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ABSTRACT 

The role of attractive interlayer and intralayer interactions in layered high-Tc Cuprate 

superconductors was investigated using a two-layer Hamiltonian. The Hamiltonian was 

formulated and diagonalized using Bogoliubov canonical transformations to get equations 

of the i
th

 state, Ei, specific heat, CV in the superconducting state, and critical temperature, 

Tc. The heat capacity in the superconducting state was analyzed in the temperature domain 

10 K ≤ T≤ 100 K. The transition temperature obtained from the graph was 90.7K. This 

value is the same as that calculated from the derived equation of Tc for Yttrium Barium 

Copper Oxide which was considered in this study. The variation of transition temperature 

and on-site Coulomb repulsion U for fixed values of interlayer hopping, t, interlayer 

interaction, W was analyzed. The study reveals that an increase in interlayer hopping, t and 

interlayer W increases U which further enhances Tc. Hence interlayer and intralayer 

interactions play an important role in the enhancement of Tc in layered high-Tc Cuprates. 

There is agreement between the theoretical results, for instance, the values of CV, Tc and 

Cs/Cn calculated in this thesis and the experimental results for the high-Tc superconductor 

Yttrium Barium Copper Oxide. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Background 

Superconductivity is the vanishing of the electrical resistance occurring in certain materials 

below a characteristic temperature called critical (transition) temperature, Tc. It was 

discovered by H. Kamerlingh in 1911 at Leiden, Holland. He found that when the 

temperature of pure frozen mercury was reduced below 4.2 K, its electrical resistance 

disappeared resulting in the flow of electrical current of the order 10
5
 amperes.  A number 

of pure metals alloys and doped semiconductors were found to have this property (Khanna, 

2008).The electrical resistivity of a metallic conductor decreases gradually as the 

temperature is lowered. However, in ordinary conductors such as copper and silver, this 

decrease is limited by impurities and other defects. Even near absolute zero, a real sample 

of copper shows some resistance. Despite these imperfections, in a superconductor the 

resistance drops abruptly to zero when the material is cooled below its critical temperature. 

An electric current flowing in a loop of superconducting wire can persist indefinitely with 

no power source (Gallop, 1990). 

 

In 1933, Meissner and Ochsenfeld (Meissner et al., 1933) discovered that a metal cooled in 

the superconducting state in a moderate magnetic field expels the magnetic field from its 

interior.  This phenomenon is called Meissner effect and this shows that such a 

superconducting material is diamagnetic. The relationship between the magnetic flux B and 

the magnetic field H is give by  B =H (1+4πχ) where χ =M /H is magnetic susceptibility 
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and M is magnetic intensity. When 


B =0 inside a superconductor for T<Tc, χ = -1/4π, a 

condition for diamagnetism. The superconductivity exhibited by metals, alloys and doped 

semiconductors is called conventional superconductivity. The free electron model that 

gives a fairly good description of normal metals cannot be used to describe the properties 

of a superconductor (Meissner et.al., 1933).  It was not until 1957, when an acceptable 

microscopic theory for superconductivity based on the concept of pairing of electrons of 

opposite spins and momenta near the Fermi surface was given by Bardeen, Cooper and 

Schrieffer (BCS) (Bardeen et al., 1957). 

 

Superconductors are divided into two types depending on their characteristic behaviour in 

the presence of a magnetic field. Type I superconductors are comprised of pure metals, 

whereas type II superconductors are comprised primarily of alloys or intermetallic 

compounds. Both, however, have one common feature: below a critical temperature, Tc, 

their resistance vanishes. The critical temperature at which the resistance vanishes in a 

superconductor is reduced when a magnetic field is applied. The maximum magnetic field 

that can be applied to a superconductor at a particular temperature and still the material 

maintains superconductivity, is called the critical field, (Hc1.).  This field varies 

enormously between type I and type II superconductors. The maximum critical field (Hc1) 

in any type I superconductor is about 2000 Gauss (0.2 Tesla), but in type II materials, 

superconductivity can persist to several hundred thousand Gauss (Hc2). At magnetic fields 

greater than Hc1 in a type I superconductor and greater than Hc2 in a type II 

superconductor, the material reverts to the normal state and regains its normal state 

resistance. A type I superconductor excludes the applied magnetic field from the center of 
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the sample by establishing circulating currents on its surface that counteract the applied 

field. Type II superconductors; however, permit the field to penetrate through the sample 

in quantized amounts of flux. These quanta are comprised of circulating vortices of current 

and the flux contained in the vortices (Legget, 2006). 

 

The effective interaction between a pair of electrons called Cooper pairs, results from the 

virtual exchange of a phonon between the two electrons constituting the pair. Such an 

interaction is called electron-phonon interaction. The strength of this electron-phonon 

interaction is maximum when the electrons are in states of equal and opposite momenta 

and of opposite spins and the energy difference Δε between the two electron states 

involved is less than the phonon energy ћω. It is found that the critical temperature for 

transition to the superconducting states depends on the isotopic mass. This lead to the 

understanding that the superconducting transition involved some kind of interaction with 

the crystal lattice. From Ohm’s law, the current density J is given by, 

fEJ 
                                                                                                                            

2.1 

Where Ef is the applied electric field. When the temperature T<Tc, the current density J 

becomes very large and the conductivity σ approaches infinity. Equation (2.1) then implies 

that the electric field 0fE  inside a superconductor. For finite current flow, 

Maxwell’s equation gives   0


fEcB which means


B  is a constant 

inside such a material. According to Meissner effect this constant could be zero. Since σ 

→0, a ring of a superconducting material could maintain persistent electrical currents for 
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years. The ratio of the resistance of the material in the superconducting state (Rs) to the 

resistance in the normal state (Rn) is of the order   Rs/Rn< 10
-15

(Meissner et al., 1933). 

 

For normal conductors, large electrical conductivity is accompanied by a large thermal 

conductivity. However, the thermal conductivity of a superconductor is less in the 

superconducting state when compared with the normal state, it approaches zero at very low 

temperatures. The transition temperature, Tc for the conventional superconductors is about 

23.21 K (Kamerlingh 1911; Onnes, 1911). 

The onset of superconductivity is accompanied by abrupt changes in various physical 

properties, which is the hallmark of phase transition. For example, the electronic heat 

capacity is proportional to the temperature in the normal regime. At the superconducting 

transition, it suffers a discontinuous jump and thereafter ceases to be linear. At low 

temperatures, it varies instead as e
-α/T

 for some constant α as shown in Figure 1.1 below 

(Junod, 1996). 

 

Figure 1.1: Variation of specific heat capacity, CV with temperature. 

This exponential behavior is one of the pieces of evidence for the existence of the energy 

gap. The order of the phase transition was for a longtime a matter of debate. Experiments 
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indicate that the transition is second order, meaning there is no latent heat. However in the 

presence of an external magnetic field, the material has finite latent heat, and hence 

transition is first order. The superconducting phase transition has lower entropy below the 

critical temperature than the normal phase. 

 

Most of the physical properties of superconductors vary from material to material, such as 

the heat capacity, the critical temperature and critical magnetic field. On the other hand, 

there is a class of properties that are independent of the underlying material.  For instance, 

all superconductors have exactly zero resistivity to low applied voltage when there is no 

magnetic field present or if the applied field does not exceed a critical value.  The 

existence of these “universal” properties implies that superconductivity is a 

thermodynamic phase, and thus possesses certain distinguishing properties which are 

largely independent of microscopic details. 

 

1.2. Statement of the problem 

The study aims at establishing the role played by interlayer and intralayer interactions in 

high-Tc Cuprate superconductors.  Studies have revealed that the interlayer and intralayer 

interactions play a significant role in enhancing transition temperature in layered cuprates. 

The discovery of high-Tc Cuprates superconductors and their properties which are quite 

different from the conventional BCS type superconductors has led to enormous theoretical 

research to look for the kind electron pairing mechanism that may exist in these 

superconductors (Kakani 2007; Anderson 1997).  In the recent past several electron pairing 

mechanisms have been proposed which are different from the type of electron pairing 
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mechanism used in BCS theory. Some of the electrons pairing mechanisms are known as 

resonance valence bond state, spin fluctuation, bipolarons, excitons, plasmons, fermion-

boson and charge transfer electron pairing mechanism (Khanna, 2008).  

A well known feature of the known high- Tc Cuprates is the presence of square planar 

CuO2 layers which dominate most properties, (Dagatto 1994). 

  

A common feature of the layered structure of all these high-Tc Cuprates is a two-

dimensional copper- oxygen plane shown in figure 1.2, which is believed to be relevant to 

the conduction process in these systems.  It is also believed that the superconductivity in 

these Cuprates seems to be controlled by the number of charge carriers (electrons or holes) 

in these layers through the oxidation states of the copper atoms (Dagatto,1994). More-over, 

the transition temperature increases with the number of CuO2 layers in a unit cell upto 

three layers.  The transition temperature Tc does not increase if the number of layers is 

more than three, thereafter it saturates. It was reported that the resistivity along a-directions 

and b-directions (ρab) in copper oxide plane varies linearly with temperature whereas along 

c- direction (perpendicular to the plane) it varies as 1/T (Dinger, 1988). 
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Figure 1.2: Unit cell of YBCO showing a, b, c axes and cell parameters(Dinger, 1988). 

 

The influence of layered structure on the unusual properties of these Cuprates has been 

studied earlier also. It was proposed that interlayer and intralayer interactions play an 

important role in the increase of the superconducting transition temperature Tc, and in 

stabilizing superconducting order with respect to fluctuations (Khandka, 2006; Singh 

2006). Hence the increase in Tc due to the increase in the number of layers in Cuprates 

clearly emphasizes that layered structure of the Cuprate compounds is crucial to high- Tc 

superconductors and plays an important role in establishing superconducting order.  
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To study the properties of multilayer Cuprates such as specific heat and transition 

temperature, we have to consider interlayer pairing along with intralayer pairing. The 

model Hamiltonian for such a system will have to be written and then diagonalized using 

Bogoliubov transformation to obtain the properties of such multilayer Cuprates. 

 

1.3 Research objectives 

1.  To determine the specific heat capacity of high -Tc layered Cuprates based on intralayer     

and interlayer interactions. 

2.  To determine the critical temperature of high-Tc layered Cuprates based on intralayer 

and interlayer interactions. 

3.  To determine effect of intralayer and interlayer interactions on transition temperature of                             

high-Tc layered Cuprates.   

 

1.4 Justification of the Study 

The question of how superconductivity can arise in high- temperature superconductors is 

one of the major unsolved problems of theoretical condense matter physics as of to-day.  

The exact mechanism that causes the electrons in these crystals to form pairs is not clear 

(Leggett, 2006).   Despite intensive research and many promising leads, an acceptable 

explanation meant for all types of high-Tc superconductors has so far eluded scientists.  

One reason for this is that the materials in question are generally very complex, multi-

layered crystals, for example, Bismuth Strontium Calcium Copper Oxide (BSCCO), 

making theoretical modeling difficult.  Improving the quality and variety of samples also 

requires considerable research, both with the aim of improved characterization of the 
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physical properties of existing compounds, and synthesizing new materials, often with the 

hope of increasing Tc.  Technological research focuses on making high temperature 

superconductors (HTS) materials in sufficient quantities to make their use economically 

viable and optimizing their properties in relation to applications. The ultimate aim is to 

develop a superconducting material that can be used at room temperatures. 

 

  Technological applications benefit from both the higher critical temperature being above 

the boiling point of liquid nitrogen and also the higher critical magnetic field at which 

superconductivity is destroyed. In magnetic applications, the high critical magnetic field 

may be more valuable than the Tc itself. 

 

1.5 Significance of the Study 

The study will provide an insight into the role played by interlayer and intralayer 

interactions in the enhancement of superconducting transition temperature Tc in multilayer 

Cuprates.  Other studies have revealed the factors which increase transition temperature in 

Cuprates.  They include chemical compositions, cation substitutions, number of layers of 

CuO2. The present research is directed towards the origin of high-temperature 

superconductivity and the charge carriers pairing mechanisms involved.  One goal of all 

this research is room-temperature superconductivity (Mourachkine, 2004). 

Superconductivity at room temperature would result in enormous savings for overhead 

power cables and equipment such as that used for Magnetic resonance imaging (MRI) 

scans. (www.news.leiden.edu/.../PhD candidate, 25/01/2012). 

 

http://www.news.leiden.edu/.../phd
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Superconducting magnets are used MRI, Nuclear magnetic resonance (NMR) machines, 

mass spectrometers and the beam-steering magnets used in particle accelerators. More 

recently, superconductors have been used to make digital circuits based on rapid single 

flux quantum technology and Radio frequency (RF) microwave filters for mobile phone 

base stations. 

 

Some of the future promising applications of high-temperature superconductivity include 

high-performance smart grid, electric power transmission, transformers power storage 

devices, electric motors (e.g. for vehicle propulsion or maglev trains) magnetic levitation 

devices, fault current limiters, nanoscopic materials such as buckyballs, nanotubes, 

composite materials and superconducting magnetic refrigeration. 

 

Some markets are arising where the relative efficiency, size and weight advantages of 

devices based on high-temperature superconductivity outweigh the additional costs 

involved.  However, superconductivity is sensitive to moving magnetic fields so 

applications that use alternating current (e.g. transformers) will be more difficult to 

develop than those that rely upon direct current. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.1 High – Tc Cuprates Superconductors 

High- temperature superconductors (high- Tc) are materials that have a superconducting 

transition (Tc) above 30K (-243.2 
0
C).   

“High-temperature” has three common definitions in the context of superconductivity: 

1.  Above the temperature of 30K that had historically been taken as the upper 

limit for BCS type superconductors or conventional superconductors.  This is also 

above the 1973 record of 23K that had lasted until copper-oxide materials were 

discovered in 1986 with Tc in the range of 90K(Bednorz, 1986; Mueller, 1986). 

2.  Having a transition temperature that is a larger fraction of the Fermi 

temperature than for conventional superconductors such as elemental mercury or 

lead.  This definition encompasses a wider variety of unconventional 

superconductors and is used in the context of theoretical models.   

3.  Greater than the boiling point of liquid nitrogen (77K or -196
0
C).  This is 

significant for technological applications of superconductivity because liquid 

nitrogen is a relatively inexpensive and easily handled coolant. 

 

There are several families of Cuprate superconductors and they can be categorized by the 

elements they contain and the number of adjacent copper-oxide layers in each 

superconducting block.  For example, Yttrium Barium Copper Oxide (YBCO) and 

Bismuth Strontium Calcium Copper Oxide (BSCCO) can alternatively be referred to as 
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Y123 and Bi2201/Bi2212/Bi2223 depending on the number of layers in each 

superconducting block (n).  The superconducting transition temperature has been found to 

peak at an optimal number of layers in each superconducting block, typically n=3.  

 

In 1986 Bednorz and Muller discovered superconductivity in a lanthanum- based Cuprate 

which had a transition temperature of 35K (Bednorz et al., 1995).It was later found by Chu 

and Wu (1988) that replacing the Lanthanum with yttrium making YBCO raised the 

critical temperature to 92K which was important because liquid nitrogen could then be 

used as a refrigerant since its boiling point is 77K at atmospheric pressure (Chu et al., 

1988). Until Fe-based superconductors were discovered in 2008 (Bednorz, 1986; Muller 

1986; Xiao- Li, 2008), the term high-temperature superconductor was used 

interchangeably with Cuprate superconductor for compounds such as Bismuth Strontium 

Calcium Copper Oxide (BSCCO) and Yttrium Barium Copper Oxide (YBCO).All known 

high-Tc superconductors are type-II superconductors. In contrast to type- I superconductors 

which expel all magnetic fields due to Meissner effect , type-II superconductors allow 

magnetic fields to penetrate their interior in quantized units of flux creating `holes` or 

`tubes` of normal metallic regions in the superconducting bulk. Consequently, high- Tc 

superconductors can sustain much higher magnetic fields (Khanna et al., 2008). 

 

 The discovery of possible high –Tc superconductivity in Lanthanum – Barium – Copper-

Oxide (La- Ba –Cu-O, Tc=30K) system (Bednorz et al., 1986) was important and decisive 

breakthrough in the high- Tc superconductivity research. The great success with La-Ba-Cu-

O and La-Sr-Cu-O compounds, led to the discovery of multilayered compounds whose 
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transition temperatures were more than 90K. By March 2007, the world record for high Tc 

superconductivity was held by a ceramic superconductor consisting of Thallium, Mercury; 

Copper, Barium, Calcium, Strontium and Oxygen (Tc =138 K).  Many other Cuprates 

superconductors have been discovered, and some of them with their values of Tc are given 

in table 1.1 

Table 1.1:  Some of the Superconducting Oxides (Khanna, 2008). 

 

Formulae Highest Tc(K) 

YBa2Cu3O7-s 92 

Bi2Sr2CaCu2O8 90 

Bi2Sr2CaCu2O10 122 

Tl2Ba2CaCu2O8 110 

Tl2Ba2Ca2Cu3O10 127 

TlBa2CaCu2O7 90 

HgBa2Ca2Cu3O8 135 

HgBa2Ca2Cu3Ox 133 

Bi2Sr2Ca2Cu3O10(BSCCO) 110 

YBa2Cu3O7(YBCO) 90 

 

2.2. Characteristics of High-Temperature Superconductors 

There are three main characteristics of high-Tc superconducting copper oxides.  

   i)     Strong correlations on copper 

   ii)    Anisotropy 
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   iii)  Large electron-phonon coupling 

2.2.1 Strong correlations on copper 

In superconducting copper oxides, the valence state of copper is Cu
2+

.  The copper ion has 

one hole with spin S=
1
/2 in the 3-D shell and this hole is localized since the energy barrier 

prevents the transfer of the hole to the neighboring oxygen site.  The magnetic moments 

associated with spin ½ of Cu
2+

 are coupled by supper – exchange interaction to a given 

anti-ferromagnetic ground state with Neel temperature Tn≥ 300K.  When the oxygen 

content is increased, additional holes mainly of oxygen Pa character are transferred into O 

(2P) states in CuO2 planes.  These holes form a band of states within energy gap for the Cu 

charge excitation. When the number of holes increases further, they tend to align adjacent 

spins in a parallel configuration that leads to a Mott insulator-metal transition and the 

materials become a superconductor. 

 

Thus, the only motion possible is the alternating spin α = [½,-
1
/2], where the energy band 

splits into two narrow Hubbard bands separated by 2U, where U is the Coulomb on site 

energy, the lower band being fully occupied by anti-ferromagnetically aligned electrons 

and the upper band being empty. 

 

Anderson argued that the strong correlations in the CuO2 planes are best described by a 

single-band Hubbard model with on-site repulsion.  Strong Coulomb repulsion and hole 

correlation play a crucial role in the 2-dimensional CuO2 sub-lattice.  It is essential here in 

the CuO2 planes that the charge carriers are confined to (Anderson, 1997). 
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2.2.2 Anisotropy 

Due to the layered structure (quasi-two-dimensional nature of structure), high-Tc 

superconductors exhibit a strongly anisotropic superconducting behavior which favours 

superconducting currents flowing in CuO4 planes.  This implies that the coupling between 

adjacent conducting layers is in the form of a tunneling process. 

 

2.2.3    Large Electron-Phonon Coupling 

Superconductivity is due to an effective attraction between conduction electrons. Since two 

electrons experience a repulsive Coulomb force, there must be an additional attractive 

force between two electrons when they are placed in a metallic environment. In 

conventional superconductors, this force is known to arise from the interaction with the 

ionic system. For Tc to be large, the Electron-Phonon Coupling constant should also be 

large.  Doglov observations showed an evidence for strong electron-Phonon Coupling.  

Also the self consistent band structure calculation gave large values of the coupling 

constant (Khanna, 2008). 

 

2.3 Theories of High Temperature Superconductivity (HTS) 

Two decades of experimental and theoretical research, with over 100,000 published papers 

on the subject (Mark, 2001) have discovered many common features in the properties of 

high-temperature superconductors (Leggett, 2006) but as of 2009, there was no widely 

accepted theory to explain their properties. Cuprate superconductors differ in many 

important ways from conventional superconductors, such as elemental mercury or lead, 

which are adequately explained by the BCS theory.  There also has been much debate as to 
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high-temperature superconductivity coexisting with magnetic ordering in YBCO (Sanna et 

al., 2004), iron-based superconductors, several Cuprates and other exotic superconductors, 

and the search continues for other families of materials.  High Temperature 

Superconductors are Type- II superconductors, which allow magnetic fields to penetrate 

their interior in quantized units of flux, meaning that much higher magnetic fields are 

required to suppress superconductivity.  The layered structure also gives a directional 

dependence to the magnetic field response. 

 

A number of theories have been proposed as possible explanation for high-Tc 

superconductivity.  Most of these theories require that there should be an attractive 

interaction between the charge carriers resulting in the formation of pairs which act as 

bosons, and can undergo Bose-Einstein condensation.  The proposed theories fall into the 

following three main categories: 

(i) Interaction through phonons (lattice vibrations) 

(ii)   Interaction through charges (charge fluctuations) 

(iii)  Interaction through unpaired spins (spin fluctuations) 

 

2.3.1 Bipolaron theory 

Polaron is defined as a Fermionic quasiparticle composed of a charge and its 

accompanying polarization field. A slow moving electron in a dielectric crystal, interacting 

with lattice ions through long range forces will permanently be surrounded by a region of 

lattice polarization and deformation caused by the moving electron. Moving through the 

crystal, the electron carries the lattice distortion with it, thus one speaks of a cloud of 
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phonons accompanying the electron. Polarons have spin, though two closely-spaced 

Polarons called bipolaron are spinless. The assembly of these bound pairs can undergo 

superconducting transition at temperatures below the Bose-Einstein condensation 

temperature Tc. 

 

2.3.2 Exciton Theory 

Excitons are bound states of electron-hole pair created by electrostatic interaction between 

an electron in the excited state and a hole in the ground state.  Oxides superconductors 

have a layered structure and thus a multiband nature of electron spectrum.  It is therefore 

highly probable to have excitons.  Since, here the energy responsible for coupling is of the 

order of electron energies, much higher Tc can be obtained.  Some of the Exciton models 

are: 

i. Plasma excitations which have a quasi-two-dimensional electronic  

Spectrum which gives rise to the appearance of weakly damped  

Acoustic plasmons (Ruvalds, 1987).
 

ii. Collective electron excitation connected to copper – oxygen charge transfer 

(Varma, 1987) 

 

2.3.3 Spin Bag Theory 

Schrieffer (1992) proposed a model in which boson excitations are responsible for 

superconducting pairing in copper oxide high-Tc compounds. When a mobile hole passes 

through the CuO2lattice, it creates a region of local depression in which copper spins are 

aligned anti-ferromagnetically.  When another hole passes through this region, it gets 
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attracted to this region of lower potential energy resulting in the appearance of a magnetic 

polaron that moves with a deformed cloud.  High- Tc and wave pairing are conditioned by 

a strongly anisotropic region due to anti-ferromagnetic spin fluctuations. 

 

2.3.4 Friedel’s theory of Van-Hove anomaly 

Friedel proposed that superconductivity is due to electron-phonon coupling of delocalized 

carriers.  Since the carriers are confined to the CuO2 planes, high – Tc super-conductors 

exhibit quasi two dimensional Fermi surface.  The band structure for holes leads to 

electronic density of states at or very near the Fermi surface which has Van Hove 

singularity. 

 

2.3.5 Resonating Valence Bond (RVB) State Theory. 

A Quantum spin liquid or singlet liquid state is called a Resonating Valence Bond state.  

Anderson (1987) found that the whole wealth of experimental results on the so-called 

high–Tc superconducting compounds could not fit in honest way to conventional BCS 

theory. 

 

The departures were in two fronts; the first one is that high-Tc superconductivity is not due 

to phonon-induced pairing of electrons. The second and perhaps the most important one is 

that in these superconductors, superconductivity arises not from Cooper pair condensation 

but the condensation of new quasi-particles of positive charge which are now called 

holons. Anderson refers to ceramic superconductors as, strange insulators, strange metal 

and strange superconductors.  Superconducting transition temperature Tc is generally large, 
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of the order of 92K and above.  There are indicators of unstable superconductivity even at 

room temperatures.  The superconductor-normal metal tunneling is anomalous since there 

is a strong ultrasonic attenuation and velocity of sound anomaly.  The infrared absorption 

is very different as compared to the BCS compounds.  Wide discrepancies are there in the 

gap measurements obtained from different experiments such as tunneling infrared 

absorption. 

 

The remarkable fact is the vicinity of the insulating phase to the superconducting phase in 

that at very low temperature the system directly goes from an insulator to a 

superconductor.It was the inelastic neutron scattering in La2CuOu-y that had shown a clear 

indication for the presence of a quantum spin (RVB state) liquid.  Anderson generalized 

Pauling’s theory of resonant valence bond to make it relevant to high-Tc oxide compounds.  

In this model, valence electrons are bounded singlet anti-ferromagnetic pairs (Magnetic 

singlet pairs) which become mobile as in a liquid in the presence of mobile holes. 

Superconductivity is assumed to be due to: 

i. Condensation of holons with 0, 


ji bb pairing is by interlayer tunneling of  

Holons. 

       ii. Tunneling of pairs of electrons between the layers under the condensation of spinon 

pairing amplitude Δij ≠ 0. 

 

Although much progress has been made in understanding the mechanisms that may 

ultimately lead to the development of a comprehensive theory for the high-Tc 
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superconductivity, the nature of the pairing mechanism that may finally describe the 

properties of such systems is still unknown. 

 

2.3.6 Ginzburg-Landau Theory. 

Ginzburg-Landau theory, named after Vitaly Lazarevich Ginzburg and Lev Landau, is a 

mathematical theory used to describe superconductivity. In its initial form, it was 

postulated as a phenomenological model which could describe type-I superconductors 

without examining their microscopic properties. Later a version of Ginzburg- Landau 

theory was derived from the Bardeen-Cooper-Schrieffer microscopic theory by Lev 

Gorkov, thus showing that it also appears in some limit of microscopic theory and giving 

microscopic interpretation of all its parameters (Dasgupta, 2011). Based on Landau’s 

previously established theory of second-order phase transitions, Ginzburg and Landau 

(Ginzburg et al., 2004) argued that the free energy, F, of a superconductor near the 

superconducting transition can be expressed in terms of a complex order parameter field, 

ψ, which is non-zero below a phase transition into a superconducting state and is related to 

the density of the superconducting component. In Ginzburg- Landau theory the electrons 

that contribute to superconductivity were proposed to form a superfliud (Ginzburg, 2004). 

Ginzburg and Landau observed the existence of two types of superconductors depending 

on the energy of the interface between the normal and superconducting states. The most 

important finding from Ginzburg-Landau theory was made by Alexei Abrikosov in 1957. 

He used Ginzburg-Landau theory to explain experiments on superconducting alloys and 

thin films. He found that in a type-II superconductor in a high magnetic field, the field 

penetrates in the form of hexagonal lattice of quantized tubes of flux (Abrikosov, 2003). 
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2.4 Heat capacity of Cuprates and Transition temperature. 

In Cuprates such as YBa2Cu3O7-δ, the mechanism of binding holes as carriers into Cooper 

pairs with high-Tc is still discussed with high intensity.  For the high –Tc superconductors, 

there is a very interesting large group activity,   for pairing model involving substances 

with phonon, polarons, bipolarons, exciton, charge density fluctuation (Ruvalds,1996) spin 

density fluctuation, magnons and resonating- bond state (Kirtley,2000;Tsuei,2000).  

Nevertheless, the B.C.S theory and the Cooper pairing concept remains the cornerstone of 

almost all-current theories of superconductivity.  Of course, one should take into account 

the effects of the co existence of charge density fluctuations and the antiferromagnetic spin 

fluctuations in describing the pairing force in Cuprates (Varshney et al., 2003). 

 

Among various Cuprates hole doped YBa2Cu3O7-δ (Tc≈ 90K) systems are widely analyzed 

experimentally since good crystals with a very sharp superconducting transition at Tc can 

be prepared.  One of the interesting aspects of this structure is that δ can be varied over a 

wide range while the orthorhombic structure and superconductivity are maintained.  For 

approximately 0 <δ<0.5, the system is orthorhombic, while for δ≈ 1.0, it is tetragonal.  The 

orthorhombic phase of YBa2Cu3O7-δ is composed of two- dimensional CuO2 layers as well 

as one-dimensional (ID) CuO chains.  Quite generally the superconductivity occurs 

primarily in the planes and that the existing chains are less crucial. 

 

Traditional proofs of revealing thermal properties, particularly, heat capacity, were used 

extensively on under, optimized and overdoped samples. Salient features of the reported 

specific heat measurements include a linear term (γ′T) at very low temperatures, an upturn 
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in C (T) of superconducting version in the vicinity of Tc and a bump in the normal state 

region near to room temperature (Junod, 1996).  It is noteworthy that the specific heat 

anomaly in the vicinity of Tc both in pure and chemically substituted samples of 

YBa2Cu3O7-δ is weak in comparison to conventional low Tc superconductors. On the 

theoretical side the observation of this anomalous behavior has therefore been of 

considerable interest.  It seems essential to point out that these anomalies represent a 

deviation from the BCS prediction.  It is useful to understand first the possible difficulties 

in explaining the observed anomalous behavior.  As far as a linear term in the low 

temperature domain, it is unclear that γ′T is associated with non-superconducting phase or 

is an intrinsic property due to vanishing of energy gap over a portion of Fermi-surface.  

Secondly, in the vicinity of Tc, the lattice contribution to specific heat is dominating, so 

separation of Fermionic term from the bosonic (Phononic) effect is not straight forward 

without an accurate model for phononic specific heat with many unknown input 

parameters.  Apart from these, there is a good probability of having other phase transitions, 

either electronic or lattice near to the room temperature region.  In an attempt to reveal the 

reported upturn in the vicinity of transition temperature, it is worth noting that measured 

specific heat differs from usual lattice contribution.  It is known that the high-Tc 

superconductors, in particular YBa2Cu3O7-δ   have very complicated electronic structures 

(Anderson, 1997). 

 

Above Tc, the electronic specific heat is linear. Cel=γT where γ is the Sommerfeld constant.  

Below Tc the electronic specific heat is determined by the microscopic mechanism of high-



23 

  

Tc superconductors.  The specific heat measurements show a discontinuity in C (T) of 

superconducting version in the vicinity of transition temperature (Dorbolo et al., 1998). 

For high-Tc Cuprates the evaluation of electronic specific heat is not quite straight forward 

as measured data include contributions from both the electrons and phonons.  In passing, 

we may add that the separation of the lattice specific from the total specific heat is indeed 

constrained by considerable fluctuation effects influencing the temperature dependence of 

specific heat close to Tc.  In the vicinity of Tc, the specific heat is dominated by lattice 

contribution.  Despite limitations and use of free parameters for the estimation of lattice 

and electronic specific heat, the present theoretical model of the heat capacity of high- Tc 

YBa2Cu3O7-δ superconductor reveals the anomalous behaviour reported experimentally. 

 

The election scattering rate at low temperature is inversely proportional to Fermi energy (ε f 

≈ 0.1eV – 0.3eV) and the value of εf is low in doped Cuprates as compared to conventional 

metals which implies that Coulomb interactions may dominate over other excitations 

(lattice and spin wave) in the temperature domain of interest( Ferreira et al., 1988). 
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CHAPTER THREE 

THEORY AND DERIVATIONS 

3.1 Formulation of the Problem 

The model Hamiltonian for a multilayer system of Cuprates can be written as, 

erra HHH intint                           3.1 

Where raH int refers to the Intralayer pairing part of the Hamiltonian, and erH int  refers to the 

interlayer pairing part of the Hamiltonian. We can write, 
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3.3

 

 

 
Here r = 1 (2) and s = 2 (1) are the layer indices for a two layer system such that when the 

layer r is denoted by 1, the layer s is denoted by 2 and vice versa (i.e. when r = 2, then s = 

1)   



ka is the creation operator, and ka  is the annihilation operator of charge carriers in CuO2 

plane with the wave vector ’k’ and spin ‘σ´.  The first term in equation (3.2) represents the 

energy of free charge carriers within the CuO2 plane, and the second term indicates 

attractive intralayer interaction between the charge carriers; U is a measure of such 

interactions (on-site repulsion). 
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The first term in Equation(3.3) represents the direct hopping of charge carriers between the 

layers, t is the interlayer hopping and the second term represents attractive interlayer 

interaction ‘W’ and it contains the contributions from exciton or Plasmons mediated 

interaction and direct Coulomb interaction between charge carriers of different layers.  

Here W is negative (attractive nature) and for the repulsive case U > 0, the hopping 

integral t is taken to be positive (Zhang et.al., 1992). 

 

To study the physical properties, we have to diagonalize using Bogoliubov transformation 

the Hamiltonian in Equation (3.1) using (3.2) and (3.3) 
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Using Bogoliubov transformation 

 



 kkkk avaukb  

                                                                                                                                             3.4 

                                                                                            

 

 
Their complex conjugates are 

 

kkkkk avaub 

   

                                                                                                                                             3.5 

kkkkk avaub  





  

 

 
The inverse transformation of equations (3.4) and (3.5) are 

 

 



  kkkkk avaub
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

 kkkkk bvbua  
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                                                                                                                                             3.6 
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Substituting 3.6 into the first term of the Hamiltonian in Equation (3.2), that is the energy 

of free   charge carriers, say H1, we have: 
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3.7 

 

 

 

A new pair of number operators is defined as 
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                                                                                                                                             3.8 
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
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

   
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Using the number operators in Equation (3.8), H1 becomes 
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H1 contains three terms, the first term is a constant, the second term contains the number  

 

Operators kk mm ,  and the third term is the off-diagonal term containing the products 
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Dealing with the second term of the Hamiltonian in Equation (3.2), say H2 
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The product of the last two terms of H2 is; 
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Operating with  kkkk bvbu 


  on Equation (3.10) from the left, we have, 
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Operating with  kkkk bvbu 


 , on Equation (3.11) from the left, finally we have, 
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3.12 

Equation (3.12) can be re-written such that the first term contains four operators, the 

second term is the off-diagonal term containing the product 






kk bb  and kkbb and 

the third term contains the number operators km and km . Also using the number 

operators given in Equation (3.8) H5 becomes,  
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Since km and km  are real numbers, then ,kk mm  H5 reduces to, 
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H5 contains three terms, the first term contains four operators, the second term is off-

diagonal term and the third term is a constant. 

The off-diagonal term in H1 (Equation 3.9) say H6, is, 
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To diagonalize the Hamiltonian, equating the sum of the off-diagonal terms in H6 and H7 

equal to zero and by neglecting the terms with four operators, we get: 
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This implies that, 

     011
3333

  

k k

kkkkkkkkkkkkkkk mvumvumvumvuUvu
        3.14 

Or 

0 







kkkk bbbb  
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Since km  are real numbers, ,kk mm  Equation (3.14) reduces to; 

  0
333333
  

k k

kkkkkkkkkkkkkkkkkkk vumvumvumvuvumvuUvu
 

  0
33
 

k k

kkkkkkk vuvuUvu
 

   0
33


k

kkkkkkk vuvuUvu
                                                          3.15 

 

Obtaining the constant term from Equation (3.9) and (3.13), we get, 

 
k k

kkkk vuUv
222


                                                                                        3.16 

Similarly for Hinter 

 







 
qkksr

krksqksqkr

ksr

kskrer aaaaWaatH
''

''

,,,,,

,,,,,',,,

,,,

,,,,int )(








                        3.17

 

Using Equation (3.6), the first term of the Hamiltonian, say H8 in Equation (3.17) becomes, 

 




,,,

,,,,8 )(
ksr

kskr aatH

 

  







k

kkkkkkkk bvbubvbut
 

 











k

kkkkkkkkkkkkkk bbvbbvubbvubbut
22

 

    












k

kkkkkkkk

k

kkkkkk bbvubbvutbbvbbut
22
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Using the number operators given in Equation (3.8), H8 becomes, 

     







 
k

kkkkkkkkkkk bbbbvuvmvmutH
222

8  

     







 
k

kkkkkkkkkkk bbbbvumvmuvt
222

 

      







 
k k k

kkkkkkkkkkk bbbbvutmvmutvt
222

              

3.18 

Dealing with the second part of the Hamiltonian in Equation (3.17), say H9, we have, 

 






qkksr

krksqksqkr aaaaWH
'' ,,,,,

,,'',',',,,9





 

    















k

kkkkkkkkkkkkkkkk bvbubvbubvbubvbuWH9  

The product of the last two terms is, 

 






 
k

kkkkkkkkkkkkkk bbvbbvubbvubbuWH
22

10                 3.19 

Operating with  kkkk bvbu 


 on Equation (3.19) on the left, we have, 

 













 
k

kkkkkkkkkkkkkk bbbvubbbvubbbuWH
223

11  











  kkkkkkkkkkkkkkk bbbvubbbvubbbvu
222

 






 kkkkkkkkk bbbvbbbvu

32

                                                              3.20 
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Operating with  kkkk bvbu 


  on Equation (3.20) from the left, finally we 

have,
 


















k

kkkkkkkkkkk bbbbvubbbbuWH
34

12  

kkkkkkkkkkkk bbbbvubbbbvu















322
 










 kkkkkkkkkkkk bbbbvubbbbvu

223

 






 kkkkkkkkkkkk bbbbvubbbbvu

322
 











  kkkkkkkkkkkk bbbbvubbbbvu
223

 











  kkkkkkkkkkkk bbbbvubbbbvu
322

 



  kkkkkkkkkkkk bbbbvubbbbvu
322

 











  kkkkkkkkkkk bbbbvbbbbvu
43

                
3.21 

Using the number operators of Equation (3.8), H12 becomes, 

 


















k

kkkkkkkkkkkkkkkk bbbbvubbbbvbbbbuWH
2244

12  

   





  kkkkkkkkkkk bbmvubbbbvu 1
322

 










 kkkkkkkkkk bbmvubbmvu

33

 

    kkkkkkkkkk bbmvubbmvu 







  11
33

 

  kkkkkkkkkkkkkkk bbmvubbmvubbmvu   1
333
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   11
2222

  kkkkkkkk mmvummvu  

   11
2222

  kkkkkkk mvummvu                                      3.22 

 

Factoring out the operators kkkk bbbb 






,

 
in the second term and the common term 

22

kk vu in the third term of Equation (3.22), H12 becomes, 

 






















k

kkkkkkkkkkkkkkkk bbbbvubbbbvbbbbuWH
2244

12  

   kkk

k

kkkkkkkkk mvumvuWbbbbvu
3322

1     

  kkkkkkkkkk bbbbmvumvu 







  1
33

 

       

K

kkkkkkkk mmmmmmvuW 1211
22

 

Or 

 






















k

kkkkkkkkkkkkkkkk bbbbvubbbbvbbbbuWH
2244

12  

   kkk

k

kkkkkkkkk mvumvuWbbbbvu
3322

1     

  kkkkkkkkkk bbbbmvumvu 







  1
33

 

  
k

kkkkkk mmmmvuW 22122
2222
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Or  

 






















k

kkkkkkkkkkkkkkkk bbbbvubbbbvbbbbuWH
2244

12

   kkk

k

kkkkkkkkk mvumvuWbbbbvu
3322

1     

  kkkkkkkkkk bbbbmvumvu 







  1
33

 


k

kk vuW
22

                                                                                                   3.23 

The off-diagonal term in Equation (3.18) is, 

  








k

kkkkkk bbbbvut
                                                                                 

3.24 

The off-diagonal terms in Equation (3.23) are, 

  kkk

k

kkk mvumvuW
33

1    

  kkkkkkkkkk bbbbmvumvu 







  1
33

               3.25
 

To diagonalize the Hamiltonian, equate the sum of terms in Equation (3.24) and (3.25) to 

zero, let the terms with km  and km  in H8 to vanish and neglecting the terms containing 

four operators of  H12 we get, 

     







k

kkkkkk

k

kkkkkk mvumvuWbbbbvut
33

1  

   01
33

 







 kkkkkkkkkk bbbbmvumvu  
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Or 

  kkk

k k

kkkkk mvumvuWvut
33

1 



   

  01
33

 







 kkkkkkkkkk bbbbmvumvu  

This implies, 

  kkk

k k

kkkkk mvumvuWvut
33

1    

 

  01
33

 kkkkkk mvumvu  

   

k k

kkkkkkkkkk mvuvumvuWvut
333

 

 0
333
  kkkkkkkk vumvumvu                                                         3.26 

Since ,kk mm  Equation (3.26) reduces to, 

   
k k

kkkkk vuuWvut 0
33

                                                              3.27 

From Equation (3.18) and (3.23), the sum of constant terms for erH int  
is 

 
k k

kkk vuWvt
222

                                                                                   3.28 

From erra HHH intint   

The sum of off- diagonal terms from Equations (3.15) and (3.27) becomes 
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      0
3333
 

k

kkkkkk

k

kkkkkkk vuvuWvtuvuvuUvu  

Or 

      0
33


k

kkkkkkk vuvuWUvut
 

The sum of constant terms from Equation (3.16) and (3.28) becomes: 

diagonal

k k k k

kkkkkkk HvuWvtvuUv    
222222

  

     
k k

idiagonalkkkk EHvuWUvt
222

                          3.29 

For electrons (Fermions) 

,1
22
 kk vu (Plakida, 1995),     this implies that when, 

0ku
,
 Then 0kv and 

0,1  kk vu  

These combinations are not acceptable since they do not give any physically important  

 

results.  Thus 
2

1
 kk vu   will be the only useful values. 

 
 

From equation (3.29) the energy of the state i, iE , is given by, 

 

 

    WUvuvtE kkkki 
222


                                                                             

3.30 
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Substituting the values of ku and ,kv Equation (3.30) becomes, 

 

 

   WUtE ki 
4

1

2

1


                                                                        
3.31 

 

The temperature dependence of the energy Ei will be introduced through the thermal 

activation factor
TkE Bie


.  The system energy Ei will be multiplied by

TkE Bie


 such 

that the energy of the system becomes
TkE

i
BieEE


 . 

Equation (3.31) changes to, 

 

    TkE

k
BieWUtE













4

1

2

1
 Where Bk is the Boltzmann Constant

 

 

Where fk    

 
Hence,                                         

 

  TkEF BieWUt
m

k
E































4

1

22

1
22

                                      3.32                                                                                                                          

 

 

TkE

i
BieEE




                                                                                               
3.33 

Where  WUt
m

k
E F

i 














4

1

22

1
22

 

 
The energy expression in Equation (3.34) will be used to calculate the heat capacity and 

transition temperature Tc of Cuprates. 

The heat capacity, CV is given by: 
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













T

E
Cv  

 
and hence, 

 

TkE

B

i
s

Bie
Tk

E
C




2

2

                                                                                             3.34 

Where Cs is the heat Capacity in the superconducting State. 

 

The transition temperature Tc of the system is obtained from the condition that  

0












 cTT

s

T

C
 

0
2

2


















  TkE

B

i Bie
Tk

E

T  

0
2

3

2

42

3


 TkE

cB

iTkE

cB

i BiBi e
Tk

E
e

Tk

E
 

TkE

cB

iTkE

cB

i BiBi e
Tk

E
e

Tk

E 




























3

2

42

3
2

 

 

2
cB

i

Tk

E
 

 
Or 

 

B

i
c

k

E
T

2


                                                                                                            3.35
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.1.1 Transition temperature, Tc and Coulomb repulsion, U. 

After diagonalizing the Hamiltonian in Equation (3.1) using Bogoliubov transformation, 

the equations for the energy of state i, Ei, heat capacity, CV, and transition temperature, Tc 

are obtained.  For high-Tc Cuprates, experimental data suggests that the Fermi energy, εf, 

ranges between εf= 0.1eV– 0.3 eV (Saito et al., 1991).For YBCO, εf taken to be 0.2 eV 

(Vladimir, 1992). 

The choice of YBCO was due to the excellent experimental heat capacity data available. 

These data will give a good comparison with the results of this study. 

The values of Ei are calculated from Equation 3.31 for t =0.015 eV, 0.025 eV and  

W=-1.117 eV, -1.177 eV respectively (Kakani, 2007).From Equation 3.35, Ei> 0 values 

give physically acceptable values of transition temperature in this model. The values of 

critical temperature Tc corresponding to the values of Ei are calculated from Equation 

3.35.When t=0.015 eV and W= -1.117 eV the values of Ū, Ei and Tc are calculated for the 

values of U shown in Table 4.1(a) below. Ū=U+W is the effective interaction. 

Table 4.1(a): Transition temperature, Energy of state and Coulomb repulsion. 

 

 

U(eV) 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 

Ū(eV) -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 -0.31 -0.30 

Eix10
-3

 0.75 3.25 5.75 8.25 10.75 13.25 15.75 18.25 

Tc(K) 4.0 18.7 33.1 47.5 61.9 76.3 90.7 105.1 
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From Table 4.1(a), the variation of transition temperature Tc with on-site repulsion U for   

 

t= 0.015 eV and W= -1.117eV is shown in Figure 4.1 below. 

 

 

 
 

Figure 4.1: Variation of transition temperature Tc with U. 

 

 From Figure 4.1, transition temperature increases linearly with U. The values of U was 

 

chosen from the condition that Ei> 0 in this model. From Table 4.1(a) when U= 0.81 eV,  

 

Tc=90.7 K.  

 

This value is close to the experimental transition temperature of YBCO which is 

 

considered in this study. 

 

 

From Table 4.1(a), the variation of transition temperature Tc with the effective interaction 

Ū for t=0.015eV and W=-1.177eV is shown in Figure 4.2. 
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Figure 4.2: Variation of transition temperature Tc with Ū 

 

From Figure 4.2, the transition temperature increases with Ū. The effective interaction Ū is 

attractive (negative) in this model. This means that the attractive interaction overcomes the 

on-site coulomb repulsion. When t is increased to 0.025 eV and W=-1.177eV, 

consequently it leads to an increase in U as shown in Table 4.1(b). For t=0.025 eV, εf=0.2 

eV and W= - 1.177eV, the values of Ei and Tc are calculated from Equation (3.31) and 

(3.35) respectively, for the values of U shown in Table 4.1(b). 

 

Table 4.1(b): Transition Temperature, Energy of State and Coulomb Repulsion. 

 

 

U(eV) 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 

Ei(eV)x 10
-3

 0.75 3.25 5.75 8.25 10.75 13.25 15.75 18.25 

Tc(K) 4.3 18.7 33.1 47.5 61.9 76.3 90.7 105.1 
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From Table 4.1(b), the variation of transition temperature Tc with on-site repulsion U for  

 

t=0.025 eV and W =-1.177eV is shown Figure 4.3 below. 

 

 

 
Figure 4.3: Variation of transition temperature Tc with U  

 

 

 

From Table 4.1(b), the value of U which gives a transition temperature of 90.7 K is 0.89 

 

eV for t=0.025 eV and W= -1.177eV.This further shows that an increase in interlayer  

 

hopping t and interlayer interaction W helps to enhance Tc. 

         
4.1.2 Heat Capacity 

The heat capacity in the superconducting state, Cs is calculated from Equation (3.34) in the 

temperature domain 10K≤T≤100K. 

From Table 4.1(a), the value of U=0.81 eV gives the value of transition temperature as 

90.7 K. This is close to the experimental transition temperature of YBCO which is 90K. 

The value of Ei corresponding to U= 0.81 eV, t=0.015 eV and W= -1.117 eV is 0.01575 eV. 

Using this value of Ei in Equation (3.34), the heat capacity, Cs, of YBCO is calculated for the 

temperature range shown in Table 4.2 below. 
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Table 4.2: Heat Capacity in Superconducting State. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variation of heat capacity with temperature in Table 4.2 is shown in Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

Temperature (K) Csx10
-6

(eV/K)
 

 

10 0.0003 

20 0.08 

30 9.1 

40 18.8 

50 30.3 

60 38.5 

70 43.7 

80 46.2 

90 46.9 

100 46.0 
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Figure 4.4:  Variation of heat capacity with temperature. 

 

From Figure 4.4, for T<Tc, the graph increases exponentially with temperature. The shape 

of heat capacity graph for superconducting phase Cs indicate specific heat jump at T=Tc 

typical of superconducting state. From Figure 4.4, the transition temperature is around 90K 

which is equal to the experimental value of YBCO. 

 

From Equation (3.31), when t = 0.015 eV, W=-1.117eV and U=0.81 eV then Ei =0.01575  

 

eV,  the value of Tc calculated from Equation (3.35) is given by, 

 

 

B

i
c

k

E
T

2
  

410868.02

01575.0



xx

 

 

= 90.7K 
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This calculated value of Tc compares well with the value of Tc from Figure 4.4 which is  

 

around 90K. 

 

 

The heat capacity for the normal state Cn is calculated using the formula (Varshney et. al., 

2003). 

TCn 
                                                                                                                    

4.1 

Where γ is the specific heat coefficient (Sommerfeld gamma)  

= 3.0 x 10
-26

 J/K
2
, or 1.87 x 10

-7 
eV/K

2
, (Plakida, 1995). 

The heat capacity, for the normal state, Cn is calculated using Equation (4.1) for the 

temperature range shown in Table 4.3.  

Table 4.3: Heat Capacity for the Normal State. 

 

Temperature(K) Cn x 10
-6

(eV/K) 

10 1.9 

20 3.7 

30 5.6 

40 7.5 

50 9.4 
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Table 4.3 (continuation) 

Temperature(K) CnX10
-6

(eV/K) 

60 11.2 

70 13.1 

80 14.9 

90 16.8 

100 18.7 

110 20.6 

120 22.4 

140 26.2 

150 28.1 

160 29.9 

170 31.8 

180 33.7 

190 35.5 

200 37.4 

210 39.3 

220 41.2 

230 43.0 

 

From Table 4.2 and 4.3, the comparison between specific heat capacity Cs for the 

superconducting state and Cn for the normal state is shown in Figure 4.5. 
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                            Figure 4.5: Variation of Cn and Cs with temperature. 

 

When Tc = 90.7K, Cn= 16.96 x 10
-6 

eV/atom-K,                                                                

 

From Figure 4.5, at T = Tc, Cs = 46.9 x 10
-6 

eV/atom-K, 

 

 

Hence 76.2
n

s

C

C
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CHAPTER FIVE 

 

CONCLUSIONS AND RECOMMENDATIONS 

 
The presence of square planer Cu-O layer in the high Tc Cuprates clearly establishes the 

importance of interlayer interaction. In a bilayer or multilayer Cuprate the separation 

between adjacent CuO2 planes within the unit cell is smaller than the adjacent layers in a 

single layer system; therefore it is natural to include interlayer interactions in multilayer 

Cuprates.  The one-band, two-layer model with intra and interlayer interactions considered 

in this study for Yttrium Barium Copper Oxide can be generalized to multilayer systems. 

 

For t=0.015eV and W= -1.117eV, the transition temperature increases linearly with on-site 

Coulomb repulsion as shown in figure 4.1. The transition temperature obtained for 

t=0.015eV, W=-1.117eV and Ei= 0.01575 eV was 90.7K. When t is increased to 0.025eV 

and W=-1.177eV, the transition temperature obtained was 90.7K. It was found that the 

transition temperature increases linearly with the effective interaction, Ū as shown in 

figure 4.2.This study therefore reveals that the interlayer and intralayer interactions play a 

significant role in enhancing transition temperature in layered Cuprates. 

 

The variation of heat capacity in the superconducting state with temperature increases 

exponentially for T<Tc, it suffers a jump at Tc=90.7K as shown in figure 4.4. The ratio of 

heat capacity in the superconducting state to that of the normal state at T=Tc is 2.76. This 

compares well with the experimental value of 2.43 (Hazen, 1990). 



51 

  

It is recommended that this model be extended to study the role of interlayer and intralayer 

interactions in transition temperature and heat capacity of Mercury-based Cuprates such as 

HgBa2Ca2Cu2O8 and HgBa2Ca2Cu3Ox which have transition temperature of 135K and 133K 

respectively.  
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