E[n(~r)] is minimized under the constraint that the integral of n(~r)

equals the total number of electrons. Furthermore, the value of the minimum

coincides with the ground-state energy. Hence, based on these theorems the ex-

pectation value of the Hamiltonian in eqn.(3.5) (section 3.1.2) can be written as

〈ψ|H|ψ〉 = E[n(~r)], (3.15)

where E[n(~r)] is the ground state total energy functional and n(~r) is the electron

density. Therefore, if one knows the correct density, all ground state properties

of the system can be calculated. To find the correct ground state density one

minimizes the energy functional with respect to charge density;

E0 =
δ

δn
E[n(~r)] = E[n0(r)]. (3.16)

This theorem provides the foundation of density-functional theory [49]. It al-

lows an enormous conceptual simplification of the quantum-mechanical problem

of searching for the ground-state properties of a system of interacting electrons,

for it replaces the traditional description based on wave functions (which depend

on 3N independent variables, N being the number of electrons) with one which

depends only on three variables and charge density. However, there are two major

challenges to the straight forward application of this theorem. Firstly, the form

of the functional F is unknown and secondly the conditions to be fulfilled for a

function n(~r) to be considered an acceptable ground-state charge distribution (and

hence the domain of the functional F ) are poorly characterized. The second prob-

lem is hardly addressed at all, and usually the proper normalization of the charge

density by the use of Lagrange multiplier is imposed. Levy and Lieb constrained
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approach and Kohn and Sham discussed below tried to solve the first question.

3.3 Levy and Lieb Constrained Approach

The variational problems can be written explicitly as

E0 = min
n(r)

E[n(r)], (3.17)

where E[n(r)] = T [n(r)] +U [n(r)] + Vext(n(r)) is the energy functional composed

of kinetic T [n(r)], electron-electron potential U [n(r)] and the external potential

functional Vext[n(r)]. HK theorem and its variational problem has restricted field

of applicability i.e electron density n(r) must be v−representable (it is the ground

state density for some potential v(r)). This implies that the density n(r) is the

density corresponding to an antisymmetric wavefunction of the ground state of a

Hamiltonian [50]. It then follows that the correct formulation of the variational

problem becomes

E0 = min
n(r)

Ev[n(r)], (3.18)

where v represents the v−representability of n(r). A generalization of the HK

theorem which does not require n(r) to be v− representable is found in the idea of

Levy [51] and Lieb [52] and is called Levy-Lieb constrained search approach. In this

approach one identifies between ground state wavefunction, ψ, and a wavefunction

ψλ, which also integrates to the ground state electron density n(r). Since ψ is the

ground state wavefunction, we write

〈ψλ|HN |ψλ〉 ≥ 〈ψ|HN |ψ〉 = E0. (3.19)

This can also be written as

〈ψλ|T + U |ψλ〉 ≥ 〈ψ|T + U |ψ〉. (3.20)
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The wavefunction ψ minimizes the kinetic and the electron-electron repulsion en-

ergy and integrates to n(r). This is therefore a double minimization procedure

which allows for searching among all the n(r) which are N -representable. This

formulation can be written as

E0 = min
n(r)

[ min
ψλ→n(r)

〈ψλ|T + U |ψλ〉+

∫
v(r)n(r)dr] (3.21)

≡ F [n(r)] +

∫
v(r)n(r)dr,

where

F [n(r)] = min
ψλ→n(r)

〈ψλ|T + U |ψλ〉. (3.22)

This defines Levy-Lieb functional. Eqn.(3.22) defines the meaning of a functional

and gives an operational definition as the minimum of the sum of kinetic plus

interaction energies for all possible wavefunctions with same density n(r) [44].

This functional applies to a wide class of densities derived from wavefunction ψ

for N electrons including degenerate states. But still the constrained approach

just like the HK approach does not give any method of calculating the functional.

This is addressed by Kohn and Sham [53] as discussed below.

3.4 Kohn-Sham Approach (Exc)

Kohn and Sham (KS) showed that the way to construct the Hohenberg-Kohn func-

tionals is through the single particle kinetic energy Ts[n] or independent electrons

(i.e. electrons without mutual Coulomb repulsion) in their ground state under

the action of an external potential such that their ground state density is n(~r).

This theorem states that all the physical properties of a system of interacting

electrons are uniquely determined by its ground-state charge-density distribution

and is independent of electron-electron interaction. When electron-electron in-

teraction vanishes, F [n(~r)] defines the ground-state kinetic energy of a system of

non-interacting electrons as a functional of its ground-state charge-density distri-
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bution To[n(~r)]. Kohn and Sham suggested a non-local functional to be the major

part of kinetic energy component < T̂ >. In this case, if Ψk(~r) is taken to be a

one-particle wavefunction of this external potential then,

n(~r) =
N∑
k=1

|Ψk(~r)|2 (3.23)

and

Ts[n] =
N∑
k=1

∫
d3r

~2

2m
| 5Ψk(~r)|2. (3.24)

This kinetic energy is near the exact < T̂ > in the ground state. E[n] can then be

written as the sum of large external potential energy PE, single-particle KE and

Hartree PE terms, plus a remainder Exc as shown in eqn.(3.25).

E =

∫
v(~r)n(~r)d3r+F [n] =

∫
v(~r)n(~r)d3r+Ts[n]+

e2

2

∫
n(~r)n(~r

′
)

|~r − ~r′ |
d3rd3r

′
+Exc[n].

(3.25)

Exc is called exchange-correlation energy and it has both potential and kinetic

energy characteristics. Exc is the part of the energy functional that we do not

know how to calculate. Minimization of the expression in eqn.(3.25) with respect

to the wavefunction Ψk(~r) which is equivalent to minimizing energy with respect

to density n(~r) gives Schrödinger eqn.(3.26).

(
− ~

2m
52 +veff (~r)

)
Ψk(~r) = εkΨk(~r), (3.26)

where εk is a Lagrange multiplier for normalization. veff.(~r) contains external

potential, Hartree energy (electrostatic energy) and exchange-correlation terms

which is given by eqn.(3.27) as;

veff (~r) = v(~r) + e2

∫
n(~r

′
)

|~r − ~r′|
d3r

′
+ vxc(~r). (3.27)
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The exchange-correlation potential is defined as;

vxc(~r) =
δExc
δn(~r)

. (3.28)

Eqns.(3.27) and (3.28) give the exact ground-state energy and density for non-

degenerate systems. Variation of the energy functional with respect to n(~r) with

the constraint that the number of electrons be kept fixed leads formally to the

same equation as would hold for a system of non-interacting electrons subject to

an effective potential, also called the self-consistent field, (SCF). The potential veff

of eqn.(3.27) is local and so makes the KS equations easily solved computationally

than Hartree-Fock scheme. Local as applied here implies that veff only acts on

the wavefunctions at the point ~r. But vxc which is also called exchange-correlation

potential in KS equations has a non-local dependence on the density n(~r).

The εk term appearing in eqn.(3.26) is only for normalization of the orbitals of

Ψk during variational procedure and are not excitation energies as in the normal

Schrödinger equation. This is because KS theory is purely a ground-state theory.

KS equations are solved through an iterative procedure until self-consistency is

reached. If Exc was known, it would be possible to solve for the exact ground state

energy and density. However, this is not the case, and therefore approximations

have to be made in determining ground state energy.

3.5 Local Density Approximations (LDA)

The exchange-correlation functional, Exc, does not depend on Vext but is a ’uni-

versal’ functional. Its exact dependence on n(~r) is not known and is normally

approximated in calculations. The KS method does not lead to a better approx-

imation as it stands, because the term Exc[n] is still present. To overcome this,

Kohn and Sham proposed a local-density approximation (LDA) given as;

Exc =

∫
n(~r)εhomxc (n(~r))d3r, (3.29)
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in which εhomxc is the exchange-correlation energy per particle of a homogeneuos

electron gas with density n(~r). The Exc energy is thus calculated by assuming

that in the vicinity of the point r the properties of the inhomogeneous electron

gas of density n(r) can be approximated by those of a uniform electron gas of that

density. The electrons are moving on a positive background charge distribution

such that the total ensemble is electrically neutral [54, 55].

The exchange-correlation potential is then given as [54];

vLDAxc [n(~r)] =
δExc
δn(~r)

= εxc[n(~r)] + n(~r)
∂εxc[n(~r)]

∂n(~r)
. (3.30)

In LDA calculations, it is common to split εxc[n(~r)] into exchange and correlation

potentials i.e; εxc[n(~r)] = εx[n(~r)] + εc[n(~r)]. The exchange potential is given by

the Dirac functional [56];

εx[n(~r)] = −3

4

(
3

π

) 1
3

n(~r). (3.31)

Accurate values for εx(n(~r)) can be determined from QuantumMonte Carlo (QMC)

calculations [57]. The values are then interpolated to provide an analytic form for

εx(n(~r)) [58]. Although LDA works very well for many systems, sometimes it is

necessary to use other approximations. There are many attempts to go beyond

LDA by expanding the exchange-correlation functional in a power series including

higher order terms [59].

3.6 Generalized Gradient Approximation

For non-uniform charge densities, the εxc term can deviate significantly from the

uniform result. This deviation can be expressed in terms of the gradient and higher

spatial derivatives of the total charge density. In this expansion, if we consider

the gradient of the electron density, 5n(~r), we get the generalized gradient ap-

proximation (GGA). For systems where the charge density is slowly varying, GGA

should be better than LDA though not in all systems. Therefore, a test should be
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done on any of these approximations before they are used. The parametrization

we have used in our discussions are as described in ref.[60].

The gradient expansion approximation (GEA) suggested in the original work of

Kohn and Sham [53] was found by considering the LDA as the first term of a Taylor

expansion of the Exc[n↑, n↓] about the uniform density, and adding corrections to

the next term in the density gradients. But this does not give an improvement

of GEA over LDA (or LSDA) because it violates the sum rules and is therefore

less accurate than LDA [61, 62]. The basic problem in real materials is that the

gradients are so large that the expansion breaks down [44].

The basic idea of GGA’s is to express the exchange-correlation energy in the

form

EGGA
xc [n↑, n↓] =

∫
d3rf(n↑(~r), n↓(~r),5n↑(~r),5n↓(~r)). (3.32)

The functional f must be a parametrized analytic function, in order to facilitate

practical applications. GGA normally is more accurate in comparison to LDA

especially for molecular binding energies [63], which are severely overestimated by

LDA. In the solid state, the GGA’s expand and soften bonds, leading to larger

lattice constants that are sometimes more and sometimes less accurate than those

of LDA [47]. Typically, GGA’s are in favour of varying density condition more

than LDA.

Construction of a first-principles numerical GGA has been done by starting

from the second-order density-gradient expansion for the exchange-correlation hole

surrounding an electron in a system of slowly varying density, then cutting off its

spurious long-range parts to satisfy sum rules on the exact hole that the LDA

respects. An analytic fit to this numerical GGA is the functional proposed by

Perdew and Wang (PW91) [64], designed to satisfy several other exact conditions.

The GGA pseudopotential used in this work in electronic structure and defect

calculations is that developed by Perdew, Burke and Ernzerhof (PBE) [65]. They

solve PW91 problems with a simplified construction of GGA for the exchange

and correlation potentials, in which all parameters (other than those in LDA)
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are fundamental constants. In their derivation, the GGA correlation function is

written in the form

EPBE
c [n↑, n↓] =

∫
d3rn

[
εunifc (rs, ς) +HPBE(rs, ς, t)

]
, (3.33)

where rs = (3/4πn)1/3 is the local Wigner-Seitz radius, n = the number of orbitals,

ς = (n↓ − n↑)/n is the relative spin polarization and t = | 5 n|/2φksn is a dimen-

sionless density gradient. Here φ(ς) = 1
2

[
(1 + ς)2/3 + (1− ς)2/3

]
is a spin-scaling

factor and ks = (4kF/πa0)1/2 is the Thomas-Fermi (TF) screening wave number,

with a0 = ~2/me2. The gradient contribution HPBE is defined as

HPBE = (e2/a0)γφ3ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
, (3.34)

where

A =
β

γ

[
exp{−εunifc /(γφ3e2/a0)} − 1

]−1
, (3.35)

and HPBE satisfies the following three conditions [65]:

• It tends to the correct second-order gradient expansion in the slowly varying

limit (t→ 0)

HPBE → (e2/a0)βφ3t2, (3.36)

where β = 0.066725 [66].

• It approaches the negative value of the uniform electron gas correlation in

the rapidly varying limit (t→∞),

HPBE → −εunifc , (3.37)

hence making the correlation energy to vanish. This result is derived from

the correlation sum energy rule.

• It must cancel the logarithmic singularity of εunifc in the high-density limit,
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thus forcing the correlation energy to scale to a constant under uniform

scaling to the high density limit and EPBE
c tends to;

−e
2

a0

∫
d3rnγφ3ln

[
1 +

1

χs2/φ2 + (χs2/φ2)2

]
, (3.38)

where s = | 5 n|/2kFn = (rs/a0)1/2φt/c is another dimensionless density

gradient, c = (3π2/16)1/3 w 1.2277 and χ = (β/γ)c2exp(−ω/γ) w 0.72161.

The exchange energy EPBE
x on the other hand is derived from four further

conditions:

(i.) EPBE
x satisfies the uniform scaling condition such that for ς = 0, we have

EPBE
x =

∫
d3rnεunifx (n)Fx(s), (3.39)

where εunifx = −3e2kF/4π and Fx(s) is the enhancement factor over local

exchange, given by

Fx(s) = 1 + κ− κ/(1 + µs2/κ). (3.40)

The correct uniform gas limit is recovered when Fx(0) = 1.

(ii.) It obeys the spin-scaling relationship

EPBE
x [n↑, n↓] =

1

2
(Ex[2n↑] + Ex[2n↓]) . (3.41)

(iii.) It recovers the LDA linear response limit, where

Fx(s) = 1 + µs2, (3.42)

where µ = β(π2/3) w 0.21952.
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(iv.) It satisfies the local Lieb-Oxford bound [67],

Ex[n↑, n↓] ≥ Exc[n↑, n↓]

≥ −1.679e2

∫
d3rn4/3 (3.43)

Eqn.(3.43) holds if Fx(s) ≤ 1.804, where the value of κ = 0.804 from

eqn.(3.40).

Correct features of LSDA are retained in the PBE GGA and these features are

supplemented with gradient-corrected nonlocality. It has been shown in Ref.[65],

that the PBE functional yields essentially the same results as the PW91. But

PBE is in a simple form and easy to understand. In this thesis all calculations are

done using PBE generated by the Vanderbilt code as is stated in the methodology

chapter.

3.7 Bloch functions and plane waves

The calculations presented here are periodic and the natural basis for representing

all functions is a set of plane waves. Bloch [68] proved that the solutions of the

Schrödinger equation (total wave-function) with periodic potential are of the form

Ψn~k(~r) = un~k(~r)exp(i
~k.~r), (3.44)

where un~k(~r) = u(~r+n1~a1 +n2~a2 +n3~a3) is the periodic part of the wave-function

and the sum is performed over a set of vectors ~a which belong to the primitive

vectors. The basis vectors of the reciprocal lattice are defined as being orthogonal

to two unit cell vectors, and normalized so that the scalar product with the third

is unity. The solutions of Bloch functions are traveling plane waves modulated by

the function un~k(~r) with the periodicity of the crystal potential, that is, with the

period of the lattice. The electrons in the periodic potential are thus non-local.

The periodic part of eqn.(3.44), un~k(~r), is invariant under translation by a
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vector ~R given as;

un~k(~r) = un~k(~r + ~R), (3.45)

and it can be expanded in terms of a discrete plane-wave set whose wave vectors

are the reciprocal lattice vectors of the crystal,

un~k(~r) =
∑
G

c~k, ~Ge
i ~G.~r, (3.46)

where ~G are the reciprocal lattice vectors [59]. Therefore each electronic wave-

function can be written as a sum of plane waves,

ψk(r) =
∑
G

c~k,~k+ ~Ge
i(~k+ ~G).~r, (3.47)

where the coefficients c~k,~k+G in eqn.(3.47) are associated with plane waves of kinetic

energy (~2/2m)|k+G|2. The KS equations have now been reduced to solving a

finite number of electronic wavefunctions at an infinite number of k-points within

the first Brillouin zone of a periodic cell. The methods of grid sampling such as

Monkhorst-Pack [69] are then used to obtain an accurate approximation for the

electronic potential and the total energy of an insulator or a semiconductor by

calculating the electronic states at a very small number of special k-points. In

a metallic system, a denser k-point grid is necessary to define the Fermi surface

precisely and to reduce the magnitude of total energy error which arises from poor

sampling of k-points. Since the total energy varies with increase in k-points, there

is always a need to optimize k-points with total energy.

The plane waves with a smaller kinetic energy are typically more important

than those with large kinetic energy. Introduction of an energy cutoff will lead to

an error in the total energy of the system, but it is possible to reduce the error

magnitude by increasing the size of the basis set by allowing a larger energy cutoff.

The cutoff energy should therefore be optimized with respect to the total energy

of the system until the cutoff value calculated converges to within the required
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margin of error.

3.8 Density-Functional Perturbation theory, DFPT

3.8.1 Introduction to DFPT

The formalism which calculates the response functions of a DFT system is known

as density functional perturbation theory or DFPT [70]. If the perturbation

strength is characterized by a parameter λ, then the energy, potentials, and wave-

functions have an expansion as a function of lambda;

E = E0 + λE1 + λ2E2 + ... (3.48)

The forces and stresses are in E1, and many experiments probe E2 for parameters

such as Raman and infra-red spectroscopy, linear optics and elastic constants.

To decouple vibrational from the electronic degrees of freedom, the Born and

Oppenheimer approximation discussed in Section 3.1 and given in eqn.(3.2) is

used. The equilibrium geometry of the system is given by the condition that the

forces acting on individual nuclei will be zero;

FI ≡ −
∂E(R)

∂RI

= 0. (3.49)

But the vibrational frequencies ω are determined by the eigenvalues of the Hessian

of the Born-Oppenheimer energy [71], scaled by the nuclear masses MI and MJ

placed at positions RI and RJ , respectively;

det| 1√
MIMJ

∂2E(R)

∂RI∂RJ

− ω2| = 0. (3.50)

Eqn.(3.50) shows that the calculation of the equilibrium state and of the vibra-

tional properties is derived from the computation of the first and second deriva-

tives of its Born-Oppenheimer energy surface. This can be accomplished by us-

ing Hellmann-Feynman theorem [72], which states that the first derivative of the
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eigenvalues of a Hamiltonian, Hλ, that depends on a parameter λ is given by the

expectation value of the derivative of the Hamiltonian:

∂Eλ
∂λ

= 〈Ψλ|
∂Hλ

∂λ
|Ψλ〉, (3.51)

where Ψλ and Eλ are the eigenfunction and eigenvalue, respectively for HλΨλ =

EλΨλ. In the electronic Hamiltonian, the force acting on the Ith nucleus is given

at the ground state as

FI = −∂E(R)

∂RI

= 〈Ψ(R)|∂HB(R)

∂(RI)
|Ψ(R)〉, (3.52)

where Ψ(R) is the electronic ground-state wave function of the Born-Oppenheimer

Hamiltonian,HB, and depends onR via the electron-ion interaction. The Hellmann-

Feynman theorem is given now as;

FI = −
∫
nR(r)

∂VR(r)
∂RI

dr− ∂EN(R)

∂RI

, (3.53)

where VR(r) is the electron-nucleus interaction, and nR(r) is the ground-state

electron charge density corresponding to the nuclear configuration R. To obtain

the Hessian of the Born-Oppenheimer energy surface in eqn.(3.50), the Hellmann-

Feynman forces are differentiated with respect to nuclear coordinates as;

∂2E(R)

∂RI∂RJ

= − ∂FI
∂RJ

=

∫
∂nR(r)
∂RJ

∂VR(r)
∂RI

dr +

∫
nR(r)

∂2VR(r)
∂RI∂RJ

dr +
∂2EN(R)

∂RI∂RJ

.

(3.54)

From eqn.(3.54), calculation of the ground state electron charge density nR(r) and

its derivative with respect to position ∂nR(r)/∂RI , is necessary for the calculation

of the Hessian of the Born-Oppenheimer energy surfaces. The Hessian matrix is

usually referred to as interatomic force constant (IFC).

Perturbation often takes a given direction q in reciprocal space. This can be

the direction of a phonon or an electric field. Apart from perturbation theory,
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a frozen-phonon approach can be applied. This is where a finite perturbation is

frozen into the system and energies for different values of λ are calculated so that

derivatives can be extracted. In the frozen-phonon approach, calculations at q 6= 0

requires a supercell to describe the full fluctuation of the perturbation and can be

tricky if q is not at the correct lattice point of the system. DFPT does not require

q to be at gamma (Γ) and can work with arbitrary q values.

3.9 Pseudopotentials

Properties of solids depend on the valence electrons. Pseudopotentials are used

to approximate the properties of materials by replacing the effects of core ions

by a more complicated operator which takes into account not only the potential

of the nucleus, but also the screening and repulsion by the core electrons. Pseu-

dopotentials generates wavefunctions which are not varying rapidly close to core

states. In the all-electron case the valence wavefunctions have a large number of

nodes near the nucleus because of the strong ionic potential. This large number

of nodes or high oscillation is necessary for the orthogonality between the valence

wavefunctions and the core wavefunctions to be maintained. In fig.3.9, rc is the

cutoff radius and the pseudopotential’s bound states will reproduce the valence

wavefunctions outside this radius and be smooth inside.

Most pseudopotentials used in electronic structure calculations are generated

from all-electron density-functional calculations for spherical atoms. It is impor-

tant that outside rc, the real and pseudo wavefunctions are identical so that iden-

tical charge densities are generated by the wavefunctions. The pseudopotential

should therefore satisfy an equation of the form

∫ r

rC

Ψ∗ae(r)Ψae(r)dr =

∫ r

rC

Ψ∗ps(r)Ψps(r)dr, (3.55)

where Ψae(r) is the all-electron wavefunction and Ψps(r) is the pseudo wavefunc-

tion. This equation, together with Fig.3.9 show that all-electron and pseudo wave-
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Figure 3.1: An all-electron in dashed lines and pseudopotential in solid
lines. Given is the rc, the cut-off radius for the pseudopotential. Cour-
tesy Ref.[1].
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functions outside the cutoff radius will be the same.

The simplest pseudopotential is a local multiplicative function [73]. In this

pseudopotential, it is expected that far from the nucleus it must behave like

Zion/|r| where Zion is Z minus the number of none core electrons. But this func-

tional leaves few degrees of freedom to fit the valence states with. This form is

sometimes insufficient even for earth and rare earth elements.

In non-local pseudopotential, projector functions are added to the local po-

tential. These projectors are chosen to make the valence states orthogonal to the

core states [74]. We then obtain

Vps = Vlocal +
∑
c

αc|ψc〉〈ψc|, (3.56)

where c runs over core states. The exact wavefunctions ψc, which are used and the

values of αc can be chosen to fit the valence eigenstates. An alternative is to write

the projectors as a sum over angular momenta, with one projector per l value;

Vps = Vlocal −
∑
c

αl|Ylm〉〈Ylm|. (3.57)

Pseudopotentials of this form are reported in the work of Bachelet, Hamann and

Schlüter [75]. In situations where the overlap between core and valence electrons

is necessary, the standard frozen-core pseudopotential approximations may not be

appropriate. Louie et al [76] showed that introducing a model core charge into the

pseudopotential could correct this. The fitted core charge is added to the valence

charge to give a better estimate of the density in the calculation of the exchange

correlation energy or what is called semi-core electrons (which is a complex, non-

linear functional of the density). The pseudopotential of cations in this work has

been developed using this approach.
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3.9.1 PAW and Ultrasoft Pseudopotentials

A hard pseudopotential requires many plane waves to represent the pseudo wave-

functions and it is soft when few plane waves are used to represent the pseudo-

wavefunctions. In norm-conserving pseudopotentials (e.g. non-linear core cor-

rections approach), the charge contained inside the cut-off radius for the pseudo

and all-electron wavefunctions must be the same (beyond the cut-off the wave-

functions should be identical). Vanderbilt [77] and Blöchl [78] introduced simi-

lar formalisms (ultrasoft pseudopotentials (USPP) and the projector augmented

wave (PAW) method respectively) which relax this condition. The PAW method

is more general, and encompasses both pseudopotential theory and the linearized

augmented plane waves (LAPW) [79] method. The additional degrees of freedom

gained from relaxing the norm-conserving condition can be used to make much

smoother pseudopotentials, requiring a smaller plane-wave basis set.

Vanderbilt’s USPP approach requires the determination of a number of pa-

rameters whose choice is important and should be properly tested in order to

obtain an accurate and highly transferable pseudopotential. In the PAW method,

the construction of pseudopotential is easier since the pseudization of augmenta-

tion charges is avoided. This implies that PAW works directly well with the full

all-electron wavefunctions and all-electron potentials. The PAW method has also

advantage that the total energy expression is simpler. The PAW method does not

depend on a reference point like an isolated atom as in pseudopotential method.

Instead, PAW uses the full density potential and its convergence is more rapid

compared to norm-conserving pseudopotentials [78].

3.10 Phonons

Phonons are calculated as second derivatives of energy E with respect to the

displacements of two atoms. This derivative gives the inter-atomic force constants

(IFC) [80], which can be understood as the change in the force on an atom if



33

another atom is displaced from its original position. The IFC can be defined as;

CI,J(a, b) =
∂2E(R)

∂Ra
I∂R

b
J

, (3.58)

where a and b label unit cells and Ra
I and Rb

J are the atomic positions. In most

systems, the IFC dies slowly as the distance between atoms increases. The motion

of an atom can influence another atom many atoms away i.e.(these forces are

long-range).

The Fourier transform of CI,J(a, b) with respect to the unit cell lattice gives

the dynamical matrix DI,J(q) with additional factor of 1/
√
MκMκ′ . Diagonalizing

D gives the phonon frequencies squared, ω2
mq and the phonon polarization vec-

tors. The squared phonon frequencies can be compared to experiment such that

if q = 0 then it compares to Raman and infra-red frequencies. The full phonon

band structure can be obtained by methods such as inelastic X-Ray scattering.

Sometimes the eigenvalue of D can become negative and if such a structure is

in equilibrium then this corresponds to an atomic displacement which lowers the

total energy, and hence characterizes an unstable phonon mode. Unstable, or soft

phonons occur in phase transitions and when symmetry is broken. By convention,

the soft phonon frequencies are plotted in phonon band structures with a negative

frequency, −
√
|ω2
mq|.

When q = 0 in a wide band gap materials and semiconductors, an additional

non-analytical term intervenes if the crystal is polar (if the material is composed

of more than one type of atom). In this case, the displacement due to a phonon

can create a finite electrical polarization, and this field can then create forces on

the atoms. The perturbation of the systems by this residual electric field must

therefore be calculated. This has been implemented in Quantum Espresso Code

which is to be used in this study through the implementation of acoustic sum rule

and has been applied in phonon calculation of phonon modes in Sec. 5.3.
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3.11 Defects

3.11.1 Point defects and defect migration

Ionic conductors are poor conductors of electricity but their conductivities increase

drastically at melting point. At room-temperature, conductivity of ionic crystals

is about twenty-two orders of magnitude smaller than the conductivity of typical

metallic conductors. This large difference in conductivity can be understood from

the fact that the wide band gap in insulators allows only extremely few electrons

to become excited from the valence band into the conduction band. Their conduc-

tivity is caused by the drift of ions and although their drifts are in orders smaller

than in the liquid phase, the ions are able to diffuse from site to site through

the lattice. This drift is due to thermally created lattice defects [35]. The ionic

conductivity is given as;

σion = Nioneµion, (3.59)

where Nion is the number of ions per unit volume that can change their positions,

µion is the mobility of these ions and e is the charge of the ion. In order for ions

to move through a crystalline solid, they must have sufficient energy to pass over

an energy barrier as shown in figure 3.11.1. Further, an equivalent lattice site

next to a given ion must be empty in order for an ion to be able to change its

position. Thus, Nion depends on the vacancy concentration in the crystal (i.e., on

the number of Schottky defects). In short, the theory of ionic conduction contains

essential elements of diffusion theory.

The predominant point defects are anion-Frenkel pairs, i.e. anion vacancies and

interstitial anions in the cube-centre sites, with ionic transport occurring via the

migration of the defects [81]. At temperatures just below melting point, Tm, the

fluorites exhibit a broad specific heat anomaly which passes through a maximum

at a temperature, Tc. Ionic conductivity, σ, increases with temperature which in

turn is increased by the presence of Schottky defects. This is the defect where

vacancies allow other atoms to easily diffuse through them since less energy is
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Figure 3.2: Schematic representation of a potential barrier, which an ion
has to overcome to exchange its site with a vacancy. The barrier height
increases with introduction of electric field. (a) Without an external
electric field; (b) with an external electric field. d = distance between
two adjacent, equivalent lattice sites; Q = activation energy. Courtesy
Ref.[2].

required to move the electrons and in the process, the vacancies migrate in the

opposite direction. This migration is referred to as diffusion and it is an important

property which helps in understanding whether it is likely that the defect can be

incorporated during growth and processing. It also helps in the understanding of

impurity diffusion, which is always mediated by native defects [82]. Diffusion plays

an important role in device degradation and increases electrical conductivity too.

In order to interpret the results and compare with experiments, it is necessary to

have a knowledge of defect formation energy, ∆E. This is the energy required to

create a defect and is related to the concentration of defect c by the expression;

c = Ntexp(−∆E/kBT ), (3.60)

where Nt is the total number of sites in the lattice (per unit volume) where the

impurity can be incorporated, kB is the Boltzmann’s constant, and T is the tem-

perature. In most ionic crystals, ∆E is much greater than kBT even at the melting

point, so that the defect concentration is always very small, and consequently the

increase of conductivity on melting is usually very large. In other words, the num-



36

ber of vacancies increases with increase in temperature. Vacancies are normally

created in pairs (e.g. interstitial anion and anion vacancy) to allow the material

to be neutral. Materials that contain large numbers of defects, so that the ions

can migrate easily (at high temperature T ) can have a high ionic conductivity

[83]. In some ionic materials, this high ionic conductivity (about 1 Ω−1cm−1)

with liquid-like values are reached before the crystal melts and such materials are

referred to as superionic conductors. Superionic conduction can occur through

change of the lattice structure: at low temperatures the material has a structure

which makes it a normal ionic crystal, but at some elevated temperature it un-

dergoes a discontinuous change to another structure in which the conductivity is

liquid-like. Alternatively, the material can become superionic simply because the

defect concentration becomes large before melting point.

It is now widely accepted that at high temperature, fluorite compounds un-

dergo a continuous (diffuse) transition to a state of relatively heavy, but far from

massive dynamic disorder of the anion sub-lattice, and the ion transport occurs

via a hopping mechanism. However many aspects of the superionic behavior of

pure fluorites such as the exact nature and the extent of the disorder, the defect

structure, and the mechanisms of conduction have not been fully clarified.

Direct experimental studies of point-defect motion have been performed us-

ing self-diffusion in isotope structures, electron paramagnetic resonance (EPR)

and positron annihilation [82]. Theoretical study of these defects has been done

successfully in CaF2. In Chapter three section 3.10, we describe the density func-

tional theory (DFT) approach for defect calculation, and then apply the method

described in the calculation of point defects within BaF2.

3.11.2 Defects in charged species

A charged crystal is treated as an aperiodic system because there is no periodic

unit cell but the calculation is carried out in a section of the system of interest then

this calculation is periodically repeated in the supercell. This is different from the
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periodic calculation where calculation on one unit cell gives all the information

needed [84].

In this study, charged systems calculations were treated as an aperiodic systems

with an infinitely large supercell. Such systems are similar to those obtained from

similar systems immersed in a jellium background which fills the supercell and

neutralizes the charge so that the net charge is zero [85]. The energy of such

a system converges slowly showing the decrease in the interaction between the

charged system and the jellium background as the supercell size increases. The

charge density of the immersed system consists of the density of the charged

species, ρc(r) and the jellium density, n0;

ρ(r) = ρc(r) + n0. (3.61)

Assuming a charge q on a charged species, then n0 = −q/Vc to ensure charge

neutrality. In eqn.(3.61), the density is split into two parts which are obtained by

adding and subtracting a point charge q at position r0 i.e.,

ρ(r) = [qδ(r− r0)] + [ρc(r)− qδ(r− r0)]. (3.62)

Eqn.(3.62), has two densities which can be written as;

ρ(r) = ρ1 + ρ2, (3.63)

where ρ1 is the first term in the right hand side and ρ2 is the second term of

eqn.(3.62). Position r0 is chosen at the centre of the unit cell where the dipole is

zero. The first term ρ1 contributes energy E11 which is known as the Madelung

energy of a lattice of point charges immersed in neutralizing jellium [86]

E11 = −q
2α

2L
, (3.64)

where α is the Madelung constant and is a lattice dependent parameter. L is the



38

lattice parameter here taken as 11.529 Bohr. The Madelung constant for BaF2

has been approximated to that of a simple cubic structure taken in this work as

1.76267 [87].
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3.12 Molecular Dynamics

Molecular dynamics is a computer simulation method which involves calculating

motion of interacting atoms in the system using Newton’s law,

Fi = miai, (3.65)

where each atom i interacts with N atoms in the system, mi is the atom mass and

ai is its acceleration. Fi is the force acting on the atom as a result of interaction

with other atoms. The force applied on each ion is the superposition of all the

forces exerted on it by all the ions in the system. These forces can be derived from

specified interionic potentials. A potential is a function V (r1, ..., rN) of the ionic

positions and it represents the potential energy of the system when the atoms

are arranged in that specific configuration [88]. From the potentials, forces are

obtained as the gradients of the potentials with respect to the atomic positions;

Fi = −5ri V (ri, ..., rN). (3.66)

The simplest form of potential V is written as a pairwise interaction

V (r1, ..., rN) =
∑
i

∑
j>i

φ(|ri − rj|). (3.67)

Where j > i is to ensure that summation of an atom pair is not repeated. In

such an interaction, a trajectory in a 6N -dimensional phase space is calculated.

By solving the equations of motion, trajectories are obtained of all the particles

in the system. From these trajectories the required thermodynamic and kinetic

characteristics of the system can be derived. It is now well known that pairwise

interactions do not give proper approximations of the many properties of materials

especially metals and semiconductors.

In a molecular dynamics calculations (MD), it is possible to consider a small
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number of particles and neglect the surface effect by using the periodic boundary

conditions (PBC). In this scheme, particles are enclosed in a box and the box is

repeated to infinity by rigid translation in all the three cartesian directions. The

particle i is now made not only to interact with particle j in the same box but

also with their images in nearby boxes. Box boundaries are now replaced and the

surface effects are also eliminated. In evaluating the interactions in the system,

only pairs separated by a distance less than some cut-off radius Rc beyond which

the interaction is negligible, are considered. The box can be seen as infinite in

size.

At thermal equilibrium the relation

〈v2
α〉 = kBT/m, (3.68)

should hold, where vα is the α component of the velocity of a given particle.

Instantaneous temperature at time t can then be given as;

kBT (t) ≡
N∑
i=1

mv2
α,i(t)

Nf

. (3.69)

The instantaneous temperature T (t) can be adjusted by scaling all velocities with

a factor (T/T (t))1/2.

In order to solve Newton’s equations of motion in molecular dynamics simu-

lations, positions of all particles are used rather than their velocities. Position

at the present (x) and previous (xm) time steps with the forces (f) acting on the

particles is used to predict the positions at the next time step. At initial stage, the

positions of the particles are generated approximately as the previous positions.

3.12.1 The force calculation

The net force acting on an ion can be derived from specified interionic poten-

tials. Hamilton’s variational principle requires that the phase space trajectory

followed by a mechanical system is the one for which the time integral
∫
Ldt is an
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extremum, where L is the Lagrangian [89]. Given a set of N independent gener-

alized coordinates and velocities {qi, q̇i} that describe the state of a conservative

system (one in which all forces derive from some potential energy function U), so

that L = L({qi, q̇i},t), then L can be shown to satisfy the Lagrangian equations

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, ..., N. (3.70)

If qi denotes a component of the Cartesian coordinates for one of the atoms then;

L =
1

2
m
∑
i

q̇2
i − U({qi}), (3.71)

so that eqn.(3.70) becomes

mq̈i = −∂U
∂qi

= Fi, (3.72)

where Fi is the corresponding force component.

3.12.2 Equations of motion

When forces between particles have been established, then Newton’s equations of

motion are integrated. There are many schemes of doing this and one of this is

Verlet algorithm.The Taylor expansion of the coordinate of a particle around time

t can be written as,

r(t+ ∆t) = r(t) + v(t)∆t+
f(t)

2m
∆t2 +

∆t3

3!

...
r +O(∆t4).

Also,

r(t−∆t) = r(t)− v(t)∆t+
f(t)

2m
∆t2 − ∆t3

3!

...
r +O(∆t4).

Adding the two equations gives

r(t+ ∆t) + r(t−∆t) = 2r(t) +
f(t)

m
∆t2 +O(∆t4),
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or

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) +
f(t)

m
∆t2. (3.73)

The new position estimate has an error of order ∆t4, where ∆t is the time step

in Molecular Dynamics. The scheme above does not use the velocity but from

trajectories we can write;

r(t+ ∆t)− r(t−∆t) = 2v(t)∆t+O(∆t3)

or

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t2). (3.74)

The velocity is only accurate to order of magnitude ∆t2 although the Verlet scheme

can be made to achieve better accuracy. The old position at time (t − ∆t) is

discarded and the new position now becomes the old position in the next run.

After each time step, the current temperature, the current potential energy and

the total energy are calculated, under the constraint that the total energy should

be conserved.

3.12.3 Initialization

In order to start a molecular dynamics calculation, the atoms are assigned initial

positions and velocities. The chosen positions are the positions of the structure

that is to be simulated [90]. The structure in this work is the face-centred cubic

box of 96 atoms. Each particle is put at its lattice site then we assign a velocity

component to every particle, a value that is drawn from a uniform distribution.

This initial velocity distribution is a Maxwell distribution kind in shape. All

velocities are then shifted such that the total momentum is zero and we scale the

resulting velocities to adjust the mean kinetic energy to the desired value.
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3.12.4 Thermalization

In classical molecular dynamics, simulations are done at NVE ensemble i.e. control

is done on the number of particles (N), the volume (V) and the energy (E). But in

reality, the temperature is controlled instead of energy. There are many approaches

that can be used to control temperature. In the Andersen approach, constant

temperature is achieved by stochastic collisions with a heat bath [90]. In this work,

molecular dynamics have been done at NVT ensemble (i.e. molecules number (N),

volume (V) and temperature (T) are controlled). This implies that pressure was

kept constant. To achieve thermal equilibrium, the Nosé thermostat was used [91].

Nosé thermostat is used to keep the temperature in a molecular dynamics

calculation around an average value. The method was introduced by Nosé and

developed by Hoover [91, 92]. In this approach, a heatbath is introduced in the

Hamiltonian with an extra degree of freedom s. To achieve an isothermal molecular

dynamics calculation, Nosé Langragian is considered different from the normal

classical Langragian, and is now written as;

LNose =
N∑
i

mi

2
s2ṙ2

i − U(rN) +
Q

2
ṡ2 − Llns

β
, (3.75)

where L is a parameter that is to be fixed and Q is an effective “mass“ associated

to s. The momenta conjugate to ri and s follow directly from eqn.3.75;

pi ≡
∂LNose
∂ṙ

= mis
2ṙi (3.76)

ps ≡
∂LNose
∂ṡ

= Qṡ. (3.77)

It then follows that the Hamiltonian for the extended system of N particles is

HNose =
N∑
i=1

p2
i

2mis2
+ U(rN) +

p2
s

2Q
+ L

lns

β
. (3.78)

In real variable formulation L = 3N , where N is the total number of particles, Q
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is a parameter that should be chosen carefully and it depends on the frequency

of the system under simulation. In Nosé equations, the Langragian eqn.(3.75) is

required to have a logarithmic term (lns) necessary for the correct scaling of time.

Any other scheme that does not have such a logarithmic term does not describe

the canonical ensemble correctly.

The conventional Nosé-Hoover algorithm only generates the correct distribu-

tion if there is a single constant of motion. Normally, the total energy defined by

HNose (eqn.(3.78)), is always conserved. It therefore implies that there should be

no other conserved quantity. In most cases, if the momentum is not conserved

then the sum of forces
∑

iF 6= 0. If a system is simulated without external forces,∑
iF = 0, implying that additional conservation law is added, the Nosé-Hoover

scheme is still correct because of the additional heatbath provided that the centre

of mass remains fixed. This can be achieved by ensuring that during equilibra-

tion, the velocity of the centre of mass is set to 0. If the system being simulated

has a varying centre of mass or if there is more than one conservation law, then

Nosé-Hoover chains are used to obtain the correct canonical distribution [93].

3.12.5 Diffusion Constant

When the position of an ion is traced in a mobile sublattice, it is found to drift

further and further away from its starting point. The mean square distance the ion

travels is given as 〈∆rα(t)2〉. For practical purposes, this quantity is proportional

to t at sufficiently long times. The equation connecting 〈∆rα(t)2〉 and t is given

as;

〈∆rα(t)2〉 = Bα + 6Dα|t|, (3.79)

where Dα is diffusion constant and Bα is some constant [94]. Suppose we want

to know the position of 〈∆rα(t)2〉 for a particular value of t from the simulation

record. We choose an ion of type α and note its position r(t1) at some time step

t1; then we go forward and record a number of time steps corresponding to our

time t and find the new position of that ion r(t1 + t). The squared difference
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|r(t1 + t) − r(t1)|2 gives us a value for ∆rα(t)2. The same procedure is repeated

for the same ion for as many time steps tn as possible, keeping always the same

time difference t. The same procedure is repeated for all the ions of the same

type. This gives us a large sample of values of ∆rα(t)2, whose mean represents

the statistical average 〈∆rα(t)2〉 for our chosen time difference t. In order to get

this as a function of time, many different values of the time difference t need to

be determined.

Such an extensive operation is involved in the calculation of not only 〈∆rα(t)2〉,

but also in the calculation of radial distribution function. This method is a re-

liable way of obtaining objective and reliable results from molecular dynamics

simulation. According to eqn.(3.79), the diffusion constant, Dα, can be obtained

directly from the slope of a plot 〈∆rα(t)2〉 against time steps. The mean square

displacement 〈∆rα(t)2〉 is an example of a quantity which on the one hand charac-

terizes the single-particle trajectories and on the other hand makes contact with

experiment. As discussed later, the good qualitative agreement provides a strong

indication that the simulated system closely resembles the real material for BaF2

which is used in this study. This has also been confirmed for other superionic

materials discussed by Gillan [35].

3.12.6 Polarizable Potentials

Most of the molecular dynamics simulations use the pairwise potentials as shown in

eqn.(3.67). Pair potential of Born-Mayer-Huggins is among some of the potentials

that have been used in MD of BaF2 simulations [12]. This potential is of the form

Vij =
qiqje

2

rij
+ Aije

(−r/αij) − Cij
r6
, (3.80)

where qi, qj are the charges on the atoms i and j, respectively, rij =|ri-rj| is the

distance between the atoms i and j, e is the electron charge, while Aij, αij, Cij are

constants and r is the dipole-dipole distance. The first term in eqn.(3.80) is the

Coulombic interaction, the second term is the repulsive interaction of the overlap-
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ping shells, while the third term is the van-der-Waals (dipole-dipole) interaction.

Ivanov [12] used the “rigid-ion” model [38] in MD of BaF2, where the potential

energy of the lattice is obtained as a sum of pair potentials.

Accurate pair potentials which can reproduce selected properties may be ap-

propriate for molecular dynamics. However, ionic systems are not properly charac-

terized with such potentials. In these systems, there are high densities of charged

species, thereby creating multipoles. Therefore, many-body interactions might be

decisive in determining the structure and dynamics of both the solid and liquid

phases. BaF2 is polarizable and is therefore in the category that requires a po-

larizable potential model. Some of the properties of a good polarizable model

include the following. Firstly, it should be transferable from one environment to

another, that is, when the state of the system is changed, it should still be applica-

ble. Secondly, its calculated parameters should be able fit to those extracted from

ab-initio methods. Lastly, it should be fast [95]. Fast implementation in computer

codes has been made possible by use of additional degrees of freedom which are

included in the simulations. These extra degrees of freedom represent the mobility

of the charge density of a given ion due to interactions with its neighbours. To

implement this, an imaginary mass is added to the degrees of freedom which is

updated together with the ionic coordinates by following their own equation of

motion. This reduces computer time because the new coordinates follow their

own shorter time scale. The atomic ionic systems may have extra variables such

as dipoles, quadrupoles, the ionic radius or the charged shells. The more the vari-

ables, the more accurate will be the parametrization, but also the more difficult

is the parametrization.

3.12.7 Force field model

The potential of Morse-Stretch [96] is a pairwise interaction between ions and is

given as;

Uij =
qiqj
rij

+Dij[e
γij [1−(rij/r

0
ij)] − 2e(γij/2)[1−[rij/r

0
ij ]], (3.81)
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where the interaction between atom types i and j is given by the parameters

qi, qj, Dij, γij, r0
ij and rij. The second term in eqn.(3.81), is the short range part of

the potential. This potential is more transferable between different phases com-

pared to Born-Mayer potential [97]. This potential is improved by inclusion of

polarization effects. In this force field model, dipole moments both by electro-

static forces and the short-range repulsive forces between anions and cations are

introduced. The short-range contribution is described by the approach of Madden

et al [98] and is given as;

Psr
i = α

∑
j 6=i

qjrij
r3
ij

fij(rij), (3.82)

where

fij(rij) = cij

4∑
k=0

(brij)
k

k!
e−brij (3.83)

and rij=ri−rj, b and c are parameters of the model [99]. The dipole moments are

charge-dipole and dipole-dipole interactions and are calculated using the Ewald

summation scheme [100]. The dipoles on each ion are found self-consistently at

each step by iterating to self-consistency the equation;

pni = αE(ri; {pn−1
j }j=1,N , {rj}j=1,N) + psri , (3.84)

where the dipole moment on ion i, pi depends on the electric field E(ri) at position

ri which in turn depends on the positions and the dipole moments of all the other

ions and on the short-range dipole, psri .

As has been pointed out, most calculations of molecular dynamics for BaF2

have been done using classical molecular dynamics and shell model approaches [12].

In the methodology section we show how the potential for BaF2 was parametrized

from ab-initio methods. This improved potential which was developed was then

used in the study of some of the kinetic and thermodynamic properties of this

material.
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CHAPTER FOUR

METHODOLOGY

4.1 DFT Implementation

The calculations of the electronic and dynamical properties reported in this work

were performed in the framework of density functional theory (DFT) [101] by

employing local density approximation (LDA) and the generalized gradient ap-

proximations (GGA)(for the effects of exchange-correlation interaction). We used

the pseudopotentials Plane Wave self-consistent field (PWscf) code, distributed

with QUANTUM ESPRESSO package [60]. The valence wave functions were ex-

panded in a plane wave basis set truncated at a kinetic energy of 50 Ry (680 eV)

for the cubic BaF2 crystal while 30 Ry was used in the orthorhombic and hexago-

nal phases of BaF2. The electron-ion interactions were described by the ultra-soft

pseudo-potential of Perdew-Burke-Enzenhof (PBE) generated by the Vanderbilt

code [102]. The tolerance on the total energy convergence in the iterative solution

of the Kohn-Sham equations was set at 10−8 Hartree. The typical configuration

for BaF2 is 5s25p66s2 and 2s22p5 for Ba and F atoms, respectively. Integrations

in the Brillouin zone (BZ) were performed using special k-points generated with

6x6x6, 2x4x2 and 6x6x3 Monkhorst-pack [69] grids for cubic (β), orthorhombic (α)

and hexagonal (γ) phases, respectively. During structure optimization, the total

energy was minimized by varying cell parameters and atomic positions under the

restriction of the given symmetry. In the geometrical optimization, all forces on

the atoms were converged to less than 0.01 Ry/au. Lattice dynamical response

calculations were done with the linear-response approach [71], implemented in the

Quantum Espresso code. The code gives response functions of second order deriva-

tives of the total energy with respect to different perturbations like phonon dis-

placements or static homogeneuos electric field as has been explained in Sec.(3.8.1)

and Sec.(3.8.2). These responses give physical properties such as phonon dynami-
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cal matrices, the dielectric tensor and the Born effective charges. Changing volume

by varying lattice constant simulates thermal-expansion and pressure dependence.

These give different physical properties like volume-dependent phonon frequencies,

elastic constant and high-frequency dielectric constant.

The units used in this thesis are Hartree atomic units i.e. me = ~ = e = 1. The

unit of energy is Hartree (1 Ha = 27.211 eV), length is in Bohr (1 Bohr = 0.5291

Å), time is expressed in atomic time units a.t.u. (1 a.t.u = 2.4188x10−17s, mass

in electron masses (9.11x10−31kg), forces are in Ry/au, and pressure in Ry/au3

(1Ry/au3 = 1.472 GPa).

4.2 Supercell Approach for Defects and Molecular Dynamics

The electronic structure properties of bulk BaF2 considered in this work were

carried out with a unit cell of 12 atoms. In the calculations of the defects and

molecular dynamics properties, an artificial unit cell (supercell) composed of eight

primitive BaF2 unit cells and containing one isolated defect was constructed. The

larger the supercell size, the closer the results would be to the case of a single

isolated defect, because interactions between impurities in neighbouring supercells

are reduced. In the supercell approach for the defect calculation, the defect was

surrounded by a finite number of atoms, and the whole structure is repeated

periodically. Provided that the defects were separated sufficiently, properties of a

single isolated defect could be calculated.

A supercell has an advantage that the electronic structure of the host crystal

is the same. That is, the calculation for a supercell which is simply filled with the

host crystal without a defect reproduces the same electronic structure properties

like band structure of the single crystal.

Convergence as a function of supercell size should however always be checked.

In this study, supercell sizes of 24 atoms, 48 atoms, 64 atoms and 96 atoms

were tested. While the sizes lower than 96 atoms did not converge properly, a

satisfactory convergence was achieved with the 96 atoms. Any size larger than
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96 atoms (32 barium and 64 flourine) showed negligible variation. This is also in

agreement with the recent study of R. Jia et al [31] on H centres in CaF2 and

BaF2. They proved in their work that a 96 atom supercell was large enough for

the calculations of H centres. Further more, when the size is extremely large, this

becomes expensive computationally.

4.3 DFT Methods for Calculating Elastic Constants

The calculations of elastic constants were done by applying the approach of Wang

et al [8]. Elastic constants were calculated as the second derivatives of the inter-

nal energy with respect to strain tensor (ε). During structural optimization, the

enthalpy H = E+PV was minimized by varying the length of the lattice vectors,

while the angles between the lattice vectors and the atomic positions in the unit

cell were fixed. The volume contribution to total energy was eliminated by using

volume conserving strains. Firstly, this conserved the identity of the calculated

elastic constants with the strain-stress coefficients, which are appropriate for the

calculation of elastic wave velocities. Secondly, the total energy depends on the

volume much more strongly than the strain and by choosing volume conserving

strains one avoids the separation of these two contributions to the total energy.

Lastly, the change in the basis set associated with the applied strain is minimized

and hence reducing computational uncertainties. Elastic constants were obtained

at the equilibrium relaxed structure at any volume V by straining the lattice, re-

laxing the symmetry to allow internal degrees of freedom, and evaluating the total

energy changes due to the strain as a function of its magnitude, δ [8]. The system

was fully relaxed after each distortion in order to reach the equilibrium state with

approximately zero forces on all atoms.

The theoretical elastic constants were calculated from energy variation by ap-

plying small strains to the equilibrium lattice configuration. For a solid under
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strain, elastic energy is given as,

∆E =
V

2

6∑
i=1

6∑
j=1

Cijeiej, (4.1)

where V is the volume of the undistorted lattice cell, ∆E is the energy increment

from the strain with vector e = (e1, e2, e3, e4, e5, e6) and Cij is the matrix of the

elastic constants. To obtain the elastic constants, firstly 21 sets of ∆E
V

versus δ val-

ues were obtained by varying the lattice parameter in the range −0.02 < δ < 0.02

in steps of 0.002. The data obtained was fitted by using a quadratic polynomial

(shown in the results section 5.4) and then the relevant elastic constants were

calculated from the coefficient of the quadratic term of the polynomial using the

appropriate equations.

4.3.1 The Cubic Phase

The calculation of elastic constants for the cubic phase of BaF2 was less straineous

compared to the hexagonal or orthorhombic phases. The cubic phase has three

independent elastic constants; C11, C12 and C44. The cubic unit cell is shown in

Fig. 4.3.1

The primitive vectors of the cubic phase are defined as;


~a1

~a2

~a3

 =


0 ~a

2
~a
2

~a
2

0 ~a
2

~a
2

~a
2

0

 , (4.2)

where ~a is the lattice parameter. The primitive vectors ~ai = (1, 2, 3) are trans-

formed to the new vectors under strain by the relationship;


~a1
′

~a
′
2

~a
′
3

 =


~a1

~a2

~a3

 .(I + ε), (4.3)
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Figure 4.1: Cubic unit cell crystal structure of BaF2. The unit cell con-
tains four formula units where green colour (small spheres) is flourine
and gold (large spheres) is barium atom.

where ε is the strain tensor and I is an identity matrix. This links to the strain

vector e by

ε =


e1

e6
2

e5
2

e6
2

e2
e4
2

e5
2

e4
2

e3

 . (4.4)

In the calculation of the lattice constants for the cubic phase, the tri-axial shear

strain e = (0, 0, 0, δ, δ, δ) is usually applied to the crystal [103]. Then elastic

constant C44 can be obtained from the equation;

∆E

Vo
=

3

2
C44δ

2. (4.5)

Shear modulus C ′ is calculated from the volume-conserving orthorhombic strain
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e = (δ, δ, (1 + δ)−2 − 1, 0, 0, 0) using the relation;

∆E

Vo
= 6C

′
δ2 +O(δ3) (4.6)

and C ′
= 1

2
(C11 − C12).

On the other hand, bulk modulus B can be obtained from the strain under

hydrostatic pressure e = (δ, δ, δ, 0, 0, 0) [8] using the relation that,

∆E

Vo
=

9

2
Bδ2. (4.7)

Substituting the values for C44 calculated from eqn.(4.5), shear modulus C ′ and

bulk modulus B appropriately, the three elastic constants C11, C12 and C44 can

be determined from the respective relations.

4.3.2 Elastic Constant of the Orthorhombic Phase

In the recent work of Ravindran et al [10, 104], the method of calculating the elastic

constants for the orthorhombic and the hexagonal phases of a fluorite are shown.

These methods were used to calculate the elastic constants of orthorhombic and

hexagonal phases of BaF2 in this work, since it was focussed on BaF2 and not all

flourites.

The face centred orthorhombic phase of BaF2 has three lattice parameters a,

b and c. A cut-off kinetic energy of 30 Ry and a k-point grid of 2x4x2 were used

to simulate the elastic constants of the orthorhombic phase of this material. Fig.

4.3.2 shows the unit cell of the orthorhombic phase of BaF2.
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Figure 4.2: Orthorhombic unit cell crystal structure of BaF2. The unit
cell contains four cations (big spheres) and eight anions (small spheres).
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Bravais lattice vectors of the orthorhombic phase have a matrix of the form:

R =


√

3
2
a 1

2
a 0

−
√

3
2
a 1

2
a 0

0 0 c
a

 .

R can be strained according to the relation R’=RD where R’ is the deformed

matrix with distorted lattice vectors and D is the symmetric distortion matrix,

which contains the strain components. In this case small distortions of δ = 0.002

taken between -0.02 to 0.02 were considered.

Since there are nine independent elastic constants, this means that nine differ-

ent strains are required to determine them. The nine distortion matrices used in

the present investigation are described in the distortion matrices D1 to D9. The

first distortion matrix is;

D1 =


1 + δ 0 0

0 1 + δ 0

0 0 1

 .

This gives compression or expansion to the system and preserves the symmetry

but changes the volume. The ratio of energy change to volume is given as

∆E

Vo
= (C11 + C12)δ2. (4.8)

The second distortion matrix is

D2 =


(1 + δ)−1/3 0 0

0 (1 + δ)−1/3 0

0 0 (1 + δ)2/3

 ,

which gives the volume and symmetry-conserving variation of c/a. The ratio of
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energy change to volume with this distortion is

∆E

Vo
= (τ1 + τ2 + τ3)δ +

1

9
(C11 + C12 − 4C13 + 2C33)δ2, (4.9)

where τi is an element in the stress tensor. The third distortion matrix D3 is

D3 =


1+δ

(1−δ2)1/3
0 0

0 1−δ
(1−δ2)1/3

0

0 0 1
(1−δ2)1/3

 .

This distortion acts on the base of the plane which elongates a and compresses

b in a way that the volume is conserved. The related ratio of energy to volume for

this distortion is;
∆E

Vo
= (τ1 − τ2)δ + (C11 − C12)δ2, (4.10)

where τ1 and τ2 are still elements of the stress tensor as described in eqn.(4.9).

Using the distortions given by eqn.(4.10), the ratio of change in energy to original

volume was calculated and eqns.(4.11-4.13) were used to calculate the correspond-

ing elastic constants;
∆E

Vo
= τ1δ +

C11δ
2

2
, (4.11)

∆E

Vo
= τ2δ +

C22δ
2

2
, (4.12)

∆E

Vo
= τ3δ +

C33δ
2

2
. (4.13)

These relations were used to calculate the elastic constants C11, C22 and C33. In

this case, symmetry remains orthorhombic with these strains but the volume is

changed by the distortion. Using the volume conserving monoclinic shear distor-

tions D4, D5 and D6, the shear elastic constants C44, C55 and C66 were obtained
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[10], as,

D4 =


1

(1−δ2)1/3
0 0

0 1
(1−δ2)1/3

δ
(1−δ2)1/3

0 δ
(1−δ2)1/3

1
(1−δ2)1/3

 ,

D5 =


1

(1−δ2)1/3
0 δ

(1−δ2)1/3

0 1
(1−δ2)1/3

0

δ
(1−δ2)1/3

0 1
(1−δ2)1/3

 ,

D6 =


1

(1−δ2)1/3
δ

(1−δ2)1/3
0

δ
(1−δ2)1/3

1
(1−δ2)1/3

0

0 0 1
(1−δ2)1/3

 .

The ratio of change in energy to original volume corresponding to the distortions

D4, D5 and D6 can then be written as

∆E

Vo
= 2τ4δ + 2C44δ

2, (4.14)

∆E

Vo
= 2τ5δ + 2

C55δ
2

2
, (4.15)

∆E

Vo
= 2τ6δ + 2

C66δ
2

2
. (4.16)

The remaining three elastic constants were then calculated using volume conserv-

ing orthorhombic distortion matrices of the following types:
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D7 =


1+δ

(1−δ2)1/3
0 0

0 1−δ
(1−δ2)1/3

0

0 0 1
(1−δ2)1/3

 ,

D8 =


1+δ

(1−δ2)1/3
0 0

0 1
(1−δ2)1/3

0

0 0 1−δ
(1−δ2)1/3

 ,

D9 =


1

(1−δ2)1/3
0 0

0 1+δ
(1−δ2)1/3

0

0 0 1−δ
(1−δ2)1/3

 .

D7 increases a and decreases b with an equal amount but c remains constant. D8

distortion matrix increases a and decreases c with an equal amount and b is kept

constant. D9 distortion increases b and decreases c with an equal amount and a

remains constant. All these last three distortion matrices are the same as those of

the unstrained lattice, and hence the volume is conserved. The ratio of the change

in energy to original volume corresponding to these distortions are given as;

∆E

Vo
= (τ1 − τ2)δ +

1

2
(C11 + C22 − 2C12)δ2, (4.17)

∆E

Vo
= (τ1 − τ3)δ +

1

2
(C11 + C33 − 2C13)δ2, (4.18)

∆E

Vo
= (τ2 − τ3)δ +

1

2
(C22 + C33 − 2C23)δ2. (4.19)

The relations given by eqns.(4.17)-(4.19) give the values of the elastic constants



59

C12, C13 and C23 for the orthorhombic phase with the superposition of the already

calculated elastic constants C11, C22 and C33.

4.3.3 The Hexagonal Phase

The same approach employed for the orthorhombic phase [104] was used for the

hexagonal phase. The hexagonal phase of BaF2 has two lattice parameters a and

c (see fig. 3.3) with Bravais lattice vectors in matrix form as,

R =


√

3
2
a −1

2
a 0

−
√

3
2
a 1

2
a 0

0 0 c
a

 .

The k-point grid used in this case was 6x6x3 with a plane wave cut-off energy of

35 Ry. Again R can be strained according to the relation R’=RD where R’ is the

deformed matrix with distorted lattice vectors and D is the symmetric distortion

matrix, which contains the strain components. Small distortions of between -0.02

to 0.02 at intervals of 0.002 were again considered as in the orthorhombic case.

Since there are five independent elastic constants, five different strains are needed

to determine them. The first three distortion matrices, D1, D2 and D3 used in

the present investigation were the same as those used for the orthorhombic phase,

while the remaining two distortions D10 and D11 are given as,

D10 =


1

(1−δ2)1/3
0 δ

(1−δ2)1/3

0 1
(1−δ2)1/3

0

δ
(1−δ2)1/3

0 1
(1−δ2)1/3

 .
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Figure 4.3: The Hexagonal unit cell crystal structure of BaF2. The unit
cell contains two cations (large) and four anions (small).

D11 =


1 0 0

0 1 0

0 0 1 + δ

 .

The D10 distortion matrix is a volume-conserving triclinic distortion, and the ratio

of energy to volume with distortion is;

∆E

Vo
= τ5δ + 2C55δ

2. (4.20)

The last distortion matrix involves stretching of the c axis while keeping other axes

unchanged. Hence the hexagonal symmetry is preserved, but volume is changed.

The ratio of energy to volume with distortion is;

∆E

Vo
= τ3δ +

(
C33

2

)
δ2. (4.21)
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The five elastic constants can therefore be found from eqns., (4.8), (4.9), (4.10),

(4.20) and (4.21) [104]. The bulk modulus K is calculated by differentiating the

equation-of-state. For hexagonal crystals, K is a combination of elastic constants,

i.e,

K = [C33(C11 + C12)− 2C2
13]/CS (4.22)

with CS being

CS = C11 + C12 + 2C33 − 4C13. (4.23)

The volume dependence of optimized c/a is related to the difference in the linear

compressibility along the a− and c-axes (ka and kc). The dimensionless quantity

f describes this as

f = K(ka − kc) =
dln(c/a)

dlnV
. (4.24)

In terms of the elastic constants

f = (C33 − C11 − C12 + C13)/CS. (4.25)

CS is calculated by varying the c/a ratio at a given volume, according to the

isochoric strain

ε(δ) =


δ 0 0

0 δ 0

0 0 (1 + δ)−2 − 1

 . (4.26)

4.3.4 Stability Parameters

Relative stability of solid structures can be measured from the difference in co-

hesive energies of the relevant phases. Zener anisotropy A is an indicator of the

degree of anisotropy in the solid structure compared to the isotropic material [8].

For the cubic phase, it is given as;

A =
2C44

C11 − C12

. (4.27)
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The optimized coordinates of ions releases internal strain in the deformed lattice

configuration. From those optimized coordinates, the Kleinman internal-strain

parameter ξ and elastic stiffness constants are given as [105]

ξ =
C11 + 8C12

7C11 + 2C12

. (4.28)

The macroscopic elastic constants, bulk modulus K and elastic shear constant

given as (C11-C12)/2 are related to bond-bending force constant ϕ and bond-

stretching force constant Γ [106] by the equations;

3K =

√
3

4d
(3Γ + ϕ)− 0.355Co, (4.29)

and

(C11 − C12)/2 =

√
3

2d
ϕ− 0.053Co, (4.30)

where Co is the Coulomb contribution. If this latter quantity is neglected, the

bond-stretching force constant Γ and bond-bending force constant ϕ can be ob-

tained from

ϕ =
2d√

3

C11 − C12

2
(4.31)

and

Γ =
4d√

3
K − 1

3
ϕ, (4.32)

where d is the bond length, a parameter that needs to be calculated so as to

determine these properties. For the cubic structure of BaF2, d between disimilar

ions is 2.642 Å.

Zener anisotropies in the orthorhombic phase are three; Firstly, A1 which is

the shear anisotropic factor for the {100} shear planes between the 〈011〉 and

〈010〉 directions. Secondly, A2 which is the shear factor in the {010} shear planes

between 〈101〉 and 〈001〉 directions. Lastly, for the 〈001〉 direction, the shear

planes between {110} and {010}, the zener anisotropy is labelled as A3 [10]. The
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hexagonal phase has anisotropies A1 and A2 which are given as;

A1 =
1

2C44

+
C33 + 2C13

2(2C2
13 − C33)(C11 + C12)

− 1

2(C11 − C12)
, (4.33)

A2 =
1

2C44

+
C11 + C12 + C13

2(C2
13 − C33)(C11 + C12)

. (4.34)

If A2 is greater than A1, then it means that contraction is easiest in any direction

normal to the hexagonal axis [107].

4.3.5 Derivation of Bulk Modulus along Crystallographic Axes

Bulk modulus of a solid under compression, at volume V and temperature T is

given as;

B = −V
(
∂P

∂T

)
V

= V

(
∂2E

∂V 2
−
)
T

− TV
(
∂(σB)

∂V

)
T

+
V

2

∑
i

~
(
∂2vi
∂V 2

)
T

, (4.35)

where P = −
(
∂E
∂V

)
T

is the applied pressure, E is the internal energy, σ is the

thermal expansivity and vi is a vibrational frequency. The last two terms in

eqn.(4.35), are the finite temperature and zero point corrections, respectively.

The corrections are usually small and are normally ignored [108].

From the independent elastic constants, it is possible to derive the bulk mod-

ulus along the crystallographic axes from the single crystal. In defining bulk

modulus for the cases where the strains perpendicular to the stress directions are

all equal, one obtains,

Brelax =
Λ

(1 + σ + β)2
, (4.36)

where Λ = C11 + 2C12σ + C22σ
2 + 2C13β + C33β

2 + 2C23σβ. For cubic crystals,

σ = β = 1, while for the tetragonal and hexagonal crystals σ = 1. For the
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orthorhombic crystal, σ and β are given as [104];

σ =
(C11 − C12)(C33 − C13)− (C23 − C13)(C11 − C13)

(C33 − C13)(C22 − C12)− (C13 − C23)(C12 − C23)
, (4.37)

and

β =
(C22 − C12)(C11 − C13)− (C11 − C12)(C23 − C12)

(C22 − C12)(C33 − C13)− (C12 − C23)(C13 − C23)
. (4.38)

The bulk moduli along the a, b and c axes are thus defined as;

Ba = a
dP

da
=

Λ

1 + θ + ϑ
, (4.39)

Bb = b
dp

db
=
Ba

θ
, (4.40)

Bc = c
dP

dc
=
Ba

ϑ
, (4.41)

where θ and ϑ are the relative change of the b and c axes as a function of the

deformation of the a axis. From these relations, the linear bulk modulus can be

calculated. Calculations of Voigt’s and Reuss’s shear modulus and other related

mechanical properties can be found in Appendix A.

4.4 Calculation of Defects

4.4.1 Interstitial and Vacancy Formation

All the calculations for defects were done at ground-state conditions. For inter-

stitial formation energy, the octahedral site, two bridge sites and four-fold hollow

sites were considered [109].

To calculate the formation energy for interstitials, the total energy of the re-

laxed perfect crystal (Ec) was first calculated before introducing an interstitial.

After introducing a single interstitial into the relaxed system, the crystal was again

relaxed to calculate the total energy of the system with an interstitial, Ei. Thus
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the interstitial formation energy is given as;

Ef
i = Ei − Ec − Ea, (4.42)

where Ea is the energy of the single atom in the vacuum [110] in the case of cation,

and the energy of a F2 molecule in vacuum in the case of anion. The energy Ea

of the free single atom was obtained by placing the atom of cation or anion in a

large cubic box of 20 Bohr in size. Vacancy formation energies for both cation

and anion were done by removing one atom of F or Ba and the lattice was then

relaxed. If Ev is the relaxed energy of the crystal containing the vacancy, then at

a stable minimum the vacancy formation energy Ef
v is given as;

Ef
v = Ev − Ec + Ea. (4.43)

The Frenkel defect energy EF , was calculated from the relation,

EF = Ei + Ev − 2(Ec). (4.44)

The separation between Frenkel defects are assumed to be infinite such that there

is no interaction between them. To implement this separation distance, both

vacancy and interstitial energies were calculated separately.

In order to compare results obtained in this study with those of other works,

the Frenkel pair formation energy was also determined by creating an interstitial

and a vacancy close to each other (in the same super-cell). The defect formation

energy was determined by the energy difference between the bulk super-cell and

the relaxed super-cell containing the cation or anion Frenkel defect (Edisp) as

shown in eqn.(4.45);

EF = Edisp − Ec. (4.45)

Edisp is the energy of the relaxed system when the atom is displaced and Ec is

the energy of the perfect crystal without defect. To ensure that interstitial and
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vacancies do not recombine for cation, the second nearest neighbour was found to

be stable, while for anion, we found that the defect was only stable at the third

nearest neighbour just as reported for CaF2 [109].

4.4.2 Vacancy Migration Energy

When vacancies migrate to a neighbouring site, they must pass through the saddle

point. Migration energy was therefore determined as the difference between the

total energy of the model lattice with an atom at the lattice point before the

migration and that with the atom at the saddle point. The saddle point was

defined as the place where the total energy of the model lattice is at its maximum

for a particular migration route. The vacancy migration path is fairly direct and

hence the difference between our calculation and the nudged elastic band NEB

method is expected to be minimal [110].

4.5 Constructing Interatomic Potentials

In the Born-Oppenheimer approximation, the electronic and nuclei wavefunctions

are decoupled as described in Chapter three section 3.1. The energy eigenvalue,

E, of eqn.(3.1) can also be written as V (Ri) and will depend parametrically on

the coordinates of the nuclei. This function V (Ri) is called inter-atomic potential.

To design potential function V (Ri), the nuclei (atoms) are allowed to move and

a functional is selected to mimic the behaviour of the true potential in realistic

ways for specific materials. This is done by selecting an analytical form for the

potential and finding an actual parametrization for the functions that constitute

the analytical form that have been chosen. The analytical form chosen can have

a number of parameters that need to be modeled.

4.6 Potentials for Barium Flouride

In our parametrization procedure, the empirical potentials were fitted into ab

initio data as described by Tangney-Scandolo [99] in the parametrization of the
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force field for silica. In their approach, the potential of Morse-Stretch form is

used because of its transferability nature. Usually in the empirical approach,

the potential is given as a function of coordinates of atomic positions. For the

empirical approach to be accurate, the force field used should be able to represent

the electronic effects which are important for ionic motions. A good force field

should thus properly capture the electronic effects necessary for ionic motions.

4.6.1 Potential Parametrization

A classical polarizable potential with fixed point charges and atomic polarizables

as implemented in the Asap code [99] was used in the parametrization of the po-

tentials. Conditions for fitting were chosen at 1200 K with pressure set at zero.

This temperature was chosen so as to give BaF2 amorphous form and therefore

different number of configurations that were used in the fit. Starting from a suit-

able potential (here Buckingham potentials [12] were used), a molecular dynamics

run to obtain the initial configurations was done. The configurations are supposed

to be far apart to minimize similarities between them. These configurations from

MD runs were used in the ab initio studies to do a self-consistent calculation. The

parameters of the potential were fitted to forces, stresses and total energies taken

from these configurations using the force-matching approach [111]. In ab initio

calculations, density functional theory (DFT) using pseudopotential method with

generalized gradient approximation [65] was employed. All calculations were done

on a supercell of 32 barium and 64 flourine atoms. An energy cut-off of 50 Ry was

used for the convergence of the calculations of stress. In this scheme of potential

parametrization, the function

Γ = wf∆F + ws∆S + wE∆E, (4.46)

was minimized to get the force field parameters. ∆F,∆S and ∆E are the differ-

ences between the classical and ab initio forces, stresses and energies, respectively

[99]. The values wf , ws and wE are the corresponding weights of the forces, stresses



and energies, respectively. Details of the results of minimization procedure in Ap-

pendix B.
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CHAPTER FIVE

RESULTS AND DISCUSSIONS

5.1 Structural Optimization

Lattice constant of cubic BaF2 was calculated and results compared with those in

literature obtained using different approaches as shown in Table 5.1.

Table 5.1: Structural optimizaton of the cubic phase of BaF2 at ground
state conditions.

Cubic (C1) a(a.u.) Ref.
Quantum espresso(GGA) 11.53 Present

ABINIT (LDA) 11.43 [30]
CRYSTAL (GGA) 11.94 [11]

Expt. (300K) 11.72 [36]
VASP (PAW) 11.87 [30]

Figure 5.1: Optimized structure of the cubic phase of BaF2.

Fig. 5.1 shows an optimized structure of cubic BaF2. From the optimized

structure, a plot of the system’s total optimized energy versus lattice constant for

the cubic phase of BaF2 was plotted as shown in fig. 5.1, where it is seen that

the equilibrium lattice constant occurs at a value of 6.10 Å. This shows a devia-

tion of about 1.61% compared to experimental value and hence it compares well



70

Figure 5.2: Optimized plot of energy (in Ry) versus lattice constant (in
a.u.). The optimized lattice constant is found at the minimum point of
the curve at 11.529 Bohrs (1 a.u. = 0.5291 Å).

with experimental observations and theoretical calculations from other codes as

shown in Table 5.1. It is however known that LDA usually underestimates lattice

constant while [112] GGA over-estimates them [112]. Owing to the fact that the-

oretical calculations are done at 0 K, the values obtained in this study were lower

than those calculated experimentally at room temperature because of thermal-

expansion effects, though such changes are expected to be minimal given that we

are working on a solid. The good agreement between calculations involving our

pseudopotential and the all-electron methods confirms that the pseudopotential

used in the calculations here is reliable.
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5.2 Electronic band structure

Figure 5.2 shows the calculated DFT-GGA band structure and density of states

(DOS) of cubic BaF2 where the calculated band gap for BaF2 was found to be

an indirect gap with a value of 7.2 eV. This value is however underestimated by

Figure 5.3: Band structure and DOS of cubic phase of BaF2.

28% when compared to the experimental one of about 10 eV [30]. This arises

from the well known phenomena from DFT calculations where GGA approxima-

tions always tend to underestimate the fundamental energy band gap [112] as a
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result of approximations made in say the exchange-correlation functional. PAW

pseudopotentials are not used in this current work though expected to improve

on the results. The use of PAW pseuodopotentials are however more expensive

computationally. The energy band gap was located between Γ and K as the top

of valence band and the lowest point in the conduction band, respectively. Using

WIEN97 (LDA), Schmalzl [30] obtained an indirect band gap of 7.197 eV, while

TB-LMTO gave a value of 6.37 eV [30]. A summary of results for the band gap

energies are given in Table 5.2, where our calculated value was closer to the ex-

perimental value when compared to other first principle studies reported so far.

The band structures of the orthorhombic and hexagonal phases are presented in

Appendix A.

Table 5.2: Band gap energies (in eV) of c-BaF2 in comparison with
previous calculations and experiment.

Method Direct Indirect Ref.
QE(GGA) 7.25 7.20 Present

WIEN97(LDA) 6.70 7.19 [30]
WIEN97(GGA) 7.19 7.09 [30]

LCAO-DFT(GGA) 7.50 [11]
Exp.(300K) 11.00 10.00 [30] and ref. therein

5.3 Phonons

Being a wide band gap material, BaF2 undergoes the so-called LO-TO splitting

(longitudinal and transverse optical) which occurs in insulating materials [113,

114]. This gives two transverse waves and one longitudinal wave. Frequency (ω)

dependence linearly on the lattice constant as shown in fig. (5.3). After 6.535 Å

(12.35 a.u.), ωRaman (the lower curve) would go to zero with any small variation.

Other frequencies go to zero at much larger parameters.

Fig. 5.3 shows the phonon dispersion curves of cubic BaF2, whereby with three

atoms in the unit cell, nine branches of phonon dispersion are obtained. The trans-

verse modes are degenerate in the [001] direction while Γ-point phonon frequencies
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Figure 5.4: Phonon dispersion curves for c-BaF2 obtained from ab initio
DFT theory.

Figure 5.5: Variation of Frequency versus lattice parameter.
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for the three vibration modes were computed to be ωTO=137.61cm−1, ωRaman=

216.15cm−1 and ωLO=311.81cm−1. Available experimental values for phonon fre-

quencies at 300K are ωTO=189cm−1, ωRaman= 241cm−1 and ωLO= 330cm−1. These

results are compared in Table 5.3, where it was established that although our val-

ues were under-estimated for all the three modes of vibration when compared to

experimental ones, the trends are well reproduced, with ωTO being the lowest in

all cases and ωLO is the highest mode. Phonons are known to be sensitive to

pseudopotentials and our use of GGA and a convergence value that was not too

small (10−8 Hartree) are some of the expected reasons for the noticeable deviations

from the experimental values. Vibrations at high temperature are expected to be

higher than ours done at 0 K.

Table 5.3: Theoretical and experimental optical gamma-point frequen-
cies (in cm−1).

Method ωTO ωLO ωRaman Ref.
QE (GGA) 137.61 311.81 216.15 Present
ABINIT 199.34 351.46 252.03 [30]

Exp.(300 K) 189.00 330.00 241.00 [30]

Normally when frequencies increase, the inter-atomic forces are weakened and

the modes soften. As such, rates of weakening of modes depend linearly on the fre-

quency modes at low frequency but exponentially, at higher frequencies as shown

in Figure 5.3. Critical softening occurs beyond melting especially when further

anharmonic processes contributing to phonon frequencies are ignored. The slopes

of the curves, which in this case shows the increase in lattice parameter, agree with

those of Schmalzl et al [30]. This shows that phonon-phonon processes contribute

to the temperature shift of the Γ - point frequencies. A plot of the frequency, ω

vs lattice constant a as seen in fig. 5.3 deviates from linearity due to further an-

harmonic contributions. The finding of this study compares well to those of CaF2

[115] which shares the fluorite structure with BaF2. Softening at X-point (and not

Γ− point) has been connected to transition to the superionic state of the fluorite

system. In particular, softening is attributed to reduced restoring forces acting on
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Figure 5.6: Dielectric Charge variation with volume of c−BaF2.

displaced F− ions. In addition reduced barriers may also support individual F−

ions hopping and this may lead to more mobile anions.

Table 5.3 shows the effective charge z∗ and high frequency dielectric constant

of c-BaF2 while fig. 5.3, shows the variation of dielectric constant with volume of

c-BaF2. Increase in volume reduces the inter-ionic forces thereby reducing the

Table 5.4: Effective charge z∗ and high frequency dielectric constant ε∞
of c-BaF2.

Method a(Å) z∗ ε∞ Ref.
QE(GGA) 6.100 2.660 2.396 Present
ABINIT 6.050 2.634 2.472 [30]

Exp.(300 K) 6.184 2.167 [30]
WIEN97 6.233 2.129 [30] and ref. therein

dielectric constant ε. In the case of BaF2 electrons of Ba are more long-range in

nature and thus more polarizable than in Ca, thus resulting in a more polarizable

system and consequently into a slightly lower dielectric constant of 2.396 for BaF2

which compares to 2.4 for CaF2[115]. Calculated effective charge in this work was
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Z∗ = 2.66 but the experimental value is not available for comparison. The value

obtained in this study compares well to those obtained using ABINIT and CRYS-

TAL calculations, which are 2.63 and 1.90, respectively although the one obtained

from ABINIT is much lower by 36.8% [30]. The computed high-frequency dielec-

tric constant, ε∞ of c-BaF2 was 2.396, a value that agrees well to the experimental

one at 300K of 2.167 while that obtained from ABINIT was 2.472. Results for

WIEN97 were not available for comparison. Both calculations overestimate the

dielectric constant by 9.6% and 12.3% in comparison to experiment and this is

attributed to the inherent approximations made in the theory.

Figure 5.7: Frequency dependence on volume.

Figure 5.3 shows a variation of volume changes in c-BaF2 with vibrations,

whereby such changes are related with temperature. In particular, an increase in

temperature results in an increase in volume and in this study, it was found out

that at about 400 a.u.3, there was a sudden increase in volume for all the three

modes of vibrations. This implies that the shape and size of the crystal changes

when the frequency applied is enough to expand the volume to about this size.
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A good understanding of the variation of volume with vibration can therefore

help in determining the melting point of a material and in this case BaF2, as well

as some of its thermal properties. However, this only applies to low temperature

cases, where harmonic approximation is applicable, otherwise anharmonic terms

will be required, and these are beyond the scope of this study.

5.4 Elastic Constants

Table 5.4 shows the elastic constants of the cubic phase of BaF2 calculated us-

ing different theoretical methods as explained in section 4.3 and the results were

compared with experimental data in all cases unless otherwise stated. Although

Table 5.5: Elastic constants in gigapascals of cubic phase of BaF2. The
results are compared with other theoretical results and experimental
ones.

Method C11 C12 C44 Ref.
Quantum espresso 88.20 34.3 19.6 Present

ABINIT 112.40 64.89 28.76 [30]
Expt(300K) 91.22 41.48 25.51 Ref.[30] and refs. therein
Expt (0K) 98.10 44.81 25.44 Ref.[30] and refs. therein

several works [30] have investigated the elastic constants of c-BaF2, it was still

necessary to calculate these values in the current work so as to validate the cal-

culated elastic constants for the other phases of BaF2 where experimental results

were unavailable. Our calculated elastic constants for the cubic phase compare

quite well with those of other works. For example, compared to the ABINIT

calculations, our errors were lower relative to experimental data. In particular,

the deviations for the C11 constant in our case was 3.2% while that of ABINIT

was ∼ 23%, compared to experimental value. For the C12, our value deviated

by 17% while that of the ABINIT value was 56% higher than the experimental

one. Our C44 value deviated by 23% compared with 13% for ABINIT from the

experimental value. These deviations are occasioned by the fact that our use of

GGA pseudopotentials gives lower values of the elastic constants.
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Figure 5.4 shows the plots used to obtain parameters needed in the computa-

tion of the elastic constants for the cubic phase of BaF2 while figs. 5.4 and 5.4

were used to calculate the elastic constants for the orthorhombic and hexagonal

phases of BaF2, respectively. Each one of the three figures shows the parabolic

shape predicted by their respective equations as explained in chapter 4.

Figure 5.8: Changes in the pressure (∆E/Vo) as a function of the strain
(δ) for the cubic phase of BaF2. The open circles represent the cal-
culated values and the solid lines are the polynomial fit. Fig (a) is to
estimate C44, fig (b) is for C ′ and fig (c) is for bulk modulus B.
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Figure 5.9: Changes in the pressure (∆E/Vo) as a function of the strain
(δ) for the orthorhombic phase of BaF2. The open circles represent the
calculated values and the solid lines are the polynomial fit. D1 to D9

corresponds to the matrices given in section 4.3.2.
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Figure 5.10: Variation of Pressure (∆E/V ) versus Strain δ for the cal-
culation of elastic constants of the hexagonal phase of BaF2. The open
circles represent the calculated values and the solid lines are the polyno-
mial fits while D1-D10 (section 4.3.3) represent the distortion matrices
used in each case.
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Table 5.6: Elastic constants for orthorhombic phase of BaF2 given in
GPa.

Elastic constant C11 C22 C33 C44 C55 C66 C12 C13 C23

Quantum espresso 275.5 346 126 91.7 47.2 147.5 32 39 60

Table 5.4 shows the values of the elastic constants for the orthorhombic phase

of BaF2. When compared to either the cubic or the orthorhombic phases of BaF2,

the hexagonal phase was found to have the largest values of the independent elastic

constants C11 and C12 (see Tables 5.4, 5.4 and 5.4). Eqns. (4.36)-(4.41) show the

formulae used for determining the bulk modulus. From table 5.4, the hexagonal

phase has a bulk modulus of 161 GPa compared to 53.5 GPa and 108.8 GPa for the

cubic and orthorhombic phases (see Tables 5.4.1 and 5.4.1), respectively. These

suggest that the hexagonal phase is the most stiff of the three phases, confirming

earlier observations of Jiang et al [11].

The derived bulk modulus from the elastic constants for the orthorhombic

phase was found to be 94.5 GPa and by using the Murnaghan equation, the bulk

modulus is 108.8 GPa. Jiang et al [11] calculated a value of 98 GPa. The devi-

ation in these values of elastic constants in this current work can be attributed

to estimations made in deformation formulae. This is because an independent

elastic constant is a combination of many other constants which when estimated

over-estimates or underestimates the final result. Given that the deviation is not

much shows that the methods used in the calculation of the elastic constants in

this current work were accurate.

Table 5.7: Calculated bulk moduli for the cubic, the orthorhombic and
the hexagonal phase of BaF2 given in GPa compared with other ap-
proaches.

Bulk modulus Cubic Orthorhombic Hexagonal
Present work (Murnaghan equation method) 53.5 108.8 154

Present work (using elastic constants) 53.5 94.5 161
LDA ([11]) 57 ... ...
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Table 5.8: Calculated elastic constants for the hexagonal phase of BaF2

given in GPa.
Elastic constant C11 C12 C33 C55 C13

Present work 460 399 41 21.7 138.5

Table 5.4, shows that both the C11 and C12 values for the hexagonal phase were

higher than those of the cubic phase of BaF2. Using the elastic constants, a value of

161 GPa was obtained for the bulk modulus of hexagonal BaF2 whereas the value

obtained by fitting the values of energy and volume to the Murnaghan equation of

state was 154 GPa. This indicates only a small deviation between values obtained

using the two approaches. Xiaocui et al [33] have reported that the independent

elastic constants C11, C12 and C44 for BaF2 increases with pressure, a property that

is clearly confirmed by this present work since the elastic constants increase from

cubic to orthorhombic to the hexagonal phase. These phases vary with pressure

increase as has been shown in the Schmalzl et al [30].

5.4.1 Stability Parameters

The stability of a material can be obtained using constant A, which is obtained

from eqn.(4.27). This parameter is also called the anisotropy parameter and when

it is less than unity, the material is said to be anisotropic and vice versa. Table

5.4.1 gives the values of stability parameters of the cubic phase of BaF2 whereby

an anisotropy parameter A = 0.727 is obtained, compared to the one obtained

using ABINIT code of 1.21 [33]. BaF2 in cubic phase shows that it is anisotropic

while ABINIT methods show that it is isotropic. It would be difficult to conclude

exactly whether it is anisotropic or isotropic unless a third method is used to

confirm.

Table 5.9: Stability properties of cubic phase of BaF2.
Phase A ξ ∆EBa−F in eV Bulk Modulus B (GPa)

Cubic (present) 0.727 0.56 24.87 53.5
Cubic (ABINIT) 1.21 0.732 ... ...
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Table 5.10: Stability properties of orthorhombic and hexagonal phases
of BaF2.

Phase A1 A2 A3 Bulk Modulus B (GPa)
Orthorhombic 1.13 0.54 0.86 108.8
Hexagonal 0.015 0.023 ... 161

The fact that anisotropy parameter for the cubic phase of BaF2 is less than

unity shows that this phase is anisotropic. Other values shown in this table are the

stiffness constant ξ which gives the displacement of atoms from the central forces

whereby, the smaller the value, the greater the displacement. In this calculation,

the stiffness parameter for c-BaF2 was 0.56 which was less than the value of 0.732

obtained earlier using the ABINIT computer code [116]. This value therefore

shows that there is more displacement of atoms from the central forces than in the

case of the ABINIT’s calculation though the difference is within acceptable range.

The stability parameters for the orthorhombic and hexagonal phases are given

in Table 5.4.1, whereby the orthorhombic phase is found to be less anisotropic

(A> 1), especially when the value of A1 is compared to A2 and A3. Also from

these calculations, the hexagonal phase was found to be more anisotropic (A < 1)

as compared to the cubic or even the orthorhombic phases and in particular,

in the A1 (〈100〉) and A2 (〈110〉) directions. Apart from the A1 direction of

the orthorhombic phase which is isotropic, all the other cases show that BaF2 is

generally an anisotropic material, with the value of the stability constant, A, being

less that unity.



84

5.5 Defects

In this section, the theory derived in sections 2.2 and 3.10 is applied to calculate

the formation energies of point defects in BaF2. These defects are treated as either

neutral or charged. While neutral defects are treated as periodic, a charged system

is treated aperiodic as explained in section 3.10. This section also reports on the

analysis of migration energies for both cations and anions in BaF2.

5.5.1 Interstitial and vacancy formation energies

In this study, an octahedral site, two bridge sites and four-fold hollow sites were

considered in the calculations of the interstitial formation energies as mentioned

earlier. The values of the formation energies are shown in Table 5.5.1.

Table 5.11: Interstitial and vacancy formation energies of BaF2 in eV.
Ion Interstitial Vacancy
Ba 3.14 15.64
F -0.62 8.73

Ba+2 -18.28 21.27
F− 2.49 -1.06

The study revealed that the anion was more stable in an octahedral site, which

was in agreement with other studies done earlier on the interstitial position of F

in CaF2 [109] and therefore all calculations for the formation energies were done

at the octahedral site. The formation energies of atoms bonded at octahedral

sites were found to be -0.62 eV and 3.14 eV for F and Ba, respectively, as shown

in Table 5.5.1. The more negative the energy, the easier it takes to form such a

defect. It is therefore easier to form a neutral flourine interstitial than barium.

The vacancy formation energies were calculated as 8.73 eV for F and 15.64

eV for Ba. Due to the low formation energies of F− anions, this study suggests

that F easily diffuses through the c-BaF2 in comparison to Ba since the vacancy

formation energy of a F− was lower than that of Ba2+ by 6.91 eV. The vacancy

formation energies were also greater than those of the same ions in CaF2, which
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were 15.64 eV for Ba compared to 13.75 eV for Ca cation. The value for CaF2

anions was 8.34 eV against 8.73 eV for BaF2. This difference between formation

energies of BaF2 and CaF2 was attributed to the varied cation sizes between the

cations of CaF2 and BaF2.

In addition to the defects considered so far, Frenkel defects are also possible

in c-BaF2 and these are defect pairs consisting of an interstitial and a vacancy

created by the displacement of an atom from its stable crystal site to a different

location in the crystal. The new position can be infinitely far or within a close

neighbourhood. Charged cation and anion interstitial formation energies are given

as -18.28 eV and 2.49 eV, respectively while vacancy formation energies for charged

cation and anion are 21.27 eV and -1.06 eV, respectively. For neutral species, the

Frenkel defect formation energies for BaF2 are shown in Table 5.5.1. Anion-Frenkel

formation energy of such a system at infinite separation was calculated to be 8.11

eV, while cation-Frenkel energy was 18.78 eV. For close separation, the values

were calculated as 4.05 eV and 1.42 eV for cation and anion, respectively. Fig.

Table 5.12: Frenkel formation energies for neutral cation and anion in
cubic BaF2 in eV.

Method Cation Frenkel Anion Frenkel
Present (infinite separation) 18.78 8.11
Present (close separation) 4.05 1.42

Experimental [117] ... 1.81

5.5.1 shows the calculated values of the interstitial formation energy for F and

F− as a function of the Fermi energy. In this figure, the values of the interstitial

formation energy for F and F− as a function of the Fermi energy are shown. In

the case of neutral F the formation energy is independent of EF and is found to

be -1.29 eV. For all values of EF however we find that F− is more stable than its

neutral counterpart. We therefore conclude that the anion interstitial in BaF2 is

negatively charged.

As shown in Table 5.5.1, the formation energy of neutral F is -0.62 eV and this

was independent of Fermi energy EF . Some of the tables used in plotting figures
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Figure 5.11: Formation energy as a function of Fermi energy for F and
F− interstitial defects in BaF2.

5.5.1 to 5.5.1 are shown in Appendix A. In fig 5.5.1, the vacancy formation energies

of F and F− are plotted against the Fermi energy. The vacancy formation energies

of the anion were calculated by removing a F atom or F− ion.

The findings of this study showed that the positively charged vacancy (Ba2+)

was more stable than the neutral anion in a large range of values up to about 6 eV.

Since the calculated band gap was 7.2 eV, it was clear that the fluorine vacancy

was positively charged except when the bulk was donor-rich.

Interstitial and vacancy formation energies for Barium are shown in figs 5.5.1

and 5.5.1, respectively. With respect to the Fermi level of BaF2, it was observed

that the formation energy of the Ba2+ interstitial was lower than that of the

neutral cation (see fig.5.5.1). The same case applied to the Ba vacancy where the

charged vacancy Ba2+ was more stable than the neutral vacancy Ba (see fig.5.5.1).

Based on these observations, it was therefore concluded that the interstitial and

the vacancy exist as charged species.

In the charged system and in the limit of infinite separation between vacancy

and interstitial, the formation energy of a Frenkel defect is obtained by summing

the formation energies of the interstitial and vacancy. It is thus argued from figs
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Figure 5.12: Vacancy formation energies of anion as a function of Fermi
energy for F and F−.

Figure 5.13: Interstitial formation energies as a function of Fermi energy
for Ba and Ba2+.
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Figure 5.14: Vacancy formation energy as a function of Fermi energy
for Ba and Ba2+ vacancy defects in BaF2.

5.5.1 and 5.5.1 that the flourine Frenkel defects are always composed of charged

pairs, except when the Fermi level is close to the conduction band minimum∼ 6 eV,

in which case the interstitial is charged and the vacancy is neutral. The formation

energy of the F Frenkel defect was found to be 2.33 eV (see eqns.(A.0.13) and

(A.0.14)) and approximately in the range of 0.8 eV when the Fermi level is close

to the conduction band minimum. Using eqn.[5.1], EV is 4.09 eV and the Fermi

energy EF is 4.83 eV (See Appendix B).

∆E = 21.27 + 0.45− q(EV + EF ). (5.1)

This gives formation energy of 3.90 eV and these values compare reasonably well

with the experimental data of Katsika [117] in ionic conductivity measurement

who obtained a value of 5.9 eV. They are also in agreement with the calculation

of the formation energies of the neutral Frenkel defects of Ref. [109].

Frenkel defects were also calculated with the interstitial and vacancy defects

separated by one or two nearest-neighbour distances. It was found that when

the interstitial was placed in an octahedral site adjacent to the vacancy site, the
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atomic configuration was unstable and always relaxed back to the ideal crystal

lattice. On the contrary, when the interstitial was placed in the second-nearest

octahedral site from the vacancy site the atomic configuration was locally stable

for the cation and it was still unstable for the anion. The anion became locally

stable only when it was placed in the third nearest neighbour. The formation

energies of the locally stable configurations were 1.4 eV for the anion and 4.1

eV for the cation. When these values were compared with the values obtained

for the Frenkel defects at infinite separation, it was found that the cation Frenkel

defects preferred to separate at distances larger than the second-nearest neighbour

positions once formed, while the anion Frenkel defects preferred to reside at finite

separation when formed.

5.5.2 Vacancy migration energy

Figure 5.5.2 shows the migration energy plotted against the migration path 〈100〉

for the anion F− vacancy. Although this is a plot for the anion, a similar graph is

expected to be obtained for the cation (Ba2+) but with different energy values.

The maximum energy point S is the saddle point and this is the only available

migration energy available experimentally as shown in Table 5.5.2. Other direc-

tions may be difficult to measure experimentally though theoretically this can be

attained as our data shows. Other directions are probably difficult to measure and

therefore simulation becomes an appropriate tool. This is also the least vacancy

migration energy in these calculations and is therefore the most preferred route

for anion vacancy.

Vacancy migration energies were calculated for the anion (F−) diffusion along

three low index crystallographic directions, 〈100〉, 〈110〉, and 〈111〉, respectively

(see Table 5.5.2). Similar to CaF2, the lowest barrier for diffusion for the F−

vacancy in BaF2 was found to be along 〈100〉 (0.53 eV) a value that was in good

agreement with experimental data (0.59 eV Ref.[117]). Anion vacancy migration

energies in the 〈110〉 and 〈111〉 directions were established to be 1.17 eV and 1.15
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Figure 5.15: Variation of anion vacancy migration energy with migra-
tion path 〈100〉. The saddle point S is the maximum energy point in
this direction. The dots are the energy level against position joined by
the line for all positions along the direction 〈100〉.

Table 5.13: Vacancy migration energy for cation VBa and anion VF for
BaF2 in eV.

Direction Present Experimental
VF 〈100〉 0.53 0.59 [117]
VF 〈110〉 1.17 ...
VF 〈111〉 1.15 ...
VBa〈100〉 2.22 ...

eV, respectively, suggesting that these directions had almost equal energy.

Cation migration energy was only possible in the 〈100〉 direction. The 〈110〉

and 〈111〉 directions were found to be unlikely since the cation was moving too

close to the anion when near the saddle point. It was thus concluded that the

large size of Ba2+ (ionic radius of 1.49 Å), prevents the cation from diffusing easily

along either 〈110〉 or 〈111〉 directions. For example, a linear path along the 〈110〉

direction brings Ba at a distance of approximately 1.5 Å from the nearest fluorine.
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As a result the migration energy was calculated only along the crystallographic

direction 〈100〉, and it was found to be 2.22 eV. This was unlike recent calculations

for CaF2 where cation migration energies in the 〈100〉 and 〈110〉 directions were

found to be 4.62 eV and 3.93 eV, respectively [109]. Therefore, for CaF2, the 〈110〉

direction has least energy for cation migration, and this is presumably due to the

substantial difference between the ionic radius of Ba2+ (1.49Å) and Ca2+ (1.14 Å).



92

5.6 Potentials for BaF2

In sections 3.11.6 and 3.11.7, the process of fitting the parameters of classical

molecular dynamics into those of ab initio calculations was discussed. The force

marching process was done to bring as close as possible the forces, stresses and

energies of the classical model to those obtained using the ab initio approach. This

minimization process was stopped at an overall minimum value of 17%. For the

forces, the required accuracy of 30% was attained, while for stresses it was 17%

and 12% for the energies. The main parameter generated in this fitting process

was the potential or in broader sense the force field.

5.6.1 Force Field and Phase Transition

The force field parameters generated using the ASAP code [99] are given in Table

5.6.1 whereby the data is related to eqns.(3.81), (3.82) and (3.83). The charge q

for Ba was taken to be 1.612 C while for flourine it was -0.806 C. These values were

close to the exact charge values of 2 and -1 C for Ba and F anions, respectively,

and hence found suitable for the simulations.

Table 5.14: Force field parameters for BaF2. qF is charge of flourine
and qBa charge of barium. DF−F , DBa−F and DBa−Ba are parametriza-
tion constants between F-F, Ba-F and Ba-Ba atoms, respectively. γF−F ,
γBa−F and γBa−Ba are the short range polarization parameters, respec-
tively. rF−F , rBa−F and rBa−Ba are the distances between different atoms
and α is the polarization constant. The constants b and c are fitting
parameters of the model.

qF qBa α b c

-0.80595 1.61189 4.8281427 1.76615 3.86333
DBa−Ba DBa−F DF−F

1.7294x10−2 1.2765x10−3 -8.2344x10−02

γF−F γBa−F γBa−Ba
7.0831 8.4838 5.5049
rF−F rBa−F rF−F
4.6597 8.0098 3.6812

The comparison between the structural parameters of molecular dynamics of

c-BaF2 and those obtained from density functional theory are given in Table 5.6.1.
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Table 5.15: Lattice parameters and bond lengths obtained from molec-
ular dynamics compared to DFT data for BaF2. The DFT calculations
used the steepest descent approximations.

Molecular dynamics (Å) DFT (Å)
lattice parameter, a0 6.125 6.10

Ba-Ba 4.31 4.31
Ba-F 2.66 2.64
F-F 3.08 3.05

The results obtained from molecular dynamics simulations were found to be in

good agreement with those obtained from the DFT calculations. The parameters

shown in Table 5.6.1 were then used to run molecular dynamics simulation of

BaF2 in order to calculate some of its thermal properties. Some of these properties

studied include the phase transition and melting point temperatures of BaF2 which

are important in determining the superionic transition temperatures. In fig 5.6.1,

temperature dependence of the total energy is shown.

Figure 5.16: The temperature dependence of the total energy of c-BaF2.
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The variation of energy with respect to temperature is generally the specific

heat capacity of the material. Figure 5.6.1 therefore shows that there are dips of

phase transition, Cp, at T = 1000 K and melting temperature, Tm = 1700 K. These

two temperatures are lower than those calculated by Ivanov-shitz et al [12] which

are reported as 1285 K and 1800 K, respectively. This difference is attributed to

their use of classical molecular dynamics which tends to overestimate the melting

point, since the experimental melting temperature of BaF2 is 1641 K [118], a value

which is much closer to our calculated value of 1700 K than the 1800 K predicted

earlier by Ivanov et al [12]. The empirical potential constructed in this current

work also considered the polarization effects which play an important role in the

properties of flourides.

5.6.2 Ionic motion

At low temperatures, the cations and anions are in vibrational thermal motion,

with the vibrational amplitude of the flourine atoms being higher than those of

barium atoms due to their differences in sizes. Barium atoms continue vibrating

in their equilibrium positions at higher temperatures while fluorine anions begin

diffusing between nearest neighbour sites. It is therefore correct to assume that

most of the thermodynamic properties of BaF2 are as a result of the motion of the

anions and to some extent this applies to other flourite structures e.g. CaF2. In the

following section we discuss the cation and anion motion using radial distribution

function and anion motion using mean square displacement.

5.6.3 The Radial Distribution Function, g(r)

The radial distribution function gives the probability of finding a particle at a

distance r from another particle. In fig 5.6.3, the first (and large) peak occurs at

around r = 4.20 Å with the radial distribution function g(r), having an intensity

of about 2.25.

This value of 2.25 implies that it is 2.25 times more likely that two Ba-Ba ions
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Figure 5.17: The radial distribution function at 800 K. Both cation and
anion are within their lattice site positions.

would be found at this separation. This separation distance is in agreement with

the value of 4.31 Å found from steepest descent calculations reported in Table

5.6.1. The distance between Ba-F is about 2.62 Å and that between F-F is 3.07 Å.

At this temperature of 800 K and 1000 K as shown in fig 5.6.3, it was found that

both ions were still vibrating at their mean lattice positions, since the Ba-Ba, F-F

and Ba-F distances were unchanged. Radial distribution function on the other

hand is reduced to 2.0 for Ba-Ba, 1.25 for Ba-F and 1.20 for 1.20. Figure 5.6.3

Figure 5.18: The radial distribution function at 1000 K. Cations and
anions are still in their mean lattice positions.
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gives the distance between Ba-F ions as about 2.62 Å with a low g(r) (intensity)

value of about 1.30 while the F-F distance at this temperature is 3.07 Å with

a radial distribution function whose intensity is 1.25. The low intensity of F-

F peaks when compared to those of Ba-Ba (2.25) and Ba-F (1.30) implies that

flourine ions vibrate more and therefore the chances of finding F-F close to each

other is the lowest. This is in agreement with the fact that anions diffuse more

than the cations.

In figure 5.6.3 where the temperature is 1400 K, the distance between Ba-Ba

appears still to be 4.2 Å but radial distribution function is reduced from 2.25 to

1.80. Ba-F and F-F radial distribution functions are 1.4 and 1.0, respectively.

Figure 5.19: The radial distribution function at 1400 K.

Therefore, the chances of finding these two cations close to each other has

somewhat reduced with increase in temperature. The intensity of Ba-F radial dis-

tribution function is below 1.4 at 1400 K while that of the F-F radial distribution

function is below 1. (see Fig 5.6.3). It still appears that the distance between F-F

is 3.01 Å. With the low radial distribution function and in comparison with mean

square distribution discussed in sect. 5.6.3, it is apparent that flourine ions have

started diffusing at 1000 K. In figures 5.6.3 and 5.6.3, it is seen that the intensity
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Figure 5.20: The radial distribution function at 1700 K.

Figure 5.21: The radial distribution function at 2000 K.

of g(r) for Ba-F and F-F is tending to one while that of Ba-Ba is at around 1.75.

A radial distribution function of 1 indicates the absence of long-range forces. This

is not the case in BaF2 given that the interactions of cation-cation, cation-anion

and anion-anion give values that are more than one even after melting point is

achieved which is at 1700 K which is near experimental value of 1641 K. This

is an indication of presence of long-range forces in BaF2 which exists even after

the F anions have transformed to molten form while Ba cations are still in their

equilibrium lattice positions. This is in good agreement with classical molecular
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dynamics reported by Ivanov et al [12].

5.6.4 Mean Square Displacement, MSD

Figure 5.22: Mean square displacement 〈4r2〉 as a function of time in
picoseconds.

Fig. 5.6.4, shows a plot of the mean square displacement MSD against time.

The figure shows that at about 1000 K, there is a jump which corresponds to

the superionic phase transition predicted by this new potential. This value was

in agreement with the results shown in fig 5.6.1 where superionic conductivity is

predicted to start at 1000 K. There is another appreciable gap at 1700 K, which

is in agreement with the results presented previously in fig 5.6.1 for the melting

temperature of BaF2. This gap is the liquid phase of BaF2 where the anions are

diffusing more freely.

This study reveals that the anions motion in the low-temperature phase of up
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to 1000 K is vibrational in nature but are diffusing in the high temperature phase.

The diffusion constant is in the range of 4.55x10−5 cm2/s at 500 K to 1.52x10−4

cm2/s at 1500 K. These values are typical of superionic conductors which is about

10−5 cm2/s [12].
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CHAPTER SIX

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Electronic and mechanical properties of BaF2 have been studied using density

functional theory and density functional perturbation theory as implemented in

the Quantum Espresso Computer code. Kinetic and thermodynamic properties

were studied using molecular dynamics with parametrized force field. The new

force field developed in this work is a major improvement from the other pair-wise

potentials that have been used in other BaF2 calculations.

The elastic constants for the cubic phase of BaF2 were found to be in good

agreement with both experimental and other theoretical works. All the elastic

constants of the orthorhombic and hexagonal phases of BaF2 have been calculated

for the first time in this study. These values were used to calculate the bulk mod-

ulus of these phases and good agreement was established with other calculations.

Stability of these phases show that the hexagonal phase has the least anisotropy

in all directions indicating least stability. In fact, the anisotropy of this hexagonal

phase was so low that it was nowhere near those of the cubic or even orthorhom-

bic phases. This agrees well with the experimental findings which report that at

about 17 GPa, BaF2 exists only in hexagonal phase.

The calculated defect energies and vacancy migration energies show very good

agreement with the available data. Most of the results were also found to be similar

to those of calcium fluoride, since the electronic band structure of BaF2 resembles

that of CaF2 although the atoms of CaF2 are closer together than those of BaF2.

It was also established that the energy needed to create the cationic vacancy and

interstitials for BaF2 was greater than that needed to create an anion vacancy and

interstitial. To create a cation vacancy requires five times more energy than to

create a cation interstitial. Anion vacancy also required more energy to form than
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anion interstitial. Anion formation energy was far much less than cation formation

energy (-0.62 eV against 3.14 eV). Therefore it can be concluded that there was

no cationic contribution to the conductivity of BaF2 and this can be confirmed

for other superionic materials also like in Ref. [35].

Cation Frenkel defects were found to be most stable at infinite separation while

anion Frenkel defects were most stable in the third nearest neighbour. Charged

Frenkel defects were more stable than neutral Frenkel defects for both cation and

anion and they were locally stable only when the distance between vacancy and

interstitial was at least 5 Å and 8 Å for cation and anion, respectively.

A major part of this study was to generate empirical potentials which were

to be used in the molecular dynamics calculations of BaF2. Molecular dynamics

runs of BaF2 containing 96 atoms were performed at a temperature of 1200 K to

obtain the initial configurations for the fit. This temperature is close to the first

transition temperature of BaF2 and was appropriate for obtaining molten state of

this material. The parameters from the classical molecular dynamics were matched

to forces, stresses and energies from ab initio calculations using the force matching

approach. This force matching was done until the percentage error between the

parameters of ab initio calculations and those of the force field were small enough.

The new empirical potential generated was used to do a steepest descent run

in order to obtain the lattice parameters and also the inter-ionic bond lengths.

The values obtained were found to be in good agreement with experimental data

as well as other ab-initio studies. These values confirmed that the current poten-

tial (developed in this study) was accurate and was therefore used to performe

simulation of some of the thermodynamic properties of BaF2.

The phase transition of BaF2 was also investigated, and it was established

that the superionic transition for this material is at about 1000 K. This value

was found to be in agreement with earlier reports. The melting temperature

was found to be at about 1700 K, which was close to the experimental value of

1641 K. This was a clear indication that the new potential was simulating the
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thermodynamic properties of BaF2 better than the classical potentials that have

been used previously [12], which predicted a melting temperature of 1800 K.

Studies of the radial distribution function and mean square displacement showed

that there were two positions of phase transition. These were superionic and melt-

ing point of BaF2. The superionic transition was found to be due to anions which

become more mobile just before melting.

6.2 Recommendations

It would be interesting to study the superionic properties of BaF2 doped with

Lanthanum or any other rare earth elements. Of more interest would be to look

into the superionic properties of this doped BaF2 with the parametrized force

field. Classical molecular dynamics and electronic structure properties of flourites

is known to improve by doping by trivalent atoms and there are possibilities of

superionic transition temperature scaling down with introduction of a trivalent

atom.

The experimental work by Ngoepe et al [119] has shown the change in tran-

sition temperature of BaF2 when doped with La+3. Theoretical studies of these

transitions can be of interest since they have not been performed to the best of

my knowledge.

Study of H and F centres can also be done on the doped BaF2 as a follow up

to the work done by Shi et al [120, 32].

In defects calculations, it can be more interesting to study the energetics of

the trivacancy in this material. This is because in a radiation incident on a crystal

more than one or two ions are displaced. This study can give real applications to

compare the effect of irradiation on BaF2.
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APPENDIX A

MECHANICAL PROPERTIES

The cubic phase is the most stable among the three phases of BaF2. Its mechan-

ical properties are therefore crucial. Elastic constants play an important role in

the understanding of mechanical properties of materials. For the application in

engineering, some of the properties like Young’s modulus E and Poisson’s ratio γ

should be known. Young’s modulus E is the ratio between stress and strain and

gives information on stiffness of material.

Larger value of E shows that the material is more stiff. Poisson’s ratio α

indicates the bonding characteristic of a material. Poisson’s ratio γ of between 0.25

and 0.5, are the lower and upper limits of the central forces in solids, respectively

[121, 33]. Poisson’s ratio is given as;

γ =
1

2

[
B − (2/3)G

B + (1/3)G

]
, (A.0.1)

where G is the isotropic shear modulus in the form

G =
(GV +GR)

2
. (A.0.2)

GV and GR are Voigt’s and Reuss’s shear modulus, respectively, given as [122],

GV =
C11 − C12 + 3C44

5
(A.0.3)

and
5

GR

=
4

C11 − C12

+
3

C44

. (A.0.4)

In the present work the Poisson’s ratio was found to be 0.32 comparable to that on

data base of 0.34 [123]. It can therefore be concluded that the interatomic forces of

BaF2 are central forces. This is in contrast to a value of 0.24, reported by X.Yang
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et al [33]. In the same work of Ref.[33], it has also been shown that Young’s

modulus E increases with increase in pressure, suggesting that the stiffness also

increase with pressure.

For the orthorhombic phase, the bulk modulus was found to be 109 GPa and

the isotropic shear modulus was 102.73 GPa, giving a Poisson’s ratio of 0.141.

This is an indication that the forces acting on orthorhombic phase of BaF2 are

less of the central forces in nature when compared to cubic phase. This also points

at reduced stability of this phase.

In hexagonal phase, the bulk modulus derived from Murnaghan equation of

state was 154 GPa while the Poisson’s ratio was 0.42. It is again seen that the

hexagonal phase just like the orthorhombic phase has internal forces that are not

central. This indicates that these two phases were not stable compared to the

cubic phase.

Equation of State, EOS

Equation of state provides information about the thermodynamic parameters of

the crystal. The derivative of bulk modulus with pressure is given as;

B′ =

(
∂B

∂P

)
T

, (A.0.5)

and this changes little with pressure. At zero pressure, B′ = B′0 is a constant and

therefore

B(P ) = B0 +B′0P (A.0.6)

where B0 is the bulk modulus at zero pressure. Equating to eqn.(4.35), and

rearranging one obtains
dV

V
= − dP

B0 +B′0P
. (A.0.7)
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On integrating, we obtain the Murnaghan [124] equation of state for pressure

P (V ) =
B0

B′0

((
V0

V

)B′
0

− 1

)
(A.0.8)

or equivalently, for volume

V (P ) = V0

(
1 +B′0

P

B0

)−1/B′
0

. (A.0.9)

We then substitute eqn.(A.0.8) into E = E0 −
∫
PdV which results in the Mur-

naghan equation of state for energy

E(V ) = E0 +
B0V

B′0

(
(V0/V )B

′
0

B′0 − 1
+ 1

)
− B0V0

B′0 − 1
. (A.0.10)

Murnaghan equation is more accurate only when pressure tends to zero [66] as it

is shown in the linearized bulk modulus-pressure relation of eqn.(A.0.6).

The calculation of bulk modulus in this work was done by using Birch-Murnaghan

isothermal EOS [108]. This is given as;

P =
3

2
B0

[(
V0

V

) 7
3

−
(
V0

V

) 5
3

]{
1 +

3

4
(B′0 − 4)

[(
V0

V

) 2
3

− 1

]}
. (A.0.11)

Also, E(V ) is found by integrating the pressure;

E(V ) = E0 +
9V0B0

16


[(

V0

V

) 2
3

− 1

]3

B′0 +

[(
V0

V

) 2
3

− 1

]2 [
6− 4

(
V0

V

) 2
3

] .

(A.0.12)

Using this relation, the equilibrium bulk properties V0, B0, and B′0 as well as the

total energy at equilibrium were calculated using GGA functionals by fitting the

total energy as a function of unit cell volume data into the third-order-Murnaghan

EOS eqn.(A.0.12). The values used are calculated around the equilibrium point

at about 5% from equilibrium lattice point. The values from this approach are

compared from the bulk modulus obtained from the derivation of elastic constants.
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The structural properties of BaF2 in the three phases are also studied by look-

ing into the Young’s modulus, strain and bulk modulus.

Density of States and Band Structure

The density of states and band gap are given here separately. The size of the band

gap for c-BaF2 was 7.2 eV and 6.9 eV for the orthorhombic phase. The band gap for

hexagonal phase was 6.47 eV. Though the decrease is small, we observe a general

decrease in the band gap as the phase changes from cubic to orthorhombic to

hexagonal phases. The density of states for the cubic, orthorhombic and hexagonal

phases are shown in figures A-A. These figures clearly show that the width of the

band gap is decreasing.

Figure A.1: Density of states of the cubic phase of BaF2.

The band structures are presented in figures A-A. Band distribution is clearly

seen in the cubic phase but the distribution becomes sparse as one goes from

cubic to orthorhombic to hexagonal phases. Jiang et al [11] report no closing

of the energy gap up to 50 GPa in their study of pressure variation with phase

transition in BaF2.
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Figure A.2: Density of states of the orthorhombic phase of BaF2.

Figure A.3: Density of states of the hexagonal phase of BaF2.
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Figure A.4: Band structures of the cubic phase of BaF2.

Figure A.5: Band structures of the orthorhombic phase of BaF2.
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Figure A.6: Band structures of the hexagonal phase of BaF2.
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Defects

In the calculation of formation energy of a defect or impurity, the relation of Van

de Walle and J. Neugebauer [125], was used and it reduced to eqn.(A.0.13). The

calculated value for the neutral vacancy was found to be 15.64 eV and the Table

A was derived from eqn.(A.0.13). Figures 5.5.1 to 5.5.1 of chapter 5 section 5.5

were all derived using similar formulation. Table A and A, are the charged cation

vacancy and charged cation interstitials, respectively, used as examples to show

how the charged system is treated to take care of the aperiodic crystal.

∆E = 21.27 + 0.45− q(EV + EF ). (A.0.13)

Table A.1: Variation of Fermi level against energy change for charged
anion vacancy of BaF2 at ground state conditions.

EF ∆E

0 15.2
2 11.2
4 7.2
6 3.2
8 -0.8
10 -4.8

The value for neutral cation was calculated at 3.14 eV. In the case of charged

interstitial, the relation given below was used

−18.3 + 6.8 + 2EF . (A.0.14)

Using relation of eqn.(A.0.14), Table A was generated.
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Table A.2: Variation of Fermi energy against change in energy for
charged cation interstitial of BaF2 at ground state conditions.

EF ∆E

0 -11.5
2 -7.5
4 -3.5
6 0.5
8 4.5
10 8.5
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APPENDIX B

VALENCE AND FERMI ENERGIES FOR INTERSTITIAL BA+2

End of self-consistent calculation

k = 0.2500 0.2500 0.2500 ( 73326 PWs) bands (ev):

-22.5805 -20.1345 -20.1345 -20.1345 -20.0718 -20.0327 -20.0327 -18.7560 -18.7212

-18.7212 -18.7094 -18.6994 -18.6994 -18.6892 -18.6829 -18.5317 -18.5317 -18.5120

-18.5046 -18.5046 -18.4835 -18.4741 -18.4564 -18.4564 -18.4257 -18.4257 -18.3922

-18.2571 -18.1630 -18.1630 -18.1621 -18.1112 -18.1112 -17.4337 -17.4337 -17.4336

-17.4142 -17.4142 -17.4139 -17.3206 -17.2095 -15.5636 -15.5636 -15.5460 -15.5457

-15.5457 -15.5449 -15.5423 -15.5423 -15.5367 -15.5367 -15.5324 -15.5248 -15.4994

-15.4994 -15.4979 -15.4979 -15.4908 -15.4750 -15.4608 -15.4608 -15.4530 -15.4334

-15.4334 -15.4012 -15.0881 -15.0881 -15.0827 -15.0788 -15.0742 -15.0742 -15.0706

-15.0706 -15.0680 -15.0670 -15.0670 -15.0625 -15.0398 -15.0398 -15.0381 -15.0381

-15.0367 -15.0241 -14.9792 -14.9792 -14.9751 -14.9751 -14.9697 -14.9512 -14.8687

-14.8687 -14.8685 -14.8497 -14.8497 -14.8488 -14.7938 -14.7487 -8.3505 -8.3505

-8.3505 -5.7149 -5.7149 -5.4419 -5.4277 -5.4277 -5.4277 -5.2703 -5.2702 -5.2702

-5.2337 -5.2337 -5.2335 -5.1264 -5.1263 -5.1263 -4.6797 -4.6796 -4.6796 -4.0955

-4.0632 -4.0620 -4.0620 -4.0273 -4.0273 -4.0172 -4.0172 -4.0039 -3.9869 -3.9690

-3.9690 -3.9479 -3.9433 -3.9426 -3.9285 -3.9285 -3.9189 -3.9115 -3.9115 -3.9081

-3.9081 -3.8938 -3.8938 -3.8879 -3.8795 -3.8795 -3.8672 -3.8672 -3.8625 -3.7751

-3.7730 -3.7730 -3.7705 -3.7696 -3.7696 -3.7372 -3.7372 -3.7290 -3.7254 -3.7209

-3.7209 -3.6952 -3.6952 -3.6802 -3.6692 -3.6692 -3.6608 -3.6531 -3.6387 -3.6365

-3.6365 -3.6249 -3.6249 -3.6108 -3.6076 -3.6076 -3.5780 -3.5748 -3.5748 -3.5321

-3.5321 -3.5319 -3.3926 -3.3894 -3.3894 -3.3841 -3.3841 -3.3829 -3.3795 -3.3738 -

3.3738 -3.3708 -3.3591 -3.3591 -3.2197 -3.2196 -3.2196 0.5578 0.5578 0.5592 0.9045

0.9045 0.9902 1.0415 1.0415 1.0415 1.1138 1.1138 1.1165 1.1502 1.1502 1.1503

1.2885 1.2885 1.2887 1.2939 1.2939 1.2952 1.5237 1.5240 1.5240 2.4567 2.4615

2.4615 2.4989 2.4989 2.5295 2.5343 2.5469 2.5469 2.5778 2.5778 2.5810 2.6132
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2.6280 2.6280 2.6452 2.6528 2.6528 2.6774 2.6774 2.6795 2.6946 2.7008 2.7008

2.7509 2.7601 2.7601 2.7884 2.7884 2.7976 2.8149 2.8149 2.8176 2.8250 2.8308

2.8308 2.8409 2.8438 2.8438 2.8618 2.8754 2.8754 2.8863 2.8961 2.8961 2.9033

2.9033 2.9102 2.9544 2.9544 2.9699 2.9837 2.9947 2.9947 3.0091 3.0091 3.0263

3.0523 3.0626 3.0626 3.0702 3.1120 3.1120 3.1195 3.1195 3.1306 3.1379 3.1734

3.1734 3.1916 3.2019 3.2019 3.2208 3.2208 3.2210 3.2228 3.2228 3.2340 3.2513

3.2513 3.2697 3.2697 3.2906 3.2925 3.2925 3.3183 3.3198 3.3198 3.3239 3.3828

3.4117 3.4152 3.4152 3.4299 3.4299 3.4303 3.4508 3.4508 3.4857 3.5036 3.5036

3.5123 3.5315 3.5315 3.5325 3.5496 3.5496 3.5685 3.5698 3.5698 3.5704 3.5953

3.5953 3.6026 3.6144 3.6226 3.6242 3.6242 3.6323 3.6544 3.6544 3.6628 3.6709

3.6744 3.6744 3.6747 3.6872 3.6872 3.7216 3.7284 3.7326 3.7326 3.7427 3.7427

3.7647 3.7647 3.7819 3.7918 3.7918 3.8158 3.8158 3.8172 3.8281 3.8281 3.8547

3.8622 3.8694 3.8694 3.8916 3.8959 3.8959 3.9132 3.9132 3.9279 3.9279 3.9372

3.9417 3.9417 4.0023 4.0161 4.0166 4.0166 4.0691 4.0788 4.0788 4.0933 4.0933

4.0952 8.6534 8.6534 10.2348 10.2350 10.2350 10.8837 10.9307 10.9307 11.1409

11.1409 11.1696 11.1900 11.1900 11.1904 11.3499 11.7359 11.7359 11.8196 11.8196

11.8341 11.8450 11.9981 11.9981 11.9985 12.0461 12.0461 12.1082 12.1320 12.1320

12.1464 12.1625 12.1979 12.1979 12.4263 12.4263 12.4330 12.4775 12.4775 12.4946

12.5567 12.5567 12.7440 12.7767 12.8729 13.0008 13.0008 13.0540 13.1456 13.1637

13.1637 13.2118 13.2825 13.2825 13.3734 13.3734 13.4396 13.4396 13.4988 13.5083

13.5083 13.5126 13.5188 13.5188 13.5530 13.6000 13.6114 13.6114 13.6458 13.6458

13.6800 13.7125 13.7156 13.7156 13.7420 13.7420 13.7628 13.7889 13.7889

the Fermi energy is 4.8326 ev
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APPENDIX C

POTENTIAL PARAMETRIZATION

In order to generate the force field, the potential of Buckingham [12] was used to

do classical molecular dynamics. This first procedure was carried out to generate

the random positions of the system. These initial conditions were fixed at 1200

K and zero pressure which is about the superionic temperature of BaF2. This

was done to ensure that the parameters generated were not correlated in terms of

bond geometry and other deformation properties thus enabling the force field to

be applicable in wide range of temperatures.

The initial molecular dynamics trajectories were performed using the DL_POLY

code [126] and ten configurations were chosen which were far apart. This sepa-

ration was chosen to minimize the correlation between configurations. Ab initio

calculations were performed on these initial configurations to obtain total forces,

stress and energies. Using the force matching approach, the classical forces were

matched to the ab initio forces. This procedure was done to fit the classical forces

as close as possible to the ab initio ones. If the minimum was not reached as

desired, the procedure was repeated by using the force field generated to produce

positions for the DFT calculations. The parameters from the DFT runs were

then used in the force matching until the minimum was achieved. The general

procedure is shown in the flowchart of Fig.C.

In this current work, a run was done to minimize the forces, stresses and

energies up to reasonable minimum. For example, our calculation was stopped at

final values of ∆F = 0.175, ∆S= 0.176 and ∆E = 0.122 which were sufficiently

minimum. ∆F , ∆S and ∆E are the percentage errors of forces, stresses and

energies, respectively. The weight of force, wf , weight of stress, ws and weight

of energy, wE were at 1.0%, 0.01% and 0.08%, respectively, at the instant when

the runs were stopped. At these minimum values, the force matching process

slows down and any increase in efficiency seems insignificant. We used 28 different
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Figure C.1: Force matching procedure.

configurations in the minimization process. This new potential generated was then

used to do molecular dynamics in order to study some selected thermodynamic

properties of BaF2. Detailed data showing various parameters is given on Table

5.6.1 of Chapter 5.6.1. In fig.C, it is shown that the forces distribution between

the density functional theory are close to the parametrized ones. This is the main

objective that, the error in the forces has to be as minimum as possible. The error

in the two forces was about 17%, as mentioned earlier. A plot of temperature

at 1350 K versus total number of steps is shown in fig C. The Nose thermostat

method for thermal equilibration was used in all temperatures.

The equilibrium energy is found to be about -19.18 Ry and the equilibrium

point was achieved after 20,000 steps or 29 ps which proved to be long enough.
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Figure C.2: Comparison of the force distribution from density func-
tional theory (blue in soft copy) to that minimized by the classical
molecular dynamics of Asap Code (red). The two forces are very close
indicating that the newly generated potential is close to the DFT forces.
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Figure C.3: The temperature dependence of the total time steps.

Figure C.4: The energy dependence of the time steps.
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